Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 31, 2021, 2 UDK 5 Annales, Ser. hist. nat., 31, 2021, 2, pp. 167-326, Koper 2021 ISSN 1408-533X KOPER 2021 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 31, 2021, 2 UDK 5 ISSN 1408-533X e-ISSN 2591-1783 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 31, leto 2021, številka 2 e-ISSN 2591-1783 UREDNIŠKI ODBOR/ COMITATO DI REDAZIONE/ BOARD OF EDITORS: Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capapé (FR), Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Patricija Mozetič, Martina Orlando- Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Lektor/Supervisione/Language editor: Polona Šergon (sl.), Petra Berlot Kužner (angl.) Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design: Dušan Podgornik, Lovrenc Lipej Tisk/Stampa/Print: Založništvo PADRE d.o.o. Izdajatelja/Editori/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Società storica del Litorale - Capodistria© Inštitut IRRIS za raziskave, razvoj in strategije družbe, kulture in okolja / Institute IRRIS for Research, Development and Strategies of Society, Culture and Environment / Istituto IRRIS di ricerca, sviluppo e strategie della società, cultura e ambiente© Sedež uredništva/Sede della redazione/ Address of Editorial Board: Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax +386 5 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 13. 12. 2021. Sofinancirajo/Supporto finanziario/ Financially supported by: Javna agencija za raziskovalno dejavnost Republike Slovenije (ARRS), Mestna občina Koper Annales - Series Historia Naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales, Series Historia Naturalis je vključena v naslednje podatkovne baze / La rivista Annales, series Historia Naturalis è inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL); Directory of Open Access Journals (DOAJ). To delo je objavljeno pod licenco / Quest’opera è distribuita con Licenza / This work is licensed under a Creative Commons BY-NC 4.0. Navodila avtorjem in vse znanstvene revije in članki so brezplačno dostopni na spletni strani https://zdjp.si/en/p/annalesshn/ The submission guidelines and all scientific journals and articles are available free of charge on the website https://zdjp.si/en/p/annalesshn/ Le norme redazionali e tutti le riviste scientifiche e gli articoli sono disponibili gratuitamente sul sito https://zdjp.si/en/p/annalesshn/ ANNALES · Ser. hist. nat. · 31 · 2021 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 31, Koper 2021, številka 2 ISSN 1408-533X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS 2021(2) BIOINVAZIJA BIOINVASIONE BIOINVASION Cemal TURAN, Mevlüt GÜRLEK, Deniz ERGÜDEN & Hakan KABASAKAL A New Record for the Shark Fauna of the Mediterranean Sea: Whale shark, Rhincodon typus (Orectolobiformes: Rhincodontidae) ....................................................... Nova vrsta v favni morskih psov Sredozemskega morja: morski pes kitovec, Rhincodon typus (Orectolobiformes: Rhincodontidae) Andrea LOMBARDO & Giuliana MARLETTA New Evidence of the Ongoing Expansion of Okenia picoensis Paz-Sedano, Ortigosa & Pola, 2017 (Gastropoda: Nudibranchia) in the Central-Eastern Mediterranean ......................... Novi podatki o širjenju areala vrste Okenia picoensis Paz-Sedano, Ortigosa & Pola, 2017 (Gastropoda: Nudibranchia) v srednjem vzhodnem Sredozemskem morju SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL A Review of Shark Biodiversity in Turkish Waters: Updated Inventory, New Arrivals, Questionable Species, and Conservation Issues ....................................... Pregled pestrosti morskih psov v turških morjih: dopolnjen seznam, novi prišleki, vprašljive vrste in naravovarstveni problemi Hakan KABASAKAL & Erdi BAYRI Great White Sharks, Carcharodon carcharias, Hidden in the Past: Three Unpublished Records of the Species from Turkish Waters ................................ Trije neobjavljeni primeri pojavljanja belega morskega volka, Carcharodon carcharias, iz turških voda izbrskani iz preteklosti IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Malek ALI, Vienna HAMMOUD, Ola FANDI & Christian CAPAPÉ First Substantiated Record of Crested Oarfish Lophotus lacepede (Osteichthyes: Lophotidae) from the Syrian Coast (Eastern Mediterranean Sea) ............ Prvi utemeljeni zapis o pojavljanju čopovke Lophotus lacepede (Osteichthyes: Lophotidae) ob sirski obali (vzhodno Sredozemsko morje) Mohamed Mourad BEN AMOR, Khadija OUNIFI-BEN AMOR, Marouène BDIOUI & Christian CAPAPÉ The Second Record of Oilfish, Ruvettus pretiosus (Gempylidae), in Tunisian Waters (Central Mediterranean Sea) ............................................. Drugi zapis o pojavljanju vrste Ruvettus pretiosus (Gempylidae) v tunizijskih vodah (osrednje Sredozemsko morje) Okan AKYOL & Vahdet ÜNAL On the Occurrence of Seriola fasciata (Carangidae) in the Eastern Mediterranean Sea ............................................... O pojavljanju vrste Seriola fasciata (Carangidae) v vzhodnem Sredozemskem morju Nassima EL OMRANI, Hammou EL HABOUZ, Abdelbasset BEN-BANI, Abdellatif MOUKRIM, Roger FLOWER & Abdellah BOUHAIMI Age and Growth of the Pouting Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) from Moroccan Central Atlantic Waters......................................... Rast in starost francoskega moliča Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) v atlantskih vodah osrednjega Maroka 167 173 195 217 211 181 223 205 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 Mourad CHÉRIF, Rimel BENMESSAOUD & Christian CAPAPÉ Age and Growth Parameters of the Red Mullet Mullus barbatus (Mullidae) from Northern Tunisia (Central Mediterranean Sea) ......... Starostni in rastni parametri pri navadnem bradaču Mullus barbatus (Mullidae) iz severne Tunizije (osrednje Sredozemsko morje) Yana SOLIMAN, Adib SAAD, Vienna HAMMOUD & Christian CAPAPÉ Heavy Metal Concentrations in Tissues of Red Mullet, Mullus barbatus (Mullidae) from the Syrian Coast (Eastern Mediterranean Sea) ........... Vsebnost težkih kovin v tkivih bradača, Mullus barbatus (Mullidae) iz sirske obale (vzhodno Sredozemsko morje) Christian CAPAPÉ, Youssouph DIATTA, Almamy DIABY, Sihem RAFRAFI-NOUIRA & Christian REYNAUD Record of a Single Clasper Specimen in Zanobatus schoenleinii (Chondrichthyes: Zanobatidae) from the Coast of Senegal (eastern tropical Atlantic) .......................................... Najdba primerka vrste Zanobatus schoenleinii (Chondrichthyes: Zanobatidae) le z enim klasperjem iz senegalske obale (vzhodni tropski Atlantik) FAVNA FAVNA FAVNA Ana FORTIČ, Domen TRKOV, Lovrenc LIPEJ, Marco FANTIN & Saul CIRIACO New Evidence of the Occurrence of Knoutsodonta pictoni (Nudibranchia, Onchidorididae) in the Northern Adriatic ................. Novi podatki o pojavljanju vrste Knoutsodonta pictoni (Nudibranchia, Onchidorididae) v severnem Jadranu Noureddine BENABDELLAH, Djillali BOURAS, Mohammed RAMDANI & Nicolas STURARO Biodiversity and Structural Organization of Mollusk Communities in the Midlittoral Coastal Area Between Bouzedjar and Arzew (Western Algeria) ........................................... Biodiverziteta in struktura združbe mehkužcev v bibavičnem območju med predeloma Bouzedjar in Arzew (zahodna Alžirija) Rudi VEROVNIK, Nejc RABUZA, Miroslav REPAR, Matjaž ZADRGAL & Paul TOUT On the Presence of Two-Tailed Pasha (Charaxes jasius (Linnaeus, 1767), Papilionoidea: Nymphalidae) in the Northeastern Adriatic Region .................................... O pojavljanju dvorepega paše (Charaxes jasius (Linnaeus, 1767), Papilionoidea: Nymphalidae) na območju severovzhodnega Jadrana Viktor BARANOV & Borut MAVRIČ New Records of Non-Biting Midges (Diptera, Chironomidae) from Marine and Coastal Habitats of the Slovenian Part of the Adriatic Sea ............................................. Nove najdbe trzač (Diptera, Chironomidae) iz morskih in obmorskih habitatov v slovenskem delu Jadrana FLORA FLORA FLORA Amelio PEZZETTA, Marco PAOLUCCI & Mario PELLEGRINI Le Orchidaceae del sito di interesse comunitario “Monte Pallano e Lecceta d’Isca d’Archi” e delle zone limitrofe ................................. Kukavičevke območja, pomembnega za skupnost “Monte Pallano e Lecceta d’Isca d’Archi” in sosednjih območij DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS Marina DERMASTIA, Tina ELERŠEK, Jadranka JEZERŠEK, Lučka KAJFEŽ BOGATAJ, Matjaž KUNTNER, Tamara LAH TURNŠEK, Matjaž LIČER, Lovrenc LIPEJ, Miha MIKELJ, Izidor OSTAN OŽBOLT, Maja RAVNIKAR, Katja SINUR, Darja STANIČ, Timotej TURK DERMASTIA, Al VREZEC Okoljski manifest ...................................................... IN MEMORIAM Jadran FAGANELI V spomin prof. dr. Jožetu Štirnu (1934-2021) ........... Kazalo k slikam na ovitku ........................................ Index to images on the cover .................................... 321 326 326 291 235 243 261 301 285 267 251 315 ANNALES · Ser. hist. nat. · 30 · 2020 · 1 165 Ahmet ÖKTENER & Sezginer TUNCER: OCCURRENCE OF GNATHIA LARVAE (CRUSTACEA, ISOPODA, GNATHIIDAE) IN THREE LESSEPSIAN FISH SPECIES ..., 87–98 BIOINVAZIJA BIOINVASIONE BIOINVASION ANNALES · Ser. hist. nat. · 30 · 2020 · 1 166 Ahmet ÖKTENER & Sezginer TUNCER: OCCURRENCE OF GNATHIA LARVAE (CRUSTACEA, ISOPODA, GNATHIIDAE) IN THREE LESSEPSIAN FISH SPECIES ..., 87–98 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 167 received: 2021-10-21 DOI 10.19233/ASHN.2021.20 A NEW RECORD FOR THE SHARK FAUNA OF THE MEDITERRANEAN SEA: WHALE SHARK, RHINCODON TYPUS (ORECTOLOBIFORMES: RHINCODONTIDAE) Cemal TURAN, Mevlüt GÜRLEK & Deniz ERGÜDEN Molecular Ecology and Fisheries Genetics Laboratory, Marine Science Department, Faculty of Marine Science and Technology, Iskenderun Technical University, 31220 Iskenderun, Hatay, Turkey Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil apt., No: 30, D: 4, Ümraniye, TR-34764 İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com ABSTRACT On October 18, 2021, a whale shark Rhincodon typus Smith, 1828 was sighted off the coast of Samandağ (Hatay city, Turkey, NE Mediterranean Sea), by a commercial long-liner. With the addition of R. typus, the total number of Mediterranean shark species recorded to date has increased to 51. The changing conditions of the Mediterranean will show whether this shark will become a resident or transient species in the region. Key words: shark, biodiversity, planktivorous, filter feeding NUOVA SEGNALAZIONE PER LA FAUNA DI SQUALI DEL MEDITERRANEO: SQUALO BALENA, RHINCODON TYPUS (ORECTOLOBIFORMES: RHINCODONTIDAE) SINTESI Il 18 ottobre 2021, uno squalo balena Rhincodon typus Smith, 1828 è stato avvistato al largo della costa di Samandağ (città di Hatay, Turchia, Mediterraneo nord-orientale), da un peschereccio commerciale. Con l’aggiunta di R. typus, il numero totale di specie di squali del Mediterraneo registrate fino ad oggi è salito a 51. Il cambiamento delle condizioni del Mediterraneo mostrerà se questo squalo diventerà una specie residente o transitoria nella regione. Parole chiave: squalo, biodiversità, planctivoro, filtratore ANNALES · Ser. hist. nat. · 31 · 2021 · 2 168 Cemal TURAN et al.: A NEW RECORD FOR THE SHARK FAUNA OF THE MEDITERRANEAN SEA: WHALE SHARK, RHINCODON TYPUS (ORECTOLOBIFORMES ..., 167–172 INTRODUCTION With the opening of the Suez Channel in 1869, the phenomenon termed “Lessepsian migration” brought about considerable changes in fish communities occurring in the eastern Mediterranean Sea (Arndt et al., 2018). The tropicalization of Mediterranean waters is accelerating the establishment of tropical species, such as the whale shark Rhincodon typus Smith, 1828, in the Mediterranean Sea (Moschella, 2008; Turan et al. 2016). The whale shark Rhincodon typus Smith, 1828 is the largest fish occurring in the tropical and warm temperate oceans of the world (Bonfil & Abdallah, 2004). According to Bonfil and Abdal- lah (2004), R. typus is a filter feeding shark, oc- curring singly or in schools, both in coastal and oceanic waters. In the most recent checklist of elasmobranchs occurring in the Mediterranean Sea, Serena et al. (2020) did not mention the presence of R. typus in the region. In the present article, the authors report the first recording of whale shark in the Mediter- ranean Sea. MATERIAL AND METHODS On October 18, 2021, a whale shark Rhincodon typus Smith, 1828 (Fig. 1) was sighted off the coast of Samandağ, Hatay, Turkey, NE Mediterranen Sea (35.986045, 35.951286) (Fig. 2) by Mr. Erman Sertel, a commercial long-liner. Mr. Sertel recorded a short video footage (20 seconds) of the sighted individual and emailed the video to the first and the fourth authors in order to verify the identification of the species. Compagno (2001) was followed for taxonomic nomenclature and species identification. The recorded video is preserved in the personal archives of the first and the fourth authors, and available for inspection on request. RESULTS AND DISCUSSION The shark seen in the video footage and in Figure 2 has enabled us to examine the following characteristics from the dorsal perspective: head very broad and greatly flattened. Snout truncated. Gill slits very large, fifth gill slit well-separated from fourth and not overlapping. Body moderately Fig. 1: Sighted whale shark Rhincodon typus Smith, 1828 off the coast of Samandağ (NE Mediterranean Sea, Turkey). Image captured from the video footage recorded by Mr. Erman Sertel. Sl. 1: Opažen primerek morskega psa kitovca Rhincodon typus Smith, 1828 ob obali Samandağ (SV Sredozem- sko morje, Turčija). Posnetek izvira iz videozapisa, ki ga je posnel Erman Sertel. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 169 Cemal TURAN et al.: A NEW RECORD FOR THE SHARK FAUNA OF THE MEDITERRANEAN SEA: WHALE SHARK, RHINCODON TYPUS (ORECTOLOBIFORMES ..., 167–172 depressed. Precaudal tail shorter than body. Caudal peduncle with strong lateral keels. Pectoral fins very large, relatively narrow and falcate. First dor- sal fin much larger than the second. First dorsal fin origin well behind pectoral fin free rear tips. The individual exhibited the unique color pattern of R. typus, consisting of small to large white or yel- lowish spots and vertical and horizontal stripes in the form of a checkerboard on a dark background. The examined characteristics were coincident with those described by Compagno (2001); therefore, we identified the sighted shark as Rhincodon typus Smith, 1828. Neither the fisherman nor the authors had a chance to measure the size of the live shark; how- ever, based on a comparison with the fishing boat, the size of the shark was estimated by the fisherman to be roughly 300 cm. A first mention of the possible presence of Rhincodon typus in the Mediterranean Sea was included in De Maddalena and Baensch (2005), who wrote: “There are unconfirmed reports of the whale shark (Rhincodon typus),” but the authors concluded there was no confirming evidence. And since the occurrence of R. typus is not mentioned in the recent checklists of marine fishes or sharks occurring in the Levantine region (Bariche, 2012; Turan et al., 2018; Giovos et al., 2021) or in the wider Mediterranean Sea (Serena et al., 2020), the sighted individual is considered as the first record of whale shark in the Mediterranean Sea. For the moment, the authors do not attempt to speculate on the possible reasons causing the migration of the whale shark into the Mediterra- nean Sea; still, every arrival of a new shark spe- cies brings new opportunities of research and new Fig. 2: The location (red circle) of the present sighting of the whale shark Rhincodon typus Smith, 1828 off the coast of Samandağ (NE Mediterranean Sea, Turkey). Sl. 2: Lokacija (rdeči krogec), na kateri je bil opazovan primerek morskega psa kitovca Rhincodon typus Smith, 1828 ob obali Samandağ (SV Sredozemsko morje, Turčija). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 170 Cemal TURAN et al.: A NEW RECORD FOR THE SHARK FAUNA OF THE MEDITERRANEAN SEA: WHALE SHARK, RHINCODON TYPUS (ORECTOLOBIFORMES ..., 167–172 responsibilities in terms of conservation. However, judging from its occurrence in the neighboring Red Sea waters (Bonfil & Abdallah, 2004), the present individual had apparently migrated into the eastern Levant waters through the Suez Channel. According to Pierce and Norman (2016), the whale shark is an endangered species, globally threatened by fisher- ies and vessel strikes. With the addition of R. typus, the total number of Mediterranean sharks, which was reported as 50 by De Maddalena et al. (2015), has increased to 51. However, the changing condi- tions of the Mediterranean due to climate change will show whether this shark will become a resident or transient species in the region. ACKNOWLEDGMENTS The Authors thank Mr. Erman Sertel, a com- mercial long-liner, for generously sharing the video footage of the sighted whale shark. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 171 Cemal TURAN et al.: A NEW RECORD FOR THE SHARK FAUNA OF THE MEDITERRANEAN SEA: WHALE SHARK, RHINCODON TYPUS (ORECTOLOBIFORMES ..., 167–172 NOVA VRSTA V FAVNI MORSKIH PSOV SREDOZEMSKEGA MORJA: MORSKI PES KITOVEC, RHINCODON TYPUS (ORECTOLOBIFORMES: RHINCODONTIDAE) Cemal TURAN, Mevlüt GÜRLEK & Deniz ERGÜDEN Molecular Ecology and Fisheries Genetics Laboratory, Marine Science Department, Faculty of Marine Science and Technology, Iskenderun Technical University, 31220 Iskenderun, Hatay, Turkey Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil apt., No: 30, D: 4, Ümraniye, TR-34764 İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com POVZETEK Osemnajstega oktobra 2021 so s komercialnega ribiškega plovila opazovali primerek morskega psa kitovca Rhincodon typus Smith, 1828 blizu obale Samandağ (Hatay, Turčija, SV Sredozemsko morje), Ob upoštevanju vrste R. typus, se je število vseh vrst morskih psov v Sredozemskem morju povečalo na 51. Spreminjajoče se razmere v Sredozemskem morju bodo pokazale ali bo ta vrsta morskih psov postala ustaljena vrsta ali pa gre le za prehodno vrsto v bazenu. Ključne vrste: morski psi, biodiverziteta, planktivori, prehranjevanje s filtriranjem ANNALES · Ser. hist. nat. · 31 · 2021 · 2 172 Cemal TURAN et al.: A NEW RECORD FOR THE SHARK FAUNA OF THE MEDITERRANEAN SEA: WHALE SHARK, RHINCODON TYPUS (ORECTOLOBIFORMES ..., 167–172 REFERENCES Arndt, E., O. Givan, D. Edelist, O. Sonin & J. Belmaker (2018): Shifts in eastern Mediterranean fish communities: abundance changes, trait over- lap, and possible competition between native and non-native species. Fishes, 3, 19; doi:10.3390/ fishes3020019. Bariche, M. (2012): Field Identification Guide to the Living Marine Resources of the Eastern and Southern Mediterranean. FAO Species Identifica- tion Guide for Fishery Purposes. Rome, FAO, 610 pp. Bonfil, R. & M. Abdallah (2004): Field identifi- cation guide to the sharks and rays of the Red Sea and Gulf of Aden. FAO Species Identification Guide for Fishery Purposes. Rome, FAO, 71 pp. Compagno, L.J.V. (2001): Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Volume 2. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). FAO Species Catalogue for Fishery Purposes. No. 1, Vol. 2. Rome, FAO, 269 pp. De Maddalena, A. & H. Baensch (2005): Haie im Mittelmeer. Franckh-Kosmos Verlags-GmbH & Co., Stuttgart, 240 pp. De Maddalena, A., H. Baensch & W. Heim (2015): Sharks of the Mediterranean. An Illustrated Study of All Species. McFarland & Company, Jef- ferson, 236 pp. Giovos, I., F. Serena, D. Katsada, A. Anastasiadis, A. Barash, C. Charilaou, J.M. Hall-Spencer, F. Croc- etta, A. Kamşnas, D. Kletou, M. Maximiadi, V. Mina- sidis, D. K. Moutopoulos, R. N. Aga-Spyridopoulou, I. Thasitis & P. Kleitou (2021): Integrating literature, biodiversity databases, and citizen-science to recon- struct the checklist of chondrichthyans in Cyprus (eastern Mediterranean Sea). Fishes, 6, 24. https:// doi.org/10.3390/fishes6030024. Moschella, P. (2008): The new CIESM Tropicali- zation Programme – effects of climate warming on Mediterranean key taxa. CIESM Workshop Mono- graphs No 35, 47-50. Pierce, S.J. & B. Norman (2016): Rhincodon ty- pus. The IUCN Red List of Threatened Species 2016: e.T19488A2365291. http://dx.doi.org/10.2305/ IUCN.UK.2016-1.RLTS.T19488A2365291.en (Last accession: 21 October 2021). Serena, F., A.J. Abella, F. Bargnesi, M. Barone, F. Colloca, F. Ferretti, F. Fiorentino, J. Jenrette & S. Moro (2020): Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. The European Zoological Journal, 87, 497-536. Turan, C., D. Ergüden & M. Gürlek (2016): Cli- mate change and biodiversity effects in Turkish Seas. Natural and Engineering Sciences, 1, 15-24. https:// doi.org/10.28978/nesciences.286240. Turan, C., M. Gürlek, N. Başusta, A. Uyan, S.A. Doğdu & S. Karan (2018): A Checklist of the Non-indigenous Fishes in Turkish Marine Waters. Natural and Engineering Sciences, 3, 333-358. doi: 10.28978/nesciences.468995. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 173 received: 2021-05-12 DOI 10.19233/ASHN.2021.21 NEW EVIDENCE OF THE ONGOING EXPANSION OF OKENIA PICOENSIS PAZ-SEDANO, ORTIGOSA & POLA, 2017 (GASTROPODA: NUDIBRANCHIA) IN THE CENTRAL-EASTERN MEDITERRANEAN Andrea LOMBARDO & Giuliana MARLETTA Department of Biological, Geological and Environmental Sciences - University of Catania, 95124 Catania, Italy e-mail: andylombardo94@gmail.com; giuliana.marletta@phd.unict.it ABSTRACT The present note reports new findings of the nudibranch Okenia picoensis in the Mediterranean Sea. This species was described from Pico Island (Azores, Atlantic Ocean) in 2017, and subsequently, in the last few years, it has been reported in some areas of the Mediterranean Sea. Hereby, we document new records of O. picoensis, reported between March and May 2021 along the central-eastern coast of Sicily (Ionian Sea) which could suggest a possible establishment of the species in this area. Key words: Goniodorididae, Heterobranchia, Ionian Sea, Mollusca, new reports NUOVE PROVE DELLA CONTINUA ESPANSIONE DI OKENIA PICOENSIS PAZ-SEDANO, ORTIGOSA & POLA, 2017 (GASTROPODA: NUDIBRANCHIA) NEL MEDITERRANEO CENTRO-ORIENTALE SINTESI La presente nota riporta alcuni nuovi ritrovamenti nel Mediterraneo del nudibranco Okenia picoensis. Questa specie è stata descritta nel 2017 per l’Isola di Pico (Azzorre, Oceano Atlantico) e, successivamente, durante gli ultimi anni è stata riportata in alcune aree del Mediterraneo. Con la presente, documentiamo nuove segnalazioni di O. picoensis, avvenute tra marzo e maggio 2021 lungo la costa centro-orientale della Sicilia (Mar Ionio), che potrebbero indicare un possibile insediamento di questa specie in quest’area. Parole chiave: Goniodorididae, Heterobranchia, mar Ionio, Mollusca, nuove segnalazioni ANNALES · Ser. hist. nat. · 31 · 2021 · 2 174 Andrea LOMBARDO & Giuliana MARLETTA: NEW EVIDENCE OF THE ONGOING EXPANSION OF OKENIA PICOENSIS PAZ-SEDANO, ORTIGOSA & POLA ..., 173–178 INTRODUCTION Until recently, the genus Okenia Menke, 1830 (Nudibranchia Goniodorididae) consisted of six species inhabiting the Mediterranean Sea, namely O. aspersa (Alder & Hancock, 1845), O. elegans (Leuckart, 1828), O. hispanica Valdés & Ortea, 1995, O. mediterranea (Ihering, 1886), O. longiductis Pola, Paz-Sedano, Macali, Minchin, Marchini, Vitale, Licchelli & Crocetta, 2019, and O. problematica Pola, Paz-Sedano, Macali, Minchin, Marchini, Vitale, Licchelli & Crocetta, 2019 (Pola et al., 2019). However, between 2020 and 2021, another spe- cies of the genus, O. picoensis Paz-Sedano, Ortigosa & Pola, 2017, was recorded for the first time in the basin (Orfanidis et al., 2021; Crocetta et al., 2021). This spe- cies was originally described from Pico Island (Azores, Portugal, Atlantic Ocean) (Paz-Sedano et al., 2017). At morphological level, O. picoensis presents a mantle covered by spicules and the edge of the notum with five lateral papillae, symmetrically distributed on each side of the body. The papillae are usually distributed as follows: the two anteriormost are in front of the rhinophores, the two posteriormost, which are the longest, are behind the gills, and along each side of the notum, between the rhinophores and the gills, there are three lateral papillae. Moreover, there is also a single dorsal papilla, which originates from an evident ridge located between the rhinophores and the gills. The rhinophores present from seven to nine lamellae, while the gills are four and of similar shape as the papillae (Paz-Sedano et al., 2017). Fig. 1: A) Geographical location of the study area. B) Detail of the study areas (Scalo Pennisi, Santa Maria La Scala, Bellatrix, Ognina) where specimens of Okenia picoensis were found. Sl. 1: A) Geografski položaj raziskanega območja. B) Detajli raziskanih predelov (Scalo Pennisi, Santa Maria La Scala, Bellatrix, Ognina), kjer so bili najdeni primerki vrste Okenia picoensis. Tab. 1: Reports of Okenia picoensis in the Mediterranean Sea. Tab. 1: Lokalitete, kjer je bila vrsta Okenia picoensis potrjena v Sredozemskem morju. Date Location Number of specimens Depth (m) Temperature (˚C) References 6 Nov. 2020 Ċirkewwa, Malta unknown 29 21 Orfanidis et al. (2021) 18 Nov. 2020 Wied iż- Żurrieq, Malta unknown 23 21 Orfanidis et al. (2021) 24 Nov. 2020 Ċirkewwa arch, Malta unknown 17 21 Orfanidis et al. (2021) 17 Jan. 2021 Wied iż- Żurrieq, Malta unknown 27 16 Orfanidis et al. (2021) 1 March 2021 Granada, Spain 1 16 15 Orfanidis et al. (2021) 6 March 2021 Acque Fredde, Italy 1 21.9 14 Crocetta et al. (2021) 14 March 2021 Ognina, Italy 1 21.2 14 Present study (Fig. 2A) 18 March 2021 Scalo Pennisi, Italy 2 14.9 – 21.4 14 Present study (Fig. 2B, C) 27 March 2021 Santa Maria La Scala, Italy 1 20 14 Present study (Fig. 2D) 1 May 2021 Bellatrix, Italy 1 15.9 16 Present study (Fig. 2E) 4 May 2021 Scalo Pennisi, Italy 3 15 – 22.3 15 Present study (Fig. 2F, G, H) ANNALES · Ser. hist. nat. · 31 · 2021 · 2 175 Andrea LOMBARDO & Giuliana MARLETTA: NEW EVIDENCE OF THE ONGOING EXPANSION OF OKENIA PICOENSIS PAZ-SEDANO, ORTIGOSA & POLA ..., 173–178 This species displays two different chromatic patterns (Paz-Sedano et al., 2017; Orfanidis et al., 2021): one with a bright yellow body and orange- tipped papillae, and one with a white body and yellow-tipped papillae. Since its first finding in the Azores, this species seems to have appeared suddenly and almost simul- taneously in several areas of the Mediterranean: it was recorded four times in Malta in November 2020 and January 2021 (Orfanidis et al., 2021), and then twice in March 2021, once in Granada (Spain) and once in Santa Tecla (Italy) (Orfanidis et al., 2021; Crocetta et al., 2021) (Tab. 1). This short note reports eight new records of O. picoensis from the central-eastern coast of Sicily (Ionian Sea, Italy) and discusses the species’ spread and possible ways of entering the Mediterranean Sea. MATERIAL AND METHODS Scuba diving observations of O. picoensis specimens were carried out in four areas located along the central-eastern coast of Sicily (Fig. 1A, B): Ognina (37°31’50.4”N – 15°07’10.8”E) and Bellatrix (37°32’03.2”N – 15°07’35.2”E), located in the municipality of Catania, and Scalo Pennisi (37°38’23.2”N – 15°11’04.6”E) and Santa Maria La Scala (37°36’46.5”N – 15°10’31.4”E), located in the municipality of Acireale. The specimens of O. picoensis were identified in vivo and photographed with underwater cameras Olympus TG-4 and Olympus TG-6. During the scuba dives (carried out between 9 and 11:30 a.m.), the depth and the substrates, where the specimens were encountered, and their activities during the spotting were annotated. Fig. 2: The eight specimens of Okenia picoensis found along the central-eastern coast of Sicily (Italy). A) The specimen found in Ognina (Photo by A. Lombardo); B) The first specimen seen in Scalo Pennisi (Photo by A. Lombardo); C) The second specimen from Scalo Pennisi (Photo by A. Lombardo); D) The specimen observed in Santa Maria La Scala (Photo by G. Marletta); E) The specimen found in Bellatrix (Photo by A. Lombardo); F) The third specimen found in Scalo Pennisi (Photo by A. Lombardo); G) The fourth specimen from Scalo Pennisi (Photo by A. Lombardo); H) The fifth specimen from Scalo Pennisi (Photos by A. Lombardo). Sl. 2: Osem primerkov vrste Okenia picoensis, najdenih vzdolž srednje vzhodne obale Sicilije (Italija). A) Primerek najden na lokaliteti Ognina (Foto: A. Lombardo); B) Prvi primerek, opažen na lokaliteti Scalo Pennisi (Foto: A. Lombardo); C) Drugi primerek, opažen na lokaliteti Scalo Pennisi (Foto: A. Lombardo); D) Primerek, opažen na lokaliteti Santa Maria La Scala (Foto: G. Marletta); E) Primerek, najden na lokaliteti Bellatrix (Foto: A. Lombardo); F) Tretji primerek, opažen na lokaliteti Scalo Pennisi (Foto: A. Lombardo), G) Četrti primerek, opažen na lokaliteti Scalo Pennisi (Foto: A. Lombardo), H) Peti primerek, opažen na lokaliteti Scalo Pennisi (Foto: A. Lombardo). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 176 Andrea LOMBARDO & Giuliana MARLETTA: NEW EVIDENCE OF THE ONGOING EXPANSION OF OKENIA PICOENSIS PAZ-SEDANO, ORTIGOSA & POLA ..., 173–178 RESULTS Throughout March and May 2021, a total of eight specimens were observed in the examined areas (Fig. 2). The specimens were detected in a range of depth of 14.9 – 21.4 m on rocky bottoms covered by photophilous sea- weeds. Specifically, one individual was found on a thallus of a Halopteris filicina (Grateloup) Kützing, one specimen was detected on a filamentous red alga, two specimens were spotted on thalli of Dictyota dichotoma (Hudson) J. V. Lamouroux, two individuals were observed embedded in a filamentous tangle of brown and red seaweeds covered by detritus, and two specimens were found on a small rocky wall covered by a turf of red algae and tunicates. Most of the specimens presented a couple of papillae in front of the rhinophores, three papillae on each side of the notum and a couple of papillae (the most elon- gated) behind the gills. There was also a dorsal papilla in front of the gills and the rhinophores had from six to nine lamellae. Nevertheless, two individuals, one found in Scalo Pennisi (Fig. 2C) and one found in Bellatrix (Fig. 2E), displayed a higher number of papillae bordering the notum: 12 and 14, respectively. Moreover, a specimen observed in Scalo Pennisi displayed a different or- ganization of the papillae (Fig. 2F). Indeed, although the specimen had two anteriormost and two posteriormost papillae, like the other specimens, it presented only two lateral papillae on each side of the notum. Finally, two individuals observed in Scalo Pennisi (Fig. 2G, H) were found sited near each other and, in one of them, it was possible to count the papillae: two were in front of the rhinophores, three on each side of the notum, and two most elongated ones behind the gills. Overall, all the found specimens exhibited a white chromatic pattern with yellow-tipped papillae. DISCUSSION Considering that the origin of distribution of O. picoen- sis is in the Azores, it is probable for this species to have entered the Mediterranean through the Gibraltar Strait. Indeed, this species likely arrived to the Mediterranean basin during the veliger stage through an anthropogenic vector (e.g., ballast waters, attached to ships’ keels) or through natural dispersal (e.g., currents). In recent years, three other species of Nudipleura, two originally described in the Macaronesia and one distributed in this region, have been found along the central-eastern coast of Sic- ily: Pleurobranchus wirtzi Ortea, Moro & Caballer, 2014, Taringa tritorquis Ortea, Perez & Llera, 1982 (Lombardo & Marletta, 2019; 2020a; Gerovasileiou et al., 2020), and Aporodoris millegrana (Alder & Hancock, 1854) (Lom- bardo & Marletta, 2020b). Therefore, the occurrence of O. picoensis in this area could strengthen the evidence that in the last decade, the barriers to dispersal which prevented the spread of some Atlantic species into the Mediterranean (the Canary Current, Saharan upwelling, and the Almería- Oran Front) experienced a weakening, probably due to the global climatic change (Valdés et al., 2013). In the Mediterranean, O. picoensis was suddenly and for a brief period (November 2020–May 2021), observed in several areas located far apart (south Spain and Malta/ Sicily). Therefore, as suggested for Aplysia dactylomela Rang, 1828 (Valdés et al., 2013), this species was probably transported as veliger by the powerful Algerian Current, which took it directly into the Central Mediterranean; there the sub-basin scale gyre eddies associated with the Algerian Current transferred these pelagic larvae into the Sicily Channel, where the Mid-Mediterranean Jet rapidly splits into two main branches affecting the North African coast and southern Sicily. This hydrodynamic pattern could thus explain why this species was found both in Malta and along the central-eastern coast of Sicily. Regarding the latter area, the finding of several specimens during March and May (Crocetta et al., 2021; present study), indicate that O. picoensis may have found favourable conditions for its growth and development. Indeed, the wide thermal range in which this species was found (from 14 to 21°C) (Orfanidis et al., 2021; Crocetta et al., 2021; present work) might be indicative of a high level of adaptability of this nudibranch to temperature. Consequently, it is likely that in the near future this species could easily establish and settle in this and other areas of Mediterranean. Regarding the ecology of the species, the information in both its native and expanded range of distribution is incomplete. In fact, the observations on O. picoensis only concern its seasonality and bathymetric range. In its native area, this nudibranch was found in June and November, between 8 and 30 m of depth (Paz-Sedano et al., 2017), while in the Mediterranean, it was observed in November, January, March, and May, between 14.9 and 29 m of depth (Orfanidis et al., 2021; Crocetta et al., 2021; present work). Furthermore, differently from its native area, where both O. picoensis chromatic patterns were seen, in the Mediterra- nean only the white morph has hitherto been found. In addi- tion, through the present study it has been observed that the number of lateral papillae in O. picoensis can probably vary according to the size of the animal and does not seem to be constant as instead reported by Paz-Sedano et al. (2017). In conclusion, the finding of this nudibranch in the Mediterranean Sea may be further proof of how the seawater of this Basin is experiencing a warming trend. Furthermore, in the central-eastern coast of Sicily, only two species belonging to the genus Okenia ‒ O. problematica and O. longiductis ‒ had been previously reported by Lombardo and Marletta (2020b; 2020c; 2021). Considering that in this area these latter species seem to be rare, and with no other relatives to this genus, O. picoensis, which is probably more competitive, might easily establish in the local marine com- munities, successfully reproduce, and spread elsewhere. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 177 Andrea LOMBARDO & Giuliana MARLETTA: NEW EVIDENCE OF THE ONGOING EXPANSION OF OKENIA PICOENSIS PAZ-SEDANO, ORTIGOSA & POLA ..., 173–178 NOVI PODATKI O ŠIRJENJU AREALA VRSTE OKENIA PICOENSIS PAZ-SEDANO, ORTIGOSA & POLA, 2017 (GASTROPODA: NUDIBRANCHIA) V SREDNJEM VZHODNEM SREDOZEMSKEM MORJU Andrea LOMBARDO & Giuliana MARLETTA Department of Biological, Geological and Environmental Sciences - University of Catania, 95124 Catania, Italy e-mail: andylombardo94@gmail.com; giuliana.marletta@phd.unict.it POVZETEK V prispevku avtorja poročata o novih najdbah vrste gološkrgarja Okenia picoensis v Sredozemskem morju. To vrsto so opisali z otoka Pico (Azori, Atlantski ocean) v 2017, naknadno, v naslednjih nekaj letih, pa so o njej poročali v nekaterih predelih Sredozemskega morja. Avtorja sta med marcem in majem 2021 zbrala podatke o novih najdbah vrste O. picoensis vzdolž srednje vzhodne obale Sicilije (Jonsko morje), ki kažejo na možno ustalitev vrste na tem območju. Ključne besede: Goniodorididae, Heterobranchia, Jonsko morje, Mollusca, novi zapisi ANNALES · Ser. hist. nat. · 31 · 2021 · 2 178 Andrea LOMBARDO & Giuliana MARLETTA: NEW EVIDENCE OF THE ONGOING EXPANSION OF OKENIA PICOENSIS PAZ-SEDANO, ORTIGOSA & POLA ..., 173–178 REFERENCES Crocetta F., S. Al Mabruk, E. Azzurro, R. Bakiu, M. Bariche, I. Batjakas, T. Bejaoui, J. Ben Souissi, J. Cauchi, M. Corsini-Foka, A. Deidun, J. Evans, J. Galdies, R. Ghanem, T. Kampouris, S. Katsanevakis, G. Kondylatos, L. Lipej, A. Lombardo, G. Marletta, E. Mejdani, S. Nikoli- dakis, P. Ovalis, L. Rabaoui, M. Ragkousis, M. Rogelja, J. Sakr, I. Savva, V. Tanduo, C. Turan, A. Uyan & A. Zenetos (2021): New Alien Mediterranean Biodiversity Records (November 2021). Mediterranean Marine Science, 22(3), 724-746. doi: https://doi.org/10.12681/mms.26668. Gerovasileiou, V., O. Akyol, Z. Al-Hosne, R. Alshikh Rasheed, E. Ataç, G. Bello, I. Ćetković, M. Corsini Foka, F. Crocetta, F. Denitto, P. Guidetti, B. Gül, G. Insacco, C. Jimenez, C. Licchelli, L. Lipej, A. Lombardo, E. Mancini, G. Marletta, N. Michailidis, A. Pešić, D. Poursanidis, W. Refes, H. Sahraoui, I. Tha- sitis, F. Tiralongo, Z. Tosunoğlu, D. Trkov, A. Vazzana & B. Zava (2020): New records of rare species in the Mediterranean Sea (May 2020). Mediterr. Mar. Sci., 21(2), 340-359. https://doi.org/10.12681/mms.22148. Lombardo, A. & G. Marletta (2019): A new Atlantic immigrant in the Mediterranean Sea: Pleurobranchus wirtzi Ortea, Moro et Caballer, 2014 (Gastropoda Pleurobranchida). Biodivers. J., 10(3), 275-278. https://doi.org/10.31396/Biodiv. Jour.2019.10.3.275.278. Lombardo, A. & G. Marletta (2020a): New records of Biuve fulvipunctata (Baba, 1939) (Gastropoda: Cephalaspidea) and Taringa tritorquis Ortea, Perez and Llera, 1982 (Gastropoda: Nudibranchia) in the Ionian coasts of Sicily, Mediterranean Sea. Biodivers. J., 11(2), 587-591. https://doi.org/10.31396/Biodiv. Jour.2020.11.2.587.591 Lombardo, A. & G. Marletta (2020b): First record of Aporodoris millegrana (Alder et Hancock, 1854) (Gastropoda Heterobranchia Nudibranchia) in the Ionian Sea, central Mediterranean Sea. Biodivers. J., 11(4), 875-878. https://doi.org/10.31396/Biodiv. Jour.2020.11.4.875.878. Lombardo, A. & G. Marletta (2020c): The biodi- versity of the marine Heterobranchia fauna along the central-eastern coast of Sicily, Ionian Sea. Biodivers. J., 11(4), 861-870. https://doi.org/10.31396/Biodiv. Jour.2020.11.4.861.870. Lombardo, A. & G. Marletta (2021): New Findings of Nudipleura (Mollusca: Gastropoda) along the central- eastern coast of Sicily (Ionian Sea). Thalass. salentina, 43, 71-82. https://doi.org/10.1285/i15910725v43p71. Orfanidis, S., A. Alvito, E. Azzurro, A. Badreddine, J. Ben Souissi, C. Chamorro, F. Crocetta, C. Dalyan, A. Fortič, L. Galanti, K. Geyran, R. Ghanem, A. Goruppi, D. Grech, S. Katsanevakis, E. Madrenas, F. Mastroto- taro, F. Montesanto, M. Pavičić, D. Pica, L. Pola, M. Pontes, M. Ragkousis, A. Rosso, L. Sánchez-Tocino, J. M. Tierno De Figueroa, F. Tiralongo, V. Tirelli, S. Tsioli, S. Tunçer, D. Vrdoljak, V. Vuletin, J. Zaouali & A. Ze- netos (2021): New Alien Mediterranean Biodiversity Records (March 2021). Mediterr. Mar. Sci., 22(1),180- 198. https://doi.org/10.12681/mms.25294. Paz-Sedano, S., D. Ortigosa & M. Pola (2017): A new Okenia Menke, 1830 from the Azores Islands, Portugal (Mollusca, Nudibranchia, Goniodorididae). Spixiana, 40(1), 13-22. Pola, M., S. Paz-Sedano, A. Macali, D. Minchin, A. Marchini, F. Vitale, C. Licchelli & F. Crocetta (2019): What is really out there? Review of the genus Okenia Menke, 1830 (Nudibranchia: Goniodorididae) in the Mediterranean Sea with description of two new species. PLoS ONE, 14(5), e0215037. https://doi.org/10.1371/ journal.pone.0215037. Valdés, A., J. Alexander, F. Crocetta, M.B. Yokeş, S. Giacobbe, D. Poursanidis, A. Zenetos, J.L. Cervera, M. Caballer, B.S. Galil & P.J. Schembri (2013): The origin and dispersal pathway of the spotted sea hare Aplysia dactylomela (Mollusca: Opisthobranchia) in the Medi- terranean Sea. Aquat. Invasions, 8(4), 427-436. https:// doi.org/10.3391/ai.2013.8.4.06. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 179 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS ANNALES · Ser. hist. nat. · 30 · 2020 · 1 180 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 181 received: 2021-09-15 DOI 10.19233/ASHN.2021.22 A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND CONSERVATION ISSUES Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil ap., No: 30, D: 4, 34764 Ümraniye, İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com ABSTRACT Available data reveal that the current shark fauna of the Turkish waters includes 37 confirmed species: Hex- anchus griseus, Heptranchias perlo, Echinorhinus brucus, Squalus acanthias, S. blainvillei, Centrophorus cf. uyato, Etmopterus spinax, Somniosus rostratus, Oxynotus centrina, Dalatias licha, Squatina aculeata, S. oculata, S. squatina, Carcharias taurus, Odontaspis ferox, Alopias superciliosus, A. vulpinus, Cetorhinus maximus, Car- charodon carcharias, Isurus oxyrinchus, Lamna nasus, Galeus melastomus, Scyliorhinus canicula, S. stellaris, Galeorhinus galeus, Mustelus asterias, M. mustelus, M. punctulatus, Carcharhinus altimus, C. brachyurus, C. brevipinna, C. falciformis, C. limbatus, C. obscurus, C. plumbeus, Prionace glauca, and Sphyrna zygaena. Based on current information, the most significant threat to sharks in Turkish waters is the adverse impact of bycatch. Key words: Elasmobranchii, inventory, state of art, Turkey REVISIONE DELLA BIODIVERSITÀ DEGLI SQUALI IN ACQUE TURCHE: INVENTARIO AGGIORNATO, NUOVI ARRIVI, SPECIE DISCUTIBILI E PROBLEMI DI CONSERVAZIONE SINTESI I dati disponibili rivelano che l’attuale fauna di squali delle acque turche comprende 37 specie confermate: Hexanchus griseus, Heptranchias perlo, Echinorhinus brucus, Squalus acanthias, S. blainvillei, Centrophorus cf. uyato, Etmopterus spinax, Somniosus rostratus, Oxynotus centrina, Dalatias licha, Squatina aculeata, S. oculata, S. squatina, Carcharias taurus, Odontaspis ferox, Alopias superciliosus, A. vulpinus, Cetorhinus ma- ximus, Carcharodon carcharias, Isurus oxyrinchus, Lamna nasus, Galeus melastomus, Scyliorhinus canicula, S. stellaris, Galeorhinus galeus, Mustelus asterias, M. mustelus, M. punctulatus, Carcharhinus altimus, C. brachyurus, C. brevipinna, C. falciformis, C. limbatus, C. obscurus, C. plumbeus, Prionace glauca, e Sphyrna zygaena. Sulla base delle informazioni attuali, la minaccia più significativa per gli squali nelle acque turche è l’impatto negativo della cattura accidentale. Parole chiave: Elasmobranchii, inventario, stato dell’arte, Turchia ANNALES · Ser. hist. nat. · 31 · 2021 · 2 182 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 INTRODUCTION Historically, the willingness or priority to study shark species occurring in Turkish waters was re- markably low, like in the rest of the world (Camhi et al., 1998). In terms of timeline, we can say that the first efforts to record sharks living in Turkish waters started with a great white shark (Carcharo- don carcharias) that was landed in the Bosphorus in February 1881 (Kabasakal, 2020a). Following this first case, several pioneering lists of shark species living in Turkish waters have been published by various researchers (e.g., Ninni, 1923; Deveciyan, 1926; Ayaşlı, 1937; Erazi, 1942; Akşıray, 1987), but they represent only a small part of the general ich- thyology inventories. Nevertheless, these historical publications are a valuable treasure of information about the status of shark species that used to occur in Turkish seas. Over the past three decades, we have witnessed a remarkable increase in the quality and quantity of studies on shark species occurring in Turkish seas (Kabasakal, 2019a). The shark species in question display considerable diversity in terms of habitat (coastal or open sea species, deep or middle wa- ter species, shallow or deep sea species), feeding strategy (large predators, planktivores, etc.), and maximum size (Kabasakal, 2020b). Nowadays, so- cial media-based shark communication (i.e., shark capture or sightings) and internet media, the use of which has become widespread in recent years, as well as field research, have a large share in un- covering this rich shark biodiversity (Kabasakal et al., 2017; Bengil, 2020; Kabasakal & Bilecenoğlu, 2020). Thanks to this intense information flow, new data are being added to what is already known about shark biodiversity in Turkey. In this review article, which evaluates shark biodiversity in Turk- ish waters, the author discusses the status of the species that have been confirmed or are considered questionable in the region, as well as the issues related to conservation, in the light of current in- formation. MATERIAL AND METHODS Sampling methodology Since 54 percent of Mediterranean sharks are at a high risk of extinction (Dulvy et al., 2016), the current study is a typical instance of opportunistic sampling using internet data sources such as fishing blogs (Jessup, 2003). The websites of local and na- tional newspapers and social media platforms were regularly scanned for the years 2006‒2020. Since online communities and website administrators may react negatively to the use of their online content by researchers, all internet content scraping activity was carried out responsibly in order not to compromise any personal data or images, following the recom- mended ethical guidelines (Monkman et al., 2017). To extract data from electronic sources, a Boolean search was conducted in search engines, such as Google Scholar, ScienceDirect etc., with the follow- ing keywords: “sharks,” “elasmobranchi,” “Turkey,” “Levantine,” “Black, Marmara, Aegean OR Mediter- ranean seas,” “distribution,” “hexanchiformes,” “lamniformes,” “squaliformes,” “carcharhiniformes.” The aforementioned internet search was also carried out with the French and Italian equivalents of the relevant keywords. A manual search was made to ex- tract data published in pre-2000 journals that were not accessible via internet. Study region Turkey is a peninsular country surrounded by the Black Sea, Aegean and Levant Seas, and the Turkish Straits System (TSS), which runs along the Çanakkale Strait, Marmara Sea, and the Istanbul Strait. In gen- eral, the following points about the oceanographic characteristics of the seas around Turkey stand out: The high concentration of hydrogen sulfide in the Black Sea below 150 to 200 m is an important factor that prevents fish from dispersing in deep regions (Prodanov et al., 1997). According to Öztürk & Öz- türk (1996), TSS plays an important and determinant ecological role in the distribution of living organ- isms between the Mediterranean and the Black Sea, as it creates a barrier, corridor or acclimatization zone for marine species. The Aegean Sea is topo- graphically (at approximately 38° latitude) divided into two basins, the northern and southern Aegean (Papaconstantinou, 1992). Papaconstantinou (1987) defined the north Aegean Sea as an area of cold wa- ter fauna and the south Aegean Sea as a warm water fauna sea containing Lessepsian immigrants. Finally, with the opening of the Suez Canal in 1869 and the general warming of the world’s oceans, the Mediter- ranean has been affected by a phenomenon known as “tropicalization,” which causes temperate species to retreat to colder regions (Bianchi & Morri 2003). Taxonomic nomenclature and status of species Occurrence statuses of sharks present in Turkish seas are adopted from definitions proposed by Vas (1991). The sharks included in this review can be grouped in 3 categories based on their relative oc- currence in Turkish waters: Residents (R) - specimens of these species can be found in Turkish waters all the year round; Seasonals (S) - these species occur in Turkish waters for part of the year only as a result of seasonal migrations; and Vagrants (V) - these species ANNALES · Ser. hist. nat. · 31 · 2021 · 2 183 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 occur rarely or infrequently in Turkish waters, usually as solitary specimens. The taxonomic classification of orders, families and species, and nomenclature are based on Serena et al. (2020). RESULTS AND DISCUSSION Shark biodiversity in Turkish seas Altogether 38 shark species are reported for Turk- ish waters based on the current species lists (Kaba- sakal, 2020b; Kabasakal & Bilecenoğlu, 2020). The reason why previous lists mentioned 38 species is that Centrophorus granulosus was accepted as a valid species. However, Serena et al. (2020) stated that the Mediterranean species of the genus Centrophorus are still controversial and currently only one species, Centrophorus cf. uyato, occurs in the region. Based on the conclusions of Serena et al. (2020), the oc- currence of C. granulosus in Turkish waters is ques- tionable. Therefore, this species has been removed from the list compiled in the current review. In this same study, the presence of Carcharhinus melano- pterus in the Mediterranean Sea is also considered questionable. Although not included in the species list presented in Kabasakal (2020b), Irmak & Özden (2021) have recently reported the presence of Som- niosus rostratus in Turkish waters. Based on this new information, the current number of shark species oc- curring in Turkish seas has been corrected to 37 (Tab. 1). These species are represented by 5 orders and 18 families (Kabasakal, 2020b). This figure, which corresponds to 77 percent of the currently confirmed species number in the Mediterranean (n=48; Serena et al., 2020), reveals that there is a remarkable shark biodiversity in Turkish seas when evaluated on a Mediterranean basis. The taxonomic status, common names, occurrence status, and distribution of these species are presented in Table 1. On the basis of their relative occurrence, ap- proximately 42% of the species consist of vagrant and 42% of resident species, followed by seasonal sharks of approximately 17% (Table 1). Consider- ing the distribution of sharks in Turkish seas, all species (100%) occur in the Mediterranean Sea, 83% of them in the Aegean Sea, about 47% in the Marmara Sea, and about 22% in the Black Sea (Ta- ble 1). Sharks of the order Carcharhiniformes are represented in Turkish seas with the largest number of species (4 families, 16 species, about 44% of the total species), followed by Lamniformes (4 families, 8 species, about 22% of the total spe- cies), Squaliformes (7 families, 8 species, about 19% of the total species), Squatiniformes (1 fam- ily, 3 species, about 10% of the total species) and Hexanchiformes (1 family, 2 species, about 6% of the total species). Order Hexanchiformes Family Hexanchidae Gray, 1851 The family Hexanchidae is represented in Turkish seas by 2 species. Hexanchus griseus (Bon- naterre, 1788) is distributed throughout the Turk- ish seas, while Heptranchias perlo (Bonnaterre, 1788) displays sporadic and seldom occurrences in Aegean and Mediterranean waters (Kabasakal, 2020b; Erguden & Bayhan, 2015a). The earliest records of hexanchid sharks, H. griseus and H. perlo, in Turkish waters were reported in gen- eral ichthyological inventories by Ninni (1923), Deveciyan (1926) and Akşıraş (1987); however, their contemporary occurrences in the mentioned marine region were confirmed by Kabasakal & İnce (2008), Kabasakal (2013a), Başusta (2015), Ayas et al. (2018) and Bayhan et al. (2018). Among these, studies by Kabasakal (2013a) and Başusta (2015) are certainly worth mentioning. On 19 November 2004, one male specimen of H. griseus of 300 cm TL, weighing 250 kg was captured by a commercial gill-netter nearly 3 miles off the coast of Amasra, and this single capture extends the Mediterranean distribution of H. griseus to the Black Sea (Kabasakal, 2013a). Recent reviews of large sharks caught by commercial fisheries in Turkish waters have shown that H. griseus is the predominant species, accounting for 43.2% (169 out of 392 specimens; Kabasakal et al., 2017) and 51.8% (139 out of 268 specimens; Kabasakal & Bilecenoğlu, 2020) of total captures. Order Lamniformes Family Odontaspididae Müller and Henle, 1839 The family Odontaspididae is represented in Turkish seas with 2 species: Carcharhias taurus Rafinesque, 1810 and Odontaspis ferox (Risso, 1810). In an earlier report, C. taurus was reported from Saroz Bay (NE Aegean Sea) by Cengiz et al., (2011). Occurrence of O. ferox in Turkish waters has always been a matter of discussion. In a previous review of elasmobranch species inhabiting Turkish waters, Kabasakal (2002) included O. ferox in the inventory of sharks of Turkey, based on the list of Turkish marine fishes provided by Mater and Meriç (1996); however, the presence of this species in the mentioned area remained unconfirmed, until Fergusson et al. (2008) reported on the occurrence of three smalltooth sand tiger sharks in Turkish Aegean waters. Recently, a female specimen of O. ferox (400 cm TL) has been incidentally captured in Antalya Bay by a commercial otter-trawler (Kaba- sakal & Bayrı, 2019). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 184 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 Tab. 1: C hecklist of sharks in Turkish w aters. R : R esident; V : V agrant; S: Seasonal; B S: B lack Sea; SM : Sea of M arm ara; A S: A egean Sea; M S: M editerra- nean Sea. O ccurrence statuses (R , V, S) of sharks are adopted from the defi nitions proposed by V as (1991), w ith explanations of these defi nitions given in the M aterial and M ethods section. Taxonom ic classifi cation of orders, fam ilies, and species is based on Serena et al. (2020). Tab. 1: Seznam vrst m orskih psov v turških m orjih. R : R ezidentna vrsta; V : K latež; S: Sezonska vrsta; B S: Č rno m orje; SM : M arm arsko m orje; A S: Egejsko m orje; M S: Sredozem sko m orje. Status pojavljanja (R , V, S) vrst m orskih psov je bil privzet iz defi nicij, ki jih je predlagal V as (1991), s pojasnili, ki jih navajam o v poglavju M aterial in m etode. Taksonom ska klasifi kacija v sm islu redov, družin in vrst tem elji na delu Serena et al. (2020). Order HEXANCHIFORMES Common name Occurrence status Distribution in the region Family Hexanchidae Heptranchias perlo (Bonnaterre, 1788) sharpnose seven-gill shark V AS, MS Hexanchus griseus (Bonnaterre, 1788) bluntnose six-gill shark R BS, SM, AE, MS Order SQUALIFORMES Family Echinorhinidae Echinorhinus brucus (Bonnaterre, 1788) bramble shark V SM, AE, MS Family Squalidae Squalus acanthias Linnaeus, 1758 spotted spiny dogfish R BS, SM, AE, MS Squalus blainvillei (Risso, 1827) longnose spurdog R BS, SM, AE, MS Family Centrophoridae Centrophorus cf. uyato (Rafinesque, 1810) little gulper shark V SM, AE, MS Family Etmopteridae Etmopterus spinax (Linnaeus, 1758) velvet belly R AE, MS Family Somniosidae Somniosus rostratus (Risso, 1827) little sleeper shark R MS Family Oxynotidae Oxynotus centrina (Linnaeus, 1758) angular rough shark R SM, AE, MS Family Dalatiidae Dalatias licha (Bonnaterre, 1788) kitefin shark V SM, AE, MS Order SQUATINIFORMES Family Squatinidae Squatina aculeata Cuvier, 1829 sawback angelshark R AE, MS Squatina oculata Bonaparte, 1840 smoothback angelshark R SM, AE, MS Squatina squatina (Linnaeus, 1758) angelshark R BS, SM, AE, MS Order LAMNIFORMES Family Odontaspididae Carcharias taurus Rafinesque, 1810 sandtiger shark V AE, MS Odontaspis ferox (Risso, 1810) smalltooth sand tiger V AE, MS Family Alopiidae Alopias superciliosus Lowe, 1841 bigeye thresher S SM, AE, MS Alopias vulpinus (Bonnaterre, 1788) thresher shark R BS, SM, AE, MS Family Cetorhinidae Cetorhinus maximus (Gunnerus, 1765) basking shark S AE, MS Family Lamnidae Carcharodon carcharias (Linnaeus, 1758) great white shark S AE, MS Isurus oxyrinchus Rafinesque, 1810 shortfin mako S AE, MS Lamna nasus (Bonnaterre, 1788) porbeagle V SM, AE, MS Order CARCHARHINIFORMES Family Pentanchidae Galeus melastomus Rafinesque, 1810 blackmouth catshark R SM, AE, MS Family Scyliorhinidae Scyliorhinus canicula (Linnaeus, 1758) smallspotted catshark R BS, SM, AE, MS Scyliorhinus stellaris (Linnaeus, 1758) nursehound R SM, AE, MS Family Triakidae Galeorhinus galeus (Linnaeus, 1758) tope shark V AE, MS Mustelus asterias Cloquet, 1819 starry smoothhound R BS, SM, AE, MS Mustelus mustelus (Linnaeus, 1758) smoothhound R BS, SM, AE, MS Mustelus punctulatus Risso, 1827 blackspotted smoothhound R AE, MS Family Carcharhinidae Carcharhinus altimus (Springer, 1950) bignose shark V MS Carcharhinus brachyurus (Günther, 1870) copper shark V MS Carcharhinus brevipinna (Valenciennes, 1839) spinner shark V AE, MS Carcharhinus falciformis (Bibron, 1839) silky shark V MS Carcharhinus limbatus (Valenciennes, 1839) blacktip shark V MS Carcharhinus obscurus (Lesueur, 1818) dusky shark V MS Carcharhinus plumbeus (Nardo, 1827) sandbar shark S AE, MS Prionace glauca (Linnaeus, 1758) blue shark S AE, MS Family Sphyrnidae Sphyrna zygaena (Linnaeus, 1758) smooth hammerhead V AE, MS ANNALES · Ser. hist. nat. · 31 · 2021 · 2 185 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 Family Lamnidae Bonaparte, 1835 The family Lamnidae is represented in Turkish seas with 3 species: Carcharodon carcharias (Linnaeus, 1758), Isurus oxyrinchus Rafinesque, 1810, and Lamna nasus (Bonnaterre, 1788). Historically, C. carcharias was listed in general ichthyological inventories of Turk- ish waters (Deveciyan, 1926; Ayaşlı, 1937; Akşıray, 1987). A detailed search in the archives of newspapers published between the early 1900s and late 1960s, revealed several specimens of C. carcharias inciden- tally captured by tuna hand-liners in the Istanbul Strait during the mentioned period (Kabasakal, 2003). Further research has revealed contemporary presence of C. carcharias in Turkish Aegean waters (Kabasakal & Gedikoğlu, 2008; Kabasakal et al., 2009 Kabasakal, 2014; Kabasakal & Kabasakal, 2015). Although available data suggest that C. carcharias is an extant lamnoid shark off the Turkish coast of the Aegean Sea, although currently not occurring in the Sea of Marmara (Kabasakal, 2020a), recently a young-of-the-year speci- men has been incidentally captured in the southern entrance to the Dardanelles Strait, which might be a sign that the species is starting to recolonise its former habitat in the vicinity of the Sea of Marmara (Kabasakal & Bayrı, 2020). Recent studies confirm the contemporary occur- rence of I. oxyrinchus in Turkish Aegean and Mediter- ranean waters (Ergüden et al., 2013, 2021; Kabasakal & Kabasakal, 2013; Kabasakal, 2015a, Tunçer & Ka- basakal, 2016; Kabasakal, 2017b). According to Kaba- sakal et al. (2017), I. oxyrinchus accounted for 5.3% of the total catch of large sharks captured by commercial fishermen during the 1990‒2015 period, in Turkish wa- ters. Occurrence of the porbeagle shark, Lamna nasus, in Turkish waters was reported by Deveciyan (1926), Akşıray (1987), and Kabasakal (2002). Kabasakal & Kabasakal (2004) reported on a porbeagle shark, 250 cm TL, caught off Bozcaada (northern Aegean Sea) on 11 April 2004. L. nasus is a rare shark in Turkish waters, and its questionable presence in Marmaric waters requires confirmation (Kabasakal & Karhan, 2015). Family Cetorhinidae Gill, 1861 Occurrence data of Cetorhinus maximus (Gun- nerus, 1765) in Turkish waters date back to the 1990s and consist of an anecdotal record of basking shark in northeastern Levantine waters (Kıdeyş, 1997), and further records of basking sharks off Turkish coasts, particularly in the Bay of Antalya (Kabasakal, 2013b) and Gulf of Mersin (Ergüden et al., 2020a). In a recent review of the status of basking shark in the eastern Mediterranean based on an extremely low number of records off Turkish coast during the 1950s, Kabasakal (2013b) emphasised the rarity of C. maximus in Turkish waters. Family Alopiidae Bonaparte, 1835 The Alopiidae family is represented in Turkish seas with 2 species: Alopias uperciliosus Lowe, 1841, and A. vulpi- nus (Bonnaterre, 1788). The first record of bigeye thresher shark, A. superciliosus, in Turkish waters dates back to the early 2000s (Mater, 2005; Bay of Gökova, southeastern Aegean Sea); a few years later there was another record from the Sea of Marmara (Kabasakal & Karhan, 2008), followed by several other Aegean records (Kabasakal et al., 2011). The female specimen of bigeye thresher shark, 472 cm in TL, caught on 9 April 2019 off Çevlik coast (NE Levantine Sea) was one of the largest specimens of A. superciliosus ever recorded in the Mediterranean Sea and worldwide (Ergüden et al., 2020b). Despite its open water occurring habits, Kabasakal (2007) reported on the coastal occurrences of 19 common thresher sharks, A. vulpinus, which were incidentally captured by coastal stationary netters. Recently, Ergüden et al. (2015) reported on an incidental capture of a single male thresher shark, of 392 cm TL and weighing ca. 180 kg, in purse-seine fishery in İskenderun Bay, which was the first record of A. vulpinus from the northeastern Mediterranean coast of Turkey. Ayas et al. (2020) reported on the occurrence of pregnant and young specimens of A. vulpinus in the northeastern Mediterranean Sea, as well. Of the total number (n=392) of large sharks caught in Turkish waters by commercial fishermen between 1990 and August 2015, A. superciliosus and A. vulpinus accounted for a 2.5% and a 9.9% share, respectively (Kabasakal et al., 2017). Order Carcharhiniformes Family Pentanchidae Smith, 1912 Galeus melastomus Rafinesque, 1810, is a common deep-sea cat shark species in Marmara, and the Turkish Aegean and Mediterranean seas (Meriç, 1995; Kabasakal, 2002; Kabasakal & Kabasakal, 2004; Özütemiz et al., 2009; Oral, 2010). According to Bengil & Başusta (2018), G. melastomus is one of the species with major shares of shark bycatches in Turkish waters. Family Scyliorhinidae Gill, 1862 The family Scyliorhinidae is represented in Turkish seas with 2 species: Scyliorhinus canicula (Linnaeus, 1758) and S. stellaris (Linnaeus, 1758). Contemporary oc- currences of cat sharks S. canicula and S. stellaris in Turkish waters were confirmed by Kabasakal (2002), Kabasakal & Kabasakal (2004), İşmen et al. (2013), Kabasakal & Karhan (2015), Yağlıoğlu et al. (2015), and Başusta et al. (2016). In a recent review of chondrichthyan species as bycatch in Turkish waters, Bengil & Başusta (2018) stated that almost half of the bycatch recorded in Turkish waters consists of small spotted catshark. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 186 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 Family Triakidae Gray, 1851 The family Triakidae is represented in Turkish seas with 2 genera and 4 species: Galeorhinus galeus (Linnaeus, 1758), Mustelus asterias Cloquet, 1819, M. mustelus (Linnaeus, 1758), and M. punctulatus Risso, 1827. Filiz & Mater (2002), Kabasakal & Kabasakal (2004), Yağlıoğlu et al. (2015), Başusta et al. (2016), and Kabasakal (2020b) confirmed contemporary occurrences of G. galeus, M. as- terias, M. mustelus, and M. punctulatus in Turkish waters. Kabasakal et al. (2017) stated that G. galeus represented less than 2% of the total shark biomass recorded in the Turkish commercial fisheries between 1990 and 2015. Two specimens of starry smoothhound, M. asterias, were captured three miles off the coast of Şile (southwestern Black Sea) on 19 November 2000 at a depth of ca. 90 m, and this record extended the Mediterranean distribution of M. asterias into the Black Sea (Eryılmaz et al., 2011). Recently, Bengil (2020) recorded M. asterias in the Levan- tine Sea, and M. mustelus and M. punctulatus in Turkish Aegean waters. Family Carcharhinidae Jordan and Evermann, 1896 The family Carcharhinidae is represented in Turkish seas with 2 genera and 9 species: Carcharhinus altimus (Springer, 1950), C. brachyurus (Günther, 1870), C. brevi- pinna (Valenciennes, 1839), C. falciformis (Bibron, 1839), C. limbatus (Valenciennes, 1839), C. obscurus (Lesueur, 1818), C. plumbeus (Nardo, 1827), and Prionace glauca (Linnaeus, 1758). Contemporary occurrences of C. altimus, C. brachyurus, C. brevipinna, C. falciformis, C. limbatus, C. obscurus, C. plumbeus, and Prionace glauca in Turkish waters were confirmed in several studies (Kabasakal & Kabasakal, 2004; Filiz & Kabasakal, 2015; Yağlıoğlu et al., 2015; Kabasakal et al., 2017; Bengil, 2020; Ergüden et al., 2020c,d; Kabasakal & Bilecenoğlu, 2020; Kaba- sakal, 2020b). Since the occurrence of C. melanopterus is based on an old record by Mater & Meriç (1996), and the questionable status of the species was emphasised by Ser- ena et al., (2020), further investigation is needed to clarify its questionable status in Turkish waters. In an extensive survey on the chondrichthyan fishes of İskenderun Bay (northeastern Mediterranean Sea), Başusta et al. (1998) recorded the big nose shark, C. altimus, for the first time in Turkish waters, followed by a recent capture of a few specimens in Turkish Mediterranean waters (Ayas et al., 2020). Recent surveys confirm the occurrence of the dusky shark, C. obscurus off the Turkish coast of the Levantine Sea (Kabasakal et al., 2017; Kabasakal & Bilecenoğlu, 2020). Occurrence of the spinner shark, C. brevipinna, was confirmed by Filiz & Kabasakal (2015) based on a specimen of the species photographed in Bay of Gökova, and several other specimens have recently been recorded in Antalya and Mersin gulfs (Ayas et al., 2019; Kabasakal & Bilecenoğlu, 2020). In an extensive survey of large sharks in Turkish waters, based on data mining from reliable online sources, C. brachyurus and C. falciformis were recorded for the first time in Turkish Mediterranean waters (Kabasakal & Bilecenoğlu, 2020). In terms of abundance, C. plumbeus and P. glauca are the most common carcharhinid sharks occurring in the Aegean and Mediterranean waters of Turkey (Kabasakal, 2020b). Family Sphyrnidae Bonaparte, 1840 Our knowledge on hammerhead sharks (family Sphyrnidae) in Turkish waters is consisted of rudimentary data. Ulutürk (1987) and Kabasakal & Kabasakal (2004) reported on rare occurrences of the smooth hammerhead shark, Sphyrna zygaena (Linnaeus, 1758), off Gökçeada coasts (northern Aegean Sea). Recently, in August 2015, it was observed off the Kaş Peninsula (western Levantine basin) (Kabasakal et al., 2017). Although its occurrence was confirmed, S. zygaena is considered as a rare shark in Turkish waters (Kabasakal, 2020b). Order Squaliformes Family Dalatiidae Gray, 1851 Kabasakal & Kabasakal (2002) reported rare occur- rences of Dalatias licha (Bonnaterre, 1788), caught in deep-water bottom-trawl fishery in the northern Aegean Sea. Recently, an adult female of D. licha, 118 cm TL, became entangled in a trammel net set at a depth of 40 m in Iskenderun Bay (northeastern Mediterranean sea) (Ergüden et al., 2017). In June 2018 a specimen of D. licha was stranded on Alanya coast (Gulf of Antalya, eastern Mediterranean Sea) (Kabasakal & Bilecenoğlu, 2020). Family Etmopteridae Fowler, 1934 Occurrences of Etmopterus spinax (Linnaeus, 1758) in bottom trawl fishery have been reported from Turkish Aegean and Mediterranean waters (Kabasakal & Ünsal, 1999; Kabasakal & Kabasakal, 2004; Bilge et al., 2010; Başusta, 2015; Bayhan et al., 2018). Velvet belly is a more frequent bycatch in demersal fishery conducted in Aegean waters, where the occurrence of hundreds of neonates and juveniles suggests a bathyal nursery ground in the region (Kabasakal & Kabasakal, 2004; Bilge et al., 2010). Family Somniosidae Jordan, 1888 Serena et al. (2020) considered Somniosus rostratus (Risso, 1827) as a rare shark in the eastern Mediter- ranean. Recently, Irmak & Özden (2021) reported the occurrence of this species in Turkish waters based on a specimen incidentally caught by a swordfish (Xiphias gladius) longline off Fethiye coast (southeastern Aegean Sea) in November 2008. Irmak & Özden (2021) also re- ANNALES · Ser. hist. nat. · 31 · 2021 · 2 187 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 ported that the longline was broken and dropped below at least a depth of 2500 m; thus, the sampling depth of the mentioned specimen is among the deepest observa- tion points of the species in the Mediterranean Sea. S. rostratus is an extant, but rare shark in Turkish waters. Family Oxynotidae Gill, 1863 Oxynotus centrina (Linnaeus, 1758) occurs in the Marmara, Aegean, and Mediterranean seas (Başusta et al., 2015; Yığın et al., 2016; Kabasakal, 2020b), and is considered as a rare and threatened species in Turkish waters. A recent review on the occurrence and status of O. centrina in the eastern Mediterranean (Kabasakal, 2015b) revealed that between the late 1800s and 2012, the highest number of O. centrina specimens (72%) was recorded in the Aegean Sea, followed by the Sea of Marmara (21.5%). Family Centrophoridae Bleeker, 1859 In the recent field guide to the sharks of Turkish waters, two species of the Centrophoridae are listed, Cen- trophorus granulosus and C. uyato (Kabasakal, 2020b). However, the validity of C. granulosus and C. uyato is still debated among taxonomists (Serena et al., 2020). Some researchers suggest that the Mediterranean spe- cies of Centrophorus should be named C. uyato, while others propose a new description of the species with a new neotype (Serena et al., 2020). Following the cur- rent recommendations given by Serena et al. (2020), I consider Centrophorus cf. uyato (Rafinesque, 1810), as a valid species in Turkish waters. Although the specimens of Centrophorus from the Marmara Sea in the early 1990s were identified as C. granulosus (Benli et al., 1993), they should be re-examined for correct identification and naming. A single recording of C. cf. uyato from the north- ern Marmara bathyal has been reported by Meriç (1995). C. cf. uyato is an extant but rare shark in Turkish waters. Family Echinorhinidae Gill, 1862 Although Echinorhinus brucus (Bonnaterre, 1788) had long been considered extinct in Turkish waters, in October 2002, a bramble shark E. brucus was imaged at a depth of 1,214 m in the northern Marmara Sea (Kabasakal et al., 2005). Recent studies provide further records confirming the contemporary existence of E. brucus in Turkish waters (Kabasakal & Dalyan, 2011; Kabasakal & Bilecenoğlu, 2014; Kabasakal, 2017b). Available data reveal that E. brucus is an extant but rare shark species in Turkish waters. Order Squatiniformes Family Squatinidae de Blainville, 1816 The family Squatinidae is represented in Turkish seas with 3 species: Squatina aculeata Cuvier, 1829, S. oculata Bonaparte, 1840 and S. squatina (Linnaeus, 1758). Contemporary occurrences of S. aculeata, S. oculata, and S. squatina have been confirmed by Başusta (2002), Filiz et al. (2005), Başusta (2015), Yağlıoğlu et al. (2015), Ergüden & Bayhan (2015b), Ergüden et al. (2019), Kabasakal (2019b), Yığın et al. (2019), and Bengil (2020). S. squatina is considered as one of the largest sharks in Turkish waters and, histori- cally, it was one of the commercially important shark species in Turkish demersal fishery (Kabasakal et al., 2017; Kabasakal, 2019b). However, there has been an alarming decrease recorded in angel shark populations and the survival of this species may be threatened. As recent surveys show, S. squatina accounts for less than 2% of the total shark biomass incidentally caught by Turkish fishermen (Yağlığlu et al., 2015; Kabasakal et al., 2017), and its populations has drastically declined since the early 2000s (Kabasakal, 2019b). All three species of Squatina are now considered as endangered species in Turkish seas. Questionable species In previous studies, Akşıray (1987), and Mater and Meriç (1996) included Carcharhinus longimanus (Poey, 1861), C. melanopterus (Quoy and Gaimard, 1824), Sphyrna lewini (Griffith and Smith, 1834), and smalleye hammerhead shark, Sphyrna tudes (Valen- ciennes, 1822), in the list of marine ichthyofauna of Turkey. However, there are no confirmed reports of living individuals of these species in Turkish waters. Furthermore, Akşıray (1987) has not given any in- formation on where the specimens of these species were captured or are being preserved for further ex- amination. The most recent review of species diver- sity of chondrichthyes in the Mediterranean Sea by Serena et al. (2020) does not include C. longimanus among the Mediterranean fauna and considers the occurrence of C. melanopterus as questionable. The status of occurrence of S. lewini and S. tudes in the Mediterranean Sea is considered as rare and vagrant, respectively (Serena et al., 2020). Bariche (2012) included the scalloped hammerhead shark, S. lewini, in his recent field guide of marine resources of the eastern and southern Mediterranean, but considers S. lewini very rare to absent in the region. For the mo- ment, according to reports by Serena et al. (2020), C. longimanus cannot be included in the Mediterranean fauna. The occurrence statuses of C. melanopterus, S. lewini, and S. tudes in Turkish waters have always been a subject of debate, therefore these species, considered as questionable by contemporary ichthy- ologists, and are not included in current ichthyologi- cal inventories of the seas of Turkey (e.g., Bilecenoğlu et al., 2014; Kabasakal, 2020b). Further research is required to clarify the presence of C. melanopterus, S. lewini, and S. tudes in Turkish waters. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 188 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 Nursery grounds of sharks along Turkish coasts In terms of survival and management of shark populations, nursery grounds, where the parturition and development of new generations of sharks occur, are considered as critical habitats. Therefore, the mapping of these areas is of high importance. Following the surveys performed during the last two decades, four possible nursery grounds of sharks were discovered along the Turkish coast, three in the Aegean Sea and one in the northeastern Mediterranean Sea (Kabasakal & Kabasakal, 2004; Filiz & Gülşahin, 2015; Kabasakal, 2020c; Başusta et al., 2021). Based on incidental captures of neonates with heal- ing umbilical scars on the belly, Kabasakal & Kabasakal (2004) suggested that the bathyal grounds off the northern coasts of Gökçeada (northeastern Aegean Sea) may serve as a breeding ground for Hexanchus griseus, Scyliorhinus canicula, Etmopterus spinax, and Dalatias licha. According to Filiz & Gülşahin (2015), Boncuk Bay (southeastern Aegean Sea) is a confirmed nursery ground of Carcharhinus plumbeus, where yearly aggregations of pregnant females occur periodically from May to July (Filiz, 2018). According to Kabasakal (2020c), Edremit Bay (northeastern Aegean Sea) may serve as a nursery ground for Carcharodon carcharias, whereas the sur- rounding insular marine area outside of the bay waters may serve as a growing and feeding ground for juveniles until maturity. Last but not least, based on the records of neonate sandbar sharks in Arsuz coast (Iskenderun Bay) and Yumurtalık Bight (NE Mediterranean Sea), Ergüden et al. (2020c) and Başusta et al. (2021) suggested that this area may represent a second breeding and nursery ground for C. plumbeus, after Boncuk Bay, along the Turkish coast. The combined results of these studies provide solid evidence of the occurrence of multiple shark nurseries along the Turkish coasts, therefore an effective manage- ment of these grounds is crucial to the overall survival and biodiversity of Mediterranean sharks. Bycatch of sharks in Turkish waters There has been a considerable increase in the number of studies on the status of sharks incidentally captured during commercial fishing in Turkish waters. Bycatch of sharks were reported both in pelagic and demersal fisher- ies, emphasising a multimodal threat to the survival of sharks in Turkish seas (Bök et al., 2011; Ceyhan & Akyol, 2014; Yağlıoğlu et al., 2015; Filiz et al., 2018; Bengil & Başusta, 2018). According to Bengil and Başusta (2018), nearly half of the cartilaginous fish species (n=76) living in Turkish waters are particularly threatened from bycatch, which is a serious threat to the overall survival and future of cartilaginous fish in the eastern Mediterranean. In a recent study, Kabasakal et al. (2017) examined large shark species incidentally captured by commercial fishing gear in Turkish waters and the amount of catches of these spe- cies between 1990 and August 2015. Summing up, we can say that sharks are captured as “non-target species” in commercial fisheries in Turkish waters. In the recently published national action plan for the conservation of cartilaginous fishes of Turkish waters (Öztürk, 2018), bycatch in trawl, trammel net and purse seine unreported and unregulated fishing has been listed as the main threat for the cartilaginous species, occurring in the mentioned region. Conservation of sharks in Turkish waters Degradation of important nursery grounds and other critical coastal habitats due to marine pollution, overfish- ing, coastal urbanisation, and unplanned human occupa- tion is another serious threat to the survival of sharks. A recent research on the extinction risk and conservation of globally distributed lineage of 1,041 chondrichthyan species emphasised that the extinction risk of chondrich- thyans is substantially higher than that in most other vertebrates, and only one third of chondrichthyan species are considered safe (Dulvy et al., 2014). Following the revisions proposed in the national action plan (Öztürk, 2018), which were positively implemented in the fisher- ies act of Turkey (Official Gazette 2016, 2018; Öztürk, 2018; Official Gazette 2020), the following shark species are currently considered under protection: Carcharhinus falciformis, C. plumbeus, Prionace glauca, Galeorhinus galeus, Sphyrna zygaena, Cetorhinus maximus, Isurus oxyrinchus, Lamna nasus, Alopias superciliosus, A. vulpi- nus, Squalus acanthias, S. blainvillei, Oxynotus centrina, Squatina aculeata, S. oculata, and S. squatina. The fisher- ies act prohibits any person under Turkey’s jurisdiction to kill and/or land the sharks from the list of protected species, and any violation of this law is sanctioned by a fine. It is an urgent necessity for some species, including large shark species, of whose population structures we still do not know much, to be included in the protection scope immediately. One of these species is Carcharodon carcharias, which is critically endangered in the Mediter- ranean Sea and was listed in Annex II (Endangered or Threatened species) of the protocol concerning Specially Protected Areas and Biological Diversity in the Mediter- ranean of the Barcelona Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean. Being a signatory state of the Barcelona Convention, Turkey should take immediate action to protect C. carcharias. CONCLUSIONS Following the publication of A Field Guide to the Sharks of Turkish Waters in early summer 2020 (Kaba- sakal, 2020b), three remarkable events happened that have made the revision of the published species list a necessity. The first event was related to the first records of Carcharhinus brachyurus and C. falciformis in Turkish ANNALES · Ser. hist. nat. · 31 · 2021 · 2 189 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 waters (Kabasakal & Bilecenoğlu, 2020). The second was the publication of a milestone article on the species di- versity, taxonomy, and distribution of Mediterranean and Black Sea chondrichthyans (Serena et al., 2020), which indicates Centrophorus cf. uyato as a valid species of the genus Centrophorus and reveals Carcharhinus melano- pterus as a questionable species in the region. The last event was the confirmation of the presence of Somniosus rostratus in Turkish waters (Irmak & Özden, 2021). Available data have revealed that the current shark fa- una of the Turkish waters includes 37 confirmed species. Questionable occurrences of C. melanopterus, S. lewini, and S. tudes, which are included in relevant ichthyolo- gical inventories of Turkish waters (Akşıray, 1987; Mater & Meriç, 1996), require confirmation. Although, Akşıray (1987) also mentioned the occurrence of C. longimanus in Turkish shark fauna, the species is not included in the present inventory due to its absence in the entire Mediter- ranean (Serena et al., 2020). When the results of the current study (n=37 species) are compared with the list, which was published in the early 2000s and includes 31 species (Kabasakal, 2002), it can be seen that remarkable changes have taken place over the past 20 years. It has been confirmed that Carcha- rias taurus, Carcharhinus limbatus, C. obscurus, and Echi- norhinus brucus, which are listed as questionable in the list provided by Kabasakal (2002), occur in Turkish waters (Cengiz et al., 2011; Kabasakal et al., 2017; Kabasakal & Bilecenoğlu, 2020). Although Kabasakal (2002, 2020b) reported that Centrophorus granulosus and C. uyato oc- cur in Turkish waters, in the light of current information (Serena et al., 2020), the status of the species of the genus Centrophorus in the region should be updated to that of C. cf. uyato. During this period, three new record species (Alopias superciliosus, Carcharhinus brachyurus, and C. falciformis) were included in the shark fauna of Turkey (Mater, 2005; Kabasakal & Bilecenoğlu, 2020). Based on current information, it can be observed that the most important threat to sharks in Turkish waters comes from bycatch (Bök et al., 2011; Ceyhan & Akyol, 2014; Yağlıoğlu et al., 2015; Filiz et al., 2018; Bengil & Başusta, 2018). Although considerable efforts have been made in recent years to protect the generations of sharks and prevent them from being harmed by incidental cap- tures, sharks cannot be safe from bycatch fishery. The necessity and value of legal regulations for the purpose of protection of shark species is unquestionable and ob- vious. However, fisheries news in published or internet media, as well as in social media, give the impression that these legal measures are not yet deterrent. Although fines have started to be imposed, it is a concrete fact that we are still far from an awareness of conservation based on ecological facts and where fishermen respect sharks as “the species that have a fundamental place in the balance of the ecosystem.” Releasing sharks back into the sea is an important but not the only measure to implement, as their survival is also profoundly af- fected by the conditions during the handling. Fishermen must understand the need for sharks in the ecosystem. Only protective efforts will come to a conclusion if this awareness is achieved. The last but not least important issue is the potential of the increasingly numerous aquaculture facilities to attract especially large sharks to the coasts. Although sharks are active predators, they can also be opportunistic feeders, which do not refuse the easy feeding environment that aquaculture facilities offer. Concentrations of predatory sharks are increasingly being recorded around aquacul- ture facilities off the Turkish coast, as in different parts of the world (Kabasakal & Gedikoğlu, 2015). A recent provoked sandbar shark (Carcharhinus plumbeus) attack on commercial divers near an aquaculture cage (Ergüden et al., 2020d) is representative of the potential threat to the public that can result from the stimulating effect of aquaculture facilities. ACKNOWLEDGMENTS I would like to thank to two anonymous referees for their valuable comments, which improved the content of the article. My publishing adventure in Annales natural history series journal, which has been going on since 2002, is about to enter its 20th year. As this review article represents an important milestone in this long journey, I would like to express my gratitude to all the editorial board members, primarily Dr. Lovrenc Lipej, Dr. Martina Orlando-Bonaca and Dr. Patricija Mozetic, who traveled with me during this time and opened their pages for me to share the stories of sharks in Turkish seas to the world. I hope our journey together continues for longer. Last but not least, special thanks go to my wife Özgür, and my son Derin, for their endless love. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 190 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 PREGLED PESTROSTI MORSKIH PSOV V TURŠKIH MORJIH: DOPOLNJEN SEZNAM, NOVI PRIŠLEKI, VPRAŠLJIVE VRSTE IN NARAVOVARSTVENI PROBLEMI Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil ap., No: 30, D: 4, 34764 Ümraniye, İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com POVZETEK Favna morskih psov v turških morjih šteje po do sedaj zbranih podatkih 37 potrjenih vrst: Hexanchus griseus, Heptranchias perlo, Echinorhinus brucus, Squalus acanthias, S. blainvillei, Centrophorus cf. uyato, Etmopterus spinax, Somniosus rostratus, Oxynotus centrina, Dalatias licha, Squatina aculeata, S. oculata, S. squatina, Carcharias taurus, Odontaspis ferox, Alopias superciliosus, A. vulpinus, Cetorhinus maximus, Car- charodon carcharias, Isurus oxyrinchus, Lamna nasus, Galeus melastomus, Scyliorhinus canicula, S. stellaris, Galeorhinus galeus, Mustelus asterias, M. mustelus, M. punctulatus, Carcharhinus altimus, C. brachyurus, C. brevipinna, C. falciformis, C. limbatus, C. obscurus, C. plumbeus, Prionace glauca, in Sphyrna zygaena. Na podlagi zdajšnjih podatkov morske pse v turških morjih v največji meri ogroža prilov. Ključne besede: Elasmobranchii, seznam vrst, pregled stanja, Turčija ANNALES · Ser. hist. nat. · 31 · 2021 · 2 191 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 REFERENCES Akşıray, F. (1987): Türkiye Deniz Balıkları ve Tayin Anahtarı, 2nd edn. Publication No. 3490. Istanbul, Istanbul University, 811 pp. (in Turkish). Ayas. D., D. Ergüden, N. Çiftçi & M. Bakan (2018): Additional record of Bluntnose sixgill shark Hexanchus griseus (Bonnaterre, 1788) in Yeşilovacık Bay (North- eastern Mediterranean Sea, Turkey). Asian Journal of Biology, 7, 1-7. Ayas D., N. Çiftçi & H.D. Akbora (2019): New record of Carcharhinus brevipinna (Müller & Henle, 1839) from Mersin Bay, the northeastern Mediterranean. NESciences, 4, 268-275. Ayas D., N. Çiftçi, E. Yalçın, H.D. Akbora, M. Bakan & D. Ergüden (2020): First record of the bignose shark, Carcharhinus altimus (Springer, 1950) from Mersin Bay. International Journal of Fisheries and Aquatic Studies, 8, 132-136. Ayaşlı, S. (1937): Boğaziçi Balıkları. Istanbul: Cum- huriyet Matbaası. Bariche, M. (2012): Field Identification Guide to the Living Marine Resources of the Eastern and Southern Mediterranean. FAO Species Identification Guide for Fishery Purposes. Rome, FAO, 610 pp. Başusta, N. (2002): Occurrence of a sawback an- gelshark (Squatina aculeata Cuvier, 1829) off the eastern Mediterranean coast of Turkey. Turk. J. Vet. Anim. Sci., 26, 1177-1179. Başusta, N. (2015): New records of neonate and ju- venile sharks (Heptranchias perlo, Squatina aculeata, Et- mopterus spinax) from the north-eastern Mediterranean Sea. Mar. Biodiv., doi: 10.1007/s12526-015-0391-z. Başusta, N., Ü. Erdem & C. Çevik (1998): An in- vestigation on chondrichthyes in İskenderun Bay. Celal Bayar University Journal of Science, 1, 63-69. Başusta, N., C. Turan & A. Başusta (2015): New records of gravid female and adult male of the angular rough shark, Oxynotus centrina (Oxynotidae) from the northeastern Mediterranean. J. Black Sea / Medit. Envi- ron., 21, 92-95. Başusta N., A. Başusta & E.Ö. Özbek (2016): Carti- laginous fishes and fisheries in the Mediterranean coast of Turkey. In: The Turkish Part of the Mediterranean Sea; Marine Biodiversity, Fisheries, Conservation and Gov- ernance (eds., Turan, C., Salihoğlu, B., Özgür Özbek, E., Öztürk, B.) Turkish Marine Research Foundation (TU- DAV), Publication No: 43, Istanbul, Turkey, 248-274. Başusta N., A. Başusta & C.E. Özyurt (2021): Evi- dence of a second nursery area of the sandbar shark, Carcharhinus plumbeus (Nardo, 1827) in the Eastern Mediterranean Sea. Mediterranean Marine Science, 22, 20-26. Bayhan Y.K., E. Çiçek, T. Ünlüer & M. Akkaya (2006): Güneydoğu Marmara’da algarna ile karides avcılığında av kompozisyonu ve hedef dışı av. E.U. Journal of Fisheries & Aquatic Sciences, 23, 277-283. Bayhan, Y.K., D. Erguden & J. Cartes (2018): Deep sea fisheries in Mersin Bay, Turkey, Eastern Mediterra- nean: Diversity and abundance of shrimps and benthic fish fauna. Acta Zoologica Bulgarica, 70, 259-268. Bengil, E.G.T. (2020): Can opportunistic methodolo- gies provide information on elasmobranchs? A case study from Seas around Turkey. JWB 4 (special issue), 68-77. Bengil, E.G.T. & N. Başusta (2018): Chondrich- thyan species as bycatch: a review on species inhabit- ing Turkish waters. J. Black Sea/Medit. Environ., 24, 288-305. Benli, H.A., B. Cihangir & K.C. Bizsel (1993): A new record for the Sea of Marmara; (Family: Squali- dae) Centrophorus granulosus (Bloch & Schneider, 1801). Tr. J. of Zoology, 17, 133-135. Bianchi C.N. & C. Morri (2003): Global sea warm- ing and ‘tropicalization’ of the Mediterranean Sea: biogeographic and ecological aspects. Biogeographia, 24, 319-327. Bilecenoğlu M., M. Kaya, B. Cihangir & E. Çiçek (2014): An updated checklist of the marine fishes of Turkey. Turk. J. Zool., 38, 901-929. Bilge, G., H. Filiz & A.N. Tarkan (2010): Length- weight relationship of velvet belly lantern shark Etmopterus spinax (Linnaeus, 1758) in Sığacık Bay (Aegean Sea). Istanbul University Journal of Fisheries and Aquatic Sciences, 25, 1-8. Bök, T.D., D. Göktürk & A.E. Kahraman (2011): Bycatch in 36 and 40 mm PA Turkish twin rigged bean trawl codends. African Journal of Biotechnology, 10, 7294-7302. Camhi, M., S.L. Fowler, J.A. Musick, A. Bräutigam & S.V. Fordham (1998): Sharks and Their Relatives – Ecology and Conservation. IUCN/SSC Shark Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK. iv + 39 pp. Cengiz, Ö., A. İşmen, U. Özekinci & A. Öztekin (2011): An investigation on fish fauna of Saros Bay (Northern Aegean Sea). AKU-J. Sci., 11, 31-37. Ceyhan, T. & O. Akyol (2014): On the Turkish surface longline fishery targeting swordfish in the eastern Mediterranean Sea. Turk. J. Fish. Aquat. Sci.. 14, 825-830. Deveciyan, K. (1926): Peĉhe et Pećheries en Tur- quie. İstanbul: Imprimerie de l’Administration de la Dette Publique Ottomane. Dulvy, N.K., S.L. Fowler, J.A. Musick, R.D. Cavanagh, P.M. Kyne, L.R. Harrison, J.K. Carlson, L.N. Davidson, S.V. Fordham, M.P. Francis, C.M. Pollock, C.A. Simpfen- dorfer, G.H. Burgess, K.E. Carpenter, L.J. Compagno, D.A Ebert, C. Gibson, M.R. Heupel, S.R. Livingstone, J.C. Sanciangco, J.D. Stevens, S. Valenti & W.T. White (2014): Extinction risk and conservation of the world’s sharks and rays. eLife;3:e00590. 34 pp. doi: 10.7554/ eLife.00590. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 192 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 Dulvy, N.K., D.J. Allen, G.M. Ralph & R.H.L. Walls (2016): The conservation status of sharks, rays and chimaeras in the Mediterranean Sea (Brochure). IUCN, Malaga, Spain. Erazi, R.A.R. (1942): Marine fishes found in the Sea of Marmara and in the Bosphorus. Revue de la Faculte ´ des Sciences de l’Université d’Istanbul B, 7, 103–115. Erguden, D. & Y.K. Bayhan (2015a): On the occur- rence of the sharpnose sevengill shark Heptranchias perlo (Bonnaterre, 1788) in the northeastern Mediter- ranean. Mediterranean Marine Science, 16, 682-702. Ergüden, D. & Y.K. Bayhan (2015b): Three fish spe- cies known to be rare for Turkey, captured from the northeastern Mediterranean coast of Turkey, Mersin Bay, Sudis hyalina Rafinesque, Chlopsis bicolor Rafin- esque, Squatina aculeata Cuvier. International Journal of Scientific and Technological Research, 1, 1-8. Ergüden, D., M. Gürlek & C. Turan (2013): A young Isurus oxyrinchus Rafinesque, 1810 (Chondrichthyes: Lamnidae) individual captured from Iskenderun Bay, Turkey. Medit. Mar. Sci., 14, 463-480. Ergüden, D., M. Gürlek & C. Turan (2015): Oc- currence of the thresher Alopias vulpinus (Bonnaterre, 1788) from the northeastern Mediterranean coast of Turkey. Biharean Biologist, 9, 76-77. Ergüden, D., M. Çekiç, S. Alagöz Ergüden, A. Altun & N. Uygur (2017): Occurrence of adult female kitefin shark Dalatias licha (Bonnaterre, 1788) in Iskenderun Bay (Eastern Mediterranean, Turkey). Comm. J. Biol., 1, 60-62. Ergüden, D., D. Ayas, M. Gürlek, S. Karan & C. Turan (2019): First documented smoothback an- gelshark Squatina oculata Bonaparte, 1840 from the north-eastern Mediterranean Sea, Turkey. Cah. Biol. Mar., 60, 189-194. Ergüden, D., D. Ayas, S.A. Erguden & H.D Akbora (2020a): Rare Occurrence of the Young Basking Shark Cetorhinus maximus (Gunnerus, 1765) in the North- eastern Mediterranean. Emerging Trends and Research in Biological Science Vol. 1. Book Publisher Interna- tional. pp. 99-107. ISBN: 978-93-89562-56-9 Ergüden, D., M. İğde, C. Turan, D. Ayas & H. Kaba- sakal (2020b): Occurrence of a large bigeye thresher shark, Alopias superciliosus (Lamniformes: Alopiidae), in the northeastern Levantine Sea (İskenderun Bay, eastern Mediterranean Sea, Turkey). Annales Ser. Hist. Nat., 30, 157-164. Ergüden, D., H. Kabasakal, & F. Kabaklı (2020c): Young-of-the-year sandbar shark, Carcharhinus plumbeus (Nardo, 1827) (Carcharhiniformes: Carcharhi- nidae), caught in Iskenderun Bay. FishTaxa, 18, 18-22. Ergüden, D., D. Ayas & H. Kabasakal (2020d): Provoked non-fatal attacks to divers by sandbar shark, Carcharhinus plumbeus (Carcharhiniformes: Car- charhinidae), off Taşucu coast (NE Mediterranean Sea, Turkey). Annales Ser. Hist. Nat., 30, 1-8. Erguden, D. D. Ayas & H. Kabasakal (2021): Recent occurrences of shortfin mako shark, Isurus oxyrinchus Rafinesque, 1810 (Chondrichthyes: Lamnidae), from the North-Eastern Mediterranean Coast of Turkey. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 4, 79-85. Eryılmaz, L., E. Yemişken & C. Dalyan (2011): The first documented record of genus Mustelus (Chon- drichthyes: Triakidae) in the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 11, 157-160. Fergusson, I.K., K.J. Graham & L.J.V. Compagno (2008): Distribution, abundance and biology of the smalltooth sandtiger shark Odontaspis ferox (Risso, 1810) (Lamniformes: Odontaspididae). Environ. Biol. Fish., 81, 207-228. Filiz, H. (2018): Year-round aggregation of sand- bar shark, Carcharhinus plumbeus (Nardo, 1827), in Boncuk Cove in the southern Aegean Sea, Turkey (Carcharhiniformes: Carcharhinidae). Zoology in the Middle East, doi: 10.1080/09397140.2018.1540148. Filiz, H. & A. Gülşahin (2015): First 12 months of sandbar shark monitoring in Turkey. 11th Panhellenic Symposium on Oceanography and Fisheries, Mytilene, Lesvos island, Greece. pp: 113-116 Filiz, H. & H. Kabasakal (2015): Photographic record of the spinner shark, Carcharhinus brevipinna (Müller & Henle, 1839), in Gökova Bay (south Aegean Sea, Turkey). Annales Ser. Hist. Nat., 25, 123-128. Filiz, H. & S. Mater (2002): A Preliminary Study on Length-Weight Relationships for Seven Elasmobranch Species from North Aegean Sea, Turkey. E.U. Journal of Fisheries & Aquatic Sciences, 19, 401-409. Filiz, H., E. Irmak & S. Mater (2005): Occurrence of Squatina aculeata Cuvier, 1829 (Elasmobranchii, Squatinidae) from the Aegean Sea, Turkey. EU Journal of Fisheries & Aquatic Sciences, 22, 451-452. Irmak, E. & U. Özden (2021): A rare shark for the Mediterranean: Somniosus rostratus (Risso, 1827) (Chondrichthyes: Somniosidae) from the coast of Tur- key. Zoology in the Middle East, http://dx.doi.org/10.1 080/09397140.2021.1895413 İşmen, A., C.Ç. Yığın, H. İnceoğlu, M. Arslan, B. Daban, S. Kale, E. Kocabaş & M. Şirin (2013): Chon- drichthyan bycatches in the beam trawl shrimp fishery of the Marmara Sea. Rapp. Comm. int. Mer Médit., 40, 487. Jessup, D.A. (2003): Opportunistic research and sampling combined with fish and wildlife management actions or crisis response. ILAR Journal, 44, 277-285. Kabasakal, H. (2002): Elasmobranch species of the seas of Turkey. Annales Ser. Hist. Nat., 12, 15-22. Kabasakal, H. (2003): Historical records of the great white shark, Carcharodon carcharias (Linnaeus, 1758) (Lamniformes: Lamnidae), from the Sea of Mar- mara. Annales Ser. Hist. Nat., 13, 173-180. Kabasakal, H. (2007): Incidental captures of thresher sharks (Lamniformes: Alopiidae) from Turkish coastal waters. Annales Ser. Hist. Nat., 17, 23.28. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 193 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 Kabasakal, H. (2013a): Bluntnose sixgill shark, Hex- anchus griseus (Chondrichthyes: Hexanchidae), caught by commercial fishing vessels in the seas of Turkey be- tween 1967 and 2013. Annales Ser. Hist. Nat., 23, 33-48. Kabasakal, H. (2013b): Rare but present: Status of basking shark, Cetorhinus maximus (Gunnerus, 1765) in eastern Mediterranean. Annales Ser. Hist. Nat., 23, 127-132. Kabasakal, H. (2014): The status of the great white shark (Carcharodon carcharias) in Turkey’s waters. Marine Biodiversity Records, 7, e109 doi:10.1017/ S1755267214000980. Kabasakal, H. (2015a): Occurrence of shortfin mako shark, Isurus oxyrinchus Rafinesque, 1810, off Turkey’s coast. Marine Biodiversity Records, 8, e134. doi:10.1017/S1755267215001104. Kabasakal, H. (2015b): Occurrence of the angular rough shark, Oxynotus centrina (Chondrichthyes: Ox- ynotidae) in the eastern Mediterranean. Annales Ser. Hist. Nat., 25, 1-10. Kabasakal, H. (2017a): Notes on historical and contemporary catches of lamniform sharks in Turkish waters. Annales Ser. Hist. Nat., 27, 51-58. Kabasakal, H. (2017b): Remarks on incidental captures of deep-sea sharks in Marmaric shelf waters. Annales Ser. Hist. Nat., 27, 37-144. Kabasakal, H. (2019a): A review of shark research in Turkish waters. Annales Ser. Hist. Nat., 29, 1-16. Kabasakal, H. (2019b): Finally under protection! Status of the angel shark, Squatina squatina (Linnaeus, 1758) in Turkish seas, with notes on a recent sighting and incidental captures. Annales Ser. Hist. Nat., 29, 17-24. Kabasakal, H. (2020a): Agreement with the mon- ster. The lessons we learned from the great white shark in Turkish waters. Turkish Marine Research Foundation (TUDAV) Publication No: 57. İstanbul. ISBN: 978- 975-8825-49-3. 74 pp. Kabasakal, H. (2020b): A Field Guide to the Sharks of Turkish Waters. Turkish Marine Research Founda- tion (TUDAV) Publication No: 55. İstanbul. ISBN: 978-975-8825-47-9. 133 pp. Kabasakal, H. (2020c): Exploring a possible nurs- ery ground of white shark (Carcharodon carcharias), in the Edremit Bay (northeastern Aegean Sea, Turkey). J. Black Sea/Medit. Environ., 26, 176-189. Kabasakal, H. & E. Bayrı (2019): Notes on the occurrence of smalltooth sandtiger shark, Odontaspis ferox (Lamniformes: Odontaspididae) from Antalya Bay, eastern Mediterranean, Turkey. J. Black Sea/ Medit. Environ., 25, 166-171. Kabasakal, H. & E. Bayrı (2020c): First record of a young-of-the-year Carcharodon carcharias in the Dar- danelles Strait. Annales Ser. Hist. Nat., 30, 175-180. Kabasakal, H. & M. Bilecenoğlu (2014): Not disap- peared, just rare! Status of the bramble shark, Echi- norhinus brucus (Elasmobranchii: Echinorhinidae) in the seas of Turkey. Annales Ser. Hist. Nat., 24, 93-98. Kabasakal, H. & M. Bilecenoğlu (2020): Shark infested internet: an analysis of internet-based media reports on rare and large sharks of Turkey. FishTaxa, 16, 8-18. Kabasakal, H. & C. Dalyan (2011): Recent records of the bramble shark, Echinorhinus brucus (Chon- drichthyes: Echinorhinidae), from the Sea of Marmara. Marine Biodiversity Records, 4, e12 doi:10.1017/ S1755267211000 108. Kabasakal, H. & S.Ö. Gedikoğlu (2008): Two new- born great white sharks, Carcharodon carcharias (Lin- naeus, 1758) (Lamniformes; Lamnidae) from Turkish waters of the northern Aegean Sea. Acta Adriat., 49, 125-135. Kabasakal, H. & S.Ö. Gedikoğlu (2015): Shark attacks against humans and boats in Turkey’s waters in the twentieth century. Annales Ser. Hist. Nat., 25, 115-122. Kabasakal, H. & P. İnce (2008): Note on a sharp- nose sevengill shark, Heptranchias perlo (Bonnaterre, 1788) (Chondrichthyes: Hexanchidae), stranded in Saroz Bay (NE Aegean Sea, Turkey). Annales Ser. Hist. Nat., 18, 173-176. Kabasakal, H. & E. Kabasakal (2002): Morphomet- rics of young kitefin sharks, Dalatias licha (Bonnaterre, 1788), from northeastern Aegean Sea, with notes on its biology. Annales Ser. Hist. Nat., 12, 161-166. Kabasakal, H. & E. Kabasakal (2004): Sharks cap- tured by commercial fishing vessels off the coast of Turkey in the northern Aegean Sea. Annales Ser. Hist. Nat., 14, 171-180. Kabasakal, H. & Ö. Kabasakal (2013): First record of a shortfin mako shark, Isurus oxyrinchus Rafin- esque, 1810 (Chondrichthyes: Lamnidae) from the Bay of Saroz (NE Aegean Sea). Annales Ser. Hist. Nat., 23, 27-32. Kabasakal, H. & Ö. Kabasakal (2015): Recent re- cord of the great white shark, Carcharodon carcharias (Linnaeus, 1758), from central Aegean Sea off Turkey’s coast. Annales Ser. Hist. Nat., 25, 11-14. Kabasakal, H. & S.Ü. Karhan (2008): On the occur- rence of the bigeye thresher shark, Alopias supercil- iosus (Chondrichthyes: Alopiidae), in Turkish waters. Marine Biodiversity Records, 1, e69 doi: 10.1017/ S1755267207007452. Kabasakal, H. & S.Ü. Karhan (2015): Shark biodi- versity in the Sea of Marmara: departures and arrivals over a century. Marine Biodiversity Records, 8, e59 doi: 10.1017/S1755267215000342. Kabasakal, H. & N. Ünsal (1999): Observations on Etmopterus spinax (Pisces: Squalidae), from the north- eastern Aegean Sea. Bilješke – Notes, 81, 1-11. Kabasakal, H., M.İ. Öz, S.Ü. Karhan, Z. Çaylarbaşı & U. Tural (2005): Photographic evidence of the oc- currence of bramble shark, Echinorhinus brucus (Bon- naterre, 1788) (Squaliformes: Echinorhinidae) from the Sea of Marmara. Annales Ser. Hist. Nat., 15, 51-56. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 194 Hakan KABASAKAL: A REVIEW OF SHARK BIODIVERSITY IN TURKISH WATERS: UPDATED INVENTORY, NEW ARRIVALS, QUESTIONABLE SPECIES, AND ..., 181–194 Kabasakal, H., A. Yarmaz & S.Ö. Gedikoğlu (2009): Two juvenile great white sharks, Carcharo- don carcharias (Linnaeus, 1758) (Chondrichthyes; Lamnidae), caught in the Northeastern Aegean Sea. Annales Ser. Hist. Nat., 19, 127-134. Kabasakal, H., C. Dalyan & A. Yurtsever (2011): Additional records of the bigeye thresher shark Alo- pias superciliosus (Lowe, 1839) (Chondrichthyes: Lamniformes: Alopiidae) from Turkish waters. An- nales Ser. Hist. Nat., 21, 143-148. Kabasakal, H., S.Ü. Karhan & S. Sakınan (2017): Review of the distribution of large sharks in the seas of Turkey (Eastern Mediterranean). Cah. Biol. Mar., 58, 219-228. Mater, S. (2005): Denizlerimizde yeni bir köpekbalığı, Alopias superciliosus (Lowe, 1841). Aquaculture, 1, 10. Kıdeyş, A. E. (1997): Occurrence of the basking shark, Cetorhinus maximus in the northern Levan- tine, the eastern Mediterranean. Mediterranean Fisheries Congress, 9-11 April 1997, Izmir, Turkey, 4 pp. Mater, S. & N. Meriç (1996): Deniz Balıkları. In: Kence A. and Bilgin C.C. (eds) TÜBİTAK Türkiye omurgalılar tür listesi. Ankara: Nurol Matbaacılık, pp. 129–172. Meriç, N. (1995): A study on existence of some fishes on the continental slope of the Sea of Mar- mara. Tr J of Zoology, 19, 191-198. Monkman, G.G., M. Kaiser & K. Hyder (2017): The ethics of using social media in fisheries research. Reviews in Fisheries Science and Aquaculture, doi. org/10.1080/23308249.2017.1389854. Ninni, E. (1923): Primo contributo allo studio dei pesci e della pesca nelle acque dell’Impero Ot- tomano. Venezia: Premiate Officine Grafiche Carlo Ferrari. Oral, M. (2010): A preliminary study on feeding habits of black-mouth catshark Galeus melastomus, Rafinesque, 1810 sampled from the Sea of Marmara. Marmara Denizi 2010 Sempozyumu, 25-26 Eylül 2010, İstanbul, pp. 312-316. Öztürk, B. (2018): National action plan for the conservation of cartilaginous fishes in the Turkish water of the eastern Mediterranean Sea. Journal of the Black Sea/Medit. Environ., 24, 91-96. Öztürk, B. & A. A. Öztürk (1996): On the biol- ogy of the Turkish straits system. Bull Inst océanogr, Monaco, no spécial, 17, 205-221. Özütemiz, Ş., M. Kaya & O. Özaydın (2009): Growth and feeding characteristics of two shark spe- cies [Galeus melastomus Rafinesque, 1810 and Squa- lus blainvillei (Risso, 1826)] from Sığacık Bay (Aegean Sea). E.U. Journal of Fisheries & Aquatic Sciences, 26, 211-217. Papaconstantinou, C. (1987): Distribution of the Lessepsian fish migrants in the Aegean Sea. Biologia Gallohellenica, 13, 15-20. Papaconstantinou, C. (1992): General remarks on the Greek seas fish fauna. Doriana, 6, 1-8. Prodanov, K., K. Mikhailov, G. Daskalov, C. Maxim, A. Chaschin, A. Arkhipov, V. Shlyakhov & E. Özdamar (1997): Environmental management of fish resources in the Black Sea and their exploitation. Studies and Reviews. General Fisheries Council for the Mediter- ranean. No. 68. Rome, FAO, 178 pp. Serena, F., A.J. Abella, F. Bargnesi, M. Barone, F. Colloca, F. Ferretti, F. Fiorentino, J. Jenrette & S. Moro (2020): Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. The European Zoological Journal, 87, 497-536. Tunçer, S. & H. Kabasakal (2016): Capture of a juvenile shortfin mako shark, Isurus oxyrinchus Rafin- esque, 1810 (Chondrichthyes: Lamnidae) in the Bay of Edremit, northern Aegean Sea (Turkey). Annales Ser. Hist. Nat., 26, 31-36. Ulutürk, T. (1987): Fish fauna, background radio- activity of the Gökçeada marine environment. Journal of Aquatic Products University of Istanbul, 1, 95-119. Vas, P. (1991): A field guide to the sharks of British coastal waters. Field Studies, 7, 651-686. Yağlıoğlu, D., T. Deniz, M. Gürlek, D. Ergüden & C. Turan (2015): Elasmobranch bycatch in a bot- tom trawl fishery in the Iskenderun Bay, northeastern Mediterranean. Cah. Biol. Mar., 56, 237-243. Yığın, C.Ç. & A. İşmen (2013): Reproductive biol- ogy of spiny dogfish Squalus acanthias, in the north Aegean Sea. Turk. J. Fish. Aquat. Sci., 13, 169-177. Yığın, C.Ç., A. İşmen & U. Önal U. (2016): Occur- rence of a rare shark, Oxynotus centrina (Chondrich- thyes: Oxynotidae), from Saros Bay, North Aegean Sea, Turkey. J Black Sea / Medit. Environ., 22, 103-109. Yığın, C.Ç., A. İşmen, B. Daban, K. Cabbar & U. Önal (2019): Recent findings of rare sharks, Squatina oculata Bonaparte, 1840 and Squatina squatina (Lin- naeus, 1758) from Gökçeada Island, Northern Aegean Sea, Turkey. J Black Sea / Medit. Environ., 25, 305-314. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 195 received: 2021-10-27 DOI 10.19233/ASHN.2021.23 GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, HIDDEN IN THE PAST: THREE UNPUBLISHED RECORDS OF THE SPECIES FROM TURKISH WATERS Hakan KABASAKAL & Erdi BAYRI Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil apt., No: 30, D: 4, Ümraniye, TR-34764 İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com ABSTRACT Three previously unpublished records of the great white shark, Carcharodon carcharias (Linnaeus, 1758), in Turkish waters were discovered through social media and internet data mining. Two of the individuals were recorded in the Sea of Marmara and the third in Edremit Bay (northeastern Aegean Sea). Understanding the historical occurrence and abundance of sharks in a given geographic area is critical. Thus, citizen science, social media supported studies, and analyses of historical data, which have produced relevant results in recent years, will undoubtedly help toward a more effective protection and management of this top predator. Key words: historical data, citizen science, social media, sharks, megafauna GRANDI SQUALI BIANCHI, CARCHARODON CARCHARIAS, NASCOSTI NEL PASSATO: TRE RITROVAMENTI INEDITI DELLA SPECIE IN ACQUE TURCHE SINTESI Tre registrazioni inedite del grande squalo bianco, Carcharodon carcharias (Linnaeus, 1758), in acque turche sono state scoperte attraverso i social media e il data mining di internet. Due degli individui sono stati registrati nel Mar di Marmara e il terzo nella baia di Edremit (Egeo nord-orientale). Comprendere la presenza storica e l’abbondanza di squali in una data area geografica è fondamentale. Quindi, la citizen science, gli studi supportati dai social media e le analisi dei dati storici, che hanno prodotto risultati rilevanti negli ultimi anni, aiuteranno senza dubbio a rendere più efficace la protezione e la gestione di questo grande predatore. Parole chiave: dati storici, scienza dei cittadini, social media, squali, megafauna ANNALES · Ser. hist. nat. · 31 · 2021 · 2 196 Hakan KABASAKAL & Erdi BAYRI: GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, HIDDEN IN THE PAST: THREE UNPUBLISHED RECORDS ..., 195–202 INTRODUCTION The great white shark, Carcharodon carcharias (Linnaeus, 1758) (Lamniformes: Lamnidae), is a glob- ally widespread apex predator (Moro et al., 2020). It is a large shark with an estimated total length of up to 640 cm (Randall, 1973), occurring circum- globally, but mostly in warm-temperate waters and less frequently in tropical regions, from the surface waters to depths of over 1280 m (Ebert & Stehmann, 2013). Once stigmatised as a man-eating monster, it has now resurrected as a charismatic flagship mem- ber of the marine megafauna and one of the stars of conservation action (Mazzoldi et al., 2019). In truth, historical and contemporary occurrences of C. carcharias have always been an attractive topic in the field of shark research (e.g., De Maddalena & Heim, 2012; Kabasakal, 2020a). In a recent study, Moro et al. (2020) reported 773 verified historical and contemporary records of C. carcharias from sev- eral regions of the Mediterranean Sea. Data on the occurrence of the great white shark in Turkish waters include a total of 62 historical and contemporary records (Kabasakal, 2020a). In the present article, authors report the occur- rence of 3 previously unpublished records of C. carcharias from Turkish waters, based on historical photographs. MATERIAL AND METHODS This article is part of an ongoing research begun in the early 2000s for the purpose of collecting and archiving historical and contemporary occurrence data of Carcharodon carcharias in Turkish waters, at the initiative of the Ichthyological Research Society. The results of the project called Turkish Great White Shark Data Archive (TGWSDA), comprised of data on 62 specimens and their images, gathered over the past 20 years, were recently published (Kabasakal, 2020a). The data concerning the 3 unpublished records of C. carcharias specimens caught in Turk- ish waters were obtained through data mining in the digitalized media of old newspapers published between the 1900s and the 1930s (2 specimens), as well as in contemporary internet news portals (1 specimen). Historical and contemporary photo- graphs of the great white shark accompanied by informative content were published on social media platforms such as Facebook and Instagram, which are now accepted as important sources of informa- tion attracting a remarkably increasing interest of researchers (e.g., Boldrocchi & Storai, 2021; Ka- basakal & Bilecenoğlu, 2020; Giovos et al., 2021). Since online communities and website administra- tors may react negatively to the use of their online content by researchers, following the ethical code proposed by Monkman et al. (2017), all internet content scraping activity was performed responsibly to avoid compromising any personal data or image. An individual shark record was considered valid if the respective digital photograph provided a clear side view of the specimen, or in the case of video footage, if the shark was visible for a reasonable enough time, ca. 5 seconds, allowing the capture of a still image for the identification of the shark species. The species identification of the specimens in the extracted photographs followed the descrip- tive characters presented by De Maddalena & Heim (2012) and Ebert & Stehmann (2013). Moreover, to crosscheck the validity of the identification, the extracted images of the historical specimens were compared to photographs of contemporary specimens of C. carcharias captured in an identical or similar perspective. To provide a visual guide- line for a quick crosscheck, the historical and the contemporary photographs of the respective great white shark were shown side by side. The examined photographs are preserved in the personal archive of the first author and available for inspection on request. The length and weight data of the exam- ined specimens of C. carcharias are based on the information provided in the accompanying news content related to the respective great white shark. RESULTS AND DISCUSSION The examined three specimens (Figs. 1 above, 2 left, centre, 3 centre) were identified as Carcharo- don carcharias (Linnaeus, 1758) on the basis of the following characteristics: all three specimens had prominent triangular teeth. Likewise, the snouts exhibited a strong and conical structure. In addition, the black spots on the tip of the nose of specimen 3, captured on 14 July 2010, and the black spots on the ventral surfaces of the pectoral fin tips (Fig. 3 centre) were consistent with the black spots seen on the same body parts in the contemporary comparison photographs of great white shark (Figs. 3 left, right). The dental structure and the black mottling of the examined specimens both coincided with the de- scriptive characters stated by De Maddalena & Heim (2012) and Ebert & Stehmann (2013). Specimen 1 (Fig. 1) was caught off the Prince Islands in the northeastern Marmara Sea on 2 Feb- ruary 1926 (Fig. 4; spec. 1). Information about the capture of specimen 1 was obtained from the news compiled by Malkoç (2018) from the newspapers of the period. According to the news published in İkdam, one of the newspapers of the period, on 2 February 1926, the great white shark caught by Yakup Kaptan and Kalkavanzade İbrahim Kaptan was misidentified as dogfish (camgöz in Turkish), and unfounded rumours of a human skeleton, three ANNALES · Ser. hist. nat. · 31 · 2021 · 2 197 Hakan KABASAKAL & Erdi BAYRI: GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, HIDDEN IN THE PAST: THREE UNPUBLISHED RECORDS ..., 195–202 pairs of boots, and a fez – traditional Ottoman men’s headwear ‒ having been found in the stom- ach of the shark were also mentioned. According to the newspaper report, the great white shark was estimated to be 500 cm long, 150 cm wide, and weighing 2000 kg (Malkoç, 2018). The newspaper article further reported that the shark had teeth the size of a big human finger and its mouth opening was 68 cm wide. The shark, which was displayed to the public in Istanbul, was the subject of news in several other newspapers over the following days, accompanied by exaggerated claims that its weight, initially stated at 2000 kg, was 3000 or even 5000 kg (Malkoç, 2018). Specimen 2 (Fig. 2, left, centre) was caught off Büyükada in 1936 (Fig. 4; spec. 2). The news ac- companying the photograph of this great white shark stated it was 500 cm long and weighing 3000 kg. Since the information about this specimen appears to be limited to one newspaper clipping, this is all the data available on it. Finally, specimen 3 (Fig. 3, centre) was caught more recently, on 14 July 2010, off the coast of Küçükkuyu (Edremit Bay; Fig. 4, spec. 3). According to the local news portal Çanak- kale İçinde (2010), the great white shark, which was entangled in unspecified nets deployed by fisherman Ahmet Karabıyık, was 150 cm long and weighed 30 kg. Specimen 3 was incidentally caught in the Fig. 1: (Above) Great white shark (spec. 1) caught on 2 February 1926; (below) comparison specimen published in Kabasakal et al. (2009). Arrows indicate teeth on the lower jaw. Sl. 1: (Zgoraj) Beli morski volk (osebek 1), ujet 2. februarja 1926; (spodaj) primerjalni osebek, objavljen v Kabasakal et al. (2009). Puščice kažejo na zobovje spodnje čeljusti. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 198 Hakan KABASAKAL & Erdi BAYRI: GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, HIDDEN IN THE PAST: THREE UNPUBLISHED RECORDS ..., 195–202 recently documented nursery ground of C. carcharias in the northeastern Aegean Sea (Kabasakal, 2020b). Specimens 1 and 2 were incidentally caught in blue- fin tuna, Thunnus thynnus, handline fishing, which was common in Marmara between the 1900s and the 1930s, while specimen 3 was incidentally caught in coastal artisanal net fishery. With the addition of these individuals to those registered with the TGWSDA, the number of great white sharks recorded to date in Turkish waters has increased to 65. This figure corresponds to 8.4 percent of the total number of individuals (n=773) reported from the Mediterranean by Moro et al. (2020). This study is a recent example that research- ers are hesitant to accept the status quo, demonstrat- ing that the use of historical photography/data, data mining in social media or the internet, and citizen science, can yield remarkable and highly accurate results in shark research. The number of studies on Mediterranean great whites and other sharks using similar methodologies is increasing (e.g., Kabasakal, 2003,2020a; Zogaris & De Maddalena, 2014; Bol- drocchi & Storai, 2021; Giovos et al., 2021; Jambura et al., 2021). Scientists tend to value anecdotal historical reports less than more recent data collected in the field; however, Kwok (2017) describes historical photographs or old newspapers as “gold mines” of researchers working in fields such as ecology, and data mining such sources as “travelling in time.” Therefore, comparison with current photographs can be seen as a valid way of verifying the historical material in question. Understanding the historical occurrence and abundance of sharks in a given geographic area is critical. When the current absence of sharks begins to overshadow their historical occurrence and abun- dance, it may lead to the shifting baseline syndrome, particularly in the younger generation of researchers, which prevents a full appreciation of the population collapse of cartilaginous fish in the Mediterranean. Zogaris and De Maddalena (2014) also drew attention to this, emphasising the importance of historical and anecdotal studies in combating this syndrome. To give an example, when the historical finds of great white sharks in the Sea of Marmara that were frequently mentioned in old fishing books and old newspapers, were uncovered years later through this type of re- Fig. 2: (Left, centre) Great white shark (spec. 2) caught off Büyükada in 1936; (right) comparison specimen published in Kabasakal and Gedikoğlu (2008). Arrows indicate the characteristic triangular dentition of Carcharodon carcharias. Sl. 2: (levo, sredina) Beli morski volk (osebek 2), ujet blizu Büyükada v letu 1936; (desno) primerjalni osebek, objavljen v Kabasakal & Gedikoğlu (2009). Puščice označujejo značilno trikotno zobovje belega morskega volka. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 199 Hakan KABASAKAL & Erdi BAYRI: GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, HIDDEN IN THE PAST: THREE UNPUBLISHED RECORDS ..., 195–202 search (e.g., Kabasakal 2003, 2020a), the majority of the society and some contemporary researchers were openly suspicious of them. However, the estimation of occurrence of C. carcharias in the Marmara Sea and the Strait of Istanbul is based on historical records of 40 specimens captured in bluefin tuna fisheries be- tween 1881 and 1985 (Kabasakal, 2020a). Historical sites of capture of great white sharks in this region were concentrated in the Strait of Istanbul and the pre-Bosphoric waters of the Marmara Sea, in which bluefin tuna fishery has been known since the Byzan- tine era (4th century CE) (Kabasakal, 2020a). Further studies by De Maddalena and Heim (2012), Boldroc- chi et al. (2017) and Moro et al. (2020) listed, 596, 628, and 773 records of Mediterranean great white shark, respectively, and included historical material as a remarkable part of the data sources analysed. Meticulous analyses of similar historical photographs can even change our perspective on the maximum length that Carcharodon carcharias could reach (Cas- tro, 2012; De Maddalena et al., 2001). To sum up the above, when researching great white sharks and other sharks in the Mediterranean, we should not overlook the related historical material. However, we should also acknowledge the importance of following a certain methodology and verifying the reliability of the historical material in question when conducting such studies. Of course, this type of research requires travelling very far back in time and digging deep. (Kwok, 2017). But it appears that social media and citizen scientists could be relied upon for help in performing such work, as both sources have repeatedly proven their potential and importance in shark research in the Mediterranean. (Kabasakal & Bilecenoğlu, 2020; Boldrocchi & Storai, 2021; Giovos et al., 2021; Jambura et al., 2021). In a similar study, Boldrocchi and Storai (2021) stated that sightings of blue sharks shared via Facebook and Instagram have increased steadily since 2010, and that social media platforms can now be considered as a primary source of opportunistic shark encounter data. The significant increase in the notifications of great white sharks, Fig. 3. (Left, right) Comparison specimen published in Kabasakal and Gedikoğlu (2008); (centre) great white shark (spec. 3) caught on 14 July 2010. Arrows indicate the conical snout, triangular teeth, and black blotches on ventral surfaces of pectoral tips. Sl. 3: (Levo, desno) Primerjalni osebek, objavljen v Kabasakal & Gedikoğlu (2008); (sredina) beli morski volk (osebek 3), ujet 14. julija 2010. Puščice kažejo koničast gobec, trikotne zobe in črne lise na trebušni strani prsnih plavuti. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 200 Hakan KABASAKAL & Erdi BAYRI: GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, HIDDEN IN THE PAST: THREE UNPUBLISHED RECORDS ..., 195–202 especially on Turkish coasts since 2008, is also a result of social media and citizen scientist activity (Kabasakal 2020a; Kabasakal & Bilecenoğlu, 2020), and a similar increase has been seen off the Libyan coast, for exam- ple (Jambura et al., 2021). In conclusion, the number of records of great white shark observed in Turkish waters in the past can be expected to increase, as access to historical data, which can help stimulate public engagement and conservation action (McClenachan et al., 2012), becomes easier with the aid of digitisation. Car- charodon carcharias, the flagship species of marine megafauna, was classified as vulnerable worldwide in the most recent IUCN Red List (Rigby et al., 2019). Although not yet part of the scientific canon, citizen science and social media supported studies and analyses of historical data, which have yielded rel- evant results in recent years, will undoubtedly help toward a more effective protection and management of this top predator. ACKNOWLEDGMENTS Authors thank to two anonymous referees for their valuable comments, which significantly improved the content of the article. Fig. 4. Sites of captures of great white shark, specs. 1, 2 and 3, in the Sea of Marmara and in the northeastern Aegean Sea. Sl. 4: Lokalitete ulova primerkov (1,2 in 3) belega morskega volka v Marmarskem morju in v severovzhodnem Egejskem morju. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 201 Hakan KABASAKAL & Erdi BAYRI: GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, HIDDEN IN THE PAST: THREE UNPUBLISHED RECORDS ..., 195–202 TRIJE NEOBJAVLJENI PRIMERI POJAVLJANJA BELEGA MORSKEGA VOLKA, CARCHARODON CARCHARIAS, IZ TURŠKIH VODA IZBRSKANI IZ PRETEKLOSTI Hakan KABASAKAL & Erdi BAYRI Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil apt., No: 30, D: 4, Ümraniye, TR-34764 İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com POVZETEK Trije dosedaj neobjavljeni primeri o pojavljanju belega volka, Carcharodon carcharias (Linnaeus, 1758), v turških vodah, so bili izbrskani s podatkovnim rudarjenjem v socialnih medijih in na spletu. Dva primerka sta bila ugotovljena v Marmarskem morju, tretji pa v zalivu Edremit (severovzhodno Egejsko morje). Poznavanje historičnega pojavljanja in abundance morskih psov na določenem geografskem območju je izjemno po- membno. S tega vidika ljubiteljska znanost, raziskave socialnih medijev in analize historičnih podatkov, ki so v zadnjih letih ponudile pomembne podatke, nedvomno veliko pripomorejo k učinkoviti zaščiti in ravnanjem s tem ključnim plenilcem. Ključne besede: historični podatki, ljubiteljska znanost, socialni mediji, morski psi, megafavna ANNALES · Ser. hist. nat. · 31 · 2021 · 2 202 Hakan KABASAKAL & Erdi BAYRI: GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, HIDDEN IN THE PAST: THREE UNPUBLISHED RECORDS ..., 195–202 REFERENCES Boldrocchi, G. & T. Storai (2021): Data-mining social media platforms highlights conservation action for the Mediterranean critically endangered blue shark Prionace glauca. Aquatic Conserv: Mar Freshw Ecosyst., 31(11), 3087-3099. DOI: 10.1002/aqc.3690. Castro, J.I. (2012): A summary of observations on the maximum size attained by the white shark, Carcharodon carcharias, pp. 85-90. In Domeier, M.L. (ed.), Global Perspectives on the Biology and Life His- tory of the White Shark. CRC Press, Taylor & Francis Group, Boca Raton, FL. Çanakkale İçinde (2010): Küçükkuyu’da pamuk cinsi köpekbalığı yakalandı. https://www.canakka- leicinde.com/kucukkuyuda-pamuk-cinsi-kopekbaligi- yakalandi/ (Last accession: 27 October 2021). De Maddalena, A. & W. Heim (2012): Mediterranean Great White Sharks. A Comprehensive Study Including All Recorded Sightings. McFarland & Company, Inc. Publishers, Jefferson, North Carolina & London. De Maddalena, A., M. Zuffa, L. Lipej & A. Celona (2001): An analysis of the photographic evidences of the largest great white sharks, Carcharodon carcharias (Linnaeus, 1758), captured in the Mediterranean Sea with considerations about the maximum size of the species. Annales Ser. Hist. Nat., 11, 193-206. Ebert, D.A. & M.F.W. Stehmann (2013): Sharks, batoids and chimaeras of the North Atlantic. FAO Species Catalogue for Fishery Purposes. No. 7. FAO, Rome, 523 pp. Giovos, I., F. Serena, D. Katsada, A. Anastasiadis, A. Barash, C. Charilaou, J.M. Hall-Spencer, F. Crocetta, A. Kamşnas, D. Kletou, M. Maximiadi, V. Minasidis, D.K. Moutopoulos, R.N. Aga-Spyridopoulou, I. Thasitis & P. Kleitou (2021): Integrating literature, biodiver- sity databases, and citizen-science to reconstruct the checklist of chondrichthyans in Cyprus (eastern Medi- terranean Sea). Fishes, 6, 24. https://doi.org/10.3390/ fishes6030024. Jambura, P.L., J. Türtscher, A. De Maddalena, I. Giovos, J. Kriwet, J. Rizgalla & S.A.A. Al Mabruk (2020): Using citizen science to detect rare and endan- gered species: New records of the great white shark Carcharodon carcharias off the Libyan coast. Annales Ser. Hist. Nat., 31, 51-62. Kabasakal, H. (2003): Historical records of the great white shark, Carcharodon carcharias (Linnaeus, 1758) (Lamniformes: Lamnidae), from the Sea of Marmara. Annales Ser. Hist. Nat., 13, 173-180. Kabasakal, H. (2020a): Agreement with the Monster: Lessons We Learned from the Great White Shark in Turkish Waters. Turkish Marine Research Foundation (TUDAV) Publication No: 57, Istanbul, Turkey. 74 pp. Kabasakal, H. (2020b): Exploring a possible nursery ground of white sharks (Carcharodon carcharias) in Edremit Bay (northeastern Aegean Sea, Turkey. J. of the Black Sea/Medit. Environ., 26, 176-189. Kabasakal, H. & M. Bilecenoğlu (2020): Shark infested internet: an analysis of internet-based media reports on rare and large sharks of Turkey. FishTaxa, 16, 8-18. Kabasakal, H. & S.Ö. Gedikoğlu (2008): Two new-born great white sharks, Carcharodon carcharias (Linnaeus, 1758) (Lamniformes; Lamnidae) from Turkish waters of the northern Aegean Sea. Acta Adriat., 49, 125-135. Kabasakal, H., A. Yarmaz & S.Ö. Gedikoğlu (2009): Two juvenile great white sharks, Carcharodon car- charias (Linnaeus, 1758) (Chondrichthyes; Lamnidae), caught in the northeastern Aegean Sea. Annales Ser. Hist. Nat., 19, 127-134. Kwok, R. (2017): Historical data hidden in the past. Nature, 549, 419-421. Malkoç, E. (2018): Erken cumhuriyet döneminden bir köpekbalığı hikâyesi. https://m.bianet.org/biamag/ tarih/196388-erken-cumhuriyet-doneminden-bir-ko- pekbaligi-hikayesi (Last accession: 27 October 2021). Mazzoldi, C., G. Bearzi, C. Brito, I. Carvalho, E. Desiderà, L. Endrizzi, L. Freitas, E. Giacomello, I. Giovos, P. Guidetti, A. Ressurreição, M. Tull, & A. MacDiarmid (2019): From sea monsters to charismatic megafauna: Changes in perception and use of large marine animals. PLoS ONE, 14, e0226810. doi: https:// doi.org/10.1371/journal.pone.0226810. McClenachan, L., F. Ferretti & J.K. Baum (2012): From archives to conservation: why historical data are needed to set baselines for marine animals and ecosys- tems. Conserv. Lett., 5, 349–359. Monkman, G.G.M. Kaiser & K. Hyder (2017): The ethics of using social media in fisheries research. Reviews in Fisheries Science and Aquaculture, 26(2), 235-242. doi.org/10.1080/23308249.2017.1389854. Moro, S., G. Jona-Lasinio, B. Block, F. Micheli, G. De Leo, F. Serena, M. Bottaro, U. Scacco & F. Ferretti (2020): Abundance and distribution of the white shark in the Mediterranean Sea. Fish and Fisheries, 21, 338- 349. DOI: 10.1111/faf.12432. Randall, J. E. (1973): Size of the great white shark (Carcharodon). Science, 181(4095), 169-170. Rigby, C.L., R. Barreto, J. Carlson, D. Fernando, S. Fordham, M.P. Francis, K. Herman, R.W. Jabado, K.M. Liu, C.G. Lowe, A. Marshall, N. Pacoureau, E. Ro- manov, R.B. Sherley & H. Winker (2019): Carcharodon carcharias. The IUCN Red List of Threatened Species 2019: e.T3855A2878674. http://dx.doi.org/10.2305/ IUCN.UK.2019-3.RLTS.T3855A2878674.en. Zogaris, S. & A. De Maddalena (2014): Sharks, blast fishing and shifting baselines: insights from Hass’s 1942 Aegean expedition. Cah. Biol. Mar., 55, 305-313. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 203 Saul CIRIACO et al.: A RECORD OF RARE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA (LINNAEUS, 1758), IN THE AMVRAKIKOS GULF (GREECE), 39–42 IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY ANNALES · Ser. hist. nat. · 30 · 2020 · 1 204 Saul CIRIACO et al.: A RECORD OF RARE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA (LINNAEUS, 1758), IN THE AMVRAKIKOS GULF (GREECE), 39–42 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 205 received: 2021-07-29 DOI 10.19233/ASHN.2021.24 FIRST SUBSTANTIATED RECORD OF CRESTED OARFISH LOPHOTUS LACEPEDE (OSTEICHTHYES: LOPHOTIDAE) FROM THE SYRIAN COAST (EASTERN MEDITERRANEAN SEA) Malek ALI Marine Sciences Laboratory, Basic Sciences Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria e-mail: malekfaresali@gmail.com Vienna HAMMOUD Biology Department, Faculty of Sciences,Tartous University, Syria Ola FANDI Environmental Laboratory, Prevention Environmental Department, Higher Institute for Environmental Research Sciences, Tishreen University, Lattakia, Syria Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université de Montpellier, 34 095 Montpellier cedex 5, France e-mail: capape@univ-montp2.fr ABSTRACT The authors report the capture of a specimen of crested oarfish, Lophotus lacepede Giorna, 1809, from the coast of Syria. The specimen was medium size, measuring 724 mm in total length (TL) and 701 mm in standard length (SL), and weighing 959.6 g. It displayed gonadal activity and its stomach was empty. The specimen was described, including morphometric measurements and meristic counts. This finding represents the first record of the species for Syrian waters and a new record for the Levant Basin. It also constitutes the easternmost limit of the species’ extension range in the Mediterranean Sea. Key words: total length, total body weight, distribution, extension range, Levant Basin, eastern Mediterranean Sea PRIMO RITROVAMENTO DEL PESCE LIOCORNO LOPHOTUS LACEPEDE (OSTEICHTHYES: LOPHOTIDAE) LUNGO LA COSTA SIRIANA (MEDITERRANEO ORIENTALE) SINTESI Gli autori riportano la cattura di un esemplare di pesce liocorno, Lophotus lacepede Giorna, 1809, lungo la costa della Siria. L’esemplare era di medie dimensioni, misurava 724 mm di lunghezza totale (TL) e 701 mm di lunghezza standard (SL), per un peso di 959,6 g. Mostrava attività gonadica e il suo stomaco era vuoto. Nell’ar- ticolo viene descritto l’esemplare, includendo misure morfometriche e conteggi meristici. Questo ritrovamento rappresenta il primo dato della specie per le acque siriane e una nuova segnalazione per il bacino del Levante. Costituisce anche il limite più orientale dell’area di estensione della specie nel mare Mediterraneo. Parole chiave: lunghezza totale, peso corporeo totale, distribuzione, range di estensione, Bacino del Levante, Mediterraneo orientale ANNALES · Ser. hist. nat. · 31 · 2021 · 2 206 Malek ALI et al.: FIRST SUBSTANTIATED RECORD OF CRESTED OARFISH LOPHOTUS LACEPEDE (OSTEICHTHYES: LOPHOTIDAE) FROM THE SYRIAN COAST ..., 205–210 INTRODUCTION The crested oarfish, Lophotus lacepede Giorna, 1809 is widely distributed in most oceans from the surface to a depth of 300 m (Knudsen, 2015). The species is known along the western coasts of the Atlantic, from the Gulf of Mexico to southern Brazil (Robins & Ray, 1986), and in southern Australia (May & Maxwell, 1986). L. lacepede is found in the eastern coasts of Africa (Smith & Hemstra, 1986; Knudsen, 2015) and in the waters surrounding Réunion Island (Letourneur et al., 2004). L. lacepede is known in the eastern Atlantic, off Portugal, and southward from Madeira and the Ca- nary Islands (Palmer, 1986; Knudsen, 2015). Palmer (1986) noted that in the Mediterranean, the species occurred throughout the western Basin, but not in the eastern Basin. However, more recent observa- tions and captures of L. lacepede indicate that its distribution in this sea should be reassessed. Accord- ing to Minos et al. (2015), the species was recorded off some northern regions of the western Basin, from Gibraltar (Rey, 1983) to the Italian seas (Tortonese, 1970; Minos et al., 2015) and the coast of Sicily, which also constitutes the southern extension range of the species in this basin (Ragonese et al., 1997). Reference MSL 2320 Morphometric measurements mm % TL Total length 724 100.0 Standard length 701 96.8 Body depth 118 16.3 Head length 109 15.1 Space before mouth 17 2.3 Eye diameter 31 4.3 Iris diameter 17 2.3 Pre-orbital length 43 5.9 Pre-pectoral fin length 102 14.1 Pectoral fin length 46 6.4 Pectoral fin base 16 2.2 Dorsal fin length 704 97.2 Crest length on the head (first ray of dorsal fin) 219 30.2 Pre-anal fin 661 91.3 Anal fin length 22 3.0 Anal fin base 15 2.1 Meristic counts Dorsal fin rays 228 Anal fin rays 18 Pectoral fin rays 13 Caudal fin soft rays 19 Lateral line scales 101 Total wight (g) 959.6 Fig. 1: Map of the Syrian coast with the black star indicating the capture site of Lophotus lacepede. Sl. 1: Zemljevid sirske obale z označeno lokaliteto ulo- va (črna zvezdica), kjer je bil ujet primerek čopovke. Tab. 1: Morphometric measurements in mm and as percentages of total length (%TL), meristic counts and weight in grams recorded in the specimen of Lophotus lacepede collected off the Syrian coast. Tab. 1: Morfometrične meritve, izražene v mm in kot delež celotne dolžine (%TL), meristična štetja ter teža v gramih na primerku čopovke, ujetem ob sirski obali. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 207 Malek ALI et al.: FIRST SUBSTANTIATED RECORD OF CRESTED OARFISH LOPHOTUS LACEPEDE (OSTEICHTHYES: LOPHOTIDAE) FROM THE SYRIAN COAST ..., 205–210 Further southward, L. lacepede is only known from the Algerian coast (Bachouche et al., 2016) but is unknown to date in Morocco (Lloris & Rucabado, 1998) and Tunisia Ounifi-Ben Amor et al., 2016; Rafrafi-Nouira, 2016). L. lacepede is also known in the Adriatic Sea; historical and more recent captures were listed by Dulcic & Ahnelt (2007), and additional records of large specimens observed in the same sea were also compiled (Dulčić & Soldo, 2008; Sprem et al., 2014). Furthermore, the species has extended its distribu- tion into the eastern Mediterranean Basin, as can be derived from captures in the Aegean Sea, in Greek waters (Minos et al., 2015; Aga-Spyridopoulou et al., 2019) and in Turkish waters as well (Bilecenoglu et al., 2001; Tunçer & Kanat, 2019; Yapici, 2019). Based on routine monitoring of Syrian waters in the last two decades (Saad, 2005; Ali, 2018) and through assistance of experienced fishermen, we learned that a specimen of L. lacepede was captured in this area. The present paper provides a short description of the specimen, including morphometric measurements and meristic counts, together with some comments about the real status of the species in the Syrian coast and the wider eastern Mediterranean Sea. MATERIAL AND METHODS The specimen of L. lacepede was caught on 14 June 2021, by commercial longline, the hook baited by small round sardinella Sardinella aurita Valenci- ennes, 1847 and sprat Sprattus sprattus (Linnaeus, 1758). The longline was spread out at a depth of 10‒15 m and reached 500 –600 m in depth. The capture occurred about 19 km away from the Syri- an shore, off Banias, 35°43¢ E and 35°11¢ N (Fig. 1). All measurements were recorded to the nearest millimetre and included in Table 1 together with meristic counts. The specimen was preserved in 10% buffered formalin and deposited in the Ichthyo- logical Collection of the Environmental Laboratory at the Higher Institute for Environmental Research, Tishreen University. RESULTS AND DISCUSSION The studied specimen measured 724 mm in total length (TL) and 701 mm in standard length (SL), its total body weight was 959.6 g (Tab. 1). Palmer (1986) noted that the species size is 1.80 SL, but usually smaller. Based on the Mediterranean reports of the species, Minos et al. (2015) noted that its TL globally ranged between 21 and 1900 mm TL. The present L. lacepede specimen was a medium-sized adult female displaying conspicuous gonadal activ- ity; its stomach was empty. The specimen was identified as L. lacepede via the combination of the following morphological characters: body elongate, compressed and taper- ing to caudal fin; head with an occipital crest extending forward to level of mouth; teeth conical, in 3 irregular rows in both jaws; a small patch of Fig. 2: The Lophotus lacepede collected from the Syrian coast, scale bar = 100 mm. Sl. 2: Primerek čopovke, ujet ob sirski obali (merilo = 100 mm). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 208 Malek ALI et al.: FIRST SUBSTANTIATED RECORD OF CRESTED OARFISH LOPHOTUS LACEPEDE (OSTEICHTHYES: LOPHOTIDAE) FROM THE SYRIAN COAST ..., 205–210 teeth on vomer; dorsal fin long-based and low, with anterior ray elongated; anal fin short, very close to the caudal fin; pectoral fin with rays inserted horizontally; pelvic fin absent; scales thin, oblong, cycloid; lateral line present with smooth plates; colour silvery blue dorsally without brilliant spots; fins pinkish (Fig. 2). The morphology, morphometric measurements, meristic counts, and colour are in total agreement with previous descriptions of the species (Torton- ese, 1970; Palmer, 1986; Dulčić & Ahnelt, 2007; Dulčić & Soldo, 2008; Sprem et al., 2014; Minos et al., 2015). Therefore, L. lacepede could be in- cluded among the species belonging to the Syrian ichthyofauna (Ali, 2018). Although the specimen displayed gonadal activity, a single capture cannot yet confirm the presence of a viable population of L. lacepede in the area, however, such a hypothesis cannot be totally ruled out. Minos et al. (2015) listed captures of mature specimens at different stages of reproduction suggesting that L. lacepede is successfully established in the Mediterranean and could be considered as a solid element of the fish fauna from this sea, although it is caught only sporadically while trying to explore new areas to live and reproduce. Minos et al. (2015) added that the global warm- ing of the Mediterranean Sea (see Francour et al., 1994) contributes to the homogenisation of fish fauna, and the present report of L. lacepede cor- roborates this opinion. This capture constitutes not only the first record for the Syrian coast but also a new record for the Levant Basin (Yapici, 2019), where the species has not been observed to date in some areas (Golani, 2005; Bariche & Fricke, 2020). This makes it also an indicator of the easternmost limit of the species’ extension range in the Mediter- ranean Sea, corroborating the opinion of Minos et al. (2015). ACKNOWLEDGEMENTS The authors wish to thank Mr. Raed Moussa for his cooperation in collecting the present specimen of Lophotus lacepede and his assistance for obtaining it from fishermen. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 209 Malek ALI et al.: FIRST SUBSTANTIATED RECORD OF CRESTED OARFISH LOPHOTUS LACEPEDE (OSTEICHTHYES: LOPHOTIDAE) FROM THE SYRIAN COAST ..., 205–210 PRVI UTEMELJENI ZAPIS O POJAVLJANJU ČOPOVKE LOPHOTUS LACEPEDE (OSTEICHTHYES: LOPHOTIDAE) OB SIRSKI OBALI (VZHODNO SREDOZEMSKO MORJE) Malek ALI Marine Sciences Laboratory, Basic Sciences Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria e-mail: malekfaresali@gmail.com Vienna HAMMOUD Biology Department, Faculty of Sciences,Tartous University, Syria Ola FANDI Environmental Laboratory, Prevention Environmental Department, Higher Institute for Environmental Research Sciences, Tishreen University, Lattakia, Syria Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université de Montpellier, 34 095 Montpellier cedex 5, France e-mail: capape@univ-montp2.fr POVZETEK Avtorji poročajo o ulovu primerka čopovke, Lophotus lacepede Giorna, 1809, ob sirski obali. Srednje velik primerek je meril 724 mm celotne dolžine (TL) in 701 mm standardne dolžine (SL) ter tehtal 959,6 g. Primerek je bil v fazi razmnoževalne aktivnosti, želodec je bil prazen. Avtorji so primerek natančno opisali in opravili morfometrične meritve ter meristična štetja. Najdba čopovke predstavlja prvi zapis o pojavljanju te vrste v sirskih vodah in novi primer v levantskem bazenu. Sočasno predstavlja skrajno vzhodno mejo razširjenosti te vrste v Sredozemskem morju. Ključne besede: celotna dolžina, celokupna teža, razširjenost, širjenje areala, levantski bazen, vzhodno Sredozemsko morje ANNALES · Ser. hist. nat. · 31 · 2021 · 2 210 Malek ALI et al.: FIRST SUBSTANTIATED RECORD OF CRESTED OARFISH LOPHOTUS LACEPEDE (OSTEICHTHYES: LOPHOTIDAE) FROM THE SYRIAN COAST ..., 205–210 REFERENCES Aga-Spyridopoulou, R.N., I. Giovos, P. Kleitou, A. Christidis, J. Langeneck & S. Kalogirou (2019): Preliminary results on the distribution extension of five data-limited fish species in the eastern Mediterranean Sea. 14th ICZEGAR Conference, 27-30 June, Thessalo- niki, Greece, 14, 7 [Abstract]. Ali, M. (2018): An updated Checklist of the Marine fishes from Syria with emphasis on alien species. Me- dit. Mar. Sci., 19(2), 388-393. Bachouche, S., M. Etsouri & S. Rouidi (2016): The first record of crested oarfish, Lophotus lacepede (Ac- tinopterygii: Lampriformes) from the marine waters of Algeria. Int. J. Sci. Know., 5(1), 19-22. Bariche, M. & Fricke (2020): The marine ichthyo- fauna of Lebanon: an annotated checklist, history, bi- ogeograpphy, and conservation status. Zootaxa, 4775 (1), 1-157. Bilecenoglu, M. M. Kaya & E. Irmak (2001): A new mesopelagic fish for Turkish seas, , Lophotus lacepede Giorna, 1809 (Pisces: Lophotidae). E.U. J. Fish. Aquat. Sci., 18(3-4), 537-539. Dulčić, J. & H. Ahnelt (2007): How many speci- mens of the crested oarfish, Lophotus lacepede Giorna, 1809 (Pisces: Lophotidae) were caught in the Adriatic Sea? Acta. Adriat., 48(1), 39-43. Dulčić, J. & A. Soldo (2008): New finding of crested oarfish Lophotus lacepede (Lophotidae), in the Adriatic Sea. Cybium, 32(1), 93-99. Francour, P., C.F. Boudouresque, J.G. Harmelin, M.L. Harmelin-Vivien & J.-P. Quignard (1994): Are the Mediterranean waters becoming warmer? Mar. Poll. Bul., 28(9), 523-526. Knudsen, S. (2015): Lophotus lacepede. The IUCN Red List of Threatened Species 2015: e.T190207A47460929. https://dx.doi.org/10.2305/ IUCN.UK.2015-4.RLTS.T190207A47460929.en 3, minor allometry if b < 3). This size-to-weight relationship was calculated as logarithmic coordinates for both sexes taken together and for all individuals in the samples. Statistical analyses: • The test “χ²” was used for a comparison of growth in males and females; • The test used to compare the growth parame- ters of the same species from the same stock or different stock is the phi-prime test (Ø’) (Munro & Pauly, 1983; Pauly & Munro, 1984) referred to as: Ø’ (phi prime) = log (K) + 2.log (L∞); • The reliability of allometry was studied by the Student (t) test (Snedcore & Cochran, in Arneri et al., 2001): t = (b – 3)/ (b); (b = allometric coeffici- ent, (b) = standard deviation of b). The value of ‘t’ obtained is compared to the theoretical ‘t’ at the 5% threshold. A value greater than ‘t’ theoretical indicates that there is allometry (b ≠ 3). If not, we have an isometry. RESULTS Length Growth The linear growth of the pouting, according to the model of von Bertalanffy (1938), used the linear growth equation (L∞, k and t0) and was estimated by the Gulland and Holt method considering the data for male and female fish separately and as a combination of both sexes (Choat et al., 2006; Williams et al., 2009). Consequently, the parameters for the linear growth equation of von Bertalanffy were also selected using data for both sexes of the pouting combined Figure 2: Fig. 2: Otolith of a Trisopterus luscus from the Moro- ccan Central Atlantic waters (scale = 1 mm). Sl. 2: Otolit vrste Trisopterus luscus iz osrednje atlantske maroške obale (merilo = 1 mm). Tab. 1: Parameters of the von Bertalanffy equation for linear growth of Trisopterus luscus in the area of the Central Atlantic Moroccan coast. Tab. 1: Parametri von Bertalanffyijeve enačbe za linearno rast francoskega moliča Trisopterus luscus na predelu osrednje atlantske maroške obale. Parameters Lenght Sex L∞ k t0 Ø' Lmin Lmax Females 329.10 0.127 -4.02 4.14 131 316 Males 356.99 0.082 -5.21 4.02 113 278 Combined 359.69 0.105 -3.76 4.14 113 316 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 226 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 and for females and males separately (Tab. 1‒3). The asymptotic lengths (to the nearest mm) obtained for the male and female pouting were 357 mm and 329 mm respectively, a difference of 27 mm. The asymp- totic length (L∞) of males was larger than that of the females and the growth constant (k) for the females was larger than those of the males. Using the Von Bertalanffy equation (1938) for both sexes and for the sexes combined, theoretical size/age data pairs or size-age keys were calculated. These data pairs were used to draw a graphical re- presentation of the length growth curve (Fig. 3). In general, the growth curve of a fish is asymptotic as described in the von Bertalanffy (1938) model. In our case, the lengths calculated by this model coincide with those observed (with slight differences). This suggests that the sample is representative of the size range of pouting present in the Moroccan Central Atlantic. This curve allowed us to conduct a comparative examination of the growth of each sex. It shows that there is a significant difference between the male and female pouting in favor of the former in age group 0 (less than one year) (Tab. 3), beyond which the growth rate is reversed, in fact, the theoretical length at the same age is greater in females than in males during most of the life of the species. The age of the largest females and males observed in the study area was 6 years. The linear growth curves for females, males, and both sexes of the pouting combined are shown in the graph (Fig. 3). The graph (Fig. 3) indicate that males initially grow faster than females. However, this difference only manifests itself in the first year of life and then always remains in favor of the females until theoretical year 9. The representation of von Bertalanffy’s equations for the linear growth of the males and females of the pouting, on the same graph (Fig. 3) shows that the growth in length of the females is clearly faster than that of the males from the end of the first year of life. The length of female is then greater than that of the male. Relative weight growth In the 914 specimens of pouting caught in the Moroccan Central Atlantic during the study period of two years, the total length (L) varied between 113 mm (min. size) and 316 mm (max. size). The mini- mum weight in males was 14.3 g for a minimum size fish of 113 mm, in females it was 26.07 g for a Tab. 2: Statistical parameters for the comparison of the growth of Trisopterus luscus male-female in the area of the Central Atlantic Moroccan coast. Tab. 2: Statistični parametri za primerjavo rasti samcev in samic francoskega moliča Trisopterus luscus na pre- delu osrednje atlantske maroške obale. χ² calculated n α df χ² observed Male + Female 0.17 914 5% 6 1.64 *χ²: chi-squared test; n: total numbers of individuals in the sample; α: alfa level 0.05 (5%); df: degree of freedom; χ² calcal = test χ² calculated; χ² observed = test χ² observed. Tab. 3: Age-length key obtained for Trisopterus luscus in the study area of the Central Atlantic Moroccan coast, for females, males and the two sexes combined. Tab. 3: Starostno-dolžinski podatki za samce in samice ter za oba spola francoskih moličev na vzorčenem predelu osrednje atlantske maroške obale. Sex t(year) Male (mm) Female (mm) Combined (mm) 0 125.28 132.01 118.21 1 143.70 155.56 142.45 2 160.65 176.30 164.26 3 176.26 194.56 183.88 4 190.63 210.63 201.53 5 203.,86 224.79 217.41 6 216.03 237.25 231.70 Fig. 3: Von Bertalanffy curves for the linear growth of the Trisoprterus luscus in the Central Atlantic Moroccan coast with data for male and female fish shown as colored points. Sl. 3: Von Bertalanffyjeve krivulje linearne rasti francoskega moliča Trisoprterus luscus iz osrednje atlantske maroške obale. Samci in samice so označeni z barvnimi krogci. Figure 3: 100 120 140 160 180 200 220 240 260 280 300 0 1 2 3 4 5 6 Lt (m m ) Age (Year) male female combined female male ANNALES · Ser. hist. nat. · 31 · 2021 · 2 227 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 min fish size of 131 mm. The maximum total weight (Pt) was 430.49 g for a 316 mm female, compared to 303.84 g for a 278 mm male. In order to determine the weight corresponding to all the calculated lengths, the size-weight rela- tionships were determined for males, females, and the two sexes combined. We considered all cou- ples, without prior grouping during the two cycles (2018/2019). Figures 4 and 5 represent respectively the results of the variations in the relationship between total weight and total length for each sex and for all the individuals of the combined fish sample collected from the Moroccan Atlantic coast. Tables 4 and 5 show the number of specimens collected, the minimum and maximum values of size, the estimated parameters a and b, as well as the correlation coefficient for the total weights. Irrespective of the size of the fish, the length and weight points are not dispersed, this indicates that the length-mass relationship is governed by the same correlation for all sizes. The R-correlation coefficients are very close to 1, reflecting a strong positive correlation between the two variables of size and weight. The relationship between length (total length in mm) and body weight (g) was studied for the two sexes separately and combined (Tab. 5). The parameters of the equation are W = a Lb (Ricker, 1980). The estimated values of b are close to 3 regar- dless of sex (Tab. 6) and the Student t-test returns values below the 2.02 threshold, corresponding to a 95% degree of safety. This would suggest that in the pouting of either sex, as characterized by the iso- metric growth between the total weight and length, that body shape does not change significantly and that body development (weight growth) is proporti- onal in both sexes. The value of b (Tab. 6) is consistent and cor- responds with the literature, which locates this value between 2.5 and 3.5 (Pauly,1997) for the size-weight relationships. The b parameter of the full-length-to-weight relationship, calculated for the two sexes of the pouting combined and separately, is roughly equal to 3, which shows a relative growth isometry. For males, the Student statistical test shows that factor b is less than ‘3,’ and therefore, the relative growth in the male and female pouting examined in the sample follows an isometric allometry function, meaning that weight and length increase proportionally. The length-weight equations for the pouting examined are graphically represented in Fig. 4, for males, females, and the two sexes combined. Tab. 4: Length-weight equation parameters in males and females of Trisopterus luscus from the area of the Central Atlantic Moroccan coast. Tab. 4: Dolžinsko-masni odnos pri samicah in samcih francoskega moliča Trisopterus luscus iz predela osrednje atlantske maroške obale. Sex a b σ2 r2 n Lmin (mm) Lmax (mm) Female 0.000008 3.0675 1.35 0.9656 512 131 316 Male 0.00001 2.9748 1.27 0.9612 402 113 278 Combined 0.000008 3.067 1.35 0.9678 914 113 316 *σ2 = Variance Tab. 5: Parameters for growth comparison in Trisopterus luscus male-female (Student t-test). Tab. 5: Parametri za primerjavo rasti pri samicah in samcih francoskega moliča Trisopterus luscus (Studentov t-test). Equation Sex a b r2 n χ² observ Th(n-2) α =5% Type of allometry W = a.Lb Female 0.000008 3.0675 0.9656 512 0.0497 2.02 Isometric Male 0.00001 2.9748 0.9612 402 -0.0198 2.02 Isometric Combined 0.000008 3.067 0.9678 914 0.0494 2.02 Isometric *σ2 = Variance ANNALES · Ser. hist. nat. · 31 · 2021 · 2 228 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 A comparison of equations from the length-to-weight relationship of males and females (Fig. 5) shows that at the same size, the full weight of the females is always greater than that of the males. The difference in weight in females compared to that in males is clearly observed above the size of around 180 mm total length, and is likely due to gonadal development, which is greater in females. Absolute weight growth The theoretical weight growth curves result from a combination of the linear growth equation Lt = L∞(1 - e -k (t-to))b and the size-weight relationship (W = a.Lb). Applying the linear growth equation and the size-weight relationship, we follow the weight growth equation of Von Bertalanffy: Wt = W∞(1-e-k (t-to))b, where W, Asymp- totic weights were established for both sexes separately and combined (Tab. 7). Parameters k and t0 are identical to those calculated from the linear growth equation. The weight growth in females trends to an asymptot- ic value of 414.78 g, whereas in males the asymptotic weight is 385.04 g (Tab. 7 and Fig. 6). The asymptotic weights of females are comparatively much higher than those of males. Age-weight keys for females, males, and the sexes combined were calculated as the average weights for each category in years 0‒1 to 6 (Tab. 8). The average age-weight data are shown in the graph in Fig. 6 were weight growth in females is substantially greater than that of males, even in the age weight group of less than one year. The difference increases steadily to a maximum in individuals of the 6-year age group. DISCUSSION The linear growth of the Atlantic Moroccan pouting was studied using the modal progression method to de- monstrate the distribution of length and weight data du- Fig. 4: Full (Pp) length (mm) – weight (g) relationship in Trisopterus luscus from the Moroccan Central Atlantic coast stock for the two sexes combined (top), males (center), and females (bottom). Sl. 4: Celotni masno-dolžinski odnos pri francoskem moliču Trisopterus luscus iz osrednje atlantske maroške obale za oba spola (zgoraj), samce (sredina) in samice (spodaj). Figure 4: Pp = 0.000008*L3,067 R² = 0.9678 n = 914 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 W t ( g) Lt (mm) Sex combined Pp = 0.00001*L2,9748 R² = 0.9612 n = 402 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 W t ( g) Lt (mm) Male Pp = 0.000008*L3,0675 R² = 0.9656 n = 512 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 W t ( g) Lt(mm) Female Fig. 5: Comparison of length equation curves – weight (g) of male and female Trisopterus luscus from the Central Atlantic Moroccan coast stock. Sl. 5: Primerjava krivulj na podlagi odnosa med dolžino in težo (g) samcev in samic francoskih moličev Trisopte- rus luscus iz osrednje atlantske maroške obale. Figure 5: 0 50 100 150 200 250 300 350 400 100 120 140 160 180 200 220 240 260 280 300 320 340 W t ( g) Lt (mm) male female Figure 6: 0 50 100 150 200 W t ( g) Age (year) male female Combined Fig. 6: Theoretical curves of the absolute weight growth of Trisopterus luscus in the area of the Central Atlantic Moroccan coast. Sl. 6: Teoretične krivulje za absolutno rast mase fran- coskih moličev Trisopterus luscus na predelih osrednje atlantske maroške obale. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 229 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 ring the years 2018‒2019. The von Bertalanffy equation is well suited for displaying linear growth trends in the separated and combined sexes of this fish in Moroccan Atlantic stocks. This study revealed that growth rates for each sex decreased with age; they were highest at small sizes (2‒3 years), while after 3 years of rapid growth of young individuals the rates declined, with the fish approaching asymptotic size and weight. The observations show that after the first year of growth, the female is always larger than the male and the rate of increase, be it weight or linear, is always higher in females than in males. The difference in growth rate between the two sexes allows females to reach larger sizes than males at the same ages. Adjustment of growth parameters to von Bertalanffy’s growth model (1938) shows that the growth constant values (k) for females are higher than those for males, while the females’ asymptotic sizes (L∞) are smaller than the males’. Similar results were obtained by Puente (1988) in France. Several hypotheses have been made to explain the dominance of females at larger sizes, inclu- ding considerably higher mortality rates for males compared to those for females at the same ages, furtherly, but to a lesser extent, the difference in the growth rate between the two sexes, as well as access to fishing gear, and male vulnerability to environmental factors (Piñeiro & Sainza, 2003). The phi-prime test Ø’ (performance index) was used to compare the estimated linear growth parameters L∞ and k for the combined sex and separated sex groups with those obtained in other studies. In general, the comparison of results showed only small differences in calculated Ø’. Ø’ values collected from bibliographic sources vary between 2.4 and 3. Thus, the growth parameters calculated in this study are above the range of the estimates made elsewhere since they vary from 4.02 to 4.14. Differences between the Ø’ growth parameter estimated here may be explained by variations in the size range sampling data (Piñeiro & Sa- inza, 2003). Fish sample sizes are affected by seasonality (seasonal and interannual variation), and the otolith method of age reading can also affect estimated growth parameters (difficulties of differentiation between single and double rings can influence growth estimates). Differences in the characteristics of biogeographical zones such as dynamic hydro-climatic and environmental conditions are among other factors affecting the growth parameters (Pauly & Munro, 1984; Layachi et al., 2007; Mellon-Duval et al., 2010; Belhoucine, 2012; El Habouz et al., 2014). Phi- -prim values of Ø’ calculated using the same approach (otoliths, size distribution) are typically similar within the same study area, however, in Tab. 6: Student t-test in length-weight allometry for the Trisopterus luscus of the area of the Central Atlan- tic Moroccan coast. Tab. 6: Vrednosti Studentovega t-testa za dolžinsko-ma- sno alometrijo pri francoskem moliču Trisopterus luscus na predelu osrednje atlantske maroške obale. Sex b t. calcul Allometry Female 3.0675 0.0497 Isometric Male 2.9748 -0.0198 Isometric Combined 3.067 0.0494 Isometric Tab. 7: Parameters of the absolute weight growth of Trisopterus luscus in the area of the Central Atlantic Moroccan coast. Tab. 7: Parametri absolutne rasti mase francoskega moliča Trisopterus luscus na predelu osrednje atlant- ske maroške obale. Sex b W∞(g) k t0 Combined 3.067 415.82 0.105 -3.76 Male 2.9748 385.04 0.082 -5.21 Female 3.0675 414.78 0.127 -4.02 Tab. 8: Age-weight key obtained for Trisopterus luscus females, males and sex combined from the area of the Central Atlantic Moroccan coast. Tab. 8: Starostno-masni podatki za samce in samice ter za oba spola francoskega moliča Trisopterus luscus na vzorčenem predelu osrednje atlantske maroške obale. Sex T(year) Female (g) Male (g) Combined (g) 0 17.40 25.59 23.26 1 26.18 42.34 38.81 2 36.48 62.15 57.73 3 48.07 84.09 79.34 4 60.69 107.28 102.94 5 74.09 130.97 127.85 6 88.05 154.55 153.48 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 230 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 the Moroccan otolith study the Ø’ values remain higher than those in other Mediterranean and North Atlantic regions. The Ø estimated for the higher latitudes (Atlantic France) is higher than that obtained in the Portu- guese or Galician studies, indicating faster growth in the northern European region (Tab. 7). On the other hand, the phi-primes obtained in our study are higher than those reported in previous work (see Cardoso et al. (2004); Machado (1983); Labarta & Ferreiro (1982); Desmarchelier (1986); Puente (1988); Merayo (1994); Alonso-Fernández et al., (2008)). The higher phi growth performance index (despite the maximum sizes of 31 cm in females) in the Moroccan study area may be due to the upwell- ing providing favorable conditions for the growth of this species. It should be noted that in the French and Spanish coastal zones, the growth curves es- tablished from the otoliths are superimposed, indi- cating a high degree of similarity between the two. The same result is also observed for curves drawn from the size distribution method and otolith mea- surements from the Portuguese coasts. The growth curve obtained here coincides with those obtained by Puente (1988) in the French Atlantic coast. The linear growth characteristics of pouting in the Moroccan Atlantic tests the hypothesis of the rapid growth that has been demonstrated elsewhere: in Portugal (Cardoso et al., 2004; Sobral, 1985), in the Galician coasts (Labarta & Ferreiro, 1982), Asturi- an coasts (Merayo, 1994), in the English Channel (Demarchelier, 1988), and in the French Atlantic (Puente, 1988). Linear growth of the common pouting therefore appears to be faster in the North Atlantic (English Channel and the Asturian coastal areas) than in the Moroccan Atlantic, where the growth increase of the common pouting after year 2 is inferior to those established in previous studies (Fig. 7). It should be noted that these earlier studies in the Spanish region report values by Labarta & Ferreiro (1982) and are not consistent with those of Merayo (1994). It is also noteworthy that the former used on average overall lengths lower than the average val- ues obtained for young individuals (Merayo, 1994). The value of the growth rate (k) obtained in this study is relatively low compared to previous studies of T. luscus. On the French coast (the Channel and the North Sea), the rates were k = 0.85 (male) and 0.66 (female) according to Desmarchelier (1986), and k = 0.52 (male) and 0.74 (female) according to Puente (1988) on the Aquitaine coast, and on the coast of Asturias, also by Puente (1988), k = 0.64 (male) and k = 0.53 (female). On the Galician coast, k was 0.21 (Labarta & Ferreiro, 1982), the value be- ing almost the same as our results, k = 0.08 (male) and k=0.13 (female); our fish also reached a smaller maximum size than those in the previous studies. These differences may partly be due to the different methods used to estimate the growth parameters of fish from the Moroccan Central Atlantic, which grew more slowly than in other areas, reaching a smaller size at the same age. It has been suggested that the pouting on the Galician coast exhibits slower growth but reaches a greater length age (9-year-old fish) (Labarta & Ferreiro, 1982) than the Cantabrian pouting, possi- bly because the colder conditions on the Galician coast provide a more favorable environment for this species. Other possible causes of the differences observed by Labarta & Ferreiro (1982) could be the interpretation of otolith data or the method of cutting otoliths and/or differences in the reading of otoliths (single or double rings). Gherbi-Barre (1983) and Puente (1988) showed that on the French coast, the average lengths were only slightly lower compared to values obtained for the Spanish Asturian coasts. This suggests that growth increases meridionally along the Atlantic coastal zones from the north to the south. This is supported by the representation of von Bertalanffy’s equations for the linear growth of different regions on the same graph (Fig. 7), which show that the length growth of this species is faster in French and Spanish coasts compared to the south Atlantic. With regard to the size-weight relationship cur- ves, the observed peaks are very near the theoretical curve, which is explained by the fact that the values of the correlation coefficient are high. This demon- Fig. 7: Linear growth curves in the different Trisopterus luscus stocks according to different distributional areas. Sl. 7: Linearne rastne krivulje za različne populacije fran- coskih moličev Trisopterus luscus v različnih območjih razširjenosti. Figure 7: 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 6 7 8 9 To ta l l en tg h (c m ) Age (year) Present study in Morocco (2018-2019) Portugal (Cardoso et al, 2004) Portugal (Machado, 1983) Spain, Galicia (Labarta & Ferreiro, 1982) English channel (Desmarchelier, 1986) Portugal (Sobral, 1985) Frensh Atlantic (Puente, 1988) Spain , Asturias coast (Merayo & Velligas, 1994) ANNALES · Ser. hist. nat. · 31 · 2021 · 2 231 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 strates that the different equations used adequately reflect the relationships between the total fish weights and their total lengths. Comparison of the regression line slopes of the total length-weight relationship between male and female individuals shows that the relative growth in females is greater than in males. This study shows that the larger female weight is related to the gonad weight. Our results coincide with those of Demarcheliers (1984) from the English Channel and Labarta & Ferreiro (1882) from the Galician coast; Merayo et al. (1986) made similar observations in relation to fish from the Asturian coast (Tab. 9). A comparison between the slopes of the length- -weight relationships, relative to value 3, allows us to point out that relative weight growth is isometric in both sexes. This tells us that weight growth is proportional to linear growth. The results of other authors related to growth parameters reported for different regions of the Mediterranean and the Atlantic are compared in Table 10. In general, the size-weight relationship in pouting (regardless of sex) obtained by this study is similar to those previ- ously estimated in these other areas, and value (b) is statically approximately equal to 3 in both males and females of the central Moroccan Atlantic. This implies an “isometric” growth for both sexes of the species, as somatic growth is in proportion to increasing total length (see Tab. 8). Divergence between some results could be clo- sely related to the number of samples and the pairs of values considered for the calculation of the size- -weight relationship, where coefficient b increases with the length of the fish (Tab. 10). Overall, this study shows that weight measurement results clearly demonstrate differential growth rates between the two sexes of the pouting and that the fe- males have a higher asymptotic weight than the males of the same size. The weight growth in the T. luscus of Tab. 9: Methods used in male-female growth studies of T. luscus in different areas. Tab. 9: Uporabljene metode za raziskave rasti samcev in samic vrste T. luscus v različnih predelih. Area Method Authors Sex L cm k t0 Ø’ Morocco Otoliths Present study Males 35.6 0.08 -5.21 4.02 Females 32.9 0.12 -4.02 4.14 Combined 35.9 0.10 -3,76 4.14 Portugal Otoliths Cardoso et al. (2004) Males 32.3 0.24 -2.03 2.4 Females 43 0.19 -1.8 2.5 Combined 43 0.16 -2.30 2.5 Portugal Lenght freq Machado (1983) Combined 41.9 0.16 -1.65 2.4 Galicia (Spain) Otoliths Labarta & Ferreiro (1982) Males 38.1 0.21 -1.16 2.5 Females 46.4 0.21 -1.27 2.7 English Channel and North sea Otoliths Labarta & Ferreiro (1982) Males 31.3 0.86 -1.21 2.9 Females 38.4 0.65 -0.23 3 Combined 35.1 0.65 -0.23 2.9 Portugal Otoliths Sobral (1985) Males 38.4 0.19 -1.42 2.5 Females 44.2 0.23 -1.18 2.6 French Atlantic Otoliths Puente (1988) Males 33 0.52 -0.44 2.8 Females 26 0.74 -0.45 2.7 Coast of Asturias Otoliths Merayo (1994) Males 36.2 0.59 -0.014 - Females 45.7 0.39 -0.017 - Combined 40.2 0.48 -0.016 - ANNALES · Ser. hist. nat. · 31 · 2021 · 2 232 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 the Moroccan Central Atlantic is in favor of females and these results are consistent with those obtained by Demarcheliers (1984) in the English Channel, and Labarta & Ferreiro (1882) and Merayo et al. (1986) in the Galician and Asturian coasts, respectively. Ne- vertheless, a comparison of the growth rates among pouting stocks in eastern Atlantic coastal seas shows differences in the methods used, indicating further work is required to harmonize the methodologies. Our sample study on the growth characteristics of the Moroccan population of the pouting lays the foundations for further work on population dyna- mics and stock management of this species. It is suggested that the stock could become a sustaina- bly managed fishery rather than exploited simply as bycatch. Whilst the pouting is not very appreciated by consumers, the larger fish do have the potential of becoming a more widely exploitable food reso- urce if promoted and marketed attractively as an alternative to premium white fish. CONCLUSIONS Study of the growth biology of Trisopterus luscus in the Moroccan Atlantic coasts revealed that the length and weight growth rate of females is higher than that of males from the completed first year of life onwards. The linear growth analysis of this species tests the hypothesis of rapid growth age readings from otoliths which underestimates the growth of these fish. We- ight-to-length changes in the pouting sample (regar- dless of sex) are constant and almost isometric, and in adults of equal size somatic weight gain by length is identical in both sexes, which supports the value of using otolith data. In the light of this preliminary research, which is the first of this kind in Morocco, it is recommended that more in-depth biological studies on this species should be carried out, including some on the growth-otolith measurement relationships and the population dynamics that would allow a better understanding of the stock dynamics and, potentially, facilitate fishery management as well. ACKNOWLEDGEMENTS We express our gratitude to all the researchers and students from the Faculty of Sciences Agadir and the INRH team, for their help and assistance in all phases of this study. We thank particularly the reviewers of our manuscript, their remarks and suggestions contri- buted to the improvement of this paper. We thank all the sampling team for their help. Tab. 10: Size-weight relationship of Trisopterus luscus in different periods and areas. Tab. 10: Odnos med velikostjo in maso pri vrsti Trisopterus luscus v različnih periodah in predelih. Period and area Authors Sex a b r2 t Growth α = 0.01 Present study Males 0.00001 2.958 0.997 0.0497 NS Females 0.000008 3.037 0.997 0.0198 NS Combined 0.000008 3.0097 0.986 0.0497 NS 1982 Galician Coast Labarta & Ferreiro Males 2.3*10-5 2.87 Females 2*10-5 2.95 1986-87 Asturian Merayo & Villegas Males 0.000007 3.148 0.9836 0.145 NS Females 0.000008 3.112 0.992 0.076 NS Combined 0.000008 3.113 0.989 0.147 NS 1987-88 Asturian Males 0.000012 3.048 0.990 0.0301 NS Females 0.000016 2.9889 0.990 -0.006 NS Combined 0.000014 3.017 0.990 0.0015 NS 1984 France Desmarchelier Males 1.25*10-3 3.002 0.976 - - Females 9.61*10-3 3.090 0.956 - - ANNALES · Ser. hist. nat. · 31 · 2021 · 2 233 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 RAST IN STAROST FRANCOSKEGA MOLIČA TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) V ATLANTSKIH VODAH OSREDNJEGA MAROKA Nassima EL OMRANI Laboratoty Aquatic Systems: Marine and Continental Ecosystems, Faculty of sciences, Ibn Zohr University, Agadir, Morocco e-mail: naelomrani007@gmail.com Hammou EL HABOUZ & Abdelbasset BEN-BANI Laboratory of fishery, National Institute of Fishery Research (INRH), Agadir, Morocco Abdellatif MOUKRIM Faculty of sciences, Abdelmalek Essaadi University, Tetaouan, Mococco Roger FLOWER Department of Geography, UCL University College London, London, WC1E 6BT, UK Abdellah BOUHAIMI Laboratoty Aquatic Systems: Marine and Continental Ecosystems, Faculty of sciences, Ibn Zohr University, Agadir, Morocco POVZETEK Prispevek obravnava starost in rastne značilnosti francoskega moliča, Trisopterus luscus, v osrednjem delu atlantske maroške obale na podlagi analize otolitov. Starost in rast populacije francoskih moličev sta bili razi- skani na celotnem vzorcu 2210 primerkov, ujetih na mesečnih vzorčenjih od januarja 2018 do decembra 2019. Rastne krivulje (dolžina in teža), dobljene na podlagi ocene starosti iz preiskave otolitov kažejo, da se najvišja rast odvija v prvih dveh letih življenja. Z uporabo von Bertalanffyjevega modela so ocenili maksimalno starost na 6 let (za oba spola). Največji primerek je meril (samica) 316 mm v dolžino. Hitrost rasti se med spoloma razlikuje; povprečna dolžina je pri samicah enaka ali nekoliko večja kot pri samcih, teža samic pa je vedno večja od teže samcev v istih starostnih skupinah. Ključne besede: starost, rast, otoliti, Trisopterus luscus, atlantska maroška obala ANNALES · Ser. hist. nat. · 31 · 2021 · 2 234 Nassima EL OMRANI et al.: AGE AND GROWTH OF THE POUTING TRISOPTERUS LUSCUS (LINNAEUS, 1758) (PISCES, GADIDAE) FROM MOROCCAN ..., 223–234 REFERENCES Alonso-Fernández, A., R. Domínguez-Petit, M. Bao, C. Rivas & F. Saborido-Rey (2008): Spawning pattern and reproductive strategy of female pouting Trisopterus luscus (Gadidae) on the Galician shelf of north-western Spain. Aquat. Living Resour., 21, 383-393. Ballerstedt, S. (2008): Trisopterus luscus Bib or Pout- ing. In: Tyler-Walters H. and Hiscock K. (eds), Marine Life Information Network: Biology and Sensitivity Key Infor- mation Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available at: https:// www.marlin.ac.uk/species/detail/1876. Bedford, B.C. (1983): A method for preparing sections of large number of otoliths embedded in block polyester resin. J. Cons. Int. Explor. Mer., 41, 4-12. Belhoucine, F. (2012): Etude de la biologie, de la crois- sance et de reproduction d’un poisson Téléostéen le merlu (Merluccius merluccius L., 1758) et son utilisation comme indicateur biologique de la pollution par les métaux lourds (Zinc, Plomb et Cadmium) dans la baie d’Oran (Algérie). Thèse de doctorat, Faculté des Sciences Oran 1, 275 pp. Cardoso, D., M. de Lourdes Godinho & C. Morgado (2004): Growth study of pouting (Trisopterus luscus L. 1758) in portuguese continental waters. ICES DIV. IXa, CM 2004/K:65. Chaves, C. & F. Cardador (2004): Distribution and abundance patterns of pouting (Trisopterus luscus Linnae- us, 1758) in Portuguese continental waters (ICES DIV. Ixa) CM 2004/K:77. Choat, J.H., C.R. Davies, J.L. Ackerman & B.D. Map- stone (2006): Age structure and growth in a large teleost, Cheilinus undulatus, with a review of size distribution in labrid fishes. Mar. Ecol. Prog. Ser., 318, 237-246. Desmarchelier, M. (1985): Croissance et reproduction du tacaud (Trisopterus luscus L. 1758) en Manche Est et Sud de la Mer du Nord, ICES CM1985/G: 29. El Habouz, H., L. Recasens, S. Kifani. A. Moukrim, A. Bouhaimi & S. El Ayoubi (2014): Growth study of the European hake, Merluccius merluccius (Linnaeus, 1758), in the Central Atlantic of Morocco. Bulletin de la Societe Zoologique de France, 139(1), 21-35. Froese, R. & D. Pauly (eds.) (2021): FishBase. World Wide Web electronic publication. www.fishbase.org. Gherbi-Barre, A. (1983): Biologie de Trisopterus luscus L. de la baie de Douarnenez (reproduction, croissance, régime alimentaire). Thèse 3ème cycle. Brest, 92 pp. Holden, M.I. & D.F.S. Raitt (1975): Manual de Ciencia Pesquera. Parte II . Metodos para investigar los recursos y su aplicacion. Food and Agriculture Organization of the United Nations. Doc. Tecn. Pesca, 115, rev, 211 pp. Labarta, U. & M. J. Ferreiro (1982): Age and growth of the Galician coast pouting (Trisopterus luscus L.). Prelimi- nary data, ICES CM 1982/G: 65. Layachi, M., M. Melhaoui, A. Srour & M. Ramdani (2007): Contribution à l’étude de la reproduction et de la croissance du Rouget-barbet de vase (Mullus barbatus L., 1758) de la zone littorale méditerranéenne de Nador (Maroc). Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Vie, 29, 43-51. Mellon-Duval, C., H. De Pontual, L. Métral & L. Quemener (2010): Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci., 67, 62-70. doi:10.1093/icesjms/ fsp215. Merayo, C.R. & M.L. Villegas (1994): Age and growth of Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) off the coast of Asturias. Hydrobiologia, 281, 115–122. https:// doi.org/10.1007/BF00006440. Muus, B.J. & J.G. Nielsen (1999): Sea fish. Scandina- vian Fishing Year Book, Hedehusene, Denmark. 340 p. DOI/ 87-90787-00-5. Pauly, D. (1997): Gill size and temperature as governing factors in fish growth a generalization of Von Bertalanffy’s growth formula Ber. Inst. Meereskd. Chrostian-Albercht Univ. Kiel, 63, 156 pp. Pauly, D. & J. L. Munro (1984): Once more the comparison of growth in fish and invertebrates. ICLARM Fishbyte, 2, 21 pp. Piñeiro, C. & M. Sainza (2003): Age estimation, growth, and maturity of the European hake Merluccius merluccius (Linnaeus, 1758) from Iberian Atlantic waters. – ICES J. Mar. Sci., 60, 1086-1102. Puente, D.E. (1988): Edad y crecimiento de la faneca Trisopterus luscus (L., 1758) (Pisces, Gadidae) en la costa atlántica Francesa. Bol. Inst. Esp. Oceanogr., 5(1), 37-56. Quadros Benvegnu, G. de (1971): Datos biométricos y biológicos sobre la faneca Trisopterus luscus (L. 1758) (Gadidae) del Cantábrico. Bol. Inst. Español Oceanogr., 148, 42. Ricker, W.E. (1980): Methods for assessment of fish production in freshwaters. I.B.P. Handbook n°3, Ox- ford-Edinburgh, Blackwell Sci. Public., pp. 93-123. Sparre, P. & S.C. Venema (1996): Introduction à l’évaluation des stocks de poissons tropicaux. Prem. Part. Manuel. FAO Doc. Tech. Pêches. 306(1), 401 pp. von Bertalanffy, L. (1938): A quantitative theory of organic growth. Human Biol., 10, 181-213. Sobral, M. (1985): Actividade relativa ao estudo da faneca – Trisopterus luscus L. – em 1983. Resultados pre- liminares sobre o ciclo reprodutivo, idade e crescimento. Internal Report nº 95 of INIP (in Portuguese). Williams, A.J., C.R. Davies, B.D. Mapstone, L.M. Currey, D.J. Welch, G.A. Begg, A.C. Ballagh, J.H. Choat, C.D. Murchie & C.A. Simpfendorfer (2009): Age-based demography ofhumpback grouper Cromileptes altivelis: Implications for fisheries management and conservation. Endang Species Res, 9, 67-79. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 235 received: 2021-09-29 DOI 10.19233/ASHN.2021.28 AGE AND GROWTH PARAMETERS OF THE RED MULLET MULLUS BARBATUS (MULLIDAE) FROM NORTHERN TUNISIA (CENTRAL MEDITERRANEAN SEA) Mourad CHÉRIF Institut National des Sciences et Technologies de la Mer, port de pêche, 2025 La Goulette, Tunisia Rimel BENMESSAOUD Institut National Agronomique de Tunis, 43, Avenue Charles Nicolle 1082 -Tunis- Mahrajène, Tunisia Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France e-mail: capape@univ-montp2.fr ABSTRACT The paper presents the results of a study of age and growth of the red mullet Mullus barbatus Linnaeus, 1758 from the northern coast of Tunisia, based on otolith readings. The age composition ranged from 1 to 5 years, but the majority of specimens belonged to the one-year group, in both females and males. Females significantly outnumbered males in size classes larger than 150 mm, whereas males significantly outnum- bered females in smaller size classes. Additionally, the growth patterns were similar up the age of 1 for both sexes, after which females grew faster and reached a greater maximum weight than males. The length-weight relationship was W = 0.0044 * TL3.1311 (R² = 0.9582) for all specimens. Estimated growth parameters were L∞ = 24.23, K = 0.307 and to = -0.983 for males, and L∞ = 27.65, K = 0.284 and to = -0.687 for females. Estimates for all specimens display the following value: L∞ = 25.96, K = 0.291 and to = -0.824. Key words: Mullus barbatus, age, growth parameters, length–weight relationship, Tunisia ETÀ E PARAMETRI DI CRESCITA DELLA TRIGLIA DI FANGO MULLUS BARBATUS (MULLIDAE) DELLA TUNISIA SETTENTRIONALE (MEDITERRANEO CENTRALE) SINTESI L’articolo presenta i risultati di uno studio sull’età e la crescita della triglia di fango, Mullus barbatus Linnaeus, 1758, proveniente dalla costa settentrionale della Tunisia, basato sulla lettura degli otoliti. I risultati indicano che l’età degli esemplari varia da 1 a 5 anni, ma la maggior parte degli individui studiati appartiene al gruppo di un anno, sia le femmine che i maschi. Le femmine superano significativamente i maschi nelle classi di dimensioni superiori a 150 mm, mentre i maschi superano significativamente le femmine nelle classi di dimensioni inferiori. Inoltre, i modelli di crescita sono simili fino all’età di un anno per entrambi i sessi, dopo di che le femmine crescono più velocemente e raggiungono un peso massimo maggiore ai maschi. La relazione lunghezza-peso è W = 0,0044 * TL3,1311 (R² = 0,9582) per tutti gli esemplari. I parametri di crescita stimati sono L∞ = 24,23, K = 0,307 e to = -0,983 per i maschi, e L∞ = 27,65, K = 0,284 e to = -0,687 per le femmine. Le stime per tutti gli esemplari mostrano il seguente valore: L∞ = 25,96, K = 0,291 e to = -0,824. Parole chiave: Mullus barbatus, età, parametri di crescita, rapporto lunghezza-peso, Tunisia ANNALES · Ser. hist. nat. · 31 · 2021 · 2 236 Mourad CHÉRIF et al.: AGE AND GROWTH PARAMETERS OF THE RED MULLET MULLUS BARBATUS (MULLIDAE) FROM NORTHERN TUNISIA ..., 235–242 INTRODUCTION The red mullet, Mullus barbatus Linnaeus, 1758 is a very important component of demersal fisheries in Tunisia (Chérif et al., 2007; Chérif et al., 2013). The species is commonly caught by trawl fleet and small-scale fishing vessels using trammel nets and gillnets, with this type of gear accounting for about 10% of catches (Chérif et al., 2013). During the last 10 years, the total annual landings stood at an average value of 2220 metric tons, representing 9.5% of total demersal catches (Anonymous, 2018). Despite the relative importance and economic value of the red mullet, the data on age and growth of this species in Tunisian waters, as opposed to other areas, are deficient. Gharbi (1980) studied the growth and age of M. barbatus based on an analysis of scale annuli, suggesting that the age determination from scales might be a source of errors in age-structured calculations and pointing out the need for the evaluation of age and growth using otolith microstructure analysis. Such opinion was in total accordance with similar studies of M. barbatus showing that otolith constitutes the most suitable structure for age estimation. While otolith read- ings are a reliable and valid method for age determination, the use of scales has been criticized mainly because the age in older specimens is frequently underestimated (Beamish & McFarlane, 1983; Carlander, 1987). Therefore, the main goal of this study is to present M. barbatus growth mark patterns based on an analysis of otolith microstructures. MATERIAL AND METHODS This study is based on material collected monthly from northern Tunisia (Fig. 1) between January 2005 and Decem- ber 2007 by commercial trawlers using the Tunisian shrimp trawl with a stretched-mesh size of 52 mm in the wing and 40 mm in the cod end (Chérif et al., 2007). After landing, all specimens were measured for total length to the nearest millimeter, and for total body weight to the nearest gram. Additionally, they were sorted by sex. All sagittal otoliths were removed, cleaned and put in labeled envelopes. All otoliths were placed in a concave black dish and examined using the reflected light of a binocular microscope at a magnification of 10 X. The age estimates were obtained by each otolith being read at least twice by the same person. If the two age estimates did not coincide, a third reading was performed. When the three readings differed by one year, their median age was considered. However, when all three readings differed by more than one year, the otolith was discarded. In conclusion, the specimens examined in the present study ranged between 1 and 5 years of age. The length-weight relationship was described by the form proposed by Ricker (1973): W = aTLb, where (W) is the weight in grams, (TL) the total length in mm, (b) the growth exponent, and (a) is a constant. The hypothesis of isometric growth was tested using a t-test (Zar 1999). Growth was expressed in terms following the von Berta- lanffy equation (Beverton & Holt, 1957, Sparre & Venema, 1992): Lt = L∞ (1-e-k (t-to)), where (L∞) is the asymptotic total Fig. 1: Map of the Tunisian coast with the rectangle indicating the sampling area of Mullus barbatus. Sl. 1: Zemljevid tunizijske obale z vzorčevalnim predelom (pravokotnik), kjer so vzorčili primerke bradačev Mullus barbatus. Fig. 2: Length frequency distribution in the Mullus barbatus caught from the northern coast of Tunisia. Sl. 2: Frekvenčna porazdelitev dolžine primerkov vrste Mullus barbatus, ujetih ob severni tunizijski obali. Fig. 3. Length-weight relationship in the Mullus barbatus caught from the northern coast of Tunisia. Sl. 3: Odnos med dolžino in težo pri vrsti Mullus barbatus, ujeti ob severni tunizijski obali. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 237 Mourad CHÉRIF et al.: AGE AND GROWTH PARAMETERS OF THE RED MULLET MULLUS BARBATUS (MULLIDAE) FROM NORTHERN TUNISIA ..., 235–242 length, (Lt) the total length at age (t), (K) the growth curvature parameter, and (t0) is the theoretical age of the fish at zero total length. For the growth in weight, the same function was used: Wt = W∞ (1-e-k (t-to)), where (Wt) is the total weight, (W∞) is the asymptotic weight, and (b) is the power constant of the length-weight relationship. The Fishparm software including the non-linear estimation method was used to estimate the growth parameters (Saila et al., 1988). RESULTS Length and weight distribution Of the 802 fish examined, 226 were males, 474 fe- males, and 102 unidentified (67 were immature and 35 damaged). The c2 test revealed that the difference between the sexes was significant (c2 =17.33; d.f =1; P <0.05). The length and weight of the red mullet ranged from 94 mm to 237 mm in total length (TL) and from 7.64 grams to 148.17 grams in total weight (TW). The total length ranged between 103 mm in 237 mm (9.94 grams to 148.17 grams) in females and between 94 mm and 216 mm (7.64 grams to 110.24 grams) in males. The dominant length group was 100‒130 mm (23.2%), followed by 140‒210 mm (69.4%) Females dominated size classes larger than 150 mm, whereas males significantly outnumbered females in smaller size classes (c2 =6.09; d.f =1; P <0.05). Evidently, the larger specimens caught were females (Fig. 2). Length-weight relationship The relationship between total weight and total length is presented in Table 1 and Figure 3. The value of (b) for males, females, and all specimens was significantly differ- ent from 3 (t-test, P < 0.05), indicating that the body shape displays positive allometric growth. In addition, the (R²) values for relationships among males, females, and all fish indicated a good correlation between length and weight. Age and growth parameters The results of otolith readings for all fish, and sepa- rately for each sex are presented in Table 2 and Figure 4. Age was determined in 488 specimens (60.84% of total specimens). Five age classes were identified in each sex. Tab. 1: Parameters of length-weight relationship for the Mullus barbatus caught from the northern coast of Tunisia. Tab. 1: Parametri odnosa med dolžino in težo za primerke vrste Mullus barbatus, ujetih ob severni tunizijski obali. Equations Sex a b R² t-test Growth W = aTL b ♀ 0.0070 3.1267 0.8955 4.51 + ♂ 0.0053 3.2275 0.9516 7.99 + combined sexes 0.0044 3.1311 0.9582 20.02 + Tab. 2: Age and growth parameters in the Mullus barbatus caught from the northern coast of Tunisia. Tab. 2: Starost in rastni parametri pri vrsti Mullus barbatus, ujeti ob severni tunizijski obali. Age (years) Males (N = 132) Females (N = 289) All individuals (N = 488) TL (cm) (Average + SD) TL (cm) (Average + SD) TL (cm) (Average + SD) I 11.16±0.9 11.32±1.3 11.25±0.4 II 14.30±1.1 15.44±1.7 14.87±0.9 III 17.25±1.4 19.40±0.9 18.32±1.0 IV 19.18±0.8 20.69±1.9 19.39±2.1 V 20.25±1.2 23.13±1.5 21.69±1.8 Growth parameters (L∞, W∞, K and t0) L∞ (cm) 24.23 27.65 25.96 K 0.307 0.284 0.291 to -0.983 -0.687 -0.824 W∞ (gr) 148.88 240.72 198.64 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 238 Mourad CHÉRIF et al.: AGE AND GROWTH PARAMETERS OF THE RED MULLET MULLUS BARBATUS (MULLIDAE) FROM NORTHERN TUNISIA ..., 235–242 In females, age classes I (42.6%) and II (33.9%) were dominant, followed by age class III (15.3%). In males, the most dominant age class was I (1 year old) standing at 46.8%, followed by age class II (2 years old) at 37.3%. Length-at-age data obtained were used to calculate the von Bertalanffy growth parameters as follows (Fig. 3): Males: Lt = 24.23 [1-e -0.307(t+0.983)] Females: Lt = 27.65 [1-e -0.284(t+0.687)] Sexes combined: Lt = 25.96 [1-e -0.291(t+0.824)] Additionally, the growth patterns by sex were simi- lar up to the age of 1 year (class I), after that age, the females grew faster and attained a greater maximum weight than males (Fig. 5). DISCUSSION Sagittal otoliths were used for age determination, show- ing that the age composition of the red mullet caught in the northern area of Tunisia ranged from 1 to 5 years. This result was in agreement with those of previous studies from different regions of the Mediterranean Sea (Jabeur, 1999; Çiçek, 2015). In the eastern and central Mediterranean Sea, the growth pattern was substantially different; the maximum observed life span for the red mullet was 9 years for all specimens (Genç, 2000; Carbonara et al. 2018). Furthermore, for the Black Sea, Aydin & Karadurmuş (2013) determined the age span to be between 1 and 7 years, while Sahin & Akbulut (1997) reported a maximum age of 6 years. Such differences are probably due to age estimation criteria, age estimation schemes, and material used, otolith or scale (Carbonara et al., 2018). In this study the majority of the specimens belonged to classes I and II ndicating that the local M. barbatus population mostly included juvenile specimens. The lower proportions of adult specimens can be explained by the sampling method or by the fact that only some specimens are able to reach the maximum age. The (b) values of the length-weight relationship of M. barbatus differed largely according to localities (Table 3). These differences may be attributed to food availability (quantity, quality, and size), environmental conditions (temperature, salinity), sex, and stage of maturity (Ricker 1973; Pauly 1984; Sparre & Venema 1992; Chérif et al., 2007; Yildiz & Karakulak, 2016; Carbonara et al., 2018). Also, the sampling methods (commercial or survey), the different size structures, and the number of observed specimens in the studies could account for such differences of (b) values (Zorica et al., 2006, Orhan & Genç, 2013; Carbonara et al., 2018). A comparison of growth parameters of M. barbatus from the northern Tunisian coast with those from other areas of the world reveals significant differences (Tab. 3). The differ- ences in growth rates between areas were probably due to differences in the methods of investigation, as well as latitudinal differences. The present study seems to suggest that females grow slightly faster than males. This differential growth with respect to sex, displaying higher mean weights with age, may be explained by the distinct metabolisms of the two sexes (Pauly, 1994). Females accumulate hepatic lipids for metabolic functions, such as gonadic products, the phenomenon being more evident during vitellogenesis and egg production. Therefore, the difference in growth between males and females may be due to different stages in ontogenetic development, such as differences in condi- tion and gonad maturity (Ricker, 1975; Morey et al., 2003). In conclusion, recent studies note that stocks of M. barbatus have decreased off northern Tunisia (UNEP- MAP-RAC/SPA, 2014). Such patterns are probably due to overfishing and interspecific pressure for food. The results herein presented have shown that the most dominant age groups in the catches were between one and two years old. This indicates that the population was composed mostly by juvenile specimens, and faced a poor recruit- ment. Therefore, to prevent and avoid collapse in a long- term, the stocks of M. barbatus should be managed and exploited with care, being regularly restored in order to keep the presence of a viable population in the region. Fig. 4. Von Bertalanffy growth curve for the Mullus barbatus caught from the northern coast of Tunisia. Sl. 4: Von Bertalanffyjeva rastna krivulja za primerke bra- dačev Mullus barbatus, ujetih ob severni tunizijski obali. Fig. 5. Growth patterns by sex for the Mullus bar- batus caught from the northern coast of Tunisia. Sl. 5: Rastni vzorci glede na spol pri vrsti Mullus barbatus, ujeti ob severni tunizijski obali. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 239 Mourad CHÉRIF et al.: AGE AND GROWTH PARAMETERS OF THE RED MULLET MULLUS BARBATUS (MULLIDAE) FROM NORTHERN TUNISIA ..., 235–242 Tab. 3: Growth parameters (L∞, t0 and k) and length-weight relationship (a and b) for Mullus barbatus from different localities. Tab. 3: Rastni parametri (L∞, t0 in k) in odnos med dolžino in težo (a in b) za primerke vrste Mullus barbatus iz različnih lokalitet. Area L∞ (cm) t0 K a b Reference South-West Adriatic 19.7 TL -1.180 0.36 0.008 3.09 Ungaro et al., 1994 Adriatic Sea 27.49 TL -0.25 0.5 - - Scaccini, 1947 Ionian Sea 25.20 –1.710 0.260 - - Tursi et al., 1994 Izmir Bay 27 TL -1.506 0.183 0.0063 3.363 Akyol et al., 2000 Spanish coasts 33 TL -0.07 0.38 - - Sanchez et al., 1995 Northern Spain 33 TL -0.001 0.33 0.006241 3.1597 Fernández et al., 2005 Tunisian coasts 20.25 SL -0.02 0.513 - - Gharbi, 1980 Greece waters 23.5 TL -0.86 0.51 - - Vrantzas et al., 1992 Izmyr Bay 19.036 FL -0.77 0.438 0.0070 3.29 Kinacigil et al., 2001 Aegean sea 24.2 TL -5.61 0.105 0.0071 3.321 Őzvarol et al., 2006 South-West Mediterranean 27 TL -0.09 0.439 0.00009 3.031 Layachi, 2007 Iskenderun Bay 21.98 TL -0.194 1.168 0.0072 3.162 Çiçek, 2015 Cyprus waters 28.4 TL -1.100 0.18 0.01288 2.94 Livadas, 1988 Gulf of Tunis - - - 0.0072 3.1045 Cherif et al., 2007 Gulf of Tunis - - - 0.005 3.23 Cherif et al., 2008 Saranikos Gulf 23.5 TL −0.860 0.51 - - Vrantzas et al., 1992 Adriatic Sea 29.008 TL −1.189 0.194 - - Carbonara et al., 2018 Western Black Sea - - - 0.0059 3.21 Türker & Bal, 2018 Middle Black Sea - - - 0.0111 2.96 Kalaycı et al., 2007 Western Black Sea 24.10 TL -1.981 0.171 0.0109 2.9886 Yildiz & Karakul, 2016 Turkish coasts 24.4 TL -0.716 0.450 0.01 3.001 Bingel, 1987 Aegean sea 19.13 TL -1.56 0.382 0.0060 3.219 Tüzün et al., 2019 Aegean sea 18.4 TL -0.910 0.620 0.0100 3.201 Kurtul & Özaydın, 2017 Aegean Sea 28.75 –1.920 0.155 0.0084 3.077 Arslan & Işmen, 2014 Aegean Sea 26.08 –3.535 0.127 0.0157 2.981 Çelik & Torcu, 2000 Aegean Sea 19.04 –0.777 0.438 0.0071 3.290 Kınacıgil et al., 2001 Iskenderun Bay 24.2 −0.569 0.63 - - Gücü, 1995 Black Sea 27.40 –2.351 0.140 0.0088 3.034 Aydın & Karadurmuş, 2013 Algerian Sea 25.09 -0.185 0.490 0.0172 2.842 Talet et al., 2016 Northern Tunisia coasts 25.96 TL -0.824 0.309 0.0044 3.131 This study ANNALES · Ser. hist. nat. · 31 · 2021 · 2 240 Mourad CHÉRIF et al.: AGE AND GROWTH PARAMETERS OF THE RED MULLET MULLUS BARBATUS (MULLIDAE) FROM NORTHERN TUNISIA ..., 235–242 STAROSTNI IN RASTNI PARAMETRI PRI NAVADNEM BRADAČU MULLUS BARBATUS (MULLIDAE) IZ SEVERNE TUNIZIJE (OSREDNJE SREDOZEMSKO MORJE) Mourad CHÉRIF Institut National des Sciences et Technologies de la Mer, port de pêche, 2025 La Goulette, Tunisia Rimel BENMESSAOUD Institut National Agronomique de Tunis, 43, Avenue Charles Nicolle 1082 -Tunis- Mahrajène, Tunisia Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, case 104, 34095 Montpellier cedex 5, France e-mail: capape@univ-montp2.fr POVZETEK Avtorji poročajo o izsledkih raziskave o starostnih in rastnih parametrih pri navadnem bradaču Mullus barbatus Linnaeus, 1758 iz severne tunizijske obale na podlagi analize otolitov. Starostna struktura je bila med 1 in 5 leti, večina primerkov, tako samcev kot tudi samic, pa je pripadala skupini prvoletnih rib. Samice so značilno prevladovale v velikostnih razredih večjih od 150 mm, samci pa so bili pogostejši v manjših velikostnih razredih. Vzorci rasti so bili pri obeh spolih podobni do starosti enega leta, potem pa so samice rasle hitreje in dosegle večjo maksimalno dolžino kot samci. Odnos med dolžino in težo za vse primerke je bil W = 0,0044 * TL3,1311 (R² = 0,9582). Ocenjeni rastni parametri pri samcih so bili L∞ = 24,23, K = 0,307 in to = -0,983, pri samicah pa L∞ = 27,65, K = 0,284 in to = -0,687. Ocene rastnih parametrov za vse primerke so bile L∞ = 25,96, K = 0,291 in to = -0,824. Ključne besede: Mullus barbatus, starost, rastni parametri, odnos med dolžino in težo, Tunizija ANNALES · Ser. hist. nat. · 31 · 2021 · 2 241 Mourad CHÉRIF et al.: AGE AND GROWTH PARAMETERS OF THE RED MULLET MULLUS BARBATUS (MULLIDAE) FROM NORTHERN TUNISIA ..., 235–242 REFERENCES Arslan M. & A. Ismen (2014): Age, growth, reproduc- tion and feeding of Mullus barbatus in Saros Bay (North Aegean Sea) J. Black Sea/Medit. Environ., 20(3), 184-199. Akyol, O., Z. Tosunoglu, & A. Tokaç (2000): Inves- tigations of the growth and reproduction of red mullet (Mullus barbatus Linnaeus, 1758) population in the Bay of Izmir (Agean S ea). Anadolu Univ. J. Sci. Tech., 1(1), 121-127. Anonymous (2018): Annuaires des statistiques des produits de la pêche en Tunisie. Direction Générale à la Pêche et à l’Aquaculture (DGPA), 128 pp. Aydin, M. & U. Karadurmus (2013): An Investigation on age, growth and biological characteristics of red mul- let (Mullet barbatus ponticus, Essipov 1927) in the Eastern Black Sea. Iran. J. Fish. Sci., 12(2), 277-288. Beamish, R.J. & G.A. McFarlane (1983): The forgotten requirement for age validation in fisheries biology. Trans. Am. Fish. Soc., 112(6), 735-743. Beverton, R.J.H. & S.J. Holt (1957): On the dynamics of exploited fish populations. U. K. Min. Agric. Fish., Fish. Invest., ser. 2(9), 533 pp. Bingel, F. (1987): Final report of the quantitative fishery project in the coastal fishing grounds of the NorthEastern Mediterranean. Project No: 80070011, Içel, Turkey. 312 pp. Carbonara, P., S. Intini, J. Jerina, J. Kolitari, A. Joksimović, N. Milone, G. Lembo, L. Casciaro, L. Bitetto, W. Zupa, M.T. Spedicato & L. Sion (2018): A holistic ap- proach to the age validation of Mullus barbatus L., 1758 in the Southern Adriatic Sea (Central Mediterranean). Sci. Rep., 8, 13219. https://doi.org/10.1038/s41598-018- 30872-1. Carlander, K.D. (1987): A history of scale age and growth studies of North Americain freshwater. In Age and Growth of Fish. In RC Summerfelt & GE Hall (Editors), pp. 3-14, Iowa State University Press, Ames. Çelik, Ö. & H. Torcu (2000): Investigations on the Biology of red mullet (Mullus barbatus L., 1758) in Edre- mit Bay. Aegean Sea. Turkey. Turk. J. Veterin. Anim. Sci., 24(3), 287-295. Genç, Y. (2002): Reproduction of Five Important De- mersal Fishes in the Eastern Black Sea. CFRI Yunus Res. Bull., 2(4), 9-10. Chérif, M., R. Zarrad, H. Gharbi, H. Missaoui, & O. Jarboui (2007): Some biological parameters of the red mullet, Mullus barbatus (L., 1758) from the Gulf of Tunis, Acta Adriat., 48(2), 131-144. Chérif, M., R. Zarrad, H. Gharbi, H. Missaoui & O. Jarboui (2008): Length-weight relationships for 11 fish species from the Gulf of Tunis (SW Mediterranean Sea, Tunisia). Pan-Amer. J. Aquat. Sci., 3, 1-5. Chérif, M., R. Benmassaoud , H. Missaoui & C. Capapé (2013): The mullid species from Tunisian waters (Central Mediterranean Sea). Inter. J. Eng. Appl. Sci., 4(2), 62-65. Çiçek, E. (2015): Age, growth and mortality param- eters of Mullus barbatus Linnaeus, 1758 (Perciformes: Mullidae) in Iskenderun Bay, northeastern Mediterranean. Iran. J. Ichthyol., 2(4), 262-269. Fernández, A.M., M. García-Rodríguez, J.L. Pérez Gil1, A. Esteban1, M. González & E. Barcala (2005): Stock Assessment of red mullet Mullus barbatus from the trawl fishery off the geographical sub-area Northern Spain. Working Document to the G.F.C.M. SAC Working Group on Demersal species Rome, 26-30 September 2005, 17 pp. Gharbi, H. (1980): Contribution à l’étude biologique et dynamique des rougets (Mullus barbatus Linnaeus, 1758 et Mullus surmuletus Linnaeus, 1758) des côtes tunisiennes. PhD Thesis, University of Tunis, Tunisia, 100 pp. Gonçalves J.M.S., L. Bentes, R. Coelho, C. Correia, P.G. Lino, P. Monteiro, J. Ribeiro & K. Erzini (2003): Age and growth, maturity, mortality and yield-per-recruit for two banded bream (Diplodus vulgaris Geoffr.) from the south coast of Portugal. Fish. Res., 62, 349-359. Gücü, A.C. (1995): A box model for the basic elements of the northeastern Mediterranean Sea trawl fisheries. Isr. J. Zool., 41, 551-567. Jabeur, C. (1999): La pêche dans le golfe de Gabès: interaction techniques entre les métiers et exploitation partagée du rouget (Mullus surmuletus L., 1758). PhD Thesis, Université de Bretagne Occidentale Brest, France, 161 pp. Kalaycı, F., N. Samsun, S. Bilgin, & O. Samsun (2007): Length-weight relationship of 10 fish species caught by bottom trawl and midwater trawl from the Middle Black Sea, Turkey. Turk. J. of Fish. Aquat. Sci., 7(1), 33-36 Kinacigil, H., T. Ilkyaz, O. Akyol, G. Mettin, E. Cira. & A. Ayaz (2001): Growth parameters of red mullet (Mullus barbatus L., 1758) and seasonal codend selectivity of traditional bottom trawl net in Izmir Bay (Aegean Sea). Acta Adriat., 42(1), 113-123. Landa, J., P. Pereda, R. Duarte & M. Azevedo (2001): Growth of anglerfish (Lophius piscatorius and L. budegassa in Atlantic Iberian waters. Fish. Res., 51, 363-376. Layachi, M., M. Melhaoui, A. Srour & M. Ramdani (2007): Contribution à l’étude de la reproduction et de la croissance du Rouget-barbet de vase (Mullus barba- tus L., 1758) de la zone littorale méditerranéenne de Nador (Maroc). Bull. Inst. Sci., Rabat, sect. Sci. Vie, 29, 43-51. Livadas, R.J. (1984): A study of the biolog y and population dynamics of red mullet (M. barbatus L.) family Mullidae, in Cyprian waters. Ministr y of Agriculture & Natural Resources (Department of Fisheries), 36 pp. Livadas, R.J. (1988): A study of the growth and ma- turity of striped mullet (Mullus barbatus L), in waters of Cyprus. FAO Fish. Rep., 412, 44-51. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 242 Mourad CHÉRIF et al.: AGE AND GROWTH PARAMETERS OF THE RED MULLET MULLUS BARBATUS (MULLIDAE) FROM NORTHERN TUNISIA ..., 235–242 Morey G., J. Moranto, E. Massuti, A. Grau, F. Riera & B. Morales-Nin (2003): Weight–length relationships of littoral to lower slope fishes from the western Mediter- ranean. Fish. Res., 62, 89-96. Orhan, A.K & Y. Genç, (2013): Growth and reproduc- tion of the greater weever (Trachinus draco L., 1758) along the eastern coast of the Black Sea. J. Black Sea/ Medit. Environ., 19(1), 95-110. Özvarol, Z.A.B., B.A. Balci, M. Özba, M. Gökoglu, H. Gülyavuz, A. Tagli, M. Pehlivan & Y. Kaya (2006): An investigation on the growth properties of red mullet (Mul- lus barbatus L., 1758) in Antalya Bay. Ege J. Fish. Aquat. Sci., 23, 113-118. Pauly, D. (1984): Fish Population Dynamics in Tropical Waters: A Manual for Use with Programmable Calculators. ICLARM Studies and Reviews 8. Interna- tional Center for Living Aquatic Resources Management, Manila, Philippines, 325 pp. Pauly, D. (1994): On the Sex of Fish and the Gender of Scientists: Essays in Fisheries Science, London, Chapman & Hall, 250 pp. Ricker, W.E. (1973): Linear regressions in fishery research. J. Fish. Res. Board Canada, 30, 409-434. Ricker, W.E. (1975): Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Bd Can., 191, 382 pp. Sahin, T. & B. Akbulut (1997): Some biological char- acteristics of Mullus barbatus poncticus Essipov, 1927 in the Eastern Black Sea Coast of Turkey. Turk J. Zool., 21, 179-185. Saila, S.B., C.W. Recksiek & M.H. Prager (1988): Basic Fishery Science Programs. A Compendium of Microcom- puter Programs and Manual of Operation. Amsterdam; Elsevier, 230 pp. Sanchez, P., F. Alvarez, S. De Ranieri & P. Sartor (1995): Evaluation and analysis of the interaction of fish- ing gears in the demersal fisheries of Western Mediter- ranean. Final Report. Research Programme Studies in the Fishing Sector. MED92/009. (Mimeo), 333 pp. Scaccini, A. (1947): L’accrescimento e la proporzione dei sessi nella popolazione Adriatica di Mullus barbatus. Vol. 1 Note Lab. Biol. Mar. Fano, 3, 17-24. Sparre, P. & S.C. Venema (1992): Introduction to Tropical Fish Stock Assessment. Part 1. Manual, FAO Fisheries Technical Paper, 306. No. 1, Review 1, FAO, Rome, 376 pp. Talet, L.B., A.B. Talet & Z. Boutiba (2016): Population dynamic parameters of the red mullet Mullus barbatus (Mullidae) in the Arzew Gulf, Algeria. Int. J. Aquat. Biol., 4(1), 1-10. Tursi, A., A. Matarrese, G. D’Onghia, & L. Sion (1994): Population biology of red mullet (Mullus barbatus L.) from the Ionian Sea. Mar. Life, 4, 33-43. Tüzün, S., C. Dalyan & L. Eryilmaz (2019): Age and growth of the red mullet Mullus barbatus in the north Aegean Sea. J. Ichthyol., 59(4), 572-582. UNEP-MAP & RAC/SPA (2014): Status and conservation of fisheries in the Sicily Channel/ Tunisian Plateau. By H. Farrugio & Alen Soldo. Draft internal report for the purposes of the Mediterranean Regional Workshop to Facilitate the Description of Ecologically or Biologically Significant Ma- rine Areas, Malaga, Spain, 7-11 April 2014, 64 pp. Ungaro, N., E. Rizzi & C.A. Marano (1995): Utilizzo del modello di B everton e Holt, “rendimento per recluta (Y/R)”, per la risorsa Mullus barbatus L., nell’Adriatico pugliese. Biol. Mar. Medit., 1(1), 317–318. Vrantzas, N., M. Kalagia & C. Karlou (1992): Age, growth and state of stock of red mullet (Mullus barbatus L. 1758) in the Saronikos Gulf of Greece. FAO Fish. Rep., 477, 51–67. Yildiz, T. & F. Saadet Karakulak (2016): An investiga- tion of age, growth and mortality of the red mullet Mullus barbatus Linnaeus, 1758 in the western Black Sea. Cah. Biol. Mar., 57(4), 415-425. Zar, J.H. (1999): Biostatistical Analysis, 4th edn. Prentice-Hall, Newark, NJ. p + App. 663 pp. Zorica, B., G. Sinovčić, A. Pallaoro & V. Čikeš Keč (2006): Reproductive biology and length–weight rela- tionship of painted comber, Serranus scriba (Linnaeus, 1758), in the Trogir Bay area (middle-eastern Adriatic). J. Appl. Ichthyol., 22(4), 260-263. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 243 received: 2021-10-04 DOI 10.19233/ASHN.2021.29 HEAVY METAL CONCENTRATIONS IN TISSUES OF RED MULLET, MULLUS BARBATUS (MULLIDAE) FROM THE SYRIAN COAST (EASTERN MEDITERRANEAN SEA) Yana SOLIMAN & Adib SAAD Marine Sciemces Laboratory, Faculty of Agriculture, Tishreen University, Lattakia, Syria Vienna HAMMOUD Department of Zoology, Faculty of Sciences, Tartus University, Syria Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@univ-monpt2.fr ABSTRACT Cadmium, lead and copper levels were measured in muscles and liver of red mullet Mullus barbatus Linnaeus, 1758 caught off the Syrian coast between August 2019 and May 2020. It was found that the metals were accumulated in different tissues of M. barbatus by various levels, where the non-edible parts accumulated more metals than the edible muscles. The highest average levels of lead (0.164 ± 0.098 µg/g), and copper (8.69 ± 2.75 µg/g wet weight) were recorded in the liver. The concentrations of Cd, Pb, and Cu measured in edible muscle flesh were lower than the maximum acceptable limit set by FAO/WHO for human consumption. The order of the metal concentrations found in M. barbatus was Cu> Pb> Cd. Changes in metals concentrations in the tissues of M. barbatus were observed versus areas and seasons. Key words: Syria, heavy metals, Mullus barbatus, bioaccumulation, eastern Mediterranean Sea CONCENTRAZIONI DI METALLI PESANTI IN TESSUTI DI TRIGLIA DI FANGO, MULLUS BARBATUS (MULLIDAE) LUNGO LA COSTA SIRIANA (MEDITERRANEO ORIENTALE) SINTESI I livelli di cadmio, piombo e rame sono stati misurati nei muscoli e nel fegato della triglia di fango Mul- lus barbatus Linnaeus, 1758, catturata al largo della costa siriana tra agosto 2019 e maggio 2020. I metalli sono stati accumulati in diversi tessuti di M. barbatus in concentrazioni varie, e le parti non commestibili hanno accumulato più metalli che i muscoli commestibili. I livelli medi più alti di piombo (0,164 ± 0,098 µg/g) e di rame (8,69 ± 2,75 µg/g peso umido) sono stati registrati nel fegato. Le concentrazioni di Cd, Pb e Cu misurate nella parte muscolare commestibile erano inferiori al limite massimo stabilito dalla FAO/ OMS per il consumo umano. L’ordine delle concentrazioni dei metalli trovato in M. barbatus era Cu> Pb> Cd. I cambiamenti nelle concentrazioni di metalli nei tessuti di M. barbatus sono stati osservati rispetto alle aree e alle stagioni. Parole chiave: Siria, metalli pesanti, Mullus barbatus, bioaccumulo, Mediterraneo orientale ANNALES · Ser. hist. nat. · 31 · 2021 · 2 244 Yana SOLIMAN et al.: HEAVY METAL CONCENTRATIONS IN TISSUES OF RED MULLET, MULLUS BARBATUS (MULLIDAE) FROM THE SYRIAN COAST ..., 243–250 INTRODUCTION Five species are reported to date in the Syrian waters, two are indigenous species such as red mul- let, Mullus barbatus Linnaeus, 1758 and striped red mullet M. surmuletus Linnaeus, 1758 (Saad, 2005; Ali, 2018) Three are alien species incoming from the Red Sea through Suez Canal into the Meditera- nean Sea, as Lessepsian migrants (sensu Por, 1978), for instance golden-banded goatfish Upeneus moluccenccis (Bleeker, 1855), Por’s goatfish U. pori Ben-Tuvia & Golani, 1989 and Parupeneus forsskali (Fourmanoir & Guézé, 1976). These three alien spe- cies are at present harvested in large quantities and sometimes more than the 2 indigenous mullid spe- cies, the best instance being U. moluccensis (Saad et al., 2017). Mullid species constitute 3.1% of the number of bony fishes collected in the Syrian marine waters, and 8.9% of the total catch by artisanal fishing gears (Ullman et al., 2015; Saad et al.,2017). Mullid species display a large economic value in the area because they are locally very appreciated for human consumption, and among them mainly M. barbatus (Saad & Sabour, 1998). This species is known as a bottom feeding carnivorous species at the top of the food chain (Saad & Sabour, 1998), and therefore could be expected that bio-accumulation levels of heavy metals rise. A bioaccumulation of heavy metals in the different fish tissues has been previously studied (Saad & Hammoud, 2007; Mohamed, 2008; Turan et al., 2009; Abdallah, 2013; Aytekin et al., 2019), also in M. barbatus showing that the species tis- sues accumulated high concentrations of heavy metals (Sunlu, 2004; Benedicto et al., 2007; Dural et al., 2010; Findik & Çiçek, 2011; Allan et al., 2016). However, similar investigations have not been carryed out for specimens of M. barbatus from the Syrian waters which constitute the aims of the present papers in order to preserve human health of risk assessment. The purpose of the present study consists to assess selected metal (Cu, Pb, and Cd) concentra- tions in muscles and liver of M. barbatus caught by commercial fisheries from three areas located on the coast of Syria. MATERIAL AND METHODS Study area The sampling stations were selected based on main factors such as industrial effluents and sew- ageare being discharged into the waters of Syrian coast (Fig. 1). Therefore, three different sites were chosen. The first site (T1) was relatively close to in- dustrial pollution sources (34°59’46» N, 35°53’21» E). The second site (T2) was performed based on its relation with the thermic power station activi- ties (35°10’11» N, 35°55’36» E). The third site (T3) represents an area for the sewage downstream (34°53’09» N, 35°52’57» E). Sample preparation and analysis A total of 12 specimens of M. barbatus were studied, they were captured commercial bottom- trawler or gill net fisheriesfrom August 2019 to May 2020, at the 3 stations (Tab. 1). Total length (TL) was recorded to the nearest mm and total body weight (TBW) to the nearest 0.1 gram. TL ranged between 92 and 170 mm and TBW between 20.9 and 60 g. The collected specimens were preserved in plastic boxes filled with ice, and then delivered at the laboratory. They were washed with distilled water, dried in filter paper and stored at -25°C until dissection. At about 3 gram sample of fish muscles Fig. 1: Map of the Syrian coast with rectangle indicating the sampling area of Mullus barbatus. Sl. 1: Zemljevid sirske obale s pravokotnikom, ki prikazuje vzorčevalno postajo ulova bradačev. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 245 Yana SOLIMAN et al.: HEAVY METAL CONCENTRATIONS IN TISSUES OF RED MULLET, MULLUS BARBATUS (MULLIDAE) FROM THE SYRIAN COAST ..., 243–250 and part of liver, were removed. The wet digestion method was used in the analysis of the heavy metals (Saad & Hammoud, 2007; Abdallah, 2013; Turan et al., 2019). Samples were transferred into digestion flasks and treated with 5 ml HNO3 (ultrapure, Merck) on the hot plate until the color turns into light yellow, nearly white. After this process the samples were transferred to 25 ml flanks and added double distilled water until 25 ml. The solution was filtered by filter papers. At each step of the digestion processes, acid blanks (laboratory blank) were prepared using identical pro- cedure to ensure that the samples and chemicals used were not contaminated from any of the mentioned possible sources. They contain the same digestion reagents as the real samples with the same acid ratios but without the fish sample. They were analyzed by Atomic Absorption Spectrophotometer (Shimadzo- AA6800) before the real samples, to check if it will give the exact values of heavy metals in real samples. Statistical analysis Statistical differences between mean metal con- centrations in different sites were evaluated using one way ANOVA. The difference between the seasons was analyzed through Student t-test. RESULTS AND DISCUSSION Heavy metals Cu is the most abundant of metals examined (Tab. 1), it is an essential element since it plays important roles in biological systems (Kayhan et al., 2017). Conversely, lead and cadmium have caused harm- ful and toxic effects for human health even in trace amounts (Tepe et al., 2008). Copper concentrations ranged from 0.35 to 0.65 mg/g wet weight (ww) in muscle, the highest level occurring at station site T2, and from 5.30 to 14.00 mg/g ww in liver, with the highest level at site T3. Copper concentrations vary significantly (p<0.05) in the muscle tissues, although copper concentrations in liver tissues did not show significant differences between T1 and T2 (p>0.05) (Tab. 1). Pb and Cd belong to nones- sential, do not any function in biochemical processes. This study shows that there were little variations in mean concentration of Cd and Pb in all sites investigat- ed. In this study the mean Pb levels in muscle and liver were 0.0569 µg/g and 0.164 µg/g respectively (Tab. 1). Pb levels both in muscle and liver tissues showed significant differences between region. Mean Cd levels in the muscles of red mullet from T1, T2 and T3 from Syria were 0.0062, and 0.0172 mg/g, respectively. Cd levels in muscle tissues were statistically different between region. Pb and Cd concentrations were found higher in T3 and T2 station respectively. Our results show that metal accumulation is lowest in muscles , while it is high in liver in all sites. This probably due to their physiological roles in fish metabolism. Dural et al. (2010) determined that large amount of metallothione in induction occurs in the liver tissues. Some authors have addressed measurements of Cu, Pb and Cd in fish from different regions of the world (Tab. 2). It appears differences between metal concen- tration in this study and those of previous studies. Cop- per concentrations in liver tissues found in this study were higher than those from Çandarl Bay. (Tas et al., 2011), but displayed Copper concentrations in muscles tissues similar values than those of reported from Izmir Bay and Çandali Bay by Sunlu (2004) in Table 2. Cd concentrations have been less studied when than other metals in M. barbatus (Sunlu, 2004). Tab. 1: Minimum, maximum and mean metal concentrations in the tissues of the red mullet, Mullus barbatus, from the coastal waters of Syria and comparison of different sites (μg/g wet wt). Tab. 1: Minimalne, maksimalne in srednje vrednosti koncentracij težkih kovin v primerkih bradača, Mullus barbatus, ujetih v obalnih vodah Sirije in primerjava med različnimi lokalitetami (μg/g mokre teže). Tissue Site Mean Cu Range Mean Pb Range Mean Cd Range Muscles T1 0.462 0.35-0.577 a 0.0281 0.018-0.038 a 0.0062 0.006 - 0.007 a T2 0.619 0.056-0.65 b 0.0651 0.05-0.074 b 0.0205 0.019-0.020 c T3 0.578 0.52-0.62 ab 0.0778 0.067-0.09 c 0.0172 0.015-0.018 b Liver T1 7.85 5.3-12.24 a 0.0497 0.031-0.07 a - T2 8.91 5.69-12 a 0.193 0.18-0.21 b - 9.91 7.75-14 b 0250 0.23-0.27 c - Letters a, b and c show differences among sites. Means with the same letter are not statistically significant, p>0.05. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 246 Yana SOLIMAN et al.: HEAVY METAL CONCENTRATIONS IN TISSUES OF RED MULLET, MULLUS BARBATUS (MULLIDAE) FROM THE SYRIAN COAST ..., 243–250 Seasonal variations in concentrations of metals in M. barbatus Cupper contents in specimens versus seasons were different (Fig. 3). The mean Cu concentration in M. barbatus muscles from Syrian coast ranged between 0.51 / µg /g in rainy season and 0.59 mg/g in dry season and 7.39 to 10.45 at dry µg/g in liver (Fig. 2), and these values were significantly different (t-value = -3.07 , -4.80 ; p = 0.005; df = 1). The mean Pb concentration in liver tissues did not show significant differences between season (Fig. 2). Conversely, the mean concentration of Pb in muscle of M. barbatus ranged from 0.049 mg/g to 0.0644 mg/g and show significant differences between seasons (Fig.3) (t-value = -4.34.; p = 0.007). The mean Cd concentrations ranged from 0.006 at rainy to 0.022 at dry mg/g in muscle (Fig. 4). Cd levels in muscle tissues were not different between seasons (t-value = -1.66; p = 0.158). There was asignificant increase in accumulation of Cu, Pb, and Cd in tow tissues of M. barbatus from Syrian coast seasonally. The accumulation of metals in white muscle, and liver increased in dry season than rainy season this may be related to increase human activities in this seasons and increase in physiological activity of fish due to increase of temperature this confirmed by previous studies such as (Jakimska et al., 2011). Similar increases in metal levels were observed during summer in fish species from Iskenderun Gulf (Aytekin et al., 2019). Fig 2: Differences of Cu concentrations in Mullus barbatus among the seasons: M = muscles, L = Liver. Sl. 2: Razlike v koncentraciji Cu pri vrsti Mullus bar- batus v različnih sezonah: M = mišice, L = jetra. Tab. 2: Levels of heavy metals in Mullus barbatus from different areas of the world (µg/g wet weight) Tab. 2: Vsebnosti težkih kovin pri vrsti Mullus barbatus iz različnih predelov sveta (µg/g mokre teže). Tissue Authors Area Cu Pb Cd Muscles Tas et al. (2011) Çandarli Bay 0.11-1.25 1.20-9.74 - Sunlu (2004) Izmir Bay 0.11-0.50 0.80-2.60 - Turan et al. (2009) Black Sea 0.77-1.24 0.14-0.82 0.06-0.29 Fındık & Çiçek (2011) Black Sea 4.05 1.05 1.01 Liver Tas et al. (2011) Çanarli Bay 0.62 -2.09 5.30-12.52 - Mariji & Raspor (2007) Eastern Adriatic 0.15-0.68 - - Tepe et al. (2008) Turkish seas 1.11-26.7 0.66-5.20 - Fig 3: Differences of Pb concentrations in Mullus barbatus versus seasons. Sl. 3: Razlike v koncentraciji Pb pri vrsti Mullus barbatus v različnih sezonah. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 247 Yana SOLIMAN et al.: HEAVY METAL CONCENTRATIONS IN TISSUES OF RED MULLET, MULLUS BARBATUS (MULLIDAE) FROM THE SYRIAN COAST ..., 243–250 Human health risk assessment Fish species are considered as one of the main protein sources of food for human health, because of having rich contents of essential minerals, vitamins and unsaturated fatty acids (Zaza et al., 2015). In this study, the measured metal concentration in edible tissues , such as of M. barbatus were compared with some exist- ing standards for human consumption. From Marmara Sea, the levels of Cd and Pb were found as very high according to tolerance limits of the World Health Organization (WHO, 1996) standards (Kayhan et al., 2017). For the fish samples from the Black Sea, Bat et al. (2012) had been detected Pb and Cd levels lower than the recommended legal limits for human consumption according to the Turkish Food Codex (Anonymous, 2008). Chahid et al. (2014) determined the mean levels of Cd and Pb found in fish from Atlantic Sea (Morocco) as 0.009-0.036 mg /g for Cd and 0.013-0.014 mg/g for lead. The authors have concluded that these values fall within safe limits for human consumption. Before the comparison, values were converted to mg/g wet weight. The mean muscle metal levels of M. barbatus were 0.553 mg/g for Cu, 0.0569 mg /g for Pb, and -0.0.014 mg/g for Cd. Mean values of Cu, Pb and Cd were below recommended limits of the Food and Agriculture Organization/World Health Organization (FAO/WHO, 2011): Cu: 30, Pb: 2 and Cd: 0.5 mg/g (ww). These values reached acceptable levels for hu- man consumption and with any health problems for consumers. Additonally, such values recorded in M. barbatus showed that the Syrian marine waters are not strongly polluted by anthropogenic activites. However, these activities are generally located along the coast and underwent also ship dismantling and heavy ship traffic which could affect the aquatic species living in the area. Some species, as M. barbatus display a high commercial value, and regularly and frequently measurements of heavy metals should be done in these species generally consumed as food to avoid also a negative impact on the local economy. Fig 4: Differences of Cd concentrations in Mullus barbatus versus seasons. Sl. 4: Razlike v koncentraciji Cd pri vrsti Mullus barbatus v različnih sezonah. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 248 Yana SOLIMAN et al.: HEAVY METAL CONCENTRATIONS IN TISSUES OF RED MULLET, MULLUS BARBATUS (MULLIDAE) FROM THE SYRIAN COAST ..., 243–250 VSEBNOST TEŽKIH KOVIN V TKIVIH BRADAČA, MULLUS BARBATUS (MULLIDAE) IZ SIRSKE OBALE (VZHODNO SREDOZEMSKO MORJE) Yana SOLIMAN & Adib SAAD Marine Sciemces Laboratory, Faculty of Agriculture, Tishreen University, Lattakia, Syria Vienna HAMMOUD Department of Zoology, Faculty of Sciences, Tartus University, Syria Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@univ-monpt2.fr POVZETEK Avtorji so v mišicah in jetrih primerkov bradača Mullus barbatus Linnaeus, 1758, ujetih ob sirski obali avgusta 2019 in maja 2020, merili vsebnost kadmija, svinca in bakra. Ugotovili so, da so se težke kovine kopičile na različnih nivojih in v različnih tkivih bradača, pri čemer je se je več težkih kovin nakopičilo v neužitnih delih bolj kot v užitnih mišicah. Najvišje povprečne vrednosti svinca (0,164 ± 0,098 µg/g), in bakra (8,69 ± 2,75 µg/g mokre teže) so bile izmerjene v jetrih. Vsebnost Cd, Pb in Cu, izmerjena v užitnem mesu mišic, je bila nižja kot maksimalna dovoljena vrednost po kriterijih FAO/WHO za človeško uporabo. Redosled koncentracije težkih kovin v bradaču je bil Cu> Pb> Cd. Spremembe v koncentraciji težkih kovin v tkivih bradača so primerjali v različnih okoljih in različnih sezonah. Ključne besede: Sirija, težke kovine, Mullus barbatus, bioakumulacija, vzhodno Sredozemsko morje ANNALES · Ser. hist. nat. · 31 · 2021 · 2 249 Yana SOLIMAN et al.: HEAVY METAL CONCENTRATIONS IN TISSUES OF RED MULLET, MULLUS BARBATUS (MULLIDAE) FROM THE SYRIAN COAST ..., 243–250 REFERENCES Ali, M. (2018): An updated Checklist of the Marine fishes from Syria with emphasis on alien species. Medit. Mar. Sci., 19(2), 388-393. Abdallah, M. (2013): Bioaccumulation of Heavy Metals in Mollusca Species and Assessment of potential risks to human health. Bull. Environ. Contam. Toxicol., 90, 552-557. Alkan, A., H. Alkan & U. Akbas (2016): The factors affecting heavy metal levels in the muscle tissues of whiting (Merlangus merlangus) and red mullet (Mullus barbatus). Tarim Bilimle Dergisi - J. Agri. Sci., 22, 349-359. Anonymous (2008): State of the environment of the Black Sea (2001–2006/7). Edited by Temel Oguz. Publications of the Commission on the Pro- tection of the Black Sea Against Pollution (BSC), Istanbul, Turkey, 448 pp. Aytekin, T, D. Kargın, H.Y Çogun, O. Temiz, H.S. Varkal & F. Varkal (2019): Accumulation and health risk assessment of heavy metals in tissues of the shrimp and fish species from the Yumurtalik coast of Iskenderun Gulf, Turkey. Heliyon, 5, 02131. Bat, L., M. Sezgin, F. Ustun & F. Sahin (2012): Heavy metal concentrations in ten species of fishes caught in Sinop coastal waters of the Black Sea, Turkey. Turk. J. Fish. Aquat. Sci., 12, special issue, 371-376. Benedicto J, C. Martinez-Gomez, J. Guerrero, A. Jornet & J. Del Arbol (2007): Heavy metal con- centrations in red mullet Mullus barbatus (L. 1758) from the Iberian Peninsula coast (northwestern Mediterranean). Rapp. Comm. int. Mer Médit., 38, 233. Chahid. A, M. Hilali, A. Benlhachemi, I.M. Kadmiri & T. Bouzid (2014): Concentrations of heavy metals in muscle, liver and gill of Sardina pilchardus (Walbaum, 1792): risk assessment for the consumers. J. Environ. Occup. Sci. Heealth, 3(1), 47-52. Dural, M, E. Bickici & M. Manasirli (2010): Heavy metal concentration in different tissues of Mullus barbatus and Mullus sumuletus from Iskend- erun Bay, eastern coast of Mediterranean, Turkey. Rapp. Comm. int. Mer Médit., 39, 499. FAO/WHO (2011): Joint FAO/WHO Expert Committee on Food Additives. Meeting (72nd 2010: Rome, Italy), World Health Organization & Food and Agriculture Organization of the United Nations. World Health Organization. https://apps.who.int/ iris/handle/10665/44520. Fındık, Ö. & E. Çiçek (2011): Metal concentra- tions in two bioindicator fish species, Merlangius merlangus, Mullus barbatus, captured from the west Black Sea coasts (Bartin) of Turkey. Bull. Environ. Contam. Toxicol., 87(4), 399-403. Harmelin-Vivien, M.H, D. Cossab, S. Crochet, D. Banaru, Y. Letourneur & C.M. Duval (2019): Difference of mercury bioaccumulation in red mullets from the north- western Mediterranean and Black Seas. Mar. Poll. Bull., 58(5), 679-685. Jakimaska, A., P. Konieczka, K. Skóra & J. Namiencik (2011): Bioaccumulation of metals in tissues of marine animals, part II: metal concen- trations in animal tissues. Pol. J. Environ. Stud., 20(5), 1127-1146. Kayhan, F.E., N. Büyükurganci & G. Büyükur- ganci (2017): Accumulation of cadmium and lead in commercially important fish species in the Gulf of Gemlik, Marmara Sea, Turkey. Aquat. Sci. Eng., 32(4), 178-183. Mariji, V.F. & B. Raspor (2007): Metal exposure assess-ment in native fish Mullus barbatus L., from the eastern Adriatic Sea, Toxicol. Let., 168, 292- 301. Mohamed, F.A.S. (2008): Bioaccumulation of selected metals and histopathological alterations in tissues of Oreochromis niloticus and Lates niloti- cus from Lake Nasser, Egypt. Global Vet., 2(4), 205-218. Saad, A. (2005): Check-list of bony fish col- lected from the coast of Syria. Turk. J. Fish. Aquat. Sci., 5(2), 99-106. Saad, A. & V. Hammoud (2007): Levels of mer- cury, cadmium and lead in the tissue of Diplodus vulgaris (Linneus, 1758) (Teleostei Sparidae) from coast of Syria. Rapp. Comm. int. Mer Médit., 38, 308. Saad, A. & W. Sabour (1998): The impact of environmental factors on feeding system on Mullus barbatus L. in Syrian sea waters. Arab Univ. J. Agri. Sci., 6(1), 1-24. Saad, A, W. Sabour & A. Solaiman (2017): Con- tribution to study of the catch effort production of fishing effort by artisanal fishing gears and the qualitative and quantitative composition of the catch in the marine waters of Tartous Governorate. Tichreen Univ. J. Stud. Sci. Res. Bio., 8(1), 12-32. Sunlu, U. (2004): Heavy metal monitoring in red mullet Mullus barbatus (L.1758) from Izmir Bay (Eastern Aegean Sea-Turkiye) 1999-2001. Rap. Comm. int. Mer Médit., 37, 24. Tas, E.C., I. Filipuçi, D.T. Çakir, S. Beyaztas, U. Sunlu, M. Togulga, O. Özaydın & O. Arslan (2011): Heavy metal concentrations in tissues of edible fish (Mullus barbatus L., 1758) from the Çandarli Bay (Turkey). Fresen. Environ. Bull., 2834-2839. Tepe, Y., M. Türkmen & A. Türkmen (2008): Assesment of heavy metals in two commercial fish species of four Turkish Seas. Environ. Monit. Assess, 146, 277-284. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 250 Yana SOLIMAN et al.: HEAVY METAL CONCENTRATIONS IN TISSUES OF RED MULLET, MULLUS BARBATUS (MULLIDAE) FROM THE SYRIAN COAST ..., 243–250 Turan, C., M. Dural, A. Öksüz & B. Öztürk (2009): Levels of heavy metals in some commercial fish species captured from the Black Sea and Medi- terranean coast of Turkey. Bull. Environ. Contam. Toxicol., 82(5), 601-604. Ulman, A., A. Saad, K. Zylich, D. Pauly & D. Zel- ler (2015): Reconstruction of Syria’s fisheries catches from 1950–2010: signs of overexploitation. Acta Ichthyol. Piscat., 45(3), 259-272. WHO (1996): Health criteria other supporting information. In: Second Guidelines for Drinking Water Quality, vol. 2, WHO, Geneva, 1996, pp. 31-388. Zaza, S, K. de Balogh, M. Palmery, A. Pastorelli & P. Stacchini (2015): Human exposure in Italy to lead, cadmium and mercury through fish and seafood product consumption from Eastern Central Atlantic Fishing Area. J. Food Comp. Anal., 40, 148-153. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 251 received: 2021-10-25 DOI 10.19233/ASHN.2021.30 RECORD OF A SINGLE CLASPER SPECIMEN IN ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) FROM THE COAST OF SENEGAL (EASTERN TROPICAL ATLANTIC) Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@univ-montp2.fr Youssouph DIATTA & Almamy DIABY Laboratoire de Biologie marine, Institut fondamental d’Afrique noire, (IFAN Ch. A. Diop), Université Cheikh Anta Diop de Dakar, BP 206, Dakar, Senegal Sihem RAFRAFI-NOUIRA Université de Carthage, Unité de Recherches Exploitation des Milieux aquatiques, Institut Supérieur de Pêche et d’Aquaculture de Bizerte, BP 15, 7080 Menzel Jemil, Tunisia Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2 place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France ABSTRACT The authors report on the capture of an abnormal specimen of striped panray, Zanobatus schoenleiniii (Müller & Henle 1841) from the coast of Senegal. The specimen measured 250 mm in disc width (DW) and weighing 621 g in total body weight (TBW). It exhibited a lack of the right clasper, already visible from the view of the dorsal surface, and an undeveloped and reduced pelvic fin, especially in its distal margin. The dissection of the abdominal cavity showed on both sides a genital apparatus morphologically male and almost similar. The lack of any female structure allows to state that this present specimen didn’t display a case of pseudo or true hemaphroditism , but rather a case of morphological abnormality. Key words: batoid species, lack of clasper, morphological abnormality, coast of Senegal RITROVAMENTO DI UN ESEMPLARE DI ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) CON UN SOLO PTEROPODIO LUNGO LA COSTA DEL SENEGAL (ATLANTICO TROPICALE ORIENTALE) SINTESI Gli autori riportano la cattura di un esemplare anomalo di Zanobatus schoenleiniii (Müller & Henle 1841) lungo la costa del Senegal. L’esemplare misurava 250 mm di larghezza del disco (DW) e aveva 621 g di peso corporeo totale (TBW). Presentava una mancanza del pterigopodio destro, notabile già alla vista della superfi- cie dorsale, e una pinna pelvica non sviluppata e ridotta, specialmente nel suo margine distale. La dissezione della cavità addominale ha mostrato su entrambi i lati un apparato genitale morfologicamente maschile e quasi simile. La mancanza di una struttura femminile permette di affermare che questo esemplare non mostrava un caso di pseudo o vero emafroditismo, ma piuttosto un caso di anomalia morfologica. Parole chiave: specie batoide, mancanza di pterigopodio, anomalia morfologica, costa del Senegal ANNALES · Ser. hist. nat. · 31 · 2021 · 2 252 CHRISTIAN CAPAPÉ et al.: RECORD OF A SINGLE CLASPER SPECIMEN IN ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) FROM THE ..., 251–258 INTRODUCTION The striped panray, Zanobatus schoenleiniii (Mül- ler & Henle, 1841), is an endemic species known from the eastern tropical Atlantic, from southern Morocco (Lloris & Rucabado, 1998) to the Gulf of Guinea (Blache et al., 1970), captured by handicraft fisheries, especially throughout the coast of Senegal in shallow coastal waters at low depth, not exceeding 50 m depth (Capapé et al., 1995). These captures al- lowed to provide preliminary data about some traits of reproductive biology and feeding habits of the species (Capapé et al., 1995). Among the collected Z. sch- oenleinii some abnormal specimens were found and formed the object of papers (see Tab. 1). Additionally, an other abnormal specimen was recently discovered and described in the present paper. MATERIAL AND METHODS A total of 33 specimens of Z. schoenleinii were cap- tured off Dakar, located in Cape Verde Peninsula, and col- lected at the fishing site of Hann on 11 December 2020. They were caught by commercial trammel net made of threee layers of mesh, having a streched size of 48 mm, 50 mm and 60 mm, respectively, at a depth between 5 and 16 m, on sandy-muddy bottom, together with other telost species, by 14°43’32.1» N and 17°25’35.4» W (Fig. 1). Of the 33 specimens, 32 were normal and a single specimen displayed a lack of clasper. All specimens were measured to the nearest millimetre for disc width (DW) and weighed to nearest gram for total body weight (TWB). Morphometric measurements were recorded on the abnormal specimen following Diatta et al. (2013) and presented in Table 1. The specimen was fixed in 10% buffered formaldehyde, successively pre- served in 75 % ethanol and deposited in the Ichthyologi- cal Collection of the Institut Supérieur d’Aquaculture et de Pêche of Bizerte (Tunisia), with the catalogue number, ISPAB-Zan-sch-09. The relation between DW and TBW was used as a complement following Froese et al. (2011), including all specimens, normal and abnormal to show if this latter is able to develop in the wild as normal specimens. This relation is TBW = aDWb, and was converted into its linear regression, expressed in decimal logarithmic coordinates and correlations were assessed by least-squares regres- sion. as: log TBW = log a + b logDW. Significance of constant b differences was assessed to the hypothesis of isometric growth if b = 3, positive allometry if b > 3, negative isometry if b < 3 (Pauly, 1983). These two latter tests were performed by using logistic model STAT VIEW 5.0. RESULTS AND DISCUSSION All specimens were identified as Zanobatus schoen- leinii as follows: morphological characters: disc sub- circular, wider than long; snout blunt, angle nearly 120° in front; nostrils narrow, anterior valves united across the internarial space; mouth straight with small teeth; spiracles large without folds; dorsal and caudal fins small and rounded; covered by a rigid skin, unlike and minute scales, a medial row of thorns in disk and tail, and a three rows arranged in arc of circle on each shoulder; back brown with dark cross bands with white spots between toward the pectoral edges. Such description is in total agreement with Garman (1913), Cadenat (1951), Blache et al. (1970) and Capapé et al. (2020a, b). Southward, a new congeneric species was described in the area Zanobatus maculatus Séret, 2016. Which displays a smaller size panray, disc more rounded, rhombic in the striped panray; exhibiting numerous dark brown blotches of various sizes vs. wavy medium brown Fig. 1: Map of the Senegalese coast indicating the capture site of the abnormal specimen of Zanobatus schoenleinii (black star). Sl. 1: Zemljevid senegalske obale z označeno lokalite- to, kjer je bil ujet neobičajen primerek vrste Zanobatus schoenleinii (črna zvezdica). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 253 CHRISTIAN CAPAPÉ et al.: RECORD OF A SINGLE CLASPER SPECIMEN IN ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) FROM THE ..., 251–258 crossbars; a dermal armature more pronounced, and has spear-shaped dermal denticles vs. polygonal flat denticles and smaller number of tooth rows, probably due to its smaller size. The sampled specimens ranged between 154 and 270 mm DW and their TWB from 104 to 914 g. The abnormal specimen measured 250 mm DW and weighed 621 g, and it exhibits a lack of the right clasper, already visible from the view of the dorsal surface (Fig. 2A). An examination of the ventral surface displays the presence of a left clasper developed but still flexible, characteristic from a juvenile specimen (see Capapé et al., 1995). The right pelvic area exhibits a total lack of clasper and an undeveloped and reduced pelvic fin, especially in its distal margin. No unhealed scar were observed on this distal margin, con- versely it was pigmented and covered by small denticles. This reduced pelvic fin is not consequence of an injury caused by a predator but a morphological abnormality probably occurring durig the embryonic development, rarely after birth , in the wild. The dissection of the abdominal cavity shows on both sides a genital apparatus morphologically male and almost similar (Fig. 3). Testicles are absent, Leydig’s gland is relatively developed and spermiducts are convoluted ending in a rounded seminal vesicle. Lack of female structure allows to state that this present specimen does not displays a case of pseudo or true hemaphroditism (Atz, 1964), but rather a case of abnormality. All rel- evant case of clasper abnormalities are reported in some elasmobranch species in Table 2. It clearly appears that of the 16 cases herein presented, 12 are related to her- maphroditism, and only 4 cases could be considered as monstrosities (sensu Ribeiro-Prado et al., 2008). Fig. 2: Abnormal specimen of Zanotatus schoenleinii (ISPAB-Zan-sch-09). A. Dorsal surface. B. Ventral surface. Scale bar = 50 mm. Sl. 2: Neobičajen primerek vrste Zanotatus schoenleinii (ISPAB-Zan-sch-09). A. Hrbtna stran. B. Trebušna stran. Merilo = 50 mm. Tab. 1: Morphometric measurements (in mm and as % DW), meristic counts and mass recorded in the abnormal specimen of Zanotatus schoenleinii (ISPAB-Zan-sch-09). Tab. 1: Morfometrične meritve (v mm in kot delež premera diska % DW), meristična štetja in masa neobičajnega pri- merka vrste Zanotatus schoenleinii (ISPAB-Zan-sch-09). REFERENCES ISPAB-Zan-sch-09 Measurements mm % Disc width Total length 455 182.00 Disc length 235 94.00 Disc width 250 100.00 Disc depth 34 13.60 Eyeball length 14 5.60 Pre-orbital length 49 19.60 Inter-orbital length 22 8.80 Spiracle diameter 21 8.40 Interspiracular width 27 10.80 Space between eye and spiracle 11 4.40 Pre-oral length 52 20.80 Mouth width 33 13.20 First gill-slit 7 2.80 Second gill-slit 9 3.60 Third gill-slit 8 3.20 Fourth gill-slit 8 3.20 Fifth gill-slit 6 2.40 Width between first gill-slit 64 25.60 Width between fifthgill-slit 35 14,00 Snout tip to eye 62 24.80 Snout tip to mouth 60 24.00 Snout tip to first gill-slit 90 36.00 Snout tip to fifth gill-slit 119 47.60 Snout tip to vent 202 80,80 Pectoral fin anterior margin 160 64,00 Pectoral fin posterior margin 141 56.40 Pectoral fin inner margin 14 5.60 Pelvic fin anterior margin 37 14.80 Pelvic fin posterior margin 54 21.60 Pelvic fin inner margin 24 9.60 Span of pelvic fins 99 39.60 Clasper length 45 18.00 First dorsal anterior edge 39 15.60 First dorsal posterior edge 26 10.40 First dorsal inner edge 7 2.80 Second dorsal inner edge 7 2.80 Interdorsal distance 27 10.80 Second dorsal to caudal birth 24 9.60 Total body weight in gram 621 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 254 CHRISTIAN CAPAPÉ et al.: RECORD OF A SINGLE CLASPER SPECIMEN IN ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) FROM THE ..., 251–258 The causes of hermaphroditism in elasmobranchs species still remain unclear, and could be various and different. The causes of hermaphroditism in chondrich- thyans remains difficult to explain (Atz, 1964), and they probably have an endogenous origin, genetic and/or hor- monal as in other vertebrates. Unfavorable environmen- tal conditions cannot be neglected such as radio-activity contamination (see Yano & Tanaka, 1989), though other polluants could also be involved. Additionally, hermaph- rodite A. longicephalus from New Caledonia, including juveniles and adults, were collected with five other gono- choric species, showing that hermaphrodite specimens could live sympatrically with the gonochoric ones and reproduce (Iglesias et al., 2005). Among the causes of these reproductive abnormali- ties, lack or atrophy of claspers, Ehemann and Gonzàlez- Gonzàlez (2018) noted the most probable origin is related to the embryonic development. This opinion is in total accordance with Bensam (1965) and Moore (2015), who noted that such deformities are probably caused by intrauterine pressure exerted by other embryos in vivipa- rous species. Conversely, Bonfil (1989) suggested that the pre-natal abnormalities have a genetic origin or related to mutations. The lack of one clasper probably plays a minor role in reproduction processus due to the fact that male speci- mens introduce a single clasper during copulation (Chap- man et al., 2003). Conversely, atrophy of both claspers Tab. 2: Condition of clasper and pelvic fin (lack and/or atrophy) observed in some elasmobranch species recorded from different marine areas. Tab. 2: Stanje klasperja in trebušne plavuti (odsotnost ali atrofija), ugotovljeno pri nekaterih vrstah hrustančnic iz različnih morskih predelov. Species Region Condition of claspers and pelvic fins Type of abnormality Authors Raja miraletus Coast of Tunisia Lack of left clasper Hermaphroditism Quignard & Capapé (1972) Aetomylaeus nichofii Coast of Pakistan Atrophy of right clasper and pelvic fin Hermaphroditism Capapé & Desouter (1979) Bathyraja interrupta Coast of Alaska Atrophy of both claspers Hermaphroditism Haas & Ebert (2008) Pteroplatytrygon violacea Coast of Brazil Lack of left clasper Hermaphroditism Ribeiro-Prado et al. (2009) Dasyatis tortonesei Coast of Tunisia Coast of Brazil Hermaphroditism Capapé et al. (2012) Carcharhinus limbatus Coast of Mexico Atrophy of both claspers Morphological abnormality Hendon et al. (2013) Urotrygon microphthalmum Coast of Brazil Atrophy of left clasper, lack of right clasper Hermaphroditism Santander-Neto & Lessa (2013) Urotrygon chilensis Coast of Mexico Lack of left clasper Hermaphroditism Torres-Huerta et al. (2015) Bathyraja parmifera Bering Sea ? Hermaphroditism Mata (2015) Zapteryx exasperata Coast of Mexico Lack of right clasper, atrophy of left pelvic fin Hermaphroditism González et al. (2016) Myliobatis aquila Coast of Tunisia Atrophy of both claspers Hermaphroditism Rafrafi et al. (2017) Pseudobathos percellens Caribbean Sea Lack of left clasper, atrophy of right pelvic fin Hermaphroditism Ehemann & González- González (2018) Galeus melastomus Coast of Algeria Severe atrophy of right clasper and pelvic fin Morphological abnormality Capapé et al. (2019) Potamotrygon marquesi Coast of Brazil Atrophy of both claspers Morphological abnormality da Silva & da Silva Casas (2020) Zanobatos schoenleinii Coast of Senegal Lack of right clasper, atrophy of right pelvic fin Hermaphroditism Capapé et al. (2020a) Zanobatos schoenleinii Coast of Senegal Lack of right clasper, atrophy of right pelvic fin Morphological abnormality This study ANNALES · Ser. hist. nat. · 31 · 2021 · 2 255 CHRISTIAN CAPAPÉ et al.: RECORD OF A SINGLE CLASPER SPECIMEN IN ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) FROM THE ..., 251–258 reduces the success of the reproduction processus. The relationship TBW vs DW including the abnormal speci- men and other specimens of similar sizes of Z. schoenlei- nii is log TWB = -5.918 + 3.637 * log DW; r = 0.99; n = 33, displaying a positive allometry (Fig. 4), all specimens having a regular increase in development. Therefore, lack of right clasper and reduced right pelvic fin did not assume the development of the abnormal specimen in the wild, similar patterns were provided in other batoid species (Capapé et al., 2012, 2019). Unfavourable environmental conditions probably play a role in different case of abnormalities reported in elasmobranch speecies such as large exposure to pollut- ants, especially in species having a benthic life (Ribeiro- Prado et al., 2008; Diatta et al., 2013). Such patterns were mostly reported in batoids which generally inhabit sandy- muddy bottoms (Ribeiro-Prado et al., 2008). Diop et al. (2012) and Bonnin et al. (2016) noted that the coast of Senegal, especially around the touristic area of Dakar is facing to pollutants which is increasing in the wild since some decades and their impact on the local biodiversity cannot be totally ruled out. Z. schoenleinii, a benthic spe- cies remains probably the main instance due to the fact that several abnormal specimens were found in the area (Diatta et al., 2013; Capapé et al., 2020a,b; this study). Fig. 3: Ventral view of the abdominal cavity of the abnormal specimen of Zanobatus schoenle- inii. A. LLG: left Leydig’s gland, LSp: left spermiduct, LSV: left seminal vesicle, LPelF: left pelvic fin, LCl: left clasper. B. RLG: right Leydig’s gland, RSp: right spermiduct, RSV: right seminal vesicle, RPelF: right pelvic fin. Scale bar = 20 mm. Sl. 3: Spodnja stran trebušne votline neobičajnega primerka vrste Zanobatus schoenleinii. A. LLG: leva Leydigova žleza, LSp: levi semenovod, LSV: leva semenska vrečka. LPelF: leva trebu- šna plavut, LCl: levi klasper. B. RLG: desna Leydigova žleza, RSp: desni semenovod, RSV: desna semenska vrečka. RPelF: desna trebušna plavut. Merilo = 20 mm. 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 lo g TB W 2.15 2.20 2.25 2.30 2.35 2.40 2.45 log DW Abnormal Normal log TBW = -5.918 + 3.637 * log DW; r = 0.99; n = 33 Fig. 4: Relationship total body mass (TBW) versus disc width (DW) expressed in logarithmic co-ordina- tes for abnormal and normal specimens of Zanobatus schoenleinii collected from the coast of Senegal. Sl. 4: Odnos med celokupno telesno maso (TBW) in premerom diska (DW), pri neobičajnih in normalnih primerkih vrste Zanobatus schoenleinii iz senegalske obale, izražen v logaritemski skali. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 256 CHRISTIAN CAPAPÉ et al.: RECORD OF A SINGLE CLASPER SPECIMEN IN ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) FROM THE ..., 251–258 NAJDBA PRIMERKA VRSTE ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) LE Z ENIM KLASPERJEM IZ SENEGALSKE OBALE (VZHODNI TROPSKI ATLANTIK) Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@univ-montp2.fr Youssouph DIATTA & Almamy DIABY Laboratoire de Biologie marine, Institut fondamental d’Afrique noire, (IFAN Ch. A. Diop), Université Cheikh Anta Diop de Dakar, BP 206, Dakar, Senegal. Sihem RAFRAFI-NOUIRA Université de Carthage, Unité de Recherches Exploitation des Milieux aquatiques, Institut Supérieur de Pêche et d’Aquaculture de Bizerte, BP 15, 7080 Menzel Jemil, Tunisia Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2 place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France POVZETEK Avtorji poročajo o ulovu nenavadnega osebka skata vrste Zanobatus schoenleiniii (Müller & Henle 1841) iz senegalske obale. Primerek je meril 250 mm v premeru diska (DW) in tehtal 621 g telesne teže (TBW). Bil je brez desnega klasperja, kar se je videlo že s hrbtne strani, in z nerazvito in pokrnelo trebušno plavutjo, še posebej na skrajnem robu. Seciranje trebušne votline je razkrilo samčev razmnoževalni aparat, ki je bil na obeh straneh podoben. Odsotnost samičjih delov kaže na dejstvo, da ne gre za primer pravega ali lažnega hermafroditizma, le morfološko anomalijo. Ključne besede: vrste skatov, odsotnost klasperja, morfološke anomalije, senegalska obala ANNALES · Ser. hist. nat. · 31 · 2021 · 2 257 CHRISTIAN CAPAPÉ et al.: RECORD OF A SINGLE CLASPER SPECIMEN IN ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) FROM THE ..., 251–258 REFERENCES Atz, J.W. (1964): Intersexuality in Fishes. In: Armstrong, C.N. & A.J. , Marshall (eds). Intersexuality in vertebrates including man. Academic Press Inc., London, pp. 145-232. Bensam, P. (1965): On a freak embryo of the grey shark, Carcharhinus limbatus M. & H. J. Mar. Biol. Assoc. India, 7(1), 206-207. Blache, J., J. Cadenat & J. Stauch (1970): Clés de détermination des poissons de mer signalés dans l’Atlantique oriental tropical (entre le 20 ème parallèle N. et le 15 ème parallèle S. Faune trop. ORSTOM, 18, 1-479. Bonfil R., (1989): An abnormal embryo of the reef shark Carcharhinus perezi (Poey) fom Yucatan, Mexico. Northeast Gulf Sci., 10(2), 153-155. Bonnin, M., I. Ly., B. Queffelec & M. Ngaido (2016): Droit de l’environnement marin et côtier au Sénégal, IRD, PRCM, Dakar, Sénégal, 532 pp. Cadenat, J. (1951): Poissons de mer du Sénégal. Init. Afr. Inst. Fr. Afr. Noire, Dakar, 3, 1-345. Capapé, C. & M. Desoutter (1979): Nouvelle de- scription de Aetomylæus nichofii (Bloch et Schneider, 1801) (Pisces, Myliobatidæ). Premiéres observations biologiques. Cah. Indo-Pacifique, 1(3), 305-322. Capapé, C., M. N’Dao & M. Diop (1995): Don- nées sur la biologie de la reproduction de quatorze espèces de Sélaciens batoïdes capturés dans la région marine de Dakar-Ouakam (Sénégal, Atlantique orien- tal tropical). Bull. Inst. fond. Afr. noire Cheikh Anta Diop, Dakar, sér. A, 48, 89-102. Capapé, C, O. El Kamel-Moutalibi, N. Mnasri, M. Boumaïza & C. Reynaud (2012): A case of hermaphro- ditism in Tortonese’s stingray Dasyatis tortonesei from the Lagoon of Bizerte (northeastern Tunisia, central Mediterranean). Acta Ichthyol. Piscat., 42(2), 141-149. Capapé, C., A. Kassar, C. Reynaud & F. Hemida (2019): Atypical characteristics in blackmouth cat- shark Galeus melastomus (Chodrichthyes: Scyliorhini- dae) from the Algerian coast (southern Mediterrranean Sea). Thal. Sal., 41, 23-32. Capapé, C., Y. Diatta., A. Diaby, S. Rafrafi-Nouira & C. Reynaud (2020a): Aberrant hermaphroditism in striped panray, Zanobatus schoenleinii (Zanobatidae) from the coast of Senegal (E-Tropical Atlantic). Thal sal., 42, 117-116. Capapé, C., Y. Diatta, A. Diaby, S. Rafrafi-Nouira & C. Reynaud (2020b): Leucistic piebald striped panray, Zanobatus schoenleinii (Chondrichthyes: Zanobatidae), from the coast of Senegal (eastern tropical Atlantic). Annales, Ser. Hist. nat., 30(2), 193-200. Chapman, D.D., M.J. Corcoran., G.M.Harvey., S. Malan & M.S. Shivji (2003): Mating behavior of southern stingrays, Dasyatis americana (Dasyatidae). Environ. Biol. Fishes, 68 (3), 241-245. da Silva, J. P. B. & A.L. da Silva Casas (2020): Mor- phological deformities in the pelvic fin and clasper in specimens of Potamotrygon marquesi (Chondrich- thyes: Myliobatiformes: Potamotrygonidae). J. App. Ichthyol., 36(2), 189-196. Diatta, Y., C. Reynaud & C. Capapé (2013): First case of albinism recorded in striped panray, Zanoba- tus schoenleinii (Chondrichthyes: Platyrhinidae) from the coast of Senegal (Eastern Tropical Atlantic). J. Ichthyol., 53(11), 1007-1012. Diop, C., D. Dewaele, A. Toure, M. Cabral, F. Ca- zier, M. Fall, B. Ouddane & A. Diouf (2012): Study of sediment contamination by trace metals at wastewa- ter discharge points in Dakar (Senegal). J. Wat. Sci., 25(3), 185-299. Ehemann, N.R. & L.D.V. Gonzàlez-Gonzàlez (2018): First record of a single-clasper specimen of Pseudobatos percellens (Elasmobranchii: Rhi- nopristiformes: Rhinobatidae) from the Caribbean Sea, Venezuela. Acta Ichthyol. Piscat., 48(3), 261- 263. Froese, R., A.C. Tsikliras & K.I. Stergiou (2011): Editorial note on weight-length relations of fishes. Acta Ichthyol. Piscat., 41(4), 261-263. Garman, S. (1913): The Plagiostoma (Sharks, Skates, and Rays). Mem. Mus. Comp. Zool. Harvard Univ., 36(2), 1-515. Haas, D.L. & D.A. Ebert (2008): First record of hermaphroditism in the Bering skate Bathyraja inter- rupta. Northwestern Natural., 89(3), 181-185. Hendon, J.M., D.M. Koester, E.R. Hoffmayer, W.B. Driggers & A.M. Cicia (2013): Occurrence of an inter- sexual Blacktip Shark in the northern Gulf of Mexico, with notes on the standardization of classifications for this condition in elasmobranchs. Mar. Coast. Fish., 5(1), 174-180. Iglésias, S.P., D.Y. Sellos & K. Nakaya (2005): Dis- covery of a normal hermaphroditic chondrichthyan species: Apristurus longicephalus. J. Fish Biol., 66(2), 417-428. Lloris, D. & J. Rucabado (1998): Guide FAO d’identification des espèces pour les besoins de la pêche. Guide d’identification des ressources marines vivantes pour le Maroc. FAO, Rome, 263 pp. Moore, A.B.M. (2015): Morphological abnor- malities in elasmobranchs. J. Fish Biol., 87(2), 465-471. Matta, M.E. (2015): Reproductive biology of the Alaska skate Bathyraja parmifera, with com- ments on an intersexual individual. J. Fish Biol., 87(3), 664-678. Pauly, D. (1983): Some simple methods for assess- ment of tropical fishes. FAO Fish. Techn. Pap., 234, 3-10. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 258 CHRISTIAN CAPAPÉ et al.: RECORD OF A SINGLE CLASPER SPECIMEN IN ZANOBATUS SCHOENLEINII (CHONDRICHTHYES: ZANOBATIDAE) FROM THE ..., 251–258 Rafrafi-Nouira, S., O. El Kamel-Moutalibi, K. Ounifi-Ben Amor, M.M. Ben Amor & C. Capapé (2017): A case of hermaphroditism in the common eagle ray Myliobatis aquila (Chondrichthyes: Myliobatidae), re- ported from the Tunisian coast (Central Mediterranean). Annales, Ser. Hist. Nat., 27(1), 43-48. Ribeiro-Prado, C.C., M.C. Oddone, M. M. Bueno Gonzalez,., A. Ferreira de Amorim & C. Capapé (2008): Morphological Abnormalities in Skates and Rays (Chondrichthyes) from off Southeastern Brazil. Arq. Cienc. Mar. Fortaleza, 41(2), 21-28. Ribeiro-Prado, C.C., M.C. Oddone, A. Ferreira de Amorim & C. Capapé (2009): An abnormal hermaph- rodite pelagic stingray Pteroplatytrygon violacea (Dasyatidae) captured off southern coast of Brazil. Cah. Biol. Mar., 50(1), 91-96. Sanches, J.G. (1991): Catálogo dos principais peixes marinos da República da Guiné-Bissau. Publi- caçoes avulsas do Instituto Nacional de Investigação das Pescas, Lisboa, 16, 1-429. Santander-Neto, J. & R. Lessa (2013): Hermaphro- ditic smalleyed roundray (Urotrygon microphtalmum) from north-eastern Brazil. Mar. Biodiver. Rec., 6, e60. Séret, B. (2016): Zanobatus maculatus, a new species of panray from the Gulf of Guinea, eastern central Atlantic (Elasmobranchii: Batoidea: Zanobati- dae). Zootaxa, 4161(4), 509-522. Torres-Huerta, S.F., J. Meraz, P.E. Carrasco-Bautista. & P.L Diaz-Carbadillo (2015): Morphological abnor- malities of round rays of the genus Urotrygon in the Gulf of Tehuantepec. Mar. Biodiver., 46(1), 309-315. Yano K. & S. Tanaka (1989): Hermaphroditism in the lantern shark Etmopterus unicolor (Squalidae, Chondrichthyes). Jap. J. Ichthyol., 26(3), 338-345. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 259 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 FAVNA FAUNA FAUNA ANNALES · Ser. hist. nat. · 30 · 2020 · 1 260 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 261 received: 2021-11-17 DOI 10.19233/ASHN.2021.31 NEW EVIDENCE OF THE OCCURRENCE OF KNOUTSODONTA PICTONI (NUDIBRANCHIA, ONCHIDORIDIDAE) IN THE NORTHERN ADRIATIC Ana FORTIČ, Domen TRKOV & Lovrenc LIPEJ Marine Biology Station Piran, National Institute of Biology, Slovenia e-mail: Ana.Fortic@nib.si Marco FANTIN Sistiana Diving, Italy Saul CIRIACO WWF Miramare MPA, Italy ABSTRACT The authors present new data on the recently described nudibranch Knoutsodonta pictoni Furfaro & Trainito, 2017 in the Gulf of Trieste (northern Adriatic Sea). We hereby present the first record of this species in Slovenian territorial waters. A total of 22 specimens of K. pictoni were recorded by diving in the period from 2017 to 2021 at five localities in the Gulf of Trieste. All specimens were found in precorallig- enous habitats in the depth range of 5 to 9 m, feeding on the encrusting bryozoan Reptadeonella violacea (Johnston, 1847). Numerous finds indicate that this only recently described and therefore little known nudibranch is much less rare than previously thought. Key words: Knoutsodonta pictoni, Gulf of Trieste, sea slug, precoralligenous, cryptic species NUOVE PROVE DELLA PRESENZA DI KNOUTSODONTA PICTONI (NUDIBRANCHIA, ONCHIDORIDIDAE) NELL’ADRIATICO SETTENTRIONALE SINTESI Gli autori presentano nuovi dati su una specie di nudibranco descritta recentemente, Knoutsodonta pictoni Furfaro & Trainito, 2017, nel Golfo di Trieste (Adriatico settentrionale). L’articolo fornisce il primo ritrovamento della specie nelle acque territoriali slovene. Un totale di 22 esemplari di K. pictoni sono stati trovati durante le immersioni effettuate nel periodo dal 2017 al 2021, in cinque località del Golfo di Trieste. Tutti gli esemplari sono stati rinvenuti in habitat precoralligeni, nell’intervallo di profondità da 5 a 9 m, mentre si nutrivano del briozoo incrostante Reptadeonella violacea (Johnston, 1847). I numerosi ritrovamenti indicano che questo nudibranco, descritto solo recentemente e quindi poco conosciuto, è molto meno raro di quanto si pensasse. Parole chiave: Knoutsodonta pictoni, Golfo di Trieste, lumaca di mare, precoralligeno, specie criptica ANNALES · Ser. hist. nat. · 31 · 2021 · 2 262 Ana FORTIČ et al.: NEW EVIDENCE OF THE OCCURRENCE OF KNOUTSODONTA PICTONI (NUDIBRANCHIA, ONCHIDORIDIDAE) IN THE NORTHERN ..., 261–266 INTRODUCTION Knoutsodonta pictoni Furfaro & Trainito, 2017 (Fig. 1) is a recently described nudibranch of the fam- ily Onchidorididae Gray, 1827. It is distributed in the western Mediterranean Sea in Spain (Ballesteros et al., 2016; OPK Opistobranquis, 2020), in the Tyrrhenian and Ligurian Seas in Italy (Betti et al., 2017; Furfaro & Trainito, 2017), and in the northeast Atlantic Ocean in Ireland and Scotland (Hallas & Gosliner, 2015; Furfaro & Trainito, 2017 and references therein; nudibranch.org, 2021). The first record of the species in the Adriatic Sea was reported by Furfaro & Trainito (2017) in Sistiana, Gulf of Trieste. Morphological features characteristic of the species are: elliptical and dorsally flattened body with bristly appearance; base colour dark brown with blue and white speckles on the mantle; rhinophores white with 9 to 11 lamellae; gills dark brown with 9 to 10 bipinnate branchial leaves (Furfaro & Trainito, 2017). The aim of this short note is to provide new data on the occurrence of this species in the Gulf of Trieste and on the ecology of this nudibranch, as well as reporting the first record of this species for the Slovenian coasts. MATERIAL AND METHODS Observations and sampling were carried out by scuba diving in the Italian and Slovenian parts of the Gulf of Trieste between 2017 and 2021, more specifi- cally in Sistiana and Sistiana Castelreggio in the north- ern part of the Gulf of Trieste, in Barcola near the town of Trieste, and in the southern part of the gulf, Piranček and Fiesa near the town of Portorož. In Italy, the nudibranchs were observed from 2017 to 2020. Specimens were photographed with a Sea & Sea 2G camera with a Sea & Sea DS1 strobe using Nauticam CMC1 macro lens, and identified in situ. Depth and tem- perature were recorded at all sites. In Slovenia, several bryozoan species were collected during a marine biodiversity survey in Natura 2000 sites in summer 2021. Depth and temperature were recorded. Nudibranchs and the bryozoan colonies on which they were found were identified in the laboratory and photo- graphed under a stereomicroscope (Olympus SZX16) with a digital camera (Olympus DP25), with the nudibranchs subsequently deposited in the malacological collection. Specimens were identified using the diagnostic fea- tures described by Furfaro & Trainito (2017). Systematics and validity of names were checked using the World Register of Marine Species [WoRMS]. RESULTS AND DISCUSSION A total of 22 specimens (20 of which found in Italy and 2 in Slovenia) and 6 egg masses (found only in Italy) were photographed over a five-year period (from 2017 to 2021; see Tab. 1 for details). All specimens displayed the same colour pattern with little chromatic variability. In general, this species was found in winter and summer on precoralligenous rocky bottoms 5 to 9 m deep and in a temperature zone ranging from 7 to 26°C. The habitats where the specimens were observed were located under a b c Fig. 1: Knoutsodonta pictoni; a – specimen feeding on the bryozoan Reptadeonella violacea, b – two speci- mens, and c – close-up of a specimen with visible white lamellate rhinophores (Photo: M. Fantin). Sl. 1: Knoutsodonta pictoni; a – primerek se prehranjuje na mahovnjaku Reptadeonella violacea, b – dva primerka, in c – bližinski posnetek primerka z vidnima lamelastima rinoforjema (Foto: M. Fantin). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 263 Ana FORTIČ et al.: NEW EVIDENCE OF THE OCCURRENCE OF KNOUTSODONTA PICTONI (NUDIBRANCHIA, ONCHIDORIDIDAE) IN THE NORTHERN ..., 261–266 Fig. 2: Map of the Gulf of Trieste with five localities where the specimens of Knoutsodonta pictoni were found (black dots). The numbers next to the black dots represent the localities listed in Tab. 1. Sl. 2: Zemljevid Tržaškega zaliva s petimi lokalitetami, kjer so bili najdeni primerki vrste Knoutsodonta pictoni (črni krogci). Številke poleg krogcev označujejo lokalitete, ki so navedene v Tab. 1. date locality number locality GPS N GPS E n egg mass depth (m) T (°C) 14.1.2017 1 Sistiana 45°46’7.88’’ 13°37’21.19” 2 1 7 7 21.1.2017 2 Barcola 45°41’30.53’’ 13°44’20.26” 2 1 4 7 29.1.2017 1 Sistiana 45°46’7.88” 13°37’21.19’’ 2 8 8 30.1.2017 3 Sistiana Castelreggio 45°45’58.21” 13°38’2.04” 2 8 8 4.2.2017 3 Sistiana Castelreggio 45°45’58.21” 13°38’2.04” 2 1 9 9 5.2.2017 3 Sistiana Castelreggio 45°45’58.21” 13°38’2.04” 2 8 9 18.2.2017 1 Sistiana 45°46’7.88” 13°37’21.19’’ 2 1 9 9 10.2.2018 3 Sistiana Castelreggio 45°45’58.21” 13°38’2.04” 2 1 7 10 24.2.2018 3 Sistiana Castelreggio 45°45’58.21” 13°38’2.04” 2 1 8 10 10.3.2018 1 Sistiana 45°46’7.88” 13°37’21.19’’ 1 9 11 2.6.2020 1 Sistiana 45°46’7.88” 13°37’21.19’’ 1 8,5 16 20.7.2021 4 Fiesa 45°31’38.4’’ 13°34’42.54’’ 1 7 21 29.7.2021 5 Piranček 45°31’16.75’’ 13°33’57.45’’ 1 5 26 Tab. 1: Data on the occurrence of Knoutsodonta pictoni in the Gulf of Trieste in the period 2017‒2021. Tab. 1: Podatki o pojavljanju vrste Knoutsodonta pictoni v Tržaškem zalivu v obdobju med 2017 in 2021. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 264 Ana FORTIČ et al.: NEW EVIDENCE OF THE OCCURRENCE OF KNOUTSODONTA PICTONI (NUDIBRANCHIA, ONCHIDORIDIDAE) IN THE NORTHERN ..., 261–266 stones, on molluscan shells, and on rocks. In Sistiana the nudibranch was regularly observed in 2017, 2018, and 2020, in Sistiana Castelreggio it was recorded in the winters of 2017 and 2018, and in Barcola only once, in winter 2017. The spawning activities were observed from late January to May. The egg masses were white, concentrically folded and ribbon-shaped (Fig. 3a). On one occasion, an oviphagous nudibranch, Favorinus branchialis (Rathke, 1806), was photographed devouring an egg mass of K. pictoni (Fig. 3b). With regard to find- ings along the Slovenian coast, only two specimens were found in summer 2021, both small-sized (between 3 and 4 mm), probably juveniles. The ecology of K. pictoni, being this nudibranch a recently described species, is poorly known. However, the numerous findings reported in this study indicate that it is far less rare than previously thought. All the specimens collected were found feeding on the encrusting cheilostomatid bryozoan Reptadeonella violacea (Johnston, 1847). The same was observed by Furfaro & Trainito (2017), suggesting a preferential predatory relationship. In fact, it is not uncommon for nudibranchs to feed on one prey species only (Todd & Havenhand, 1989). R. violacea is a common bryozoan species in the shallow waters of the Mediterranean Sea, living as an epiphyte in Posidonia meadows, on algae (Novosel, 2005), on the underside of stones, and on molluscan shells. Nudibranchs are mostly known as vividly coloured heterobranchs, while species with cryptic colouration are less well known. They use various camouflage strategies such as homochromy, countershading, and cryptic or disruptive colouration (Todd, 1981). These cryptic species, such as K. pictoni, were often overlooked in the past, due to their excel- lent camouflage. In fact, to date, only three species of the family Onchidorididae [K. pictoni; K. neapolitana (Delle Chiaje, 1841) and K. depressa (Alder & Han- cock, 1842)] have been recorded in the Gulf of Trieste and throughout the northern Adriatic Sea (Ciriaco & Poloniato, 2016; Zenetos et al., 2016; Furfaro & Trainito, 2017; Lipej et al., 2018; present study). There- fore, continuous monitoring is necessary to extend our knowledge of these particular species, which often go unnoticed. ACKNOWLEDGMENTS The authors would like to dedicate this paper to Barbara Camassa, a passionate diver and underwater photographer. Our special thanks go to Borut Mavrič, who provided us with samples of bryozoans for analy- sis, and Milijan Šiško, who drew the map of the locali- ties. Finally, we would like to thank two anonymous reviewers who helped us improve the article. a b Fig. 3: Spawn of Knoutsodonta pictoni; a – white ribbon with eggs on the bryo- zoan Reptadeonella violacea, b – oviphagous nudibranch Favorinus branchialis feeding with the eggs of K. pictoni (Photo: M. Fantin). Sl. 3: Mrest vrste Knoutsodonta pictoni; a – beli svitek z jajci na mahovnjaku vrste Reptadeonella violacea, b – ovifagni gološkrgar vrste Favorinus branchialis se hrani z jajci vrste K. pictoni (Foto: M. Fantin). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 265 Ana FORTIČ et al.: NEW EVIDENCE OF THE OCCURRENCE OF KNOUTSODONTA PICTONI (NUDIBRANCHIA, ONCHIDORIDIDAE) IN THE NORTHERN ..., 261–266 NOVI PODATKI O POJAVLJANJU VRSTE KNOUTSODONTA PICTONI (NUDIBRANCHIA, ONCHIDORIDIDAE) V SEVERNEM JADRANU Ana FORTIČ, Domen TRKOV & Lovrenc LIPEJ Marine Biology Station Piran, National Institute of Biology, Slovenia e-mail: Ana.Fortic@nib.si Marco FANTIN Sistiana Diving, Italy Saul CIRIACO WWF Miramare MPA, Italy POVZETEK Avtorji poročajo o novih najdbah pred kratkim opisanega polža gološkrgarja vrste Knoutsodonta pictoni Furfaro & Trainito, 2017 v Tržaškem zalivu (severni Jadran). Navajajo prvi zapis o pojavljanju te vrste za slovenske vode. V obdobju med 2017 in 2021 je bilo na potapljaških vzorčenjih popisanih skupno 22 pri- merkov vrste K. pictoni na petih lokalitetah v Tržaškem zalivu. Vsi primerki so bili najdeni v prekoraligenu v globinskem pasu med 5 in 9 m, kjer so se prehranjevali s skorjastim mahovnjakom vrste Reptadeonella violacea (Johnston, 1847). Številne najdbe kažejo, da je ta pred kratkim opisana in slabo poznana vrsta pogostejša, kot so domnevali doslej. Ključne besede: Knoutsodonta pictoni, Tržaški zaliv, gološkrgarji, prekoraligen, kriptična vrsta ANNALES · Ser. hist. nat. · 31 · 2021 · 2 266 Ana FORTIČ et al.: NEW EVIDENCE OF THE OCCURRENCE OF KNOUTSODONTA PICTONI (NUDIBRANCHIA, ONCHIDORIDIDAE) IN THE NORTHERN ..., 261–266 REFERENCES Ballesteros, M., E. Madrenas & M. Miquel (2016): Actualización del catálogo de los moluscos opisto- branquios (Gastropoda: Heterobranchia) de las costas catalanas. Spira, 6, 1-28. Betti, F., S. Bava & R. Cattaneo-Vietti (2017): Com- position and seasonality of a heterobranch assemblage in a sublittoral, unconsolidated, wave-disturbed com- munity in the Mediterranean Sea. Journal of Molluscan Studies, 83, 325-332. Ciriaco, S. & D. Poloniato (2016): Guida illustrata ai nudibranchi del Golfo di Trieste. Pandion Edizioni, Roma, 88 pp. Furfaro, G. & E. Trainito (2017): A new species from the Mediterranean Sea and North-Eastern Atlantic Ocean: Knoutsodonta pictoni n. sp. (Gastropoda Het- erobranchia Nudibranchia). Biodiversity Journal, 8(2), 725-738. Hallas, J.M. & T.M. Gosliner (2015): Family matters: the first molecular phylogeny of the Onchidorididae Gray, 1827 (Mollusca, Gastropoda, Nudibranchia). Molecular phylogenetics and evolution, 88, 16-27. Lipej, L., D. Trkov & B. Mavrič (2018): Polži zaškrgarji slovenskega morja, Nacionalni Inštitut za Biologijo, Morska Biološka Postaja, Piran. 306 pp. Novosel, M. (2005): Bryozoans of the Adriatic Sea. Denisia, 16: 231-246. nudibranch.org (2021): http://www.nudibranch. org/Scottish%20Nudibranchs/html/knoutsodonta- pictoni-01.html (accessed on 24 November 2021). OPK Opistobranquis (2020): https://opistobran- quis.info/en/ (accessed on 31 October 2021). Todd, C.D. (1981): The Ecology of Nudibranch Molluscs. Oceanography and Marine Biology: An An- nual Review, 19, 141-233. Todd, C.D. & J.N. Havenhand (1989): Nudibranch- bryozoan associations: the quantification of ingestion and some observations on partial predation among Dori- doidea. Journal of Molluscan Studies, 12(3), 795-804. Zenetos, A., V. Mačić, A. Jaklin, L. Lipej, D. Pour- sanidis, R. Cattaneo‐Vietti, S. Beqiraj, F. Betti, D. Poloniato, L. Kashta, S. Katsanevakis & F. Crocetta (2016): Adriatic ‘opisthobranchs’ (Gastropoda, Hetero- branchia): shedding light on biodiversity issues. Marine Ecology, 37(6), 1239-1255. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 267 received: 2021-08-30 DOI 10.19233/ASHN.2021.32 BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL COASTAL AREA BETWEEN BOUZEDJAR AND ARZEW (WESTERN ALGERIA) Noureddine BENABDELLAH & Djillali BOURAS Oran University, Faculty of Life Sciences and Nature, Department of Environment Sciences, Oran, Algeria e-mail: noureddine.benabdellah@univ-saida.dz Mohammed RAMDANI University Mohammed V of Rabat, Scientific Institute, Department of Zoology and Animal Ecology, Rabat, Morocco Nicolas STURARO Faculté des Sciences, Département de Biologie, Ecologie et Evolution, Océanographie biologique, 4000 Liège 1, Belgique ABSTRACT The study presents an inventory and assessing the space-time organization of mollusk communities in the midlittoral coastal area between Bouzedjar and Arzew in western Algeria. A total of 32 species of Mollusca were identified at 5 sampling stations (systematic monthly sampling) during 2016/2017. Ecological indices such as the abundance of organisms (from 1167 to 2856 ind. m-2), number of species (15 Gastropoda, 3 Bivalvia, and 1 Placophora), diversity (H’), Evenness (J’), applied to the data, indicate the coastal ecosystem is disturbed and unbalanced (particularly in Arzew) because of numerous human activities impacting this area. Thus, this study contributes to providing a distribution map and a database for the management, biomonitoring, and subsequent conservation of coastal ecosystems. Key words: Benthic Mollusca, midlittoral, inventory, population dynamics, Algeria BIODIVERSITÀ E ORGANIZZAZIONE STRUTTURALE DELLE COMUNITÀ DI MOLLUSCHI DEL PIANO MEDIOLITORALE NELLA ZONA TRA BOUZEDJAR E ARZEW (ALGERIA OCCIDENTALE) SINTESI Lo studio presenta un inventario e la valutazione dell’organizzazione spazio-temporale delle comunità di molluschi del piano mediolitorale nella zona costiera tra Bouzedjar e Arzew nell’Algeria occidentale. Un totale di 32 specie di Mollusca sono state identificate in 5 stazioni di campionamento (campionamento sistematico mensile) durante il periodo 2016/2017. Gli indici ecologici come l’abbondanza di organismi (da 1167 a 2856 ind. m-2), il numero di specie (15 Gastropoda, 3 Bivalvia, e 1 Placophora), la diversità (H’), l’uniformità (J’), applicati ai dati, indicano che l’ecosistema costiero è disturbato e squilibrato (soprattutto in Arzew) a causa delle numerose attività umane che impattano questa zona. Questo studio pertanto contribuisce a fornire una mappa di distribuzione e un database per la gestione, il biomonitoraggio e la successiva conservazione degli ecosistemi costieri. Parole chiave: molluschi bentonici, mediolitorale, inventario, dinamiche di popolazione, Algeria ANNALES · Ser. hist. nat. · 31 · 2021 · 2 268 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 INTRODUCTION Marine mollusca play an important role in the structure and function of many coastal marine environments. Since their pelagic larval stages are associated with the life cycle of many species, they can rapidly disperse over large areas (Bourdages et al., 2012). They are also considered to be an impor- tant part in the coastal food chain (Mastellar, 1987). Specific diversity largely depends upon coastal morphology (rocky, sandy, mixed shorelines), hydro- dynamics (Guibout, 1987; Aminot et al., 1994; Bouras et al., 2007; Bouras, 2013), climate mechanisms, and nutrient levels (Redfield et al., 1963; Belhadj, 2001). If abiotic factors constrain the distribution of the species, especially at large spatial scales (Pearson & Dawson, 2003), biotic interactions such as competi- tion, predation, mutualism, facilitation, or parasitism are equally important in explaining their presence in habitat at different spatial scales (Boulangeat et al., 2012; Kissling et al., 2012; Wisz et al., 2013). The studied coastal zone is a particularly fragile and sensitive complex of habitats, subject to strong demographic and economic pressures (Kies & Taibi, 2011; Belhadj, 2001). To assess the different statuses of coastal communities, it is necessary to provide information on the biodiversity and functioning of ecosystems. This kind of information is required to establish biological importance of coastal zones and monitor the impact of disturbance factors (Adam et al., 2015; Chabot et al., 2007). A variety of biological indicators are used: at community level, the occur- rence or absence of certain species, which is indica- tive of a variety of impacting factors; at ecosystem level, the structure of communities (species richness, abundance, biomass, structural indicators), biological processes (primary and secondary production, nutri- ent cycles) and food chain; structures and landscape heterogeneity, fragmentation or pollution can all be important environmental status indicators as well (Christine & Romain, 2010). This study uses Mollusca data collected from the Algerian coast to provide an updated account of specific richness, distribution area, abundance, and biological diversity of mollusks in intertidal zones along the Oran coast for the purpose of assessing and monitoring the ecological status of this marine area. The aim is to provide a factual basis for sup- porting enhanced environmental action (effective and sustainable measures to be recommended for the conservation of endangered species in this region). MATERIAL AND METHODS The study area concerns the west Algerian coast, specifically the over 120 km long area along the meridional Mediterranean coast. Monitoring focused on five stations (Fig. 1). The sites were chosen from a selection of geographical locations representative of the entire coastline of Oran, notably taking the nearby ports (Bouzedjar and Arzew) and urban areas (La Ma- drague and Arzew) as centers of pollution sources and disturbance processes. These areas clearly contribute a variety of negative impacts associated with human activities, but the magnitude of spatial and temporal impacts on the coastal ecosystems is less clear. The principal characteristics of each sampled station are grouped in Table 1. Monitoring and sampling Systematic sampling at each station was carried out monthly during the period March 2016‒February 2017. The adopted method for observing both biotic and abiotic parameters in the field involved sampling three 100 m long parallel linear transects (transects parallel to the coast) at each station. A total of 5 quadrats of 1 m² in surface area marked at 20 m intervals along each of the three transect lines were used, resulting in a total of 15 quadrats for each monthly sampling. In order to carry out non-destruc- tive sampling and respect the environment, large size Mollusca (limpets, mussels, and gastropods) were identified and counted on the spot while small size species were collected and stored in 5% formalin. Mollusca species identification was based on the work by Bucquoy et al. (1887), Locard (1891), Norsieck (1982), Fisher et al. (1987), Riedl (1991), Lindner (2012), Hayward et al. (2014), and consulted for confirmation with the museum reference collec- tion at the Scientific Institute of Rabat. The scientific names established follow the World Register Marine Species (WoRMS). Ecological indices and data processing Various indices were applied to assess the diver- sity characteristics of the Mollusca community in the space-time. Ecological indices were calculated according to the following formula: - Species richness index: S = total number of species per site; - Shannon diversity index: H’ = -Σ pi log2 pi ; - Evenness index: J’ = H’ / Hmax = H’ / log2 S (it can be expressed as a percentage %) where: Hmax = maximum diversity or equifre- quency; pi = (nj / N): relative frequency of species; nj: relative frequency of species j in the sampling unit; N: sum of specific relative frequencies (Shannon & Weaver, 1963). The main diversity indices, with the Shannon- Wiener followed by the equitability index, are used to ANNALES · Ser. hist. nat. · 31 · 2021 · 2 269 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 quantify both the taxonomic richness and the distribu- tions of the community’s taxa. These indices have also been used to make a comparison among the commu- nities of the different stations and to study temporal changes in diversity related to pollution reduction (Pearson & Rosenberg, 1978). These main indices of equitability most often consist in establishing the relationship between the measured diversity and the maximum theoretical diversity for a given sample size and number of species (Grall & Coïc, 2006). The Shannon index (H’), derived from informa- tion theory, is considered as a heterogeneity index of diversity and is more sensitive to rare species than Simpson’s index. H’ usually varies between 1 and 4.5 bits. The Shannon-Wiener index tends to 0 (minimum) when all individuals in a population belong to a sin- gle species (low values indicating the preponderant species), and to 1 (maximum) when all individuals are equally distributed over all species (Grall & Coïc, 2006). According to Picard & Courtial (2015), the Piélou evenness index (J’) measures the distribution of individuals within species, regardless of species rich- ness. The value of Piélou equitability index varies from 0 (single species dominance) to 1 (equidistribution of individuals over all species). The more this index J’ tends to 1, the more the population is scarcely con- trasted (the species is distributed in an equiprobable sample), the more it tends to 0, the more this stand is contrasted (a very varied quantitative representation of the species in the sample). For example, a value of J’ = 0.40 will mean that randomly selected individuals have only a 40% probability of being different and a 60% chance of being of the same species, therefore the population is not very diversified. Consequently, a high value of H’ can only be interpreted as stand dis- turbance if it is accompanied by the evenness index (J’). In fact, it is necessary to take both values into ac- count concomitantly in order to accurately assess the state of an environment, while assigning thresholds to the value of H’ alone is relatively inappropriate (Grall & Coïc, 2006); - PCA: Principal component analysis (PCA) consists in finding the best simultaneous representation of two sets constituting the rows and columns of a contin- gency table: observation points (stations) and variable points (species). The distributions are expressed in percentages so that the distances make sense. The data in the matrix can undergo a Log or double square root transformation in order to stabilize the variances by giving importance to rare species. The distance used is that of Chi-square. The graphs used represent a simultaneous projection of column points (stations) and line points (species) in a space having as many dimensions as there are measured variables (Ménesguen, 1980). Tab. 1: Principal characteristics of sampling stations. Tab. 1: Glavne značilnosti vzorčevalnih postaj. Stations Pollution Remarks Bouzedjar Bay (S1) The coastal environment is experiencing high levels of pollution: urbanization too close to the shore, discharges of domestic wastewater from the Bouzedjar agglomeration in the sea without prior treatment, as well as the wild degassing of fishing vessels and the discharge of defective packaging into adjacent coastal waters, contribute significantly to the deterioration of the beach and its bathing waters (Ghodbani, 2017). Limited by two rocky advances: the headland of Jebel Moul-el-Bhar in the east and Cape Figalo in the west. The bay opens to a depth of about 700 m and a length of 2 km. Presence of tar concretion on rocks and sand, because of its proximity to ports. Madagh (S2) (Non-impacted area) being relatively distant from urban and industrial anthropogenic pressures (Kherraz, 2004; Allal, 2007; Benali, 2009) Considered as reference station La madrague (S3) Close to centre of human activities (PDAU, 1995). Urban areas with high perturbance by fishermen Kristel (S4) High attendance by fishermen and national tourists during the spring and summer period. Considered as reference station Gulf of Arzew (S5) Close to centre of human activities (PDAU, 1995). Presence of tar concretion on rocks and sand, because of its proximity to ports. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 270 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 In general, we use a representation of the planes formed by two orthogonal axes, with the latter repre- senting a maximum of variance for the analysis (most of the time, the first two or three axes are used). The results are interpreted in terms of proximity between stations, between species, or between stations and species. The relative or absolute contributions of each station or species on each axis provide essential elements for interpretation, while their squares of cosine reflect a greater or lesser representativeness of the axis for the variable considered. Hierarchical ascendant classification (HAC) con- sists of grouping the closest species in the form of a dendrogram, whose length of branches represents the average or total distance between the species and groups of species, i.e., their percentage of simi- larity. The hierarchical classification is particularly interesting in analyzing differences in community structure along enrichment gradients in organic mat- ter. Easy to calculate and interpret, it has allowed for the development of several theories concerning the spatial and/or temporal evolution of the benthic fauna following pollution. While dendrograms are simple to use, they have four disadvantages (Field et al., 1982): • The hierarchy is irreversible: once a sample has been placed in a group, it loses its identity; • Dendrograms only show intergroup relations. The level of similarity indicated is that of the average of the intergroup values; • The sequence of the samples in a dendrogram is arbitrary, and two adjacent samples belong- ing to different groups are not necessarily the most similar; • Dendrograms emphasize discontinuities and force continuous series to be organized into discrete classes. Data analyses The quantitative data table was processed using R software (version: 3.4.3, year: 2017), univariate: abundance (A), number of species (S), Shannon di- versity (H’) and evenness (J’), and multivariate: PCA and HAC. To establish a comparison of the different indices of ecological diversity, ANOVA analysis was chosen. ANOVA (analysis of variance) is a statistical test well suited for comparisons of means for sample numbers > 30 (Underwood, 1997). Prior to applying ANOVA, tests of normality and homogeneity of variances were checked using the Bartlett and Levene tests, respectively. Whenever the homogeneity of vari- ances was significant (a significant difference for a protection factor of 0.5%), the one-factor ANOVA test was performed. To estimate the influence of environment char- acteristics (Oran’s coastline) on Mollusca benthic species and to visualize multidimensional data in graphics, a table of taxonomic abundances was compiled using Principal Component Analysis (PCA) and Ascending Hierarchical Classification (HAC). RESULTS Assessment of coastal water and sediment quality to determine human activity impact on the marine environment involves measurement of physicochem- ical and eco-toxicological parameters. However, since these parameters may vary naturally between different habitats, they only have descriptive value, portraying an ecosystem at a particular time, which can make it difficult to deduce the impacts of anthro- pogenic activities on benthic communities. Hence, biological criteria need to be considered in order to evaluate ecosystem statues (Dauer, 1993). Compiling baseline biological information usually begins with diversity. A total of 32 species of mollusks were identified at the 5 monitored stations; the species and the related Mollusca families are indicated in Table 2 as follows: Fig. 1: Location of study sites. A. Location of Oran on the North African coast; B. Oran coast; Sam- pling stations: S1 (Bouzedjar), S2 (Madagh), S3 (La Madrague), S4 (Kristel), and S5 (Arzew). Sl. 1: Zemljevid obravnavanega območja. A. Oran na severnoafriški obali; B. oranska obala; Vzorče- valne postaje: S1 (Bouzedjar), S2 (Madagh), S3 (La Madrague), S4 (Kristel), in S5 (Arzew). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 271 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 2 Family Species Codes S1 S2 S3 S4 S5 Aplysidae Aplysia punctata (Cuvier, 1803) e 20 . Calliostomatidae Calliostoma ziziphinum (Linnaeus, 1758) e 21 . . . . Carditidae Cardita calyculata (Linnaeus, 1758) e 25 . . Certhiidae Cerithium lividulum (Risso, 1826) e 18 . Bittium reticulatum (Da Costa, 17778) e 22 . . . . Chitonidae Chiton olivaceus (Sopengler, 1797) e 3 Columbellidae Columbella rustica (Linnaeus, 1758) e 15 . . . . Conidae Conus ventricosus (Gmelin, 1791) e 17 . . . Costellariidae Pusia ebenus (Lamark, 1819) e 29 . Pusia tricolor (Gmelin, 1791) e 30 . Epithoniidae Gyroscalla lamellosa (Lamark, 1822) e 27 . Fissurellidae Fissurella nubecula (Linnaeus, 1758) e 9 . . . . Littorinidae Melarhaphe neritoides (Linnaeus, 1758) e 1 Echinolittorina punctata (Gmelin, 1791) e 2 Muricidae Stramonita heamastoma (Linnaeus, 1758) e 19 . . . . Hexaplex trunculus (Linnaeus, 1758) e 31 . Mytilidae Mytilus galloprovincialis (Lamark, 1819) e 23 Patellidae Patella caerulea (Linnaeus, 1758) e 5 Patella ulyssiponensis (Gmelin, 1791) e 6 Patella ferruginea (Gmelin, 1791) e 7 . Patella rustica (Linnaeus, 1758) e 8 . Cymbula safiana (Lamark, 1819) e 10 . Pisaniidae Pisania striata (Gmelin, 1791) e 16 . . . Aplus dorbignyi (Payraudeau, 1826) e 26 . . Rissoidae Alvania cimex (Linnaeus, 1758) e 28 . Peringiella denticulata e 32 . . Siphonariidae Siphonaria pectinata (Linnaeus, 1758) e 4 Trochidae Phorcus turbinatus (Born, 1778) e 11 Phorcus articulatus (Lamark, 1822) e 12 . Phorcus richardi (Payraudeau, 1826) e 14 . . Steromphala rurilineata (Michaud, 1829) e 13 . . . Veneridae Calista chione (Linnaeus, 1758) e 24 . . . . Codes: Species number; Stations: S1 (Bouzedjar); S2 (Madagh); S3 (La Madrague); S4: (Kristel); S5 (Arzew); gaps: indicate the species was absent Tab. 2: Mean density (ind. m-2) of species at 5 stations of Oran littoral, between March 2016 and February 2017. Tab. 2: Srednja gostota (os. m-2) vrst na 5 postajah na oranski obali med marcem 2026 in februarjem 2017. Codes: Species number; Stations: S1 (Bouzedjar); S2 (Madagh); S3 (La M drague); S4: (Kristel); S5 (Arzew); gaps: indicate the species was absent 2 Family Species Codes S1 S2 S3 S4 S5 Aplysidae Aplysia punctata (Cuvier, 1803) e 20 . Calliostomatidae Calliostoma ziziphinum (Linnaeus, 1758) e 21 . . . . Carditidae Cardita calyculata (Linnaeus, 1758) e 25 . . Certhiidae Cerithium lividulum (Risso, 1826) e 18 . Bittium reticulatum (Da Costa, 17778) e 22 . . . . Chitonidae Chiton olivaceus (Sopengler, 1797) e 3 Columbellidae Columbella rustica (Linnaeus, 1758) e 15 . . . . Conidae Conus ventricosus (Gmelin, 1791) e 17 . . . Costellariidae Pusia ebenus (Lamark, 1819) e 29 . Pusia tricolor (Gmelin, 1791) e 30 . Epithoniidae Gyroscalla lamellosa (Lamark, 1822) e 27 . Fissurellidae Fissurella nubecula (Linnaeus, 1758) e 9 . . . . Littorinidae Melarhaphe neritoides (Linnaeus, 1758) e 1 Echinolittorina punctata (Gmelin, 1791) e 2 Muricidae Stramonita heamastoma (Linnaeus, 1758) e 19 . . . . Hexaplex trunculus (Linnaeus, 1758) e 31 . Mytilidae Mytilus galloprovincialis (Lamark, 1819) e 23 Patellidae Patella caerulea (Linnaeus, 1758) e 5 Patella ulyssiponensis (Gmelin, 1791) e 6 Patella ferruginea (Gmelin, 1791) e 7 . Patella rustica (Linnaeus, 1758) e 8 . Cymbula safiana (Lamark, 1819) e 10 . Pisaniidae Pisania striata (Gmelin, 1791) e 16 . . . Aplus dorbignyi (Payraudeau, 1826) e 26 . . Rissoidae Alvania cimex (Linnaeus, 1758) e 28 . Peringiella denticulata e 32 . . Siphonariidae Siphonaria pectinata (Linnaeus, 1758) e 4 Trochidae Phorcus turbinatus (Born, 1778) e 11 Phorcus articulatus (Lamark, 1822) e 12 . Phorcus richardi (Payraudeau, 1826) e 14 . . Steromphala rurilineata (Michaud, 1829) e 13 . . . Veneridae Calista chione (Linnaeus, 1758) e 24 . . . . Codes: Species number; Stations: S1 (Bouzedjar); S2 (Madagh); S3 (La Madrague); S4: (Kristel); S5 (Arzew); gaps: indicate the species was absent <1 ; 2 Family Species Codes S1 S2 S3 S4 S5 Aplysidae Aplysia punct ta (Cuvier, 1803) e 20 . Callio tomati Callio toma ziziphinum (Linnaeus, 1758) e 21 . . . . Carditidae Cardita calyculata (Linnaeus, 1758) e 25 . . Certhiidae Cerithium lividulum (Risso, 1826) e 18 . Bittium reticul tum (D Costa, 17778) e 22 . . . . Chitonidae Chiton olivaceus (Sopengler, 1797) e 3 Columbellidae Columbella rustica (Li n eus, 1758) e 15 . . . . Conidae Conus ventricos s (Gmelin, 179 ) e 17 . . . Costellariidae Pusia eben s (Lamark, 1819) e 29 . Pusia tricolor (Gmelin, 1791) e 30 . Epithoniidae Gyroscall lamellosa (Lamark, 1822) e 27 . Fissurellidae Fissurella nubecula (Linnaeus, 758 9 . . . . Littorinidae Melarh phe neritoides (Li naeus, 1758) e 1 Echinolittorina punctat (Gmelin, 1791) e 2 Muricidae Stramonita heamastom (Linnaeus, 1758) e 19 . . . . Hexaplex trunculus (Linn eus, 1758) e 31 . Mytilidae Mytilus galloprovincialis (Lamark, 18 9) e 23 Patellidae Patella caerulea (Linnaeus, 1758) e 5 Patella ulys iponensis (Gmelin, 1791) e 6 Patella ferrugine (Gmelin, 1791) e 7 . Patella rustica (Linnaeus, 1758) e 8 . Cymbula safiana (Lamark, 1819) e 10 . Pisaniidae Pisania striata (Gmelin, 1791) e 16 . . . Aplus dorbignyi (Payraudeau, 1826) e 26 . . Rissoidae Alvania cimex (Linnaeus, 1758) e 28 . Peringiella denticulata e 32 . . Siphonariidae Siphonaria pectinata (Linnaeus, 1758) e 4 Trochidae Phorcus turbinatus (Born, 1778) e 11 Phorcus articulatus (Lamark, 1822) e 12 . Phorcus richardi (Payraudeau, 1826) e 14 . . Steromphala rurilineata (Michaud, 1829) e 13 . . . Veneridae Calista chione (Linnaeus, 1758) e 24 . . . . Codes: Species number; Stations: S1 (Bouzedjar); S2 (Madagh); S3 (La Madrague); S4: (Kristel); S5 (Arzew); gaps: indicate the species was absent 1-10 ; 2 F mily Species Codes S1 S2 S3 S4 S5 Aplysidae Aplysia punctata (Cuvier, 1803) e 20 . C lliostomatidae Calliostom ziziphin m (Linnaeus, 1758) e 21 . . . . Carditidae Cardita calyculata (Linnaeus, 1758) e 25 . . Certhiidae Cerithium lividulum (Risso, 1826) e 18 . Bittium reticulatum (Da Costa, 17778) e 22 . . . . Chitonidae Chiton olivaceus (Sopengler, 1797) e 3 Columbellidae Columbella rustica (Linnaeus, 1758) e 15 . . . Conidae Conus ventricosus (Gmelin, 1791) e 17 . . . Costellariidae Pusia ebenus (Lamark, 1819) e 29 . Pusia trico r (Gmelin, 1791) e 30 . Epithoniidae Gyroscalla l mellosa (Lamark, 1822) e 27 . Fissurellidae Fissurella nub cula (Linnaeus, 1758) e 9 . . . . Littorinidae Melarh phe neritoides (Linnaeus, 1758) e 1 Echinolittorina punctata (Gmelin, 1791) e 2 Muricidae Stramonita heamastoma (Linnaeus, 1758) e 19 . . . . Hexaplex tru cul (Linnaeus, 1758) e 31 . Mytilidae Mytilus g lloprovincialis (Lamark, 1819) e 23 Patellidae Patella caerulea Linnaeus, 1758) e 5 Patella ulyssipon nsis (Gmelin, 1791) e 6 P tella ferrugin (Gmelin, 1791) e 7 . P tella rustica (Linnaeus, 1758) 8 . Cymbula safiana (Lamark, 1819) e 10 Pisaniidae Pisania striata (Gm lin 791 e 16 . . . Aplus dorbig yi (Payra deau, 1826) e 26 . . Rissoidae Alv nia cimex (Linnaeus, 1758) e 28 . Peringiella denticul ta e 32 . . Siphonariidae Siphonaria p ctinata (Linnaeus, 1758) e 4 Trochidae Pho cus turbinatus (Born, 1778) e 11 Phorcus articulatus (Lamark, 1822) e 12 . Phorcus richardi (Payraudeau, 1826) e 14 . . Ster mphala rurilineata (Michaud, 1829) e 13 . . . Veneridae Calista chione (Linnaeus, 1758) e 24 . . . . Codes: Species number; Stations: S1 (Bouzedjar); S2 (Madagh); S3 (La Madrague); S4: (Kristel); S5 (Arzew); gaps: indicate the species was absent 11-50 ; 2 Family Species Codes S1 S2 S3 S4 S5 Aplysidae Aplysia punctata ( uvi r, 1803) e 20 . Calliostomatidae Calliostoma ziziphinum (Linnaeus, 1758) e 21 . . . . Carditidae Cardita calyculata (Linnaeus, 1 58) e 25 . . Certhiidae Cerithium lividulum (Risso, 1826) e 18 . Bittium reticulatum (Da Costa, 17778) e 22 . . . . Chitonidae Chiton olivaceus (Sop ngler, 1797) e 3 Col mbellidae Columb lla rustica (Linnaeus, 758) e 15 . . . . Conidae Con ventricosus (Gmelin, 1791) e 17 . . . Costellariidae Pusia ebenus (Lamark, 1819) e 29 . Pusia tricolor (Gm lin, 1791) e 30 . Epithoniidae yroscalla lamellosa (Lamark, 1822) e 27 . Fissurellidae Fissurella nubecula (Linnaeus, 1758) e 9 . . . . Littorinidae Melarhap n ritoides (Linnaeus, 1758) e 1 Echinolittorina punctata (Gm lin, 1791) e 2 Muricidae Stramonita heamastoma (Linnaeus, 1758) e 19 . . . . H xaplex trunculus (Linnaeus, 1758) e 31 . Mytilidae Mytilus galloprovincialis (Lamark, 1819) e 23 Patellidae Patella caerulea (Linnaeus, 1758) e 5 Patella ulyssiponensis (Gmelin, 1791) e 6 Patella ferruginea (Gmelin, 179 ) e 7 . P tella rustica (Linnaeus, 1758) e 8 . Cymbula safiana (Lamark, 1819) e 10 . Pisaniidae Pisani striata (Gmelin, 1791) e 16 . . . Aplus dorbignyi (Payraudeau, 1826) e 26 . . Rissoidae Alvania cimex (Linnaeus, 1758) e 28 . Peringiella denticulata e 32 . . Siphonariidae Siphonaria pectinata (Linnaeus, 1758) e 4 Trochidae Phorcus turbinatus (Born, 1778) e 11 Phorcus articulatus (Lamark, 1822) e 12 . Phorcus richardi (Payraudeau, 1826) e 14 . . Steromphala rurilineata (Michaud, 1829) e 13 . . . Veneridae Calista chione (Linnaeus, 1758) e 24 . . . . Codes: Species number; Stations: S1 (Bouzedjar); S2 (Madagh); S3 (La Madrague); S4: (Kristel); S5 (Arzew); gaps: indicate the species was absent 51-300 ; 2 Fa ily Species Codes S1 S2 S3 S4 S5 Aplysidae Aplysi punctata (Cuvier, 1803) e 20 . Calliostomatidae Calliostoma ziziphi um (Linnaeus, 1758) e 21 . . . . Carditidae C rdita c lyculata (Linnaeus, 1758) e 25 . . C rthiidae Cerithi m lividulum (Risso, 1826) e 18 . Bi ti m reticul tum (Da Costa, 17778) e 22 . . . . Chitonidae Chiton olivaceus (Sopengler, 1797) e 3 Columb llidae Columbella rustica (Linnaeus, 1758) e 15 . . . . Conida Conus ventricosus (Gmelin, 1791) e 17 . . . Cost llariidae Pusia ebenus (Lamark, 1819) e 29 . Pusia tricolor (Gmelin, 1791) e 30 . Epithoniidae Gyrosca a l mellosa (Lamark, 1822) e 27 . Fissurellidae Fiss r lla nub cula (Linnaeus, 1758) e 9 . . . . Littorinidae Melarhaphe neritoid s (Linn eus, 1758) e 1 Echinolittorin punctata (Gmelin, 1791) e 2 Muricidae S ramonit heamastoma (Linnaeus, 1758) e 19 . . . . Hexaplex trunculus (Linnaeus, 1758) e 31 . Mytilida Mytilus galloprovincialis (Lamark, 1819) e 23 Patellida Patella ca rulea (Linnaeus, 1758) e 5 Patella ulys ponensis (Gmelin, 1791) e 6 Patella ferrugin a (Gmelin, 1791) e 7 . Pa ella rustica (Linnaeus, 1758) e 8 . Cymbul safiana (Lamark, 1819) e 10 . Pisaniidae Pis nia striata (Gmelin, 1791) e 16 . . . Aplus dorbignyi (Payraudeau, 1826) e 26 . . Rissoidae Alvania cimex (Linnaeus, 1758) e 28 . Peringiella denticulata e 32 . . Siphonariidae Siphonari pecti ata (Linnaeus, 1758) e 4 Trochidae Phorcus turbinatus (Born, 1778) e 11 Phorcus articulatus (Lamark, 1822) e 12 . Phorcus richa di (Payraudeau, 1826) e 14 . . Steromphala rurilineat (Michaud, 1829) e 13 . . . V neridae Calista chione (Linnaeus, 1758) e 24 . . . . Codes: Species number; Stations: S1 (Bouzedjar); S2 (Madagh); S3 (La Madrague); S4: (Kristel); S5 (Arzew); gaps: indicate the pecies was absent 301-1000 ; 2 Fa ily Species Codes S1 S2 S3 S4 S5 Aplysidae Aplysia p nctata (Cuvier, 1803) e 20 . C lliostomatidae Calliostom ziziphinum (Linnaeus, 1758) e 21 . . . . Carditid e Cardit calyculata (Linnaeus, 1758) e 25 . . Certhiidae Cerithium lividulum (Risso, 1826) e 18 . Bittium reticulatum (Da Costa, 17778) e 22 . . . . Chitonida Chiton olivaceus (Sopengler, 1797) e 3 Columbellidae Columbella rustica (Linnaeus, 1758) e 15 . . . . Co id Conus ventricosus (Gmelin, 1791) e 17 . . . Costellariidae Pusia ebenus (Lamark, 1819) e 29 . Pusia tricolor (Gmelin, 1791) e 30 . Epithoniidae Gyroscalla lamellosa (Lamark, 182 ) e 27 . Fissurellidae Fissurella nubec la (Linnaeus, 1758) e 9 . . . . Littorinidae M larhaph neritoide (Linnaeus, 1758) e 1 Echinolittorina punctata (Gmelin, 1791) e 2 Muricidae Stra onita h amastoma (Linnaeus, 1758) e 19 . . . . Hexaplex tru cul (Linnaeus, 1758) e 31 . Mytilidae Mytilus galloprovincialis (Lamark, 1819) e 23 Patellidae Pat lla ca rulea (Linnaeus, 1758) e 5 Pat lla uly siponensis (Gmelin, 1791) e 6 Pat ll ferrugi ea (Gmelin, 1791) e 7 . P t lla rustica (Linnaeus, 1758) e 8 . Cy bula safiana (Lamark, 1819) e 10 . Pisaniidae Pisania striata (Gmelin, 1791) e 16 . . . Aplus dorbignyi (Payraudeau, 1826) e 26 . . Rissoidae Alvania cimex (Linnaeus, 1758) e 28 . P ringiella denticulata e 32 . . Siphonariid e Siphon ria pectinata (Linnaeus, 1758) e 4 Trochidae Phorc turbi atus (Born, 1778) e 11 Phorc articulatus (Lamark, 1822) e 12 . Phorcus richardi (Payraudeau, 1826) e 14 . . Steromph la rurilineata (Michaud, 1829) e 13 . . . Veneridae C lista chione (Linnaeus, 1758) e 24 . . . . Cod : Species number; tations: S1 (Bouzedjar); S2 (Mad gh); S3 (La Madrague); S4: (Kristel); S5 (Arzew); gaps: indicate the species was absent >1000 ind m-2 it ii ANNALES · Ser. hist. nat. · 31 · 2021 · 2 272 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 • Gastropoda (15): Aplysiidae, Calliostoma- tidae, Cerithiidae, Columbellidae, Conidae, Costellariidae, Epitoniidae, Fissurellidae, Lit- torinidae, Muricidae, Patellidae, Pisaniidae, Rissoidae, Siphonariidae, Trochidae; • Bivalvia (3): Mytilidae, Carditidae, Veneridae; • Polyplacophora (1): Chitonidae. Twelve species were common along all the studied littoral transects: Melarhaphe neritoides, Echinolittorina punctata, Chiton olivaceus, Sipho- naria pectinata, Pattela caerulea, P. ulyssiponensis, P. ferruginea, P. rustica, Fissurella nubecula, Phorcus turbinatus, Stramonita haemastoma, and Mytilus gal- loprovincialis. Thirteen species less common species only oc- curred at some of the stations: Phorcus articulatus, Steromphala rarilineata, Phorcus richardi, Colum- bella rustica, Pisania striata, Conus ventricosus, Cerithium lividulum, Calliostoma zizyphinum, Bit- tium reticulatum, Callista chione, Cardita calyculata, Aplus dorbignyi, and Peringiella denticulata. Seven species were present at one station only: Cymbula safiana, Pusia ebenus, Gyroscala lamellosa, Aplysia punctata, Hexaplex trunculus, Pusia tricolor, and Alvania cimex. Mollusca assemblages The relative abundances of different taxonomic groups (Fig. 2) highlight the similarities and differences in specific composition between the studied sites. These are commented upon as follows: Bouzedjar (S1) displayed a low global number of species (S = 15). Melarhaphe neritoides was abundant (54%), followed by Echinolittorina punctata (30%). (M. neritoides and E. punctata were common and abundant all along the studied coast [84%]). Mytilus galloprovincialis (6%) ranked 3rd but with a very low frequency of occurrence (ƒ = 3%). Siphonaria Melarhaphe neritoides 66% Echinolittorina punctata 27% Phorcus turbinatus 1% Pattela caerulae 1% Mytilus galloprovincialis 1% Patella ulyssiponensis 1% Siphonaria pectinata 1% Patella rustica 1% Autres 1% STATION S2 Fig. 2: Spatial distribution (%) of Mollusca species in the midlittoral zone of Oran between March 2016 and February 2017. Sl. 2: Prostorska razširjenost (%) mehkužcev v bibavičnem pasu pri Oranu med marcem 2016 in februarjem 2017. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 273 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 pectinata was also observed in high abundance (4%) at S1 and in a similar abundance at S5 (2%). The species present at S1 were: Patella rustica (2%), then P. ulyssiponensis, P. caerulea, Phorcus turbinatus, Stramonita haemastoma and Mytilus galloprovincia- lis (≈1% each species). The remaining species, each representing less than 1% of the total Mollusca bio- diversity, were (in descending order): Patella ferrug- inea, Chiton olivaceus, Fissurella nubecula, Cymbula safiana, Stramonita haemastoma, Columbella rustica, Calliostoma zizyphinum. At Madagh (S2) global species richness was high: 23 species. The most abundant in this Mol- lusca community were Littorina species (93%). Also abundant were Melarhaphe neritoides (66%), fol- lowed by Echinolittorina punctata (27%). Phorcus turbinatus, Pattela caerulea, Mytilus galloprovincia- lis, Patella ulyssiponensis, Pattela rustica and Sipho- naria pectinata were occasionally observed (Tab. 1, Fig. 2). The remaining species, representing only 1% of the totality, appeared in the following de- scending order: Patella ferruginea, Chiton olivaceus, Steromphala rarilineata, Fissurella nubecula, Phor- cus articulatus, P. richardi, Stramonita haemastoma, Columbella rustica, Pisania striata, Callista chione, Conus ventricosus, Calliostoma zizyphinum, Gyro- scala lamellosa, Pusia ebenus, Bittium reticulatum, Cymbula safiana. La Madrague (S3) revealed 21 species. Overall, the Littorines predominated (86%): more specifical- ly, Melarhaphe neritoides (68%), followed by Echi- nolittorina punctata (18%), and Mytilus galloprovin- cialis (6%). Unlike in other sites, Chiton olivaceus (2%) was more abundant at this station. The species Patella rustica, Phorcus turbinatus, Pattela caerulea, Siphonaria pectinata and Patella ferruginea all shared the 5th position. The remaining species, rep- resenting only 1% of all Mollusca, occurred in the following descending order: Patella ulyssiponensis, Phorcus articulatus, Fissurella nubecula, Stramonita Tab. 3: Results from the ANOVA analysis on the spatial variation of Mollusca general descriptors (total density, number of species, Shannon-Wiener diversity index and Pielou’s evenness [J’] of density of all Mollusca taxa) between March 2016 and February 2017. Tab. 3: Rezultati prostorske variabilnosti glavnih deskriptorjev (celotna gostota, število vrst, Shannon-Wiennerjev diverzitetni indeks in Pieloujev indeks enakomernosti porazdelitve [J’]) na podlagi analize ANOVA. Sources Df Sum Sq Mean Sq F Pr(>F) Total density Stations Residuals Significant values 4 36700948 9175237 30.76 1.87e-13 *** 55 16406493 298300 S1(a); S2(b); S3(b); S4(c); S5(b) Number of species (S) Stations Residuals 4 249.9 62.47 13.87 0.0000000696 *** 55 247.8 4.51 Significant values S1(a); S2(a); S3(a); S4(a); S5(b) Diversity (H’) Stations Residuals 4 3.834 0.9586 9.675 0.00000536 *** 55 5.450 0.0991 Significant values S1(b); S2(b); S3(b); S4(b); S5(a); Evenness (J’) Stations Residuals 4 0.3817 .09543 15.13 0.0000000211 *** 55 0.3468 0.00631 Significant values S1(c); S2(bc); S3(b); S4(b); S5(a); - Significant codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 - significant values have different letter (a, b, c); Df: degrees of freedom, Sum Sq: summer square, Mean Sq: mean square; F statistic; Pr( 0.05). On the other hand, the ANOVA1 test (Fig. 3, Tab. 3) assigned to stations S2, S3, and S5 the same letter of significance (b), which shows that the density is statistically similar (p > 0.05). Still according to the ANOVA1 test, these 3 stations were very significantly different (p < 0.001) from S1 (489 ind.m-2)a and S4 (2856 ind.m-2)c. The highest heterogeneity was observed at S4, the low- est at S1. This suggests that whereas stations S2, S3, and S5 recorded more homogeneous communities of Mollusca, the latter formed very heterogene- ous communities at stations S1 and S4, in terms of density. Our data have also shown an average annual density (< 1 ind.m-2) and a reduced annual frequency of occurrence (ƒ < 10%) for several taxa across the entire Oran coast. Number of species With regard to the number of species (S), we have noticed that there are two considerably different groups of stations. The average number of species differs significantly (p < 0.001) between station S5 (18)b and the group of stations S1 (12)a, S2 (14)a, S3 (14)a, and S4 (13)a (Tab. 3, Fig. 3). Diversity H’ The diversity index (H’) of Molluscan species follows the same pattern as that of the number of species (Fig. 2). Based on Table 3, we can see that the diversity at station S5 (0.84)a is signifi- cantly lower (p <0.001) compared to the group of stations S1 (1.62)b, S2 (1.38)b, S3 (1.29)b, and S4 (1.29)b. Evenness J’ Regarding evenness (J’), the results obtained from ANOVA1 test differ from other variables. ANOVA1 test (Tab. 3) assigned stations S2, S3, and S4 the same letter (b) of significance. That means that the index (J’) was statistically similar (p > 0.05). The index (J’) of station S2 (36.62)bc was not significantly different from that of station S1 (44.85)c; in contrast, it was very significantly different (p < 0.001) from S5 (0.20)a. Index (J’) in stations S3 (0.35)b and S4 (0.35)b was significantly different from that of S1 (0.45)c and S5 (0.20)a. Sta- tion S1 had the highest index (J’), the lowest index was encountered at station S5 (Fig. 3). 0 5 10 15 20 25 M A M J J A S O N D J F N um be r o f s pe ci es (S ) 0,00 0,50 1,00 1,50 2,00 2,50 M A M J J A S O N D J F D iv er is ty (H ') 0 10 20 30 40 50 60 70 M A M J J A S O N D J F Ev en ne ss (J ') Time (months) 0 1000 2000 3000 4000 5000 M A M J J A S O N D J F D en si ty (i nd .m -²) S1 S2 S3 S4 S5 Fig. 4: Temporal variation of general descriptors (density, number of species, Shannon-Wiener diversity index and Pielou’s evenness) between March 2016 and February 2017. Sl. 4: Časovne spremembe glavnih deskriptorjev (gostota, število vrst, Shannon-Wienerjev diverzitetni indeks ter Pieloujev indeks enakomernosti porazdelitve) med marcem 2016 in februarjem 2017. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 276 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 Temporal variability The monthly results of the ecological indices of Mollusca are shown in Fig. 4. Total density The results show that the total density at station S4 decreases below 2000 ind.m-2 only in March and April, while exceeding 4000 ind.m-2 in May. Stations S3 and S5 have a total density comprised between 1000 and 2000 ind.m-2 almost year round. At station S3, the density exceeds 2000 ind.m-2 in March, Octo- ber, and January, while at station S5 it exceeds 1500 ind.m-2 in June, July, and November. A density of less than 1000 ind.m-2 was recorded in July at station S3, as well as in December and February at S5. Station S2 has a total density of 500 to 1000 ind.m-2 almost year round. The density drops below 1500 ind.m-2 in November, January, and February, dropping below 500 ind.m-2 only in July. Unlike other stations, the total density at S1 is usually between 300 and 800 ind.m-2, dropping below 300 ind.m-2 in May only. Number of species For stations S1 to S4 we note that the annual aver- age number of species varies between 12 and 14. At station S1, more than 13 species have never been found (February, May, October). At S2, the number of species reached 17 and 19 in July and December, respectively. At S3, the number of species was 16 in May and December, increasing to 17 in March. The number of species at S4 decreased from 18 species in May to only 10 species in August. Exceptionally, at station S5, the annual average number of species was 18. The species richness exceeded 18 species during two three-month periods: from March to June, and between November and January. The species richness never dropped below 14 species throughout the year. Diversity H’ From S1 to S4, the diversity (H’) recorded during most months was greater than 1. At S5, the diversity was H’ ≤ 1 most of the time, except in December and January, when H’ was 1.17 and 1.21, respectively. At S1 the diversity decreased in January to a minimum of 0.93, while a maximum of 2 was reached in July. At station S2, the diversity was 0.66 and 0.79 in January and February, respectively, while in July it reached a maximum of 2.37. At station S3, diversity fell below the value of 1 only during November and January, to 0.72 and 0.78, respectively. Unlike other stations, the value of H’ at S4 remained between 1 < H’ < 2 throughout the year. Evenness J’ Most of the year, equitability (J’) ranged from 0.20 to 0. The weakest evenness was recorded at 0.11 in October at station S5, the highest at 0.58 in July at station S2. At station S1, the index remained ≥ 0.40 throughout the year, with the exception of January when it equaled 0.27. At S2, evenness reached its maximum in July with a value of 0.58, while its minimum, 0.18, was recorded in January. At S3, J’ reached the highest value of 0.54, also in July, and the lowest 0.22 in November. At station S4, evenness was above 0.30 for most of the year. In September, J’ reached its lowest value of 0.29, while its high- est value equaled 0.47 in April. Unlike station S2, evenness at S5 remained below 0.30 throughout the year. The highest value (J’ = 0.27) was recorded in December and January, the lowest (J’ = 0.11) in October. Multivariate analysis Multivariate analysis makes it possible to sum- marize the data correlation structure described by several quantitative variables, by identifying the underlying factors common to the variables (com- plementary qualitative variables), and is able to explain a large part of the variability of data. The total information given in Fig. 5 on axes 1 and 2 is 28.79% (axis 1: 18.24% and axis 2: 10.55%). In the correlation circle, the species are divided into 4 large groups, two of them are distrib- uted with respect to axis 1, the third is positioned on axis 2, and the fourth is diagonal. The opposing groups are negatively correlated with each other: the first group of species is positioned on axis 1 in a positive way and is well correlated with north coast exposure (Expos. N), central location on the coast (L. C), and the tender nature of the rock (RT). These species are: Fissurella nubecula (e11), Patella ulyssiponensis (e7), Patella ferruginea (e8), Patella caerulea (e6), Patella rustica (e9), Pattela caerulea (e5), Chiton olivaceus (e3) and slightly less Stra- monita haemastoma (e19); the second group is still positioned on axis 1, but oppo- site the first group. The species in this group are positively correlated with east coast exposure (Expos. E), extreme east location (L. EE), hard nature of the rock (RD), proximity of oil port (PPt) and fishing (PPc), and location a little further away from urban areas (ZU). These are: Cerithium lividulum (e18), Phorcus articulatus (e12), Calliostoma zizyphinum (e21), Aplus dorbignyi (e26), Pusia tricolor (e30); the third group is positioned on axis 2: the species which are positively correlated with the west location on the Oran coast (L. OC): Pusia ebenus (e29), Gyroscala lamellosa (e27), Steromphala rarilineata (e13), Pisania striata (e16), ANNALES · Ser. hist. nat. · 31 · 2021 · 2 277 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 Conus ventricosus (e17). The species which are positively correlated with the east location of the Oran coast (L. EC): Hexaplex trunculus (e31), Mytilus galloprovincialis (e23), Echinolittorina punctata (e2). The third group, on the other hand, is positioned relative to axis 2. It is correlated only with location (East and West), while it is indifferent to other factors. This group is divided into two subgroups; the fourth group concerns species that are positively correlated to two axes simultaneously. Within it, two sub- groups are distinguished: Siphonaria pectinata (e4), Bittium reticulatum (e22), Cardita calyculata (e25). These species are not only posi- tively correlated with (L. EC) but also positively correlated with (PPt), (PPc), (RD), (L. EE), and (Expos. E). Columbella rustica (e15). This species is not only posi- tively correlated with (L. OC), but also positively correlated with (PPt), (PPc), (RD), (L. EE), and (Expos. E). Species such as Melarhaphe neritoides (e1), Cym- bula safiana (e10), Phorcus richardi (e14), Aplysia punctata (e20), Callista chione (e24), Alvania cimex (e28), Callista chione (e32), are too far from the cor- relation circle (close to the center) to be interpreted on these two axes (see other axes). DISCUSSION Biodiversity assessment (Spatial distribution of species diversity indices) According to Fig. 2 and 3, the values of the Shannon index (H’) at stations S1, S2, S3, and S4 are 1.62b, 1.38b, 1.29b, and 1.29b, respectively. According to Table 2, the statistical analysis (ANOVA1) reveals no significant dif- ference (p > 0.05). Compared to other stations, S5 is the Fig. 5: Correlation circle from the principal component analysis (PCA) applied to the density of the Mollusca species with respect to environment characteristics. PPt: oil port, PPc: fishing port, ZU: urban areas, RD: hard nature of the rock, RT: tender nature (limestone) from rock L. EE: Extreme-East location, L. EC: East location, L. OC: West location, L. C: center location, L. OE: extreme-West location, Expo. E: Est exposure, Expos. O: West exposure, Expos. N: North exposure. e1, e2, …, e32: Mollusca species. Sl. 5: Korelacijski obroč na podlagi metode PCA (principal component analysis) izračunan na temelju povezav med gostoto mehkužcev in okoljskih značilnosti. PPt: tankerska luka, PPc: ribiško pristanišče, ZU: urbana okolja, RD: trša kamnina, RT: mehkejša kamnina (apnenec), L. EE: skrajno vzhodna lokacija, L. EC: Vzhodna lokacija, L. OC: Zahodna lokacija, L. C: osrednja lokacija, L. OE: skrajno zahodna lokacija, Expo. E: vzhodna izpostavljenost, Expos. O: zahodna izpostavljenost, Expos. N: severna izpostavljenost. e1, e2, …, e32: vrste mehkužcev. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 278 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 most remarkable one, with a significantly lower index H’ = 0.84a (p < 0.001). Usually, an environment is considered to be unbal- anced when the index remains below 0.5. The low indices observed at all stations are largely due to the abundance of two periwinkle species: Melarhaphe neri- toides and Echinolittorina punctata, which colonized the wave impacted area at the mid- and supralittoral levels. However, having the highest Shannon index H’ (1.62) and the lowest Hmax (3.60), station S1 shows a rap- prochement between the value of the diversity index (H’) and its maximum theoretical value (Hmax). Therefore, a significantly higher evenness index (J’ = 0.45)c confirms that this station is more balanced than the other ones. According to Picard & Courtial (2015), a high evenness index may be due to a disturbed or recently installed eco- system if accompanied by low biodiversity (species rich- ness) ‒ i.e., when the environment has a high equitability index, it is supposed to be balanced, but in the presence of low species richness this may indicate a recent environ- ment (young). This is the case of Bouzedjar (S1), where sampling was carried out on natural rock cobs emplaced to fight the erosion of the beaches near the fishing port and at the same time prevent the silting of the port by the sand of the beach (Ghodbani, 2017). S1 is characterized (Fig. 5) mainly by the absence of Phorcus richardi and Bit- tium reticulatum and by a weak presence of Melarhaphe neritoides. It is also characterized by a strong presence of Siphonaria pectinata and Cymbula safiana compared to other stations. It should be noted that C. safiana is usually found in high density on harbor dykes (Frenkiel & Moueza, 1982; Rivera-Ingraham et al., 2011a, c). Regarding stations S2, S3 and S4, the statistical analy- sis of their respective evenness indices 0.37bc, 0.35b, and 0.35b did not show any significant difference (p > 0.05). This means that the Mollusca communities at these sta- tions should be considered as similar and homogeneous. Although the absolute value of the equitability index for station S2 (J’= 0.37)bc seems different from that of S1 (J’ = 0.45)c, they are considered to be statistically similar (p > 0.05) (Tab. 3). If S2 and S4 are more or less distant from urban areas, this is not the case for S3 where dwellings are situated within a few meters of the foreshore, though most are only inhabited during the summer season. Conversely, Arzew (S5) is visibly more polluted (Ben- mecheta & Belkhir, 2016). The transect area is very close to the oil and gas port of Arzew (industrial pollution). An average mercury concentration of 2.36 µg g-1 was reported by Bouchentouf (2015) and even closer (a few meters) to housing (urban pollution). The comparison of the equitability indices revealed that station S5 (J’ = 0.20) a had a very significant spatial heterogeneity compared to the other stations (p < 0.001). On the one hand, this strong imbalance may be due to the high abundance of certain tolerant and opportun- istic species, such as Melarhaphe neritoides, Siphonaria pectinata, Phorcus articulatus, and Cerithium lividulum, proliferating especially during the summer period (urban discharges). According to Pearson & Rosenberg (1978) and Grall & Coïc (2006) the peak of opportunists (with a small number of species present in high abundance) is thus expressed by low values of H’ and J’. Grall & Coïc (2006) report that in the face of pollution, species will follow three types of reaction according to their sensitiv- ity: disappear (the most sensitive), maintain abundance (the indifferent), or take advantage of the new conditions and develop (the tolerant and opportunistic). Abundance profiles over time are therefore widely used as indicators of the effects of pollutants. The profile so obtained makes it possible to identify, based on a (spatial or temporal), pollution gradient a state called “PO” corresponding to the peak of opportunists and characterized by a small number of species present in great quantities. On the other hand, it can also correspond to an old, mature and structured stand, when a low fairness index (J’ = 0.20)a is associated with high biodiversity (S = 21)b. As stated by Gosselin & Laroussinie (2004), the interpretation of the indices must always take into account the specific richness and the type of habitat. Thus, a low evenness index can correspond to a mature and structured stand with a high specific richness, while an index close to 1 can correspond to a disturbed or pioneer stand with a low specific richness. The impact of environmental factors on species distribution (Species groupings) The results of PCA analysis show that the presence, abundance, and proliferation of Mollusca species can be negatively or positively affected by environmental variables. As shown in Fig. 5, the proximity of station S5 to an oil port (PPt) at the extreme east of the Oran coast (L. EE) with an east-exposure of the coast (Expos. E) and a hard rock structure (RD), favored especially tolerant and opportunistic species like Phorcus articulatus (e12) (A = 41 ind.m-2, ƒ = 52%) and Cerithium lividulum (e18) (A = 21 ind.m-2, ƒ = 39 %). These species have managed to adapt to environmental constraints, such as high concentration of organic matter, and to the tidal flats of hard rock of the upper foreshore. Among other things we note that the proliferation of Phorcus articulates, unlike Phorcus turbinatus, seems to be due to the tolerance or even preference of this species for high concentration of organic matter. The work of Shea & Chesson (2002), Leprieur et al. (2008), and Beisel & Lévêque (2010) shows that changes in the environment weaken sen- sitive species, which begin to regress, while more tolerant species may find favorable conditions for their development in the evolution of the environment. Competition, on the other hand, would only play a marginal role. Scientific work on the genus Phorcus considers this species to be an effective and reliable bioindicator of pollution (Saliba & Vella, 1977; Axiak & Schembri, 1982; Bargagli et al., 1985; Nicolaidou & Nott, 1990; Cubadda et al., 2001). Gueddich (2006) reported that the Trochid Phorcus articulatus was present in relatively ANNALES · Ser. hist. nat. · 31 · 2021 · 2 279 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 high abundance. Its distribution in the foreshore zone of the “Kerkennah” Islands (Tunisia) seems to confirm that this species is more abundant in areas potentially rich in organic matter of urban origin, as it is less present in uninhabited areas or areas with a very low rate of urban planning, like the north and east coasts of Chargui Island (Tunisia). However, pollution and hydrodynamics are certainly not the only factors governing the development and geographical distribution of Phorcus articulatus, other abiotic factors, such as temperature and salinity, as well as biotic factors, such as the availability of trophic resources and interactions with other populations, cer- tainly play interesting roles as well (El Hasni, 2005). Cerithiidae species, on the other hand, are adapted to crevices in the infralittoral and lower midlittoral. The presence of C. lividulum in tidal flats of the upper foreshore at Arzew may be related to previous stormy conditions. Grimes et al. (2004) confirm the hard nature of rock formations throughout the Cap Carbon area in the Arzew region. We also note a positive correlation of some rare spe- cies (A < 1 ind.m-2, 2% ≤ f ≤ 6%), such as: Calliostoma zizyphinum (e21), Aplus dorbignyi (e26), Pusia tricolor (e30). As to Alvania cimex (e28) and Peringiella den- ticulata (e32), these show an abundance of A < 1 ind.m-2 and a frequency of 1 ≤ ƒ ≤ 2%. The specimens of these species could be accidental arrivals in the transect area, perhaps brought in from the depths by storm waves. On the opposite side of axis 1, in descending order, Chiton olivaceus (e3), Phorcus turbinatus (e11), Pattela caerulae (e5), Patella ulyssiponensis (e6), Patella ferrug- inea (e7), Patella rustica (e8), Stramonita haemastoma (e19), and Fissurella nubecula (e9) are much less present (A < 4 ind.m-2, 5% ≤ ƒ < 50%) in the Gulf of Arzew and show a negative correlation with port proximity (PPt, PPc), hard substrate (RD), extreme-east location (L. EE), east coast exposure (Expos. E) and slightly less urbanized areas (ZU). This means that the increase in pollution concentration (industrial and urban pollution) inhibits the growth and proliferation of these species. Benmecheta & Lansari (2007) explain that Arzew has a mean hydrocarbon concentration of 35 mg l-1 (the levels of pollution reach a maximum of 107.9730 mg.1-1 and a minimum of 7.0977 mg 1-1). Benmecheta & Belkhir (2016) have seen that levels of hydrocarbon (HC) and suspended matter (SM) in the bay of Arzew range from about 30 mg l-1. Based on these facts, these species seem to be more sensitive to the negative effects of pollution (industrial and urban). On the other hand, these same species show a stronger positive correla- tion (indeed an affinity) to tender rock structure of (RT), north coast exposure (expos. N) and central location of the station (L. C). In addition, from the negative effect of pollu- tion, some species, such as S. haemastoma, P. turbinatus, P. articulatus and the Patellidae, are the fishermen’s preferred bait due to their large size. S3 is characterized by a large presence of species with a frequency of ƒ > 70% and an abundance of 10 ind.m-2 < A <50 ind.m-2, such as: Phorcus turbinatus (e11), Pat- tela caerulae (e5), Patella ferruginea (e7), Patella rustica (e8), Chiton olivaceus (e3), Patella ulyssiponensis (e6) (< 10 ind.m-2) and those with a frequency of occurrence 25% < ƒ < 30%: Fissurella nubecula (e9) (1 ind.m-2 < A < 10 ind.m-2) and Stramonita haemastoma (e19) (A < 1 ind.m-2). The high abundance of Chiton olivaceus (e3) at this station (or even Kristel) may be due to the calcareous nature of the rock (RT), which offers good shelter to the Chitons thanks to porosity and cracks. The presence of Aplysia punctata (e20) noted at this station in December 2016 seems to have been accidental (ƒ < 1% and A < 1 ind.m-2). According to Bay-Nouailhat (2008), A. punctata (the spotted sea hare) occurs from surface to more than 20 m deep and is often found stranded on beaches, among the rocks, sometimes in large numbers during the breed- ing season. According to Fig. 5, the variable (L. OC) positioned on the positive side of axis 2 corresponds well to sta- tion S2. This station is characterized by the presence of a few rare species, with an abundance of A <1 ind.m-2 and a frequency of ƒ ≤ 3%, namely Gyroscala lamellosa (e27), Pusia ebenus (29), Pisania striata (e16), and Conus ventricosus (e17); as well as by a greater presence of Steromphala rarilineata (e13) (A = 1 ind.m-2; ƒ = 16%). Gyroscala lamellosa (e27) and Pusia ebenus (29) are exclusive, but otherwise these two species are medium- sized predatory gastropods with a worldwide distribution in marine shallow water, from New Zealand and Australia to the Mediterranean Sea and the Atlantic Ocean (Gofas, 2010). In contrast, the variable (L. EC) positioned on the negative side of axis 2 corresponds well to Kristel (S4). This station is distinguished by the presence of species such as Hexaplex trunculus (e31) (A ≤ 1 ind.m-2; F ≤ 1%), Mytilus galloprovincialis (e23) (A = 234 ind.m-2, f = 18 %), and Echinolittorina punctata (e2) (A = 1579 ind.m-2, ƒ = 93%). Indeed, these species are more abundant at S4 than at the other stations. Unlike other sites, S4 is also characterized by the strong presence of the species Echinolittorina punctata compared to that of Melarhaphe neritoides (A = 960 ind.m-2, ƒ = 79%). These two peri- winkle species are the two most represented species not only at S4 but also on the whole Oran coast. The high abundance of these populations is likely due to the small size of adult specimens, as they are less affected by preda- tion. Jacques (1976) reported that the reproduction period for these species extends over several months (March, June, September and December) and the emergence of juveniles in the biotope of adults occurs in successive cohorts during the year (according to data for the period from 20 December 1971 to 10 January 1973). Phorcus articulatus, Steromphala rarilineata, and Conus ventrico- sus were noted as absent, although some specimens were observed near this site. Peringiella denticulata was noted at S4 and S5 only, while Hexaplex trunculus was reported only once at S4. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 280 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 Fig. 6: Hierarchical ascendant classification (HAC) of the mollusks in Oran coast. Quadrats (sampled by month and station) are grouped together according to similarity. A: Arzew station; B: Bouzedjar station; K: Kristel station; L: La madrague station; M: Madagh station; Numbers 1, 2, 3, …, 12 : the sampling months from January to December (example: A1 is Arzew station in January). Sl. 6: Razporeditev mehkužcev na podlagi klastrske metode HAC (Hierarchical ascendant classification) na oranski obali. Kvadrati (vzorčeni enkrat mesečno) so grupirani na podlagi podobnosti. A: vzorčevalna postaja Arzew; B: Bouzedjar; K: Kristel station; L: La madrague; M: Madagh. Številke 1, 2, 3, …, 12 : vzorčevalni meseci od januarja do decembra (primer: A1 je januarski vzorec na postaji Arzew). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 281 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 As for the species Siphonaria pectinata (e4), Bittium reticulatum (e22), their diagonal position between two axes suggests not only a positive affinity to Kristel (L. EC) but also to Arzew (L. EE). They have a preference for the hard nature of rock (DR) and display a higher tolerance to industrial and urban pollution (PPt and PPc). On the one hand, Siphonaria pectinata seems to better withstand the constraints of the coastal environment since the species was often found at S1 and S5, covered with a layer of tar. On the other hand, this may be due to the nature of bedrock at these two stations, which, unlike at other sta- tions, is hard and smooth (offers better adhesion). Steneck (1982) explains that the hardest and smoothest surfaces are the most suitable for adult individuals of certain Mol- lusca because they allow them to better resist the pressure of waves and predators. In addition, Rivera-Ingraham et al. (2011a) noted that smooth substrates had higher densities and sizes of certain species such as C. safiana, as opposed to heterogeneous and irregular surfaces, which can serve as shelter for young individuals and as a suitable substrate for the settlement of larvae. Finally, Boukhicha et al. (2014) noted that irregularities in the substrates are associated with the high recruitment rate in limpets (Patellidae) and other marine gastropod Mollusca (Littorinidae, Trochidae, etc.). This classification groups in sets objects with a sig- nificant degree of similarity. The data studied are usually species abundances in a cross-sample/species matrix. Given the limitations of the (HAC) cited above, Fig. 6 indicates that the quadrats were grouped firstly into two groups, that of Arzew [from A1 (Arzew in January) to A12 (Arzew in December)] and that of other sites. The second group of quadrats was established according to the sites Bouzedjar, Madagh, La Madrague, and Kristel. It is clear that Arzew (left in black) is completely different from the other communities. It is also known from many studies (Boutiba, 2003; Benmecheta & Lansari, 2007; Almulsi, 2011; Meftah, 2011; and others) that Arzew is the most polluted site of the Oran coastline due to urban and industrial pollution, and the presence of petroleum port and housing nearby (a few meters away). Benmecheta & Belkhir (2016) report that despite dispersive effects, hydrocarbon (HC) concentration levels range from 90 to 180 mg/kg in surface sediments of Arzew shorelines. Sources of pollution are also found in the environmental department of the Oran province; other studies carried out on this territory of the Oran province classify the Arzew industrial zone as dangerous to environmental health. This is supported by our observations on Mol- luscan communities and urban discharges; oil films on sea surfaces, tar concretions on rocks, and various plastic debris were all observed during our transect survey work. With regard to other groups, we note that station S3 in purple color, represented by quadrats L2, L3, L4, L7, L8, L10, and L12, differs from the remaining 3 groups. This site, despite the presence of nearby homes (a few meters away) remains very little frequented by summer visitors, and urban pollution is unremarkable, unlike in Arzew (S5). With regard to the last groups of quadrats, it is clear that station S1 in green color differs from the associated groups of S3 and S4 in red (Fig. 6), which, in turn, are similar. Note, however, that quadrats L1, L6, L9, and L11 for S3 are also part of this last group (consisting of stations S2 and S4). CONCLUSIONS As indicated by the results from the studied stations and according to the ecological indices applied, the en- tire Oran littoral can be considered as disturbed because the index of equitability hardly exceeds the 0.5 at any site. Despite this disturbance, results have also shown an abundance of periwinkles (very high density). These gastropods are very small and characterized by high reproduction, which considerably increases their number compared to other species. The Littorines (periwinkles) display an overall density of nearly 90% at all studied sites. The species Melarhaphe neritoides, Siphonaria pectinata, Phorcus articulatus, and Cerithium lividulum seem to be the most resistant to adverse conditions (en- vironmental pollution) (Gueddich, 2006) and proliferate rapidly in contrast to many other species recorded at Oran coastal stations, including Phorcus turbinatus, Pat- tela caerulea, Patella ulyssiponensis, Patella Ferruginea, Patella rustica, Fissurella nubecula, and Cymbula safiana. These latter species are also very sensitive to the changing environmental conditions, and can serve as an indicator of degradation of aquatic environments. Five species of Patellidae were identified in the western coast (Bouzedjar and Arzew) and 4 species in the eastern coast (Jijel and An- naba) (Beldi et al., 2012; Zegaoula et al., 2016; Bouzaza, 2018; Boumaza et al., 2021). Patella ferruginosa seems to have adapted to the Algerian western conditions area and would require further investigations in the eastern coasts. With regard to the structure of the populations and their distributions we note that these do not only depend on the distance from the sources of pollution but also, secondarily, on the seasons (Fig. 4) and geographical coordinates of the station (Jacques, 1976; Damerdji, 2008; De Vaufleury & Gimbert, 2009; Damerdji, 2010; Diomandé, 2019). The information presented in this document ‒ even considering the limitations of the sampling methods ‒ in- creases the knowledge of the distribution and abundance of Mollusca in the Oran littoral, where pollution is identi- fied as a key factor affecting species distributions. This new knowledge may be useful in further detailed autecol- ogy studies of Mollusca species, of species associations, and coastal ecosystem dynamics. Implementation of long-term biomonitoring in this coastal area would be of great value for the assessment of time trends related to changes in species distributions and abundances. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 282 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 BIODIVERZITETA IN STRUKTURA ZDRUŽBE MEHKUŽCEV V BIBAVIČNEM OBMOČJU MED PREDELOMA BOUZEDJAR IN ARZEW (ZAHODNA ALŽIRIJA) Noureddine BENABDELLAH & Djillali BOURAS Oran University, Faculty of Life Sciences and Nature, Department of Environment Sciences, Oran, Algeria e-mail: noureddine.benabdellah@univ-saida.dz Mohammed RAMDANI University Mohammed V of Rabat, Scientific Institute, Department of Zoology and Animal Ecology, Rabat, Morocco Nicolas STURARO Faculté des Sciences, Département de Biologie, Ecologie et Evolution, Océanographie biologique, 4000 Liège 1, Belgique POVZETEK V raziskavi avtorji poročajo o seznamu vrst ter časovni in prostorski dinamiki združbe mehkužcev v bibavičnem pasu med predeloma Bouzedjar in Arzew v zahodni Alžiriji. V obdobju 2016 in 2017 (redna mesečna vzorčenja) so na petih vzorčevalnih postajah determinirali 32 vrst mehkužcev. Ekološki indeksi kot so abundanca (od 1167 do 2856 os. m-2), število vrst (15 Gastropoda, 3 Bivalvia, in 1 Placophora), diverziteta (H’) in indeks enakomernosti porazdelitve (J’) kažejo, da je obalni ekosistem moten in neuravnotežen (še posebej na predelu Arzew) zaradi številnih človeških aktivnosti, ki imajo vpliv na to območje. Na podlagi raz- iskave je nastal zemljevid razširjenosti vrst in podatkovna baza za menedžment, biomonitoring in posledično zavarovanje obalnega ekosistema. Ključne besede: pridneni mehkužci, bibavični pas, seznam vrst, populacijska dinamika, Alžirija ANNALES · Ser. hist. nat. · 31 · 2021 · 2 283 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 REFERENCES Adam, Y., C. Béranger, O. Delzons, B. Frochot, J. Gourvil, P. Lecomte & M. Parisot-Laprun (2015): Guide des méthodes de diagnostic écologique des milieux naturels (application aux sites de carrière). UNPG, Paris, 390 pp. Allal, A.B. (2007): Biosurveillance active de la pollution marie le long du littoral Ouest Algérien par évaluation de la stabilité membranaire lysosomale chez la Moule, Mytilus galloprovincialis (Lamarck, 1819). Mem. Magister, Oran, Univ. Oran, 80 pp. Almulsi, E. (2011): Contribution par les hydrocarbu- res d’un poisson osseux : la Sardine (Sardina pilchardus, Walbaum, 1792), pêchée dans les Baies d’Oran et de Béni-Saf. Mem. Magister, Biologie et pollution marines, Univ. Oran, 97 pp. Bay-Nouailhat, A. (2008): Description of Aplysia punc- tata [On line] Consulted on 4 April 2019. Available on: . Beisel, J.-N. & C. Lévêque (2010): Introductions d’espèces et invasions biologiques dans les systèmes aquatiques. Versailles, Éditions QUAE. 248 p. Beldi H., F.Z. Boumaza, B. Draredja & N. Soltani (2012): Biodiversité des Patellidae (Gastropoda, Proso- branchia) du golfe d’Annaba (Algérie Nord-Est). Bull. Soc. zool. Fr., 137(1-4), 121-132. Belhadj, M. (2001): Etude de la pollution des eaux du bassin de Cheliff et son impact sur l’environnement. Mem. Magister, Chimie de l’Environnement, Faculté Sci- ences de l’Ingénieur, Univ. Mostaganem, 66 pp. Benmecheta, A. & L. Belkhir (2016): Oil pollution in the waters of Algeria. In: Carpenter, A. & A. Kostianoy (eds.): Oil Pollution in the Mediterranean Sea, Part 2. Handb. Environ. Chem., vol. 84. Springer, Cham, pp. 247-262. Bouchentouf, S., S.A. Benaoula, D. Aïnad Tabet & M. Ramdani (2013): Assessment of petroleum hydrocarbon concentrations in intertidal surface sediments of Arzew gulf (West of Algeria),» Journal of Chemical and Pharma- ceutical Research, 5(4), 387-392. Boukhicha J., O.K. Ben Hassine & S. Tlig-Zouari (2014): Range extension and conservation status of Cym- bula nigra (Gastropoda: Patellidae) in the Tunisian shores. Afr. J. Ecol., 53, 64-74. Boulangeat, I., D. Gravel & W. Thuiller (2012): Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol. Lett., 15, 584-593. Boumaza F.Z., H. Beldi, B. Draredja, B. Filali & N. Soltani (2021): Composition and distribution of Patelli- dae (Mollusca Gastropoda) in the Algerian East coast: the case of Jijel. Biodiversity Journal, 12(2), 495-500. Bouras, D. (2013): Assessment of threats and environ- mental standards support aid the design laws of the sea: National day outlook study for the right of the coastal and marine environment. PDECMA-1. Univ. Oran. Bouras, D., A. Matallah, S. Mouffok & Z. Boutiba (2007): Bioclimatic evolution and development actions on the Algerian West-Coast. Larhyss J., 6, 91-104. Bourdages, H., P. Goudreau, J. Lambert, L. Landry & C. Nozères (2012): Distribution des Bivalves et Gas- téropodes benthiques dans les zones Infralittorale et Circalittorale des côtes de l’estuaire et du nord du golfe du Saint-Laurent. Rapp. Tech. Can. Sci. Halieut. Aquat., 3004: iv +103 pp. Bouzaza, Z. (2018): Etude systématique, phylogéné- tique, phytogéographique et démographique de Patella ferruginea (Gmelin, 1791), Patella caerulea (Linnaeus, 1758) et Cymbula safiana (Lamarck, 1819) de la frange côtière Algérienne. Thèse Doctorat, Spécialité biologie, Option Ecologie et Environnement Marin, Mostaganem, Univ. Abdelhamid Ibn Badis, 205 pp. Chabot, D., A. Rondeau, B. Sainte-Marie, L. Savard, T. Surette & P. Archambault (2007): Distribution des invertébrée benthiques dans l’estuaire et le golfe du Saint- Laurent. Pêches et Océans Canada. Secrétariat canadien de consultation scientifique 2007/018. 108 pp. Christine, P. & A. Romain (2010): Atelier sur les indicateurs environnementaux en eau douce : Indice d’intégrité biotique (les poissons, indicateurs d’état des milieux aquatiques de Nouvelle-Calédonie). ERBO Nouméa, Nouvelle-Calédonie, Etudes et recherches biologiques, 44 pp. Cubadda, F., M.E. Conti & L. Campanella (2001): Size dependent concentrations of trace metals in four Mediter- ranean gastropods. Chemosphere, 45, 561-569. Damerdji, A. (2008): Contribution à l’étude écologique de la Malacofaune de la zone Sud de la région de Tlemcen (Algérie). Afr. Sci., 4(1), 138-153. Damerdji, A. (2010): Composition et structure des Gastéropodes dans les stations à Thymus ciliatus Desf. (Labiatae) aux alentours de Tlemcen (Algérie), Afr. Sci., 6(1), 13-29. Dauer, D.M. (1993): Biological criteria, environ- mental Health and Estuarine Macrobenthic Community structure. Mar. Pollut. Bull., 26(5), 249-257. De Vaufleury, A. & F. Gimbert (2009): Obtention du cycle de vie complet d’Helix aperta (Born, 1778) de sites tunisiens en conditions contrôlées, Influence de la photopériode. Anim. Biol. Pathol., C.R. Biologie, 322, 795-805. Diomandé, L., A. Jean Baptiste, K. Fulgence, K. Mamadou & O. Atcho (2019): Contribution à l’inventaire des Gastéropodes marins issus de la pêche artisanale et industrielle de la Côte d’Ivoire. Eur. J. Sci., 15(3), 48-60. El Hasni, K. (2005): Contribution à l’étude de l’abondance et cartographie des stocks des Gastéropodes dans la zone estran de Sfax-Nord. Cas des espèces: Ce- rithium vulgatum, Bittium reticulatum et Natica josephina. Mem. Mastère, Biodiversité et Ressources Aquatiques, Tunisie. Faculté des Sciences de Sfax, 125 pp. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 284 Noureddine BENABDELLAH et al.: BIODIVERSITY AND STRUCTURAL ORGANIZATION OF MOLLUSK COMMUNITIES IN THE MIDLITTORAL ..., 267–284 Fisher, W., M. Schneider & M.L. Bauchot (1987): Fiches FAO d’identification des espèces pour les besoins de la pêche «Révision» Méditerranée et Mer Noire, Zone de pêche 37. Vol. 1, Végétaux et invertébrés, Rome, FAO, 760 pp. Frenkiel, L. & M. Moueza (1982): Ecologie des Pa- tellidae dans différents biotopes de la côte Algérienne. Malacologia, 22, 523-530. Ghodbani, T. (2017): Impacts des aménagements por- tuaires sur l’environnement côtier : Le cas des deux ports Bouzedjar et Béni-Saf, Algérie. Presses Universitaires de la Méditerranée. Livre Géorisques N°7. Indd 27, Gérer les risques naturels : Pratiques et outils. 199 pp. Gofas, S. (2010): Gyroscala lamellosa (Lamarck, 1822). In: Bouchet, P., S. Gofas, G. Rosenberg: World Marine Molluscaa database. Accessed through: World Register of Marine Species at http://www.marinespecies. org/aphia.php?p=taxdetails&id= 139744 Grall, J. & N. Coïc (2006): Synthèse des méthodes d’évaluation de la qualité du benthos en milieu côtier; Ifremer, 90 pp. Gueddich, H. (2006): Abondance et répartition des espèces de coquillages dans l’estran aux Îles Kerkennah. Mem. Mastère, Biodiversité et Ressources Aquatiques. Tunisie. Faculté Sciences de Sfax, 132 pp. Guibout, P. (1987): Atlas hydrologique de la Méditer- ranée. IFREMER et SHOM, Mus. Natl. Hist. Nat., Lab. Océanogr. Phys., 150 pp. Hayward, P., T. Nelson-Smith & C. Shields (2014): Guide des bords de mer (Mer du Nord, Manche, Atlan- tique, Méditerranée): Identifier plus de 1500 espèces animales et végétales. Delachaux et Niestlé, 351pp. Jacques, D. (1976): Contribution à l’écologie des Littorinidae (Mollusques Gastéropodes Prosobranches): Littorina neritoides (L) et littorina saxatilis (Olivi). Cah. Biol. Mar., 17, 213-236. Kherraz, D. (2004): Etat de la pollution bactéri- ologique au niveau de la côte Oranaise cas des plages de : Aïn El Turk, Coralès et Madagh. Mem. Magister, Oran, Univ. Oran, 120 pp. Kies, F. & N.E. Taibi (2011): Influences de l’Oued Chéliff sur l’écosystème marin dans la zone de l’embouchure (Mostaganem). Eur. Univ., 77-94. Kissling, W.D., C.F. Dormann, J. Groeneveld, T. Hick- ler, I. Kuhn, G.J. McInerny, J.M. Montoya, C. Romer- mann, K. Schiffers, F.M. Schurr, A. Singer, J.-C. Svenning, N.E. Zimmermann & R.B. O’Hara (2012): Towards novel approaches to modelling biotic interactions in multispe- cies assemblages at large spatial extents. J. Biogeogr., 39, 2163–2178. Lindner, G. (2012): Guide des coquillages marins, Les guides du naturaliste, Delachaux et Niestlé, 319 pp. Mastellar, M. (1987): Mollusca of the Red Sea. In: Edwards, A. J., S.M. Head (eds): Key Environments, Red Sea. Pergamon Press, Oxford, pp. 94-214. Nicolaidou, A. & J.A. Nott (1990): Mediterranean pollution from a Ferro-nickel Smelter: Differential uptake of metals by some Gastropods. Mar. Pollut. Bull., 21(3), 137-143. PDAU (1995): L’étude du plan directeur d’aménagement et d’urbanisme du groupement d’Oran. U.R.S.A. : Bureau d’étude et de réalisation en urbanisme de SAIDA-Agence Oran. Rapport d’orientation, Nov., Oran, 650 pp. Pearson, R.G. & T.P. Dawson (2003): Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful. Global Ecol. Biogeogr., 12, 361-371. Picard, L. & C. Courtial (2015): Inventaire des arai- gnées de la Réserve Naturelle Nationale de Beauguillot (50). Rapport du GRETIA pour la RNN de Beauguillot. 37 pp. Rivera-Ingraham, G.A., F. Espinosa & J.C. Garcia- Gomez (2011a): Ecological considerations and niche differentiation between juvenile and adult Black Limpets (Cymbula nigra). J. Mar. Biol. Assoc. UK, 91, 191-198. Rivera-Ingraham, G.A., F. Espinosa & J.C. Garcia- Gomez (2011b): Present status of the endangered Limpet Cymbula nigra (Gastropoda: Patellidae) in Ceuta: How do substrate heterogeneity and area accessibility affect popu- lation structure. Anim. Biodivers. Conserv., 34, 319-330. Saliba, L.J. & M.G. Vella (1977): Effects of mercury on the Behavior and Oxygen consumption of Monodonta articulata. Mar. Biol., 43, 277-282. Shea, K. & P. Chesson (2002): Community Ecology Theory as a Framework for Biological Invasions. Trends Ecol. Evol., 17, 170-176. Underwood, A.J. (1997): Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, 12(10), 410-411. Wisz, M.S., J. Pottier, W.D. Kissling, L. Pellissier, J. Lenoir, C.F. Damgaard, C.F. Dormann, M.C. Forch- hammer, J.A. Grytnes, A. Guisan, R.K. Heikkinen, T.T. Høye, I. Kühn, M. Luoto, L. Maiorano, M.C. Nilsson, S. Normand, E. Öckinger, N.M. Schmidt, M. Termansen, A. Timmermann, D.A. Wardle, P. Aastrup & J.C. Svenning (2013): The role of biotic interactions in shaping distribu- tions and realized assemblages of species: implications for species distribution modelling. Biol. Rev., 88, 15-30. Zegaoula B., H. Beldi, B. Draredja & N. Soltani (2016): Reproduction of Patella rustica (Mollusca, Gas- tropoda) in the gulf of Annaba (Algeria, Mediterranean South Western). Advances in Environmental Biology, 10(11), 42-50. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 285 received: 2021-11-04 DOI 10.19233/ASHN.2021.33 ON THE PRESENCE OF TWO-TAILED PASHA (CHARAXES JASIUS (LINNAEUS, 1767), PAPILIONOIDEA: NYMPHALIDAE) IN THE NORTHEASTERN ADRIATIC REGION Rudi VEROVNIK University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia e-mail: rudi.verovnik@bf.uni-lj.si Nejc RABUZA Dobje pri planini 22a, 3224 Dobje, Slovenia e-mail: nejc.rabuza@gmail.com Miroslav REPAR Dolinska 1H, 6000 Koper, Slovenia e-mail: miro.repar@yahoo.com Matjaž ZADRGAL Pod Lazami 53 Vrtojba 5290 Šempeter pri Gorici, Slovenia e-mail: zadrgalm@gmail.com Paul TOUT Malchina 5/A, 34011 Duino-Aurisina (TS), Italy e-mail: tout@xnet.it ABSTRACT The paper presents and discusses the first observations of two-tailed pasha (Charaxes jasius) in northeastern Adriatic, including first records for Slovenia. It was first noted north of its known range in Umag, Istria, in 2018, followed by an observation in Piran in 2019, Savudrija in 2020, and three observations in 2021 from well-separated localities of Strunjan, Osp, and Sela na Krasu. A search for early stages on local strawberry trees (Arbutus unedo) proved fruitless, indicating that the current spate of records is very likely due to the vagrant nature of the species in the region. Factors potentially limiting its range expansion, such as limited availability of the main host plant and low winter temperatures, are also discussed. Key words: distribution, climate change, Istria, host plants, Arbutus unedo PRESENZA DELLA NINFA DEL CORBEZZOLO (CHARAXES JASIUS (LINNAEUS, 1767), PAPILIONOIDEA: NYMPHALIDAE) NELLA REGIONE ADRIATICA NORD-ORIENTALE SINTESI L’articolo presenta e discute le prime osservazioni della ninfa del corbezzolo (Charaxes jasius) nell’Adriatico nord-o- rientale, compresi i primi dati per la Slovenia. Questa farfalla è stata notata per la prima volta a nord del suo areale cono- sciuto, a Umago, in Istria, nel 2018, e successivamente a Pirano nel 2019, Salvore nel 2020, e tre osservazioni nel 2021 in località ben separate: Strugnano, Ospo, e Sella delle Trincee. Una ricerca di esemplari allo stadio iniziale sui corbezzoli locali (Arbutus unedo) si è rivelata infruttuosa, indicando che l’attuale ondata di registrazioni è molto probabilmente dovuta alla natura vagabonda della specie nella regione. Vengono anche discussi i fattori che potenzialmente limitano la sua espansione, come la disponibilità limitata della principale pianta ospite e le basse temperature invernali. Parole chiave: distribuzione, cambiamento climatico, Istria, piante ospiti, Arbutus unedo ANNALES · Ser. hist. nat. · 31 · 2021 · 2 286 Rudi VEROVNIK et al.: ON THE PRESENCE OF TWO-TAILED PASHA (CHARAXES JASIUS (LINNAEUS, 1767), PAPILIONOIDEA: NYMPHALIDAE) ..., 285–290 INTRODUCTION The two-tailed pasha is one of the largest butterflies in Europe and the only species of the mainly Afrotropical genus Charaxes that reaches as far as the Mediterranean. It is distributed from the western part of North Africa (Tennent, 1996) across the Iberian Peninsula to southern France and Italy and down to the coastal areas of Greece and southern Turkey in the eastern Mediterranean (Tol- man & Lewington, 2008), with isolated colonies in the Middle East (Benyamini & John 2020, Tshikolovets & Yehuda 2020). It is widespread along the east Adriatic coast, reaching as far north as the southern parts of Istria (Koren, 2012; Koren et al., 2019). Along the western Adriatic coast, its occurrence, like that of its host plant, is much more sporadic reaching Mt. Conero near Ancona in the north (Teobaldelli, 1976). The species’ distribution roughly coincides with various types of Mediterranean evergreen scrubland including maqui and garrigue, where the main larval host plants, the strawberry tree Arbutus unedo L. and the Greek strawberry tree A. andrachne L., abound. On rare occasions, the larvae have also been found on other plants including bay laurel Laurus nobilis L. (Nel, 1979; Stefanescu, 1995), wild tea plant Osyris quadripartita Salzm. ex Decne. (Fernandez-Martinez, 2000), tree to- bacco Nicotiana glauca Graham (Markis, 2003), and a range of cultivated trees including apricots (Prunus persica L.) and citrus trees (Citrus spp.) (Danner, 2001; Longo et al., 2000). The species is bivoltine in most of Europe with a pronounced second generation on the wing from the second half of August to the beginning of October (Abós & Stefanescu, 1999). Despite being strong fliers, adults are generally observed near their larval habitats, although they can fly considerable distances to feed on ripe fruit, such as figs (Tolman & Lewington, 2008; Verovnik, pers. obs.). Males are notably territorial and both sexes are commonly observed congregating on prominent peaks, a behaviour known as “hill-topping” (Sturm, 1998; Tolman & Lewington, 2008). Females lay conspicuous yellow eggs on the upper surface of the leaves of the host plants, and the larvae hatch within 8 to 15 days. They are not very mobile and spin a silky mat on the leaf on which they rest, which is used throughout their development to the fifth instar. They usually leave the host plant to pupate in nearby vegetation (Abós & Stefanescu, 1999). The emergence of adult butterflies follows in two to four weeks, depending on temperature. Under laboratory conditions, larvae or pupae exposed to temperatures below 5 °C for extended periods of time do not develop or they produce crippled individuals (Sanetra & Peuker, 1993). The current poleward range shifts linked to climate change are becoming ever more evident in butterflies, although so far these have been more evident in regions of northern Europe and North America, which are with- out major topographical barriers and are more common in ecological generalist species (Parmesan et al., 1999, Estrada et al., 2016, Fourcade et al., 2017). In our study, we present the first observations of Charaxes jasius in Slo- venia and its close proximity, and evaluate its potential range shift northwards. MATERIAL AND METHODS The first observations of the two-tailed pasha were purely incidental as the authors observed the species completely unexpectedly. Deliberate surveys of poten- tial feeding and hill-topping sites along the Slovenian coast followed. In all instances, the behaviour of adults was checked. We also surveyed the known sites where Arbutus unedo grows in natural habitats (Wraber, 1972; Žnidaršič, 2014) or is planted in urban areas along the Slovenian coast. Information was sought via social media regarding the distribution of strawberry tree along the Italian coast, with the search yielding several new records to add to those already known, as well as providing the location of an area of A. unedo (the species is not native to NE Italy) naturalised in a suitable habitat north of the village of Santa Croce-Križ in the Province of Trieste, an area that should be kept under observation in years to come. Fig. 1: The distribution of two-tailed pasha (Charaxes jasius) in the northeastern part of the Adriatic. The numbering of the localities follows the list in the results section. The green dots represent approximate positions of the surveyed strawberry tree (Arbutus unedo) stands, the empty circles denoting those that have not been checked for larvae. Sl. 1: Razširjenost dvorepega paše (Charaxes jasius) v severovzhodnem delu Jadrana. Oštevilčenje sledi se- znamu lokacij v Rezultatih. Zelene točke predstavlja- jo približen položaj pregledanih rastišč jagodičnice (Arbutus unedo), točke z zeleno obrobo pa lokacije, kjer prisotnost larvalnih stadijev ni bila preverjena. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 287 Rudi VEROVNIK et al.: ON THE PRESENCE OF TWO-TAILED PASHA (CHARAXES JASIUS (LINNAEUS, 1767), PAPILIONOIDEA: NYMPHALIDAE) ..., 285–290 RESULTS Adults were observed at six sites in the period from 2018 to 2021. The localities are listed in geographical order from south to north (see Fig. 1): 1. Umag, within the urban area of the town, Croatia (45°26’31”N, 13°30’54”E), leg. Nejc Rabuza. A single specimen feeding on ripe figs was observed on 13 October 2018. No strawberry trees were seen in the vicinity, but they likely occur in the wider area. 2. Savudrija, the ruins of Velika stancija, Croatia (45°30’01”N, 13°30’46”E), leg. Paul Tout. A female flying around a bay laurel near the ruins was observed around noon on 16 September 2020. It was probing the leaves regularly, but no oviposition was confirmed. After a short period, it flew away. No strawberry trees were observed in the vicinity, but they likely exist in nearby urban areas. 3. Piran, above the cliff at the Church of St. George, Slovenia (45°31’47”N, 13°34’05”E) leg. Nejc Rabuza. A single specimen was briefly observed flying eastwards on 30 October 2019. As the sighting was completely unex- pected, the identification is not entirely certain, although extremely likely. There are two stands of planted strawberry trees in the close proximity of the site. 4. Strunjan, at the large cross at the edge of a cliff above Moon Bay (Mesečev zaliv), Slovenia (45°32’14”N, 13°36’23”E), leg. Rudi and Jan Verovnik. A male specimen was briefly observed flying westwards along the edge of the cliff before noon on 1 October 2021. Soon afterwards, another specimen appeared flying from the inland towards the cliff, so it could have been the same individual po- tentially exhibiting hill-topping behaviour. No specimens were observed there an hour later. A natural population of about 20 strawberry trees (Žnidaršič, 2014) occurs on the same cliff about 300 m to the east. 5. Osp, at the upper edge of the precipitous walls above the village, Slovenia (45°34’16”N, 13°51’53”E), leg. Miro Repar. The butterfly (probably a male) was settling on bushes and low trees in the morning, on 28 Septem- ber 2021. It is likely that it had spent the night at the site and was just warming up when discovered. There are no known strawberry trees in the vicinity, as the site is further inland then the others. 6. Sela na Krasu, on the peak of Mt. Kremenjak on the border with Italy, Slovenia (45°49’24”N, 13°35’33.17”E), leg. Matjaž Zadrgal. A male was seen circling an old fig and occasionally settling on nearby rocks (Fig. 2) close to the peak on 25 September 2021 in the afternoon. Given the prominence of the peak and considerable time the observed specimen spent there, it is likely that it was exhibiting hill-topping behaviour. There are no strawberry trees in the vicinity, but the coast of Duino, where planted Fig. 2: A male two-tailed pasha (Charaxes jasius) hill-topping at the peak of Mt. Kremenjak on 25 September 2021. (Photo: Kaja Milašinovič). Sl. 2: Samec dvorepega paše (Charaxes jasius) na vrhu hriba Kremenjaka 25.9.2021. (Foto: Kaja Milašinovič). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 288 Rudi VEROVNIK et al.: ON THE PRESENCE OF TWO-TAILED PASHA (CHARAXES JASIUS (LINNAEUS, 1767), PAPILIONOIDEA: NYMPHALIDAE) ..., 285–290 specimens are known (Zadrgal, M. and Tout, P., pers. obs.), is only about 4 km away. The following localities were also inspected based on the abundance of fig trees and/or their prominence, but without success: Seča (45°29’53”N, 13°36’25”E), Cape Seča (45°30’07”N, 13°35’22”E), Cape Ronek (45°32’17”N, 13°36’49”E), Tinjan (45°33’40”N, 13°50’07”E), and So- cerb castle (45°35’21”N, 13°51’40”E). In addition, the natural stand of strawberry trees in Cape Ronek above the cliffs (45°32’22”N, 13°36’49”E) was inspected for early stages. Only three trees were acces- sible at the site, all already overshadowed by nearby oaks and partially overgrown with Smilax aspera L. Despite that, the trees looked vital with both flowers and fruits present. No larvae or eggs were found on visible parts of the trees, however leaf damage on the terminal parts of the branches similar to what Charaxes jasius (Abós & Stefanescu, 1999) is known for was evident, but it might have been caused by other herbivorous insects. Larvae were also searched for, unsuccessfully, at two sites within urban area of Piran (45°31’43”N, 13°34’18”E and 45°31’33”N, 13°34’21”E) and in the Dragonja Valley at Stena (45°27’08”N, 13°39’38”E), a very well-known refugium for Mediterra- nean plants (Wraber, 2002). DISCUSSION Despite permanent populations of Charaxes jasius on the west coast of Istria, Croatia, as far north as Palud, south of Poreč (Koren 2012), no historical records are known for the Slovenian and Italian parts of the Istria coast (see over- view in Stauder, 1922). This is rather surprising given the odd record of the species as far north as Styria (Austria) near Graz, which might however have resulted from a released reared specimen (Habeler, 1983). Given the concise effort to map the distribution of butterflies in Slovenia over the last two decades (Verovnik et al., 2012), it is hardly likely that the species had been overlooked, which means that the present sightings are indeed the first in the studied re- gion. Although the almost perfect sequence of occurrences further north each year might be entirely coincidental, it still shows a trend for the species to expand northwards. The autumn of 2021 proved exceptional, with the three independent occurrences spread across a wide area po- tentially indicating a more numerous invasion. Breeding, which would indicate an attempt of colonization, remains to be confirmed. Whether our observations indicate a leading edge of the species’ expansion is yet to be seen. A similar local northward expansion, linked with planted ornamental strawberry trees, has been noted in Madrid province in cen- tral Spain, which has a more continental climate (Cancela & Vasconcelos, 2019). However, the population of straw- berry trees at sites where breeding of Charaxes jasius was confirmed is much larger than anywhere else in the studied region. The sparseness of the main host plant along Slove- nian and Italian coasts of the Northern Adriatic may be one of the major factors inhibiting permanent colonization by this species. However, no in-depth survey of the distribu- tion of the strawberry tree, especially in urban areas, has so far been conducted in Slovenia or in neighbouring parts of Italy. Such survey might somewhat change the picture, as would the potential utilization of Laurus nobilis (seen Stefanescu, 1995), which is much more widespread in the region. The female observed assessing the bay laurels in Savudrija certainly points in this direction. The other major factor is the climatic conditions, es- pecially for larvae overwintering on the host plants. These are quite thermophilous and require temperatures above 11.5 °C for successful foraging (Abós & Stefanescu, 1999). In addition, extended periods bellow 5 °C can prove detrimental to the early instars, especially pupae (Sanetra & Peuker, 1993). The only climatic data available for the coastal part of Slovenia are from the Portorož Airport and suggest that half of the past 10 winters might have been too cold for the development and survival of Charaxes jasius, with average January temperatures below 5 °C, and aver- age minimum temperatures below zero on three occasions (ARSO Meteo, 2021). However, this particular weather station is positioned on the valley floor and thus likely to be exposed to colder conditions than the steep slopes on which the strawberry trees grow. Whether Charaxes jasius will become a common sight along the northern coast of Istria or not remains to be seen, but several steps could be taken to successfully trace its potential expansion. Using baited traps in early autumn (see Abós & Stefanescu, 1999) at sites with strawberry trees might be an efficient way to discover whether females are able to find the host plants and facilitate the finding of the early stages. Long-term temperature measurements at these sites would also be useful to see if the microclimatic conditions allow larval survival over winter. Addition- ally, a more comprehensive survey of the distribution of strawberry trees would be needed, as well as promotion of their ornamental and culinary value for their wider use in the region. To conclude, we believe that the species is currently only a vagrant to the area under study, but that might change in a not so distant future. ACKNOWLEDGMENTS The authors are grateful to those who provided infor- mation on the distribution of Arbutus species within Italy in the area covered by the study (via the Facebook Group Misteri & Meraviglie del Carso, Giorgio Cusma, Graziella Longo, Elisa Comelli, Carla Pierangelini, Matteo Skodler and Paolo Utmar) and Kaja Milašinovič for allowing the publishing of the photograph of an adult at Mt. Kremenjak. The first author is grateful to Jan Verovnik for his help dur- ing fieldwork. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 289 Rudi VEROVNIK et al.: ON THE PRESENCE OF TWO-TAILED PASHA (CHARAXES JASIUS (LINNAEUS, 1767), PAPILIONOIDEA: NYMPHALIDAE) ..., 285–290 O POJAVLJANJU DVOREPEGA PAŠE (CHARAXES JASIUS (LINNAEUS, 1767), PAPILIONOIDEA: NYMPHALIDAE) NA OBMOČJU SEVEROVZHODNEGA JADRANA Rudi VEROVNIK University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia e-mail: rudi.verovnik@bf.uni-lj.si Nejc RABUZA Dobje pri planini 22a, 3224 Dobje, Slovenia e-mail: nejc.rabuza@gmail.com Miroslav REPAR Dolinska 1H, 6000 Koper, Slovenia e-mail: miro.repar@yahoo.com Matjaž ZADRGAL Pod Lazami 53 Vrtojba 5290 Šempeter pri Gorici, Slovenia e-mail: zadrgalm@gmail.com Paul TOUT Malchina 5/A, 34011 Duino-Aurisina (TS), Italy e-mail: tout@xnet.it POVZETEK V raziskavi predstavljamo in obravnavamo prva opazovanja dvorepega paše (Charaxes jasius) na območju severovzhodnega Jadrana, vključno s prvimi najdbami v Sloveniji. Vrsta je bila prvič opažena severno od znane- ga območja razširjenosti v Istri v Umagu leta 2018, sledilo je opazovanje v Piranu leta 2019, Savudriji leta 2020 in tri opazovanja leta 2021 iz precej oddaljenih najdišč pri Strunjanu, Ospu in Selah na Krasu. Iskanje larvalnih stadijev na lokalnih jagodičnicah (Arbutus unedo) se je izkazala za neuspešno, kar kaže na trenutno zelo verje- tno nestalno naselitev vrste v regiji. Razpravljamo še o potencialnih dejavnikih, ki bi lahko predstavljali omejitev za širitev vrste, na primer omejena razpoložljivost glavne gostiteljske rastline in nizke zimske temperature. Ključne besede: razširjenost, podnebne spremembe, Istra, gostiteljske rastline, Arbutus unedo ANNALES · Ser. hist. nat. · 31 · 2021 · 2 290 Rudi VEROVNIK et al.: ON THE PRESENCE OF TWO-TAILED PASHA (CHARAXES JASIUS (LINNAEUS, 1767), PAPILIONOIDEA: NYMPHALIDAE) ..., 285–290 REFERENCES Abós, L. & C. Stefanescu (1999): Phenology of Charaxes jasius (Nymphalidae: Charaxinae) in the north-east Iberian Peninsula. Nota Lepidopterol., 22, 162-182. ARSO Meteo (2021): http://meteo.arso.gov.si/met/ sl/ (accessed 21.10.2021) Benyamini, D. & E. John (2020): Butterflies of the Levant and nearby areas. Vol. II: Papilionidae, Pieridae & Hesperiidae. 4D MicroRobotics Publications Ltd, Beit-Arye (Israel), 208 pp. Cancela, J.P. & S. Vasconcelos (2019): Ornamental plantings of Arbutus unedo L. facilitate colonisations by Charaxes jasius (Linnaeus, 1767) in Madrid prov- ince, central Spain. Nota Lepidopterol., 42, 63-68. Danner, F. (2001): Die Raupe von Charaxes jasius (Linnaeus, 1767) auf Aprikose. (Lepidoptera, Nymphal- idae). Atalanta (Marktleuthen), 32(3-4), 401, 474-475. Estrada, A., I. Morales-Castilla, P. Caplat, & R. Early (2016): Usefulness of species traits in predicting range shifts. Trends Ecol. Evol., 31, 190-203. Fernandez-Martinez, D. (2000): Algunos datos de Charaxes jasius. Saturnia, 9(16), 51-52. Habeler, H. (1983): Lepidopterologische Nach- richten aus der Steiermark, 9 (Hex., Lepidoptera). Mitt. Abt. Zool. Landesmus. Joanneum, 30, 13-18. Koren, T. (2012): On the occurrence of Charaxes jasius (Lepidoptera: Nymphalidae) in Istria, Croatia. Ann. Ser. Hist. Nat., 22, 177-182. Koren, T., D.K.J. Withrington, A. Štih & P. Gros (2019): The butterflies of the Istria county (Istria, Croatia): a review of their distribution, status and con- servation requierements (Lepidoptera, Rhopalocera). Gortania, 40, 95-114. Longo, S., V. Palmeri & A.E. Carolei (2000): Biologia di Charaxes jasius in agrumeti della Calabria (Lepi- doptera, Nymphalidae). Boll. Soc. Ento. Ital., 132(1), 83-90. Markis, C. (2003): Butterflies of Cyprus. Bank of Cyprus Cultural Fundation, Nicosia. 329 pp. Nel, J. (1979): Une nouvelle plante nourriciere pour Charaxes jasius (Lep. Nymphalidae). Alexanor, 11(4), 157-158. Fourcade, Y., T. Ranius & E. Öckinger (2017): Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: implications for climate-driven range shift in a but- terfly. J. Anim. Ecol., 86, 1339-1351. Parmesan, C., N. Ryrholm, C. Stefanescu, J.K. Hill, C.D. Thomas, H. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W.J. Tennent, J.A. Thomas & M. Warren (1999): Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583. Sanetra, M. & W. Peuker (1993): Über die Zucht des Erdbeerbaumfalters Charaxes jasius (Linnaeus, 1767) (Lepidoptera: Nymphalidae). Nachr. ent. Ver. Apollo, Frankfurt, 13(4), 507-529. Stauder, H. (1922): Die Schmetterlingsfauna der illyro-adriatischen Festland und Inselzone (Faunula Illyro-Adriatica). Ztschr. Wiss. Insektenbiologie, 17 (1/2), 14-21, (3/4), 58-64, (5/6), 83-92, (7/8), 135-147, (9/12), 165-176. Stefanescu, C. (1995): Ovoposicio de Charaxes jasius (Linnaeus, 1767) sobre Ilorer als Aiguamolls de l‘Emporda. Buttl. Soc. Catalana Lepidopterol., 76, 23-24. Sturm, R. (1998): Hilltopping beim Erdbeerbaum- falter, Charaxes jasius L. – Beobachtungen an der sudtürkischen Mittelmeerküste (Lepidoptera: Nym- phalidae, Charaxinae). Entomol. Z., 108(8), 305-316. Tennent, J. (1996): The butterflies of Morocco, Algeria and Tunisia. Gem Publishing Company, Wall- ingford, 217 pp. Teobaldelli, A. (1976): I Macrolepidotteri del Maceratese e dei Monti Sibillini (Appennino Umbro- Marchigiano). Note ed Appunti Sperimentali di Ent. Agr., 16, 81-346. Tolman, T. & R. Lewington (2008): Butterflies of Britain & Europe. HarperCollins Publishers, London, 384 pp. Tshikolovets V. & O.B. Yehuda (2020): The But- terflies of Middle East (Lebanon, Syria, Israel, Jordan and Egypt (Sinai Peninsula)). Tshikolovets Publications, Pardubice, 216 pp. Verovnik, R., F. Rebeušek & M. Jež (2012): Atlas dnevnih metuljev (Lepidoptera: Rhopalocera) Sloveni- je. Center za kartografijo favne in flore, Miklavž na Dravskem polju, 456 pp. Wraber, T. (1972): Arbutus unedo L. in Myrtus com- munis L. v Slovenski Istri. Biol. Vest., 20, 127-133. Wraber, T. (2002): Rastlinski svet doline Dragonje v naravovarstvenem pogledu. Varstvo narave, 19, 43-58. Žnidaršič, A. (2014): Distribution and conservation status of Arbutus unedo L. in Slovenia (in Slovene). Graduation thesis, University of Ljubljana, Biotechni- cal Faculty, Department of Forestry and Renewable Forest Resources, 51 pp. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 291 received: 2021-11-25 DOI 10.19233/ASHN.2021.34 NEW RECORDS OF NON-BITING MIDGES (DIPTERA, CHIRONOMIDAE) FROM MARINE AND COASTAL HABITATS OF THE SLOVENIAN PART OF THE ADRIATIC SEA Viktor BARANOV Ludwig Maximilian University Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany Borut MAVRIČ Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia e-mail: borut.mavric@nib.si ABSTRACT Based on the samples taken from the marine shore and two coastal lagoons at three locations along the Slovenian part of the Adriatic coast, 4 species of non-biting midges (Diptera, Chironomidae) were determined, Thalassomya frauenfeldi Schiner, 1856, Halocladius (Halocladius) variabilis (Staeger, 1839), Halocladius (Halocladius) varians (Staeger, 1839) and Chironomus (Chironomus) salinarius Kieffer, 1915. All four species represent first records from marine and lagoon environments, to be added to 28 previously recorded species for Slovenia. As nearby Croatia is being Chironomidae biodiversity hotspot, we can expect numerous species of Chironomidae yet to be discovered in Slovenia and hopefully this research will be a steppingstone for further chironomid research. Key words: chironomids, Adriatic Sea, Thalassomya frauenfeldi, Halocladius variabilis, Halocladius varians, Chironomus salinarius NUOVI RITROVAMENTI DI MOSCERINI CHIRONOMIDI (DIPTERA, CHIRONOMIDAE) IN HABITAT MARINI E COSTIERI DELLA PARTE SLOVENA DEL MARE ADRIATICO SINTESI In base ai campioni prelevati lungo la riva e in due lagune costiere, in tre località della parte slovena della costa adriatica, sono state determinate 4 specie di moscerini chironimidi (Diptera, Chironomidae), Thalassomya frau- enfeldi Schiner, 1856, Halocladius (Halocladius) variabilis (Staeger, 1839), Halocladius (Halocladius) varians (Staeger, 1839) e Chironomus (Chironomus) salinarius Kieffer, 1915. Tutte e quattro le specie rappresentano i primi ritrovamenti in ambienti marini e lagunari, che si aggiungono alle 28 specie precedentemente registrate in Slovenia. Poiché la vicina Croazia è un punto caldo per la biodiversità dei Chironomidi, possiamo aspettarci numerose nuove specie da scoprire in Slovenia, e speriamo che questo studio sia un punto di partenza per ulteriori ricerche sui chironomidi. Parole chiave: chironomidi, Adriatico, Thalassomya frauenfeldi, Halocladius variabilis, Halocladius varians, Chironomus salinarius ANNALES · Ser. hist. nat. · 31 · 2021 · 2 292 Viktor BARANOV & Borut MAVRIČ : NEW RECORDS OF NON-BITING MIDGES (DIPTERA, CHIRONOMIDAE) FROM MARINE AND COASTAL HABITATS ..., 291–298 INTRODUCTION Non-biting midges (Diptera, Chironomidae) are among the most abundant and diverse groups of the extant insects (Armitage et al., 1995). Larvae of most Chironomidae species are inhabiting fresh- water, occupying variety of available microhabitats (Ferrington, 2007). Small number of taxa, among over 7000 described species (Ashe and O’Connor, 2009), are however inhabiting saline, hypersaline and marine habitats (Armitage et al., 1995). Ma- rine Chironomidae are inhabiting coastal areas, being associated with algal mats on the rocks in the intertidal zone (Kaiser et al., 2021). These Chi- ronomidae larvae are playing important role in the maintaining of the matter and energy flow in the coastal habitats and represent important indicators of the environmental status (Armitage et al., 1995; Ferrington, 2007). Therefore, understanding the coastal Chironomidae fauna is crucial for monitor- ing and conservation of the coastal areas (Neumann et al., 1997). Unfortunately, the Chironomidae fauna of the Slovenian part of the Adriatic coast is poorly known, as most studies of the Chironomidae in Slovenia concentrated on the paleolimnological studies of the alpine lakes, and lake Bled in particular (Andrič et al., 2009), impact of the mining on the benthic organisms (Trontelj & Ponikvar-Zorko, 1998) as well as biomoni- toring of the alpine riverine systems (Mori & Brancelj, 2006, 2011). According to Fauna Europea, only 28 species of Chironomidae are formally recorded from Slovenia (Sæther & Spies, 2011). Although Chironomids are known to be very abundant in the Slovenian coastal lagoons, no for- mal species records exist (Pitacco et al., 2018). An unidentified species of the Halocladius was previ- ously recorded from the Salines of Sečovlje National Park (Juteršek & Dolinar, 2021). In this communication, we are presenting new records of the Chironomidae from the Slovenian coastal area. MATERIAL AND METHODS Material was collected near Marine Biology Sta- tion (Piran), at the Ankaran Tanatocenosis beach and in the Lagoon of Škocjanski zatok, near Koper, uti- lizing array of the hydrobiological methods (manual collection from the substrate in first two locations and benthic grab in the third). More details are provided in the Table 1 and Figures 1 and 2. All studied speci- mens were mounted into the Fore-Berlese medium as described by Salmon (1947). Specimens were imaged using a Keyence VHX- 6000 Digital microscope, with a ring-light type il- lumination. All images were recorded as composites, to achieve the required depth of focus. Images were stitched and stacked to overcome the limitation of the width of the field of view, using in built software of the digital microscope (Haug & Ehrlich 2008; Haug et al., 2011, 2013). Specimens were identified using following keys: Hirvenoja (1973), Cranston (1983) and Orendt et al. (2013). Voucher material is preserved in the collection of the Marine Biology Station of the National Institute of Biology (Piran, Slovenia). Fig. 1: Sampling locations along Slovenian coast of the Adriatic Sea included in the research. Sl. 1: Vzorčevalne postaje vzdolž slovenske jadranske obale, ki so bile zajete v raziskavi. Tab. 1: Sampling sites and sampling methods for the collection of the material used in the paper. Tab. 1: Vzorčevalne postaje in metode zbiranja materi- ala, uporabljenega v tej raziskavi. Site Sampling method Sampling period Latitude Longitude Marine Biology Station NIB, Piran, rocky shore and concrete steps Selective hand sampling, from the depth cca. 10 cm 2nd September 2019 45.52°N 13.57°E Tanatocenosis Ankaran, algal mat Selective hand sampling, from the depth ca. 10-20 cm 3rd September 2019 45.57°N 13.74°E Lagoon of Škocjanski zatok Nature Reserve, Koper, soft sediments Benthic grab (0.045 m2) at cca. 50-100 cm depth winter and summer 2009, summer 2011, winter 2012, winter and summer 2018 45.55°N 13.75°E ANNALES · Ser. hist. nat. · 31 · 2021 · 2 293 Viktor BARANOV & Borut MAVRIČ : NEW RECORDS OF NON-BITING MIDGES (DIPTERA, CHIRONOMIDAE) FROM MARINE AND COASTAL HABITATS ..., 291–298 RESULTS AND DISCUSSION Four species of chironomids were found in the inspected material, all of them being new record for Slovenia. Chironomidae Newman, 1834 Telmatogetoninae Wirth, 1949 Thalassomya frauenfeldi Schiner, 1856 Two second instar and seven 4th instar larvae were collected on the concrete steps and stones (about 1m x 40 cm), leading into the sea, directly in front of the Marine Biological Station’s building, on 2nd of Septem- ber 2019 (Fig. 3). Larvae where handpicked from the substrate. Distribution notes: T. fauenfeldi is widely distributed in Europe, in countries around Mediterranean, Black, Baltic and North seas, as well as at the Canary Isles (Ashe & O’Connor, 2009). Adult animals are short- lived, inhabiting the wet rocks in the intertidal zone, while larvae are developing at the algal mats in the supralittoral zone (Cranston, 1983). Orthocladiinae Lenz, 1921 Halocladius (Halocladius) variabilis (Staeger, 1839) Two 4th instar larvae were collected on the con- crete steps, leading into the sea, directly in front of the Marine Biological Station’s building, on 2nd of September 2019. Fig. 2: Coastal habitats of Chironomidae representatives on the Slovenian Adriatic coast: A. Rocky shore next to Marine Biology Station NIB, Piran; B. Škocjanski zatok Nature Reserve, Koper; C. Ankaran tanato- cenosis, Ankaran; D. Some of the Chironomidae habitats are among the most important Adriatic coastal wetlands – lagoon at tanatocenosis Ankaran with common greenshank (Tringa nebularia) in the center. Sl. 2: Obrežni habitati, kjer so bile najdene vrste trzač na slovenski jadranski obali: A. Skalnata obala pred Morsko biološko postajo NIB, Piran; B. Naravni rezervat Škocjanski zatok, Koper; C. tanatocenoza v Anka- ranu; D. Nekateri habitati, kjer so bile najdene trzače, so med najpomembnejšimi jadranskimi obrežnimi mokrišči – laguna pri tanatocenozi v Ankaranu z zelenonogim martincem (Tringa nebularia) v ospredju. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 294 Viktor BARANOV & Borut MAVRIČ : NEW RECORDS OF NON-BITING MIDGES (DIPTERA, CHIRONOMIDAE) FROM MARINE AND COASTAL HABITATS ..., 291–298 Distribution notes: H. variabilis is widely distributed in North America (USA, Canada, Greenland) and Europe, in the countries surrounding the Black, Mediterranean, Nort and Baltic seas, as well as at the Azores, Balearic, Faroe Isles, Great Britain and Iceland (Ashe & O’Connor, 2012). Larvae of the species are inhabiting predominantly rocky environments, routinely inhabiting the rock pools at the sea shore, as well as ports and sea-side channels (Hirvenoja, 1973; Moller Pillot, 2013). Halocladius (Halocladius s.str.) varians (Staeger, 1839) Three 2nd and 3rd instar larvae (Fig. 4) were sampled by a benthic grab at the lagoon of Škocjanski zatok Nature Re- serve, Koper in 2011, and by hand from the shore algal mats at the Ankaran thanatocenosis on 3rd of September 2019. Distribution notes: H. varians is widely distributed in North Africa (Morocco), Near East (Lebanon) and Europe, in the countries surrounding the Black, Mediterranean, North and Baltic seas, as well as at the Azores, Madeira, Great Britain and Irealand (Ashe & O’Connor, 2012). Adult animals are short-lived, swarming in large quanti- ties next to the sea-side buildings and structures (Moller Pillot, 2014). Larvae are inhabiting long tubes on stones, plants and other structures, in the intertidal area, next to the low-water mark (Moller Pillot, 2013). In addition to the brackish and marine water, larvae are also free-living in the polluted freshwater, i.e. in the lower course of river Rhine (Hirvenoja, 1973). H. varians, were probably the chironomids recorded by Juteršek & Dolinar (2021) as phytophagous on the algal mats at the Salines of Sečovlje National Park. We came to this conclusion, based on the photos of the specimens involved in the study of Juteršek & Dolinar (2021), clearly showing the sand tubes similar to ones built by H. varians, as well as larvae and adult flies, very similar to H. varians (Juteršek & Dolinar (2021, fig. 2a-g). In the work of this authors, larvae of the chi- ronomids in question were destroying the microbial mats, involved in the traditional process of the salt production at the the Salines of Sečovlje National Park (Juteršek & Dolinar, 2021). Chironominae Macquart, 1838 Chironomini Macquart, 1838 Chironomus (Chironomus s.str.) salinarius Kieffer, 1915 Numerous 4th instar larvae were sampled by a benthic grab at the lagoon of Škocjanski zatok Nature Reserve, Koper on each sampling period. In the ben- thic samples from the lagoon Ch. salinarius larvae can account even to 1/3 of all benthic organisms present (Fig 5C-F) Pitacco et al., 2018). Distribution notes: Slovenia was the only European country with the access to either Mediterranean, Black Sea or Baltic coast not to have Ch. salinarius previously recorded (Moller Pillot, 2009). Taking into account Fig. 3: Thalassomyia frauenfeldi. A. Habitus of the 4th instar larva; B. Head capsule, ventral view; C. Head capsule, dorsal view. Sl. 3: Thalassomyia frauenfeldi. A. Ličinka v četrtem stadiju; B. Glava, ventralni pogled; C. Glava, dorzalni pogled. Figure 4. Halocladius varians. A. Habitus of the 3rd instar larva; B. Head capsule, lateral view; C. Head capsule, ventral view. Sl. 4: Halocladius varians. A. Ličinka v tretjem stadiju; B. Glava, bočni pogled; C. Glava, ventralni pogled. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 295 Viktor BARANOV & Borut MAVRIČ : NEW RECORDS OF NON-BITING MIDGES (DIPTERA, CHIRONOMIDAE) FROM MARINE AND COASTAL HABITATS ..., 291–298 abundance of Ch. salinarius in northern Adriatic region, it is hardly a surprise that we have found this species in Slovenia. Species appears to play an important role in the brackish lagoons of Slovenia, due to their local abundance (Pitacco et al., 2018), by playing the part in the cycling of the organic matter and carbon sequestra- tion (Baranov et al., 2016). CONCLUSIONS This short study shows that large proportion of Chironomidae fauna of Slovenia is not recorded yet. For example, Luxembourg, with over 10 times lower surface area than Slovenia (998 km2 vs 7,827 km2 respectively) has 154 species of Chironomidae re- corded (Saether & Spies, 2011). Taking into account, that nearby Croatia turned out to be a Chironomidae biodiversity hotspot (Giłka et al., 2013; Andersen et al., 2016; Ivković et al., 2015, 2020; Čerba, 2020; Dorić et al., 2021), we can expect numerous species of Chironomidae yet to be discovered in Slovenia. These studies will help both development of the hy- drobiological research and water quality monitoring of Slovenia. ACKNOWLEDGMENTS We are grateful to the handling editor Ladislav Ha- merlík and Dubravka Čerba for their help in improving manuscript. Figure 5. Halocladius variabilis, A-B; Chironomus salinarius, C-F. A. Ventral side of headcapsule of the 3rd instar larva; B. Mentum, ventral view; C. End of abdomen; D. Head capsule, ventral view; E. Mentum, ventrally; F. Mentum and mandibles, ventrally. Sl. 5: Halocladius variabilis, A-B; Chironomus salinarius, C-F. A. Ventralna stran glave ličinke v tretjem stadiju; B. Mentum, ventralni pogled; C. Zadnji del abdomna; D. Glava, ventralno; E. Mentum, ventralno; F. Mentum in čeljustnici, ventralno. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 296 Viktor BARANOV & Borut MAVRIČ : NEW RECORDS OF NON-BITING MIDGES (DIPTERA, CHIRONOMIDAE) FROM MARINE AND COASTAL HABITATS ..., 291–298 NOVE NAJDBE TRZAČ (DIPTERA, CHIRONOMIDAE) IZ MORSKIH IN OBMORSKIH HABITATOV V SLOVENSKEM DELU JADRANA Viktor BARANOV Ludwig Maximilian University Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany Borut MAVRIČ Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia e-mail: borut.mavric@nib.si POVZETEK V vzorcih iz morskega obrežja in dveh obalnih lagun na treh lokalitetah vzdolž slovenskega dela Jadrana sta avtorja določila štiri vrste trzač (Diptera, Chironomidae), Thalassomya frauenfeldi Schiner, 1856, Halocladius (Halocladius) variabilis (Staeger, 1839), Halocladius (Halocladius) varians (Staeger, 1839) in Chironomus (Chironomus) salinarius Kieffer, 1915. Vse štiri vrste predstavljajo prve najdbe iz morskih in lagunskih okolij v Sloveniji, ki dopolnjujejo seznam 28 predhodno potrjenih vrst za Slovenijo. Glede na dejstvo, da je bližnja Hrvaška vroča točka diverzitete trzač, avtorja pričakujeta, da bodo v prihodnosti potrjene številne vrste iz družine Chironomidae, ta prispevek pa kot začetni korak za prihodnje raziskave trzač. Ključne besede: trzače, Jadransko morje, Thalassomya frauenfeldi, Halocladius variabilis, Halocladius varians, Chironomus salinarius ANNALES · Ser. hist. nat. · 31 · 2021 · 2 297 Viktor BARANOV & Borut MAVRIČ : NEW RECORDS OF NON-BITING MIDGES (DIPTERA, CHIRONOMIDAE) FROM MARINE AND COASTAL HABITATS ..., 291–298 REFERENCES Andersen, T., V. Baranov, L.K. Hagenlund, M. Ivković, G.M. Kvifte & M. Pavlek (2016): Blind flight? A new troglobiotic Orthoclad (Diptera, Chi- ronomidae) from the Lukina Jama–Trojama Cave in Croatia. PloS one, 11(4), e0152884. Andrič, M., J. Massaferro, U. Eicher, B. Ammann, M.C. Leuenberger, A. Martinčič & A. Brancelj (2009): A multi-proxy Late-glacial palaeoenvironmental record from Lake Bled, Slovenia. Hydrobiologia, 631(1), 121-141. Armitage, P.D., L.C. Pinder & P.S. Cranston (Eds.) (2012): The Chironomidae: biology and ecology of non-biting midges. Springer Science & Business Media. Ashe, P. & J.P. O’Connor (2009): A world catalogue of Chironomidae (Diptera). Part 1. Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanypodinae, Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogetoni- nae. Irish Biogeographical Society, Dublin [6] + 445 pp. Ashe, P. & J.P. O’Connor (2012): A world catalogue of Chironomidae (Diptera). Part 2. Orthocladiinae. Two volumes (Sections A, B). Irish Biogeographical Society, Dublin [14] + xvi + 468 pp., [6] + 500 pp. Baranov, V., J. Lewandowski & S. Krause (2016): Bioturbation enhances the aerobic respiration of lake sediments in warming lakes. Biology letters, 12(8), 20160448. Čerba, D., M. Koh, V. Ergović, Z. Mihaljević, D. Milošević & L. Hamerlik (2020): Chironomidae (Diptera) of Croatia with notes on the diversity and distribution in various habitat types. Zootaxa, 4780(2), 259-274. Cranston, P.S. (1983): The larvae of Telmatoge- toninae (Diptera: Chironomidae) of the Holarctic region - Keys and diagnoses. In: Wiederholm, T. (ed.): Chironomidae of the Holarctic region. Keys and diagnoses. Part 1 - Larvae. Entomologica scandi- navica, Supplement 19, 17-22. Dorić, V., I. Pozojević, N. Vučković, M. Ivković & Z. Mihaljević (2021): Lentic chironomid perfor- mance in species-based bioassessment proving: High-level taxonomy is not a dead end in monitor- ing. Ecological Indicators, 121, 107041. Ferrington, L.C. (2007): Global diversity of non- biting midges (Chironomidae; Insecta-Diptera) in freshwater. In: Freshwater animal diversity assess- ment (pp. 447-455). Springer, Dordrecht. Giłka, W., M. Zakrzewska, V. Baranov & P. Dominiak (2013): Diagnostic clues for identification of selected species of the Micropsectra atrofasciata group, with description of M. uva sp. nov. from Croa- tia (Diptera: Chironomidae: Tanytarsini). Zootaxa, 3702(3), 288-294. Huč, S. (2019): The first documented finds of Cal- liostoma laugieri (Payraudeau, 1826) (Gastropoda: Calliostomatidae) on the coastal mollusc shell de- posit at Ankaran. Natura Sloveniae, 21(1), 55-56. Juteršek, M. & M. Dolinar (2021): Chironomid larvae destroy cultivated microbial mat in protected Adriatic salterns. Aquatic Conservation: Marine and Freshwater Ecosystems. Online ahead of print. Haug, J.T., C. Haug & M. Ehrlich (2008): First Fossil Stomatopod Larva (Arthropoda: Crustacea) and a New Way of Documenting Solnhofen Fossils (Upper Juras- sic, Southern Germany). Paleodiversity, 1, 103-109. Haug, J.T., C. Haug, V. Kutschera, G. Mayer, A. Maas, S. Liebau, C. Castellani, U. Wolfram, E.N.K. Clarkson & D. Waloszek (2011): Autofluorescence Imaging, an Excellent Tool for Comparative Morphol- ogy: Autofluorescence Imaging. Journal of Microsco- py, 244(3), 259-272. https://doi.org/10.1111/j.1365- 2818.2011.03534.x. Haug, J.T., C.H.G. Müller & A. Sombke (2013): A Centipede Nymph in Baltic Amber and a New Approach to Document Amber Fossils. Organisms Diversity & Evolution, 13(3), 425-432. https://doi. org/10.1007/s13127-013-0129-3. Hirvenoja, M. (1973): Revision der Gattung Cri- cotopus van der Wulp und ihrer Verdandten. Ann. Zool. Fen., 10, 1-363. Ivković, M., M. Miliša, V. Baranov & Z. Mihaljević (2015): Environmental drivers of biotic traits and phenology patterns of Diptera assemblages in karst springs: The role of canopy uncovered. Limnologica, 54, 44-57. Ivković, M., V. Dorić, V. Baranov, Z. Mihaljević, L.P. Kolcsár, G.M. Kvifte, J. Nerudova & A.C. Pont (2020): Checklist of aquatic Diptera (Insecta) of Plit- vice Lakes National Park, Croatia, a UNESCO world heritage site. ZooKeys, 918, 99. Kaiser, T.S., A. von Haeseler, K. Tessmar‐Raible & D.G. Heckel (2021): Timing strains of the marine insect Clunio marinus diverged and persist with gene flow. Molecular Ecology, 30(5), 1264-1280. Moller Pillot, H.K.M. (2013): Chironomidae larvae of the Netherlands and adjacent lowlands. III. Biology and ecology of the aquatic Orthocladiinae – Prodiamesinae – Diamesinae – Buchonomyiinae – Podonominae – Telmatogetoninae. KNNV Publ., Zeist (NL), 314 pp. Mori, N. & A. Brancelj (2006): Macroinvertebrate communities of karst springs of two river catchments in the Southern Limestone Alps (the Julian Alps, NW Slovenia). Aquatic Ecology, 40(1), 69-83. Mori, N. & A. Brancelj (2011): Spatial and tempo- ral variability of hyporheic invertebrate community within a stream reach of the River Bača (W Slovenia). Natura Sloveniae, 13(1), 25-38. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 298 Viktor BARANOV & Borut MAVRIČ : NEW RECORDS OF NON-BITING MIDGES (DIPTERA, CHIRONOMIDAE) FROM MARINE AND COASTAL HABITATS ..., 291–298 Neumann, D., R. Kaminsky & F. Heimbach (1997): Timing of eclosion in marine insects on Mediter- ranean shores–studies on Clunio mediterraneus, C. ponticus and Thalassomyia frauenfeldi (Diptera: Chironomidae). Marine Biology, 129(3), 513-521. Orendt, C., A. Dettinger-Klemm & M. Spies (2015): Bestimmungsschlüssel für die Larven der Chironomidae (Diptera) der Brackgewässer Deutschlands und angrenzender Gebiete.In: Schil- ling, P. (ed.): Bund/Länder-Messprogramm für die Meeresumwelt von Nord- und Ostsee (BLMP) – Ber. Qual.sich.stelle 2013/1. Deutschland/Umweltbun- desamt, Dessau-Roßlau, etc.; 242 pp. Pitacco, V., L. Lipej, B. Mavrič, M. Mistri & C. Munari (2018): Comparison of benthic indices for the evaluation of ecological status of three Slovenian transitional water bodies (northern Adriatic). Marine pollution bulletin, 129(2), 813-821. Qi, X., X.L. Lin, T. Ekrem, R.G. Beutel, C. Song, I. Orlov, C.-T. Chen & X.H. Wang (2019): A new surface gliding species of Chironomidae: An independent invasion of marine environments and its evolutionary implications. Zoologica Scripta, 48(1), 81-92. Salmon, J.T. (1947): New methods in microscopy for the study of small insects and arthropods.” In Trans- actions of the Royal Society of New Zealand, vol. 77, pp. 250-253. Sæther, O.A. & M. Spies (2011): Fauna Europaea: Chironomidae. In: Beuk, P., Pape, T. (eds) Fauna Eu- ropaea: Diptera Nematocera. Fauna Europaea version 2.4. Internet database, outdated version. Soong, K., G.F. Chen & J.R. Cao (1999): Life history studies of the flightless marine midges Pontomyia spp. (Diptera: Chironomidae). Zoological Studies-Taipei, 38(4), 466-473. Trontelj, A. & P. Ponikvar-Zorko (1998): Influence of a uranium mine on the macrozoobenthic communi- ties of the streams in the nearest environs, Slovenia. Water science and technology, 37(8), 235-241. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 299 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 FLORA FLORA FLORA ANNALES · Ser. hist. nat. · 30 · 2020 · 1 300 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 301 received: 2020-08-03 DOI 10.19233/ASHN.2021.35 LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE Amelio PEZZETTA Via Monte Peralba 34 - 34149 Trieste e-mail: fonterossi@libero.it Marco PAOLUCCI Contrada Piana Sant’Antonio 24 – 66041 Atessa (Ch) e-mail majella@virgilio.it Mario PELLEGRINI Riserva Nat. Reg. Abetina di Rosello, via S. Liberata – 66040 Rosello (Ch) e-mail abetinadirosello@gmail.com SINTESI Il Sito SIC/ZSC “Monte Pallano e Lecceta d’Isca d’Archi” si trova interamente in Abruzzo ed in particolare nella provincia di Chieti. Il suo territorio che copre la superficie di 3270 ha, è molto eterogeneo e presenta un’elevata diversità floristica con circa 1250 taxa di piante vascolari segnalate. Nel presente saggio, consi- derando gli studi sinora condotti e le ricerche sul campo degli autori è stato compilato un nuovo elenco di tutte le Orchidaceae presenti cui è seguita l’analisi corologica che evidenzia una prevalenza del contingente Mediterraneo. Nell’elenco floristico sono riportati 47 taxa distinti tra specie e sottospecie. Esso comprende anche 7 specie endemiche che accrescono l’importanza fitogeografica dell’area di studio. Parole chiave: Monte Pallano, Orchidaceae, Abruzzo, Italia Centrale, check-list, spettro corologico THE ORCHIDACEAE OF THE SITE OF COMMUNITY INTEREST “MONTE PALLANO AND LECCETA D’ISCA D’ARCHI” AND THE NEIGHBORING AREAS ABSTRACT The “SCI/SAC” Monte Pallano and Lecceta d’Isca d’Archi” site is located entirely in Abruzzo and in the province of Chieti. Its territory which covers an area of 3270 ha is highly heterogeneous and has an elevated floristic diversity with about 1250 taxa of vascular plant species reported. In this article, considering the studies conducted so far and the field research of the surveys of the authors, a new list of Orchidaceae has been compiled. The chorological analysis shows a prevalence of the Mediterranean contingent. The checklist reports 47 taxa. It also includes 7 endemic species that increase the phytogeographic importance of the study area. Key words: Monte Pallano, Orchidaceae, Abruzzo, Central Italy, check-list, chorological spectrum ANNALES · Ser. hist. nat. · 31 · 2021 · 2 302 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 INTRODUZIONE Le orchidee spontanee sono piante che per la bel- lezza e la complessa biologia suscitano un notevole in- teresse e sono osservate e studiate da amatori, botanici professionisti, singolarmente o in gruppi organizzati. Tenendo conto della loro importanza e della necessità di approfondire la conoscenza, nel presente saggio si è voluto compilare una checklist comprendente tutte le entità rinvenute nel territorio Sito SIC/ZSC “Monte Pal- lano e Lecceta d’Isca d’Archi” di cui attualmente non esiste nessun lavoro monografico specifico riguardante tale famiglia di piante. Inquadramento dell’area d’indagine Il sito SIC/ZSC “Monte Pallano e Lecceta d’Isca d’Archi” IT7140211 si trova in Provincia di Chieti (Abruzzo), è stato istituito nel 2003 e ha avuto in assegnazione il codice europeo IT7140211. Esso è tutelato oltre che dalla Rete Natura 2000 istituita dalla Comunità Europea per salvaguardare le eccel- lenze della biodiversità presenti negli Stati nazionali, anche dalle DGR n. 279/2017 e DGR n. 492/2017 che prevedono misure generali e specifiche per la conservazione degli habitat e la salvaguardia delle specie di particolare pregio. Con la Delibera della Giunta Regionale (DGR) 476 del 05/07/2018, il sito è stato riconosciuto anche ZPS (Zona di Protezione Speciale) in base alla “Direttiva Uccelli” perché rica- dente all’interno dell’area IBA (Important Bird Areas) 115. Il suo territorio occupa la superficie complessiva di 3270 ha, presenta un’escursione altitudinale che va da 145 m s.l.m. del ponte Malpassaggio d’Isca d’Archi (Valle del Sangro) a quella massima di 1.020 metri della cima del Monte Pallano (entrambe le quote sono poste nel territorio comunale di Bomba) ed è ripartito tra cinque Comuni: Archi (812 ha), Atessa (446 ha), Bomba (832 ha), Colledimezzo (312 ha) e Tornareccio (868 ha) (Pellegrini et al., 2014, 2018). L’ambito di studio comprende varie zone collinari e il Monte Pallano, un rilievo calcareo situato intera- mente in provincia di Chieti. La sua vetta rappresenta la parte più elevata di una dorsale che dalla piana alluvionale del Sangro si sviluppa lungo un crinale che tocca i territori comunali di Archi, Bomba, Tornareccio, Colledimezzo, Monteferrante, Roio del Sangro, Montazzoli e, infine termina nel Comune di Castiglione Messer Marino con il Monte Castel Fraia- no posto a un’altitudine di 1415 metri (Pellegrini et al., 2018). Nel Monte Pallano sono evidenti vari fenomeni carsici che hanno portato alla formazione di numerose doline tra cui la più grande è quella di Lago Nero, una lunga depressione di circa 450 metri che durante le annate con abbondanti precipitazioni si riempie d’ac- qua favorendo la formazione di un lago stagionale ed effimero che può raggiungere la profondità di circa 6 metri (Cicchitti & Pellegrini, 2014). La sua particolare denominazione è dovuta alla colorazione scura che assumono le acque a causa dell’ombra proiettata dalla vegetazione arborea circostante. La formazione del lago di solito inizia nel mese di marzo, appena dopo il disgelo, raggiunge la massima estensione tra fine aprile e i primi giorni di maggio, mentre tra giugno e gli inizi di luglio si ha il suo prosciugamento totale (Cicchitti & Carunchio, 1999). Il Monte Pallano è sede anche di un importante complesso archeologico italico-sannita risalente al IV-V secolo a. C. che è stato identificato con l’antica città di Pallanum (Cicchitti et al., 1996; Cicchitti & Pellegrini, 2014). L’assetto geomorfologico dell’ambito di studio è caratterizzato dalla presenza di vari domini pa- leogeografici formatisi nel corso d’ere geologiche diverse, modificati e rimodellati da vari eventi tet- tonici e processi morfologici (Pellegrini et al., 2014, 2018). In particolare, dal punto di vista geologico l’area del Monte Pallano, è caratterizzata da una successione oligo-miocenica in ricoprimento tetto- nico su terreni d’origine pliocenica (Selli, 1962). Ad avviso di Pellegrini et al. (2014, 2018), le prin- cipali formazioni rocciose presenti nel sito SIC/ZSC sono le seguenti: - rocce calcaree e calcareo-marnose appartenenti alle unità carbonatiche del massiccio della Majella e dell’avanfossa periadriatica; - sedimenti argillosi noti come “Argille Varicolori”, depositatesi tra l’Oligocene e il Miocene inferiore; - il “Flysh di Roccaspinalveti” che si è originato durante il Messiniano ed è costituito da strati alternati di marne argillose e arenarie con intercalazioni di calcareniti; - la “Formazione di Tufillo” che risale al Tortonia- no-Langhiano ed è costituito da calcilutiti marnose bianche con intercalazioni di siltiti, marne argillose bluastre e intervalli di prevalenti calcareniti; - calciruditi e microconglomerati a biocalcareniti torbiditiche. Per quanto riguarda l’area occupata dalle acque del Lago Nero, le indagini geognostiche di Tullo & Apilongo (2006) hanno evidenziato la presenza di: 1) uno strato superficiale di terreno vegetale variabile tra 1 e 2 m di spessore; 2) uno strato intermedio più in basso dallo spessore compreso tra 4 e 10 metri di limo argilloso con nuclei di carbonato di calcio e carbo- niosi, livelli sabbiosi e frammenti calcarei abbastanza estesi; 3) uno strato roccioso più profondo costituito da marna calcarea fratturata. Nell’area del SIC/ZSC, il reticolo idrografico è co- stituito da diversi piccoli torrenti e ruscelli secchi per gran parte dell’anno che affluiscono nei fiumi Sangro, Osento e Sinello. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 303 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 Il clima All’interno del sito SIC/ZSC non sono presenti stazioni meteorologiche e di conseguenza per la definizione del clima locale si farà riferimento ai dati termo-pluviometrici raccolti in quelle dei comuni in cui è compreso. Dalla consultazione di una tesi di laurea (Gallucci, 2002) e alcune pubblicazioni (Conti & Pirone, 1992; Di Lena et al., 2017; Giuliani & Antenucci, 2017; Pellegri- ni et al., 2018) è emerso che i dati termo-pluviometrici di alcuni Comuni e particolari ambiti situati all’interno dell’area SIC/ZSC assumono i seguenti valori: • ad Archi la temperatura media annua è di 13,4°C; la temperatura media mensile oscilla tra 5,5°C (gennaio e febbraio) e 23°C (agosto); la temperatura minima assoluta si registra a feb- braio con -4°C, mentre quella massima a luglio con 37°C; le precipitazioni annue ammontano a 617 mm; • ad Atessa la temperatura media annua è di 12,7°C; la temperatura media mensile oscilla tra 5,5°C (gennaio e febbraio) e 23°C di agosto; la temperatura minima è di -4°C (febbraio) e la massima di 37°C (luglio), le precipitazioni annue sono di circa 780 mm; • a Bomba la temperatura media annua è di 12,4°C; la temperatura media mensile oscilla tra 5,5°C (gennaio e febbraio) e 23°C di agosto; la temperatura minima assoluta si registra a febbraio -4°C mentre quella massima a luglio con 37°C; le precipitazioni medie annue sono di 965,8 mm; • a Tornareccio la temperatura media annua è di 12,3°C; la temperatura media mensile oscilla tra 4,5° C di gennaio e febbraio e 22°C di agosto; la temperatura minima assoluta è di -5 °C (febbraio) e quella massima di 36°C (luglio); le precipitazio- ni medie annue sono di circa 617 mm; • nell’area circostante il Lago Nero, la tempera- tura media annua è di circa 11,5 °C: il mese più freddo è gennaio con la temperatura media compresa tra 3 e 4 °C; i mesi più caldi sono luglio e agosto con 21 °C; il regime pluviome- trico presenta un valore massimo principale che si registra nel mese di novembre (99 mm) e un massimo secondario in aprile (78,2 mm), dopo si ha una progressiva diminuzione fino a luglio con un minimo di 45,6 mm. L’insieme dei dati riportati consente di affermare che nel territorio in esame: • la temperatura media annuale oscilla tra 11,5°C e 13.4°C; • la temperatura media minima durante l’anno va da circa 3°C a 5,5°C; • la massima escursione termica annua è di 42°C, essendo compresa tra -5°C a + 37°C; • le precipitazioni annue sono comprese tra 617 e 965,8 mm; • in tutti i casi, l’andamento delle precipitazioni è tipico del regime mediterraneo con i valori massimi collocati attorno al tardo autunno, un massimo secondario a inizio primavera e valori minimi durante la stagione estiva. In conclusione, in accordo con Pellegrini et al. (2014, 2018), si può ammettere che il clima locale presenta le seguenti caratteristiche principali: estati non troppo calde con precipitazioni ridotte, un discre- to surplus idrico tra settembre e aprile e un periodo freddo ridotto ai mesi di gennaio e febbraio. Tuttavia a causa del non trascurabile gradiente altitudinale, del particolare orientamento dei versanti e d’altri fattori topografici di dettaglio, l’andamento delle tempera- ture e precipitazioni all’interno dell’area SIC/ZSC e dei suoi comuni è soggetto a oscillazioni di una certa rilevanza. Per questi motivi e in base ai valori ter- mopluviometrici osservati, sono state proposte varie classificazioni climatiche. In base al modello di classificazione di Köppen & Geiger (1954) il clima dell’area basale rientra nel tipo caldo-umido temperato senza stagione secca definito “Cfa” e caratterizzato dalla temperatura media del mese più caldo che supera 22 °C. Le aree poste ad altitudine maggiore hanno un clima più fresco che rientra nel tipo “Cfb”, con la temperatura media della stagione estiva inferiore a 22°C. Ad avviso di Conti & Pirone (1992) l’area in cui si trova il bosco di Vallaspra rientra nella subregio- ne mediterranea di transizione caratterizzata da un periodo secco di durata media inferiore a 2 mesi. Tenendo conto del modello di classificazione cli- matica di Rivas Martinez (1996), l’area rientra nella Regione Biogegografica Mediterranea caratterizzata da una aridità estiva e precipitazioni concentrate nel periodo tardo-autunnale. I principali termotipi che in essa sono individuabili sono il Mesomediterraneo e il Termomediterraneo mente gli ombrotipi sono il secco e umido/ subumido. Ad avviso di Pellegrini et al. (2014; 2018) l’aera SIC/ZSC è inserita nel bioclima mesotemperato subumido. Secondo Gallucci (2002) l’area del Monte Pallano rientra nella regione climatica temperata e all’orizzonte “collinare superiore (submontano)”. Aspetti vegetazionali e floristici L’aspetto attuale del paesaggio vegetale, la com- posizione floristica e le particolarità fitogeografiche dell’ambito di studio sono la conseguenza dell’influsso combinato delle sue peculiarità geografiche, delle sue vicende storico-geologiche, dell’andamento climatico ANNALES · Ser. hist. nat. · 31 · 2021 · 2 304 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 e della pressione antropica attuale e del passato. Nel complesso l’azione sinergica di tali fattori ha portato alla formazione di habitat molto diversi in cui si sono sviluppate forme di vita vegetale e animale caratteriz- zate da entità rare e di grande interesse naturalistico. Per quanto riguarda la pressione antropica, la presenza dell’uomo nell’area è documentata dal Paleolitico (circa 18000-20000 anni fa), come testimo- niano i rinvenimenti di selci nelle vicinanze del Monte Pallano. Tuttavia nelle varie zone del SIC/ZSC e dei suoi territori limitrofi, nel corso dei secoli, la presenza umana non è stata sempre continua (Monte Pallano home page). Nel complesso si può dire che sino ad alcuni decen- ni fa, in gran parte dell’ambito di studio la pressione antropica si è esercitata con pratiche agro-pastorali che hanno portato alla formazione di molti terreni aperti. Nelle aree incolte e inutilizzate per l’agricoltura e la pastorizia si sono conservate varie tipologie forestali e/o si sono sviluppate formazioni vegetali varie compa- tibili con le particolari condizioni ecologico-ambienta- li dei luoghi. In tempi recenti il rapporto dell’uomo con il territo- rio in esame e i suoi dintorni è notevolmente cambiato. Le pratiche agro-pastorali tradizionali del passato sono state abbandonate e in varie zone vicine al sito SIC / ZSC di Monte Pallano si osservano: forme di agricol- tura intensiva, centri produttivi artigianali e industriali, nuovi insediamenti civili e infrastrutture stradali. A causa di ciò la superficie occupata dai terreni aperti si è ridotta, mentre su quelli abbandonati si sono svilup- pate formazioni vegetali arbustive varie ed è ripreso il processo di riforestazione. In questo periodo l’area SIC/ZSC e i suoi territori limitrofi si presentano come un interessante e comples- so mosaico in cui sono presenti formazioni vegetali di diverse caratteristiche. Tenendo conto delle ricerche di Conti & Pirone (1992), Pirone (1995), Ciaschetti et al. (2004), Gallucci (2002) e Pellegrini et al. (2014, 2018) esse possono essere così riassunte: • una lecceta alla cui composizione oltre al lec- cio (Quercus ilex) concorrono altre sclerofille sempreverdi poco comuni in Abruzzo: Arbutus unedo, Pistacia lentiscus, Phillyrea latifolia, Viburnum tinus, Smilax aspera e Laurus nobilis. • una lecceta mista illirico-mediterranea con sclerofille ed essenze arboree caducifoglie tra cui prevalgono l’orniello (Fraxinus ornus) e la roverella (Quercus pubescens); • formazioni arbustive presenti nei terreni ab- bandonati alla cui composizione generalmente concorrono Viburnum tinus, Pistacia lentiscus, Phyllirea latifolia, Paliurus spina-christi, etc. • boschi di caducifoglie termofile presenti a quote inferiori 800/900 m s.l.m. e composte dalla roverella (Quercus pubescens), il cerro (Quer- cus cerris, l’orniello (Fraxinus ornus), il carpino orientale (Carpinus orientalis), il biancospino (Crataegus monogyna), la berretta da prete (Euonymus europaeus), la marruca (Paliurus spina-christi), etc. • bosco misto di caducifoglie mesofile posto sopra 900 metri di quota s.l.m. ed essenzialmente com- posto da Tilia spp., Acer pseudoplatanus, Acer platanoides, A. opalus subsp. obtusatum, Carpi- nus betulus, Quercus cerris e Fagus sylvatica; • bosco igrofilo presente in una depressione di versante con Fraxinus oxycarpa, Ulmus minor, Carex divulsa, C. pendula, C. remota, Chamaei- ris foetidissima, Ranunculus lanuginosus, Rumex sanguineus, Serratula tinctoria, etc.; • garighe mediterranee con Aegonychon pur- purocaeruleum, Ampelodesmos mauritanicus, Brachypodium rupestre, Carex flacca, Cistus sp.pl., Osyris alba, Pistacia lentiscus, etc. • varie tipologie di prati-pascolo secondari alla cui composizione generalmente concorrono Brachipodium rupestre, Bromus erectus, Phleum hirsutum subsp. ambiguum, Festuca circumme- diterranea, Lomelosia crenata subsp. pseudise- tensis, Thymus longicaulis, Micromeria graeca, Lotus creticus, Helianthemum oelandicum subsp. italicum, Elymus repens, Rumex crispus, Dasypyrum villosum, Ranunculus bulbosus, Centaurea solstitialis, etc. Un’importante particolarità del luogo è la presenza in aree molto prossime di una formazione forestale ti- picamente mediterranea (la lecceta) e una faggeta ossia una formazione vegetale tipica di territori più freschi che nel territorio in esame attecchisce all’altitudine di circa 800 metri e si può considerare azonale. Ad avviso di Pellegrini et al. (2014; 2018), una particolare menzione la meritano due particolari ambiti presenti nei dintorni dell’area. Il primo di essi analizzato da Conti & Pirone (1992), è denominato la cerreta di Vallaspra o bosco di San Pasquale ed è posto nel territorio comunale di Atessa a poca distanza dai confini del SIC/ZSC. Alla sua formazione oltre al cerro concorrono Acer campestre, A. opalus subsp. obtu- satum, Carpinus betulus, Fraxinus angustifolia subsp. oxycarpa, F. ornus, Ilex aquifolium, Ruscus aculeatus, Sorbus domestica, S. torminalis, Tilia plathyphyllos, Carex olbiensis, C. remota, C. sylvatica, Chamaeiris foetidissima, C. lorea, Daphne laureola, Drymochloa drymeja subsp. exaltata, Lathyrus pannonicus subsp. varius, Lilium bulbiferum subsp. croceum ed altro. Il secondo ambito è rappresentato dai calanchi di Atessa-Tornareccio che è stato analizzato nelle sue com- ponenti vegetazionali da Pirone (1995). Alcune specie più caratteristiche e importanti del suo territorio sono le seguenti: Anacyclus tomentosus, Anemone hortensis, Artemisia caerulescens subsp. caerulescens, Arundo ANNALES · Ser. hist. nat. · 31 · 2021 · 2 305 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 plinii, Atriplex prostrata, Beta vulgaris subsp. maritima, Bupleurum tenuissimum, Cardopatium corymbosum, Catananche lutea, Cynara cardunculus subsp. cardun- culus, Hedysarum coronarium, Hordeum maritimum, Parapholis cylindrica, Romulea ramiflora subsp. ramiflo- ra, Spartium junceum, Tamarix africana, etc. Per quanto riguarda la consistenza del patrimonio floristico, le ricerche di Conti et al. (2011; 2015; 2017), Marco Paolucci (Monte Pallano Home page) e Pellegrini et al. (2014; 2018) eseguite nell’area del SIC/ZSC e in quelle dei territori strettamente limitrofi portano al conteggio complessivo di circa 1250 taxa ripartiti in 110 famiglie. Le entità presenti rappresen- tano oltre un terzo dell’intera flora regionale che nel complesso annovera oltre 3360 taxa (Bartolucci et al., 2018; Pirone, 2020). MATERIALI E METODI Il territorio d’indagine comprende tutta l’aera SIC/ ZSC e le aree limitrofe, quali la cerreta di Vallaspra, i calanchi di Atessa-Tornareccio, la lecceta di Isca d’Ar- chi e altre zone ricadenti nei comuni di Archi, Atessa, Bomba, Colledimezzo e Tornareccio. L’elenco floristico è stato realizzato tenendo conto: del- le ricerche sul campo degli autori e dei dati ricavati dalle consultazioni bibliografiche. Esso comprende le specie, le sottospecie e gli ibridi mentre non sono state prese in considerazione le varietà cromatiche e morfologiche. Le ricerche nell’area sono iniziate circa 30 anni fa con l’annotazione di tutte le specie che di volta in volta si rinvenivano e sono continuate sino al 2021 con frequenze più o meno settimanali dal mese di marzo a quello di settembre. Per la nomenclatura delle orchidee si sono seguite le indicazioni di GIROS (2016) con le seguenti eccezioni: • sono state ricondotte a Ophrys sphegodes subsp. sphegodes tutte le segnalazioni di O. aranifera s.l. e di O. sphegodes subsp. classica, due taxa che per Hertel & Presser (2006) rien- trano nella variabilità di O. sphegodes e che per De Simoni & Biagioli (GIROS 2016), sono da approfondire ulteriormente; • sono state ricondotte a Ophrys bertolonii tutte le segnalazioni di O. romolinii Soca. Per quanto riguarda la nomenclatura dei taxa appar- tenenti ad altre famiglie è stata seguita quella proposta da Bartolucci et al. (2018). Alla luce delle recenti revisioni tassonomiche, dalla flora abruzzese vanno escluse le seguenti entità che in passato erano state segnalate per il territorio in esame: • Ophrys fusca Link subsp. fusca le cui piante presenti nell’area sono state ricondotte alle sottospecie funerea e lucana; • Ophrys holosericea (Burm. f.) Greuter subsp. holosericea, a sua volta ricondotta a O. holose- ricea subsp. appennina, O. holosericea subsp. dinarica, O. holosericea subsp. gracilis e O. holosericea subsp. pinguis. Per l’assegnazione dei tipi corologici si è tenuto conto di quanto riportato in Pignatti (2017) e Pezzetta (2011). Al corotipo Appennino-Balcanico sono stati as- segnati i taxa presenti esclusivamente nel territorio deli- mitato dai seguenti confini fisici (Pezzetta, 2010): 1) per la Penisola Italiana, le isole e l’arco appenninico dalla Liguria all’Aspromonte; 2) per la Penisola Balcanica, Creta, le isole dell’Egeo e il territorio continentale posto a sud dell’asse fluviale che va dalle sorgenti della Sava alle foci del Danubio e dal Mar Nero all’Adriatico-Ionio. Accanto ad ogni taxon sono riportati: il tipo corolo- gico, gli autori che l’hanno segnalato, tutte le località in cui è stata registrata la presenza e le eventuali osser- vazioni sul rango tassonomico. I toponimi indicati nel testo sono reperibili nella cartografia IGM riguardante la zona. Tutti i taxa sono stati osservati dagli autori del presente saggio. RISULTATI E DISCUSSIONE Elenco floristico 1. Anacamptis morio (L.) R.M. Bateman, Pridgeon & M.W. Chase - Europeo-Caucasico. (Monte Pallano Home page; Pezzetta, 2016). Archi (Contrada Fara, Fontemaggiore, Fosso della Fonte dei Santi), Atessa (Coste Pertelle, Fontecampana, Vallaspra), Bomba (La Crocetta, Monte Pallano zona antenne, Sambuceto, San Mauro Vecchio), Colledimezzo (c/o campeggio Il Soffio, Colle Butino, Contrada Maccarone), Tornareccio (Colle Case, Colle Pela- to, I Piani, La Torretta, Lago Nero). 2. Anacamptis papilionacea (L.) R.M. Bateman, Pridgeon & M.W. Chase - Eurimediterraneo. (Monte Pallano Home page; Pezzetta, 2016). Ar- chi (Fosso della Fonte dei Santi), Colledimezzo (Contrada Maccarone). 3. Anacamptis pyramidalis (L.) Rich. – Eurimedi- terraneo. (Monte Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). Archi (Contrada Grotte, Fosso della Fonte dei Santi, La Serra, Le Coste, Piano Carrozza), Atessa (Fontecampana, Fonte Rio Falco, Valla- spra), Bomba (Il Convento, La Crocetta, Monte Pallano zona antenne, Sambuceto), Colledimez- zo (Cirone, Colle Butino, Contrada Maccarone), Tornareccio (Colle Case, Fondo d’Izzo, I Piani, Lago Nero, San Giovanni). 4. Cephalanthera damasonium (Mill.) Druce – Eurimediterraneo. (Monte Pallano Home page; Conti & Pirone, 1992; Pellegrini et al., 2014; ANNALES · Ser. hist. nat. · 31 · 2021 · 2 306 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 Pezzetta, 2016; Pellegrini et al., 2018). Archi (Contrada Fara, Fosso della Fonte dei Santi, La Sorgente, Monte Rione), Atessa (Coste di Serra, Fontecampana, Vallaspra), Bomba (La Crocetta, Monte Pallano zona antenne, Sambuceto, San Mauro Vecchio), Colledimezzo (Colle Butino), Tornareccio (Fondo d’Izzo, I Piani, Lago Nero). 5. Cephalanthera longifolia (L.) Fritsch – Eurasiati- co. (Monte Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). Archi (Monte Rione), Bomba (Sambuceto), Atessa (Fonecampana, Portelle, Vallaspra), Tor- nareccio (La Torretta, Lago Nero). 6. Cephalanthera rubra (L.) Rich. – Eurasiatico. (Monte Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). Archi (Fontemaggiore, Monte Rione), Atessa (Fontecampana), Bomba (La Crocetta, San Mauro Vecchio), Colledimezzo (Colle Butino, Contrada Maccarone), Tornareccio (Bosco Sant’Onofrio, Lago Nero). 7. Dactylorhiza maculata (L.) Soó subsp. fuchsii (Druce) Hyl. – Eurasiatico. Tornareccio (Lago Nero). 8. Dactylorhiza maculata subsp. saccifera (Bron- gn.) Diklić – Paleotemperato. (Monte Pallano Home page; Pezzetta, 2016). Atessa, Bomba (San Mauro Vecchio), Colledimezzo (Contrada Maccarone), Tornareccio (Fondo d’Izzo, Fonte Benedetti, Lago Nero). 9. Epipactis atrorubens (Hoffm.) Besser – Europeo. Atessa (Vallaspra). 10. Epipactis helleborine (L.) Crantz subsp. helle- borine– Paleotemperato. (Monte Pallano Home page; Pezzetta, 2016). Archi (Fontemaggiore, Monte Rione), Atessa (Fontecampana), Bomba (La Crocetta, Sambuceto), Colledimezzo (Colle Butino), Tornareccio (Faggeta, Il Lago). 11. Epipactis microphylla (Ehrh.) Sw. – Europeo-Cau- casico. (Monte Pallano Home page; Pezzetta, 2016). Archi (Fosso della Fonte dei Santi), Atessa (Fontecampana), Bomba, Colledimezzo (Colle Butino), Tornareccio (Faggeta, Fondo d’Izzo). 12. Epipactis muelleri Godfery – Centroeuropeo. (Monte Pallano Home page). Archi (Monte Tor- retta), Atessa (Fontecampana). 13. Gymnadenia conopsea (L.) R. Br. in W.T. Aiton – Eurasiatico. (Pirone, 1995; Monte Pallano Home page; Pezzetta, 2016). Atessa (Fontecampana), Bomba (La Crocetta, Monte Pallano zona anten- ne, Sambuceto), Tornareccio (I Piani, Lago Nero). 14. Himantoglossum adriaticum H. Baumann – Eurimediterraneo. (Monte Pallano Home page; Pellegrini et al., 2014, Pezzetta, 2016; Pellegrini et al., 2018). Atessa (Vallaspra), Bomba (Monte Pallano zona antenne), Tornareccio (Lago Nero, San Mauro Vecchio). 15. Limodorum abortivum (L.) Sw. – Eurimediter- raneo. (Monte Pallano Home page; Pezzetta, 2016). Archi (Fosso della Fonte dei Santi), Atessa (Fontecampana, Vallaspra), Bomba (Monte Pal- lano zona antenne, Sambuceto), Colledimezzo (Colle Butino), Tornareccio (Faggeta, I Piani, Lago Nero, San Giovanni). 16. Listera ovata (L.) R. Br. – Eurasiatico. (Monte Pallano Home page; Pellegrini et al., 2014, Pezzetta, 2016; Pellegrini et al., 2018). Atessa (Vallaspra), Tornareccio (Lago Nero). 17. Neotinea tridentata (Scop.) R.M. Bateman, Pridgeon & M.W. Chase – Eurimediterraneo. (Pezzetta, 2016). Atessa (Fontecampana), Torna- reccio (La Torretta). 18. Neottia nidus-avis (L.) Rich. – Eurasiatico. (Mon- te Pallano Home page; Pezzetta, 2016). Archi (Fosso della Fonte dei Santi, Monte Rione), Ates- sa (Fontecampana, Vallaspra), Bomba (Sambu- ceto, San Mauro Vecchio), Colledimezzo (Colle Butino), Tornareccio (Faggeta, Fondo D’Izzo, Lago Nero). 19. Ophrys apifera Huds. – Eurimediterraneo. (Mon- te Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). Archi (Fara, Fosso della Fonte dei Santi), Atessa (Fon- tecampana, Fonte Rio Falco, Vallaspra), Bomba (Monte Pallano zona antenne, Sambuceto), Colledimezzo (Colle Butino, Contrada Macca- rone, Ponte Cefalone), Tornareccio (I Piani, Lago Nero). 20. Ophrys argolica subsp. crabronifera Faurh. – Endemico. (Monte Pallano Home page). Bomba (Vallecupa), Tornareccio (Fondo d’Izzo). 21. Ophrys bertolonii subsp. bertolonii Moretti - Appennino-Balcanico. (Monte Pallano Home page; Pellegrini et al., 2014, Pezzetta, 2016; Pellegrini et al., 2018). Archi (Fosso della Fonte dei Santi), Atessa (Fontecampana, Fonte Rio Falco, Vallaspra), Bomba (Monte Pallano zona antenne, Sambuceto), Colledimezzo (Colle Butino, Tornareccio (Colle Pizzuto, La Torretta, Lago Nero, I Piani). 22. Ophrys bombyliflora Link – Stenomediterraneo. (Monte Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). Atessa (Coste di Serra, Fonte Rio Falco). 23. Ophrys fusca subsp. funerea Link – Mediter- raneo-Atlantico. (Monte Pallano Home page). Bomba (Monte Pallano zona antenne), Torna- reccio (Colle Pizzuto, I Piani). 24. Ophrys fusca subsp. lucana (P. Delforge, De- villers-Tersch. & Devillers) Kreutz – Endemico. Tornareccio (I Piani). 25. Ophrys holosericea (Burm. f.) Greuter subsp. ap- pennina (Romolini & Soca) Kreutz – Endemico. Tornareccio (Coste dell’Oppio, I Piani). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 307 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 26. Ophrys holosericea (Burm. f.) Greuter subsp. di- narica (Kranjcev & P. Delforge) – Appennino-Bal- canico. (Pezzetta, 2016). Atessa (Fontecampana). 27. Ophrys holosericea subsp. gracilis (Büel, O. Danesch & E. Danesch) Büel, O. Danesch & E. Danesch – Endemico. Atessa (Fontecampana). 28. Ophrys holosericea (Burm. f.) Greuter subsp. pinguis (Romolini & Soca) Kreutz – Endemico. Bomba (Valle Cupa). 29. Ophrys incubacea Bianca subsp. incubacea – Stenomediterraneo. (Monte Pallano Home page; Pezzetta, 2016). (Fosso della Fonte dei Santi), Colledimezzo (Cirone). 30. Ophrys insectifera L. – Europeo. (Monte Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). Archi (Fonte- maggiore, Pianella), Atessa (Bivio Strada Piano Ciccarelli, Vallaspra). 31. Ophrys lutea subsp. lutea Cav. – Stenomediterra- neo. (Monte Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016). Atessa (Vallaspra SP 216). 32. Ophrys molisana Delforge – Endemico. Archi, Atessa (Fontecampana), Bomba (Valle Cupa), Colledimezzo (Colle Butino), Tornareccio (I Piani). Osservazioni. Il taxon, di dubbio valore tasso- nomico, è stato descritto da Delforge (2015), si può inserire nel gruppo di Ophrys sphegodes e non è riportato in GIROS (2016). Tenendo conto del suo periodo di fioritura più tardivo rispetto ad altre specie simili, delle sue particolari carat- teristiche morfologiche e in accordo con Soca (2017) e Bartolucci et al. (2018) che ammettono la sua presenza in Abruzzo ed altre regioni, lo si considera una buona specie che si segnala nel territorio d’indagine. 33. Ophrys passionis subsp. passionis Sennen ex Devillers-Tersch. & Devillers (sin. O. garganica O. Danesch & E. Danesch) – Mediterraneo-Occi- dentale. (Monte Pallano Home page; Pellegrini et al., 2014, Pezzetta, 2016, Pellegrini et al., 2018). Bomba (Accorvo), Colledimezzo (Cirone). 34. Ophrys promontorii O. Danesch & E. Danesch – Endemico. (Monte Pallano Home page; Pellegri- ni et al., 2014, Pezzetta, 2016; Pellegrini et al., 2018). Archi (Fosso della Fonte dei Santi), Atessa (Vallaspra), Bomba (Monte Pallano zona anten- ne), Colledimezzo (Colle Butino), Tornareccio (Fondo d’Izzo, I Piani, Lago Nero, La Torretta). 35. Ophrys sphegodes subsp. sphegodes Mill. – Eurimediterraneo. (Monte Pallano Home page; Pezzetta, 2016). Archi (Fosso della Fonte dei Santi, La Serra, Le Coste, Piano Carrozza), Atessa (Fontecampana, Vallaspra), Bomba (Il Convento, La Crocetta, Monte Pallano zona antenne, Sam- buceto), Colledimezzo (Cirone, Colle Butino, Contrada Maccarone), Tornareccio (Colle Case. Fondo d’Izzo, I Piani, Lago Nero). 36. Orchis anthropophora (L.) All. – Mediterraneo-At- lantico. (Monte Pallano Home page; Pezzetta, 2016). Archi (Fonte Maggiore Monte Rione), Atessa (Fontecampana, Fonte Rio Falco, Vallaspra), Bomba (Monte Pallano zona antenne, Portelle, Sambuceto), Colledimezzo (Colle Butino), Tornareccio (Fondo d’Izzo, I Piani, Coste del Lago Nero). 37. Orchis italica Poir. – Stenomediterraneo. (Monte Pallano Home page; Pellegrini et al., 2014; Pel- legrini et al., 2018). Archi (Contrada Fara, Fosso della Fonte dei Santi, La Sorgente), Atessa (Fon- tecampana, Vallaspra), Bomba (La Crocetta, San Mauro Vecchio, Monte Pallano zona antenne, Sambuceto), Colledimezzo (Colle Butino), Torna- reccio (Colle Case, Lago Nero, Piani di Pallano). 38. Orchis militaris L. – Eurasiatico. Bomba (Sam- buceto). 39. Orchis pauciflora Ten. – Stenomediterraneo. (Monte Pallano Home page; Pezzetta, 2016). Atessa (Vallaspra), Tornareccio (Coste del Lago Nero, San Giovanni). 40. Orchis provincialis Balb. Ex Lam. – Stenomedi- terraneo. (Monte Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). R. Atessa (Vallaspra SP 216). 41. Orchis purpurea Huds. – Eurasiatico. (Monte Pal- lano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). Archi (Fontemag- giore, Fosso della Fonte dei Santi, Monte Rione), Atessa (Coste Pertelle, Fontecampana, Vallaspra), Bomba (La Crocetta, Portelle, San Mauro Vec- chio, Sambuceto), Colledimezzo (Colle Butino, Contrada Maccarone), Tornareccio (Colle Case, Lago Nero, Piani di Pallano, San Giovanni). 42. Orchis simia Lam. – Eurimediterraneo. Bomba (Sambuceto). 43. Platanthera bifolia (L.) Rchb. subsp. bifolia – Paleotemperato. (Monte Pallano Home page; Pezzetta, 2016). Archi, Bomba. 44. Platanthera chloranha (Custer) Rchb. – Eurosibe- riano. Bomba (Sambuceto). 45. Serapias parviflora Parl. – Stenomediterraneo. (Monte Pallano Home page; Pellegrini et al., 2014; Pezzetta, 2016; Pellegrini et al., 2018). Archi (Fosso della Fonte dei Santi), Bomba (Crocetta, Monte Pallano zona antenne), Atessa (Vallaspra), Colledimezzo (Colle Butino, Colle Rinello c/o superstrada, Contrada Maccarone), Tornareccio (calanchi, Lago Nero). 46. Serapias vomeracea (Burm.f.) Briq. subsp. vomera- cea – Eurimediterraneo. (Monte Pallano Home page; Pezzetta, 2016). Archi, Atessa, Bomba, Colledimezzo (Contrada Maccarone), Tornareccio (San Giovanni). 47. Spiranthes spiralis (L.) Chevall. – Europeo-Cauca- sico. (Monte Pallano Home page; Pezzetta, 2016). Archi (Fosso della Fonte dei Santi), Colledimezzo (Colle Butino), Tornareccio (Piani di Pallano). ANNALES · Ser. hist. nat. · 31 · 2021 · 2 308 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 L’elenco floristico è costituito da 47 taxa specifici e infraspecifici che facendo riferimento a Pezzetta (2018) rappresentano il 48,4% delle Orchidaceae presenti in Abruzzo e il 18,3% di quelle nazionali. Allo stato attuale delle conoscenze l’ambito di studio rappresenta la terza area provinciale più ricca di orchidacee dopo il versante orientale della Majella e l’abetina di Rosello. I taxa nuovi non riportati, nel sito Monte Pallano Home page, in Pezzetta (2016) e in altri saggi biblio- grafici sono i seguenti: Dactylorhiza maculata subsp. fuchsii, Epipactis atrorubens, Ophrys fusca subsp. lucana, O. Ophrys holosericea subsp. appennina, O. holosericea subsp. gracilis, O. holosericea subsp. pinguis, O. molisana, Orchis militaris, O. simia e Pla- tanhera chlorantha. Dalla Tabella 1 uno emerge che le varie entità si ripartiscono in 15 generi tra cui il più rappresentato è il genere Ophrys con 17 taxa. Seguono i generi:Orchis (7 taxa),Epipactis (5 taxa), Anacamptis e Cephalanthera (3 taxa),Dactylorhiza, Platantherae Serapias (2 taxa) e infine tutti gli altri con un taxon ciascuno. Dalla Tabella 2 si può osservare che lo spettro corologico è costituito da 12 diversi corotipi ripartiti in 5 contingenti geografici tra cui prevale il contingente Mediterraneo (18 taxa). Esso è seguito dai contingenti Eurasiatico (15 taxa), Endemico (7 taxa), Europeo (4 taxa) ed Atlantico (2 taxa). Tra i vari corotipi prevale l’Eurimediterraneo (10 taxa). Esso è seguito dai corotipi Eurasiatico (8 taxa), Endemico e Stenomediterreaneo (7 taxa), Europe- o-Caucasico e Paleotemperato (3 taxa), Europeo s. s., Appennino-Balcanico e Mediterraneo-Atlantico (2 taxa) e tutti gli altri con un taxon ciascuno. In accordo con Poldini (1991), tenendo conto dei corotipi di appartenenza dei taxa considerati, sono stati fatti tre raggruppamenti definiti macrotermici, mesotermici e microtermici che consentono di eviden- ziare le preferenze climatiche dei taxa stessi. Il raggruppamento macrotermico comprende i contin- genti Mediterraneo e Endemico che è rappresentato da 7 taxa del genere Ophrys. Questa categoria nell’area in esame è la più rappresentata con 25 taxa, a conferma che una sua gran parte è caratterizzata da un clima temperato caldo, zone soleggiate e riparate dalle correnti fredde che facilitano l’attecchimento delle entità termofile. Il raggruppamento mesotermico comprende i corotipi Appennino-Balcanico, Eurasiatico, Europeo, Centro-Eu- ropeo, Mediterraneo-Atlantico, Europeo-Caucasico e Pa- Tab. 1: Generi e specie delle Orchidaceae dell’area di studio. Tab. 1: Rodovi in število vrst iz družine Orchidaceae na obravnavanem območju. Genere Numero taxa Genere Numero taxa Anacamptis 3 Neotinea 1 Cephalanthera 3 Neottia 1 Dactylorhiza 2 Ophrys 17 Epipactis 4 Orchis 7 Gymnadenia 1 Platanthera 2 Himantoglossum 1 Serapias 2 Limodorum 1 Spiranthes 1 Listera 1 Tab. 2: Corotipi delle Orchidaceae rinvenute nell’area di studio. Tab 2: Horotipi kukavičevk, potrjenih na obravnavanem območju. Contingenti Geografici e Corotipi (1) Numero taxa % Endemico 7 14,89 Endemico 7 Mediterraneo 18 38,3 Eurimediterraneo 10 Stenomediterraneo 7 Mediterraneo-Occidentale 1 Eurasiatico 15 31,91 Eurasiatico s. s. 8 Europeo-Caucasico 3 Paleotemperato 3 Eurosiberiano 1 Europeo 5 10,64 Europeo s. s. 2 Appennino-Balcanico 2 Centro-Europeo 1 Atlantico 2 4,26 Mediterraneo-Atlantico 2 Totale 47 100 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 309 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 leotemperato. Questa categoria segue il raggruppamento macrotermico con 21 taxa e dimostra che nell’ambito di studio sono presenti aree caratterizzate da un clima più fresco in cui attecchiscono piante mesofile. Il raggruppamento microtermico comprende il corotipo Eurosiberiano e nel complesso è rappresen- tato da un solo taxon, a dimostrazione che nell’area esistono particolari nicchie in cui attecchiscono entità tipiche di ambiti molto freschi. La presenza contemporanea di taxa appartenenti a 3 raggruppamenti diversi di corotipi conferma che il terri- torio in esame è un ambito di transizione biogeografica caratterizzato da varie tipologie ambientali e climatiche che consentono l’attecchimento di entità vegetali con esigenze termiche ed ecologiche molto diversificate. CONCLUSIONI Il considerevole numero di taxa di orchidacee rile- vato conferma l’importanza naturalistica del territorio esaminato, avvalora la scelta di istituirvi un ambito di tutela e si può considerare un indicatore della sua grande qualità ambientale. Tali piante attecchiscono su terreni oligotrofici e stabili che non sono alterati da dissodamenti, concimazioni e largo uso di diserbanti e insetticidi che alterando le caratteristiche fisico-chi- miche dell’aria, dell’acqua e del suolo, possono essere la causa dell’estinzione dei funghi micorrizici e degli insetti pronubi da cui dipende la loro vita. Nel loro complesso i taxa considerati sono stati os- servati in 40 località distinte appartenenti a 5 Comuni. Tali importanti segnalazioni arricchiscono la geografia floristica regionale e provinciale con nuove aree di presenza. All’interno sito SIC/ZSC in esame, il maggior numero di entità è stato osservato nei dintorni del Lago Nero (Comune di Tornareccio, 21 taxa), Fonte Campana (Comune di Atessa, 20 taxa), Colle Butino (Comune di Colledimezzo, 18 taxa) e al Fosso Fonte dei Santi (Comune di Atessa 16 taxa). In tali ambiti le efficaci misure protezionistiche in atto assicurano la loro conservazione. All’esterno dell’area si registra un’elevata presenza nei dintorni di Vallaspra (Comune di Atessa, 21 taxa) in cui ora non sono predisposte ef- ficaci misure protezionistiche. Va comunque eviden- ziato che in tutti i casi considerati, le trasformazioni vegetazionali in atto possono portare a una modifica della consistenza numerica delle orchidacee pre- senti. Infatti all’abbandono di certe forme di attività agro-pastorali tradizionali e all’espansione delle aree forestali, seguono: la scomparsa delle entità tipiche dei prati-pascolo e una maggiore diffusione di quelle degli ambiti boschivi e cespugliosi. Di conseguenza per un’adeguata tutela di tale famiglia di piante, le misure protezionistiche devono comprendere anche azioni di disturbo finalizzate ad ostacolare l’evolu- zione della vegetazione e alla conservazione degli habitat presenti. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 310 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 KUKAVIČEVKE OBMOČJA, POMEMBNEGA ZA SKUPNOST “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” IN SOSEDNJIH OBMOČIJ Amelio PEZZETTA Via Monte Peralba 34 - 34149 Trieste e-mail: fonterossi@libero.it Marco PAOLUCCI Contrada Piana Sant’Antonio 24 – 66041 Atessa (Ch) e-mail majella@virgilio.it Mario PELLEGRINI Riserva Nat. Reg. Abetina di Rosello, via S. Liberata – 66040 Rosello (Ch) e-mail abetinadirosello@gmail.com POVZETEK Območje SIC/ZSC “Monte Pallano e Lecceta d’Isca d’Archi” se nahaja v provinci Chieti v Abrucih. Pokriva površino 3270 ha, je zelo raznolik in premore izjemno floristično pestrost s približno 1250 ugotovljenimi taksoni višjih rastlin. Avtorji na podlagi pregleda dosedanjih raziskav v pričujočem delu nov seznam vseh kukavičevk in horološko analizo, ki kaže na prevladovanje sredozemskih florističnih elementov. V florističnem seznamu navajajo 47 taksonov, ločenih na vrste in podvrste. Med njimi je tudi 7 endemičnih vrst, ki dajejo obravnavanemu območju izjemen fitogeografski pomen. Ključne besede: Monte Pallano, Orchidaceae, Abruci, osrednja Italija, seznam vrst, horološki spekter ANNALES · Ser. hist. nat. · 31 · 2021 · 2 311 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 BIBLIOGRAFIA Bartolucci, F., L. Peruzzi, G. Galasso, A. Albano, A. Alessandrini, N.M.G. Ardenghi, G. Astuti, G. Bacchetta, E. Banfi, G. Barberis, L. Bernardo, D. Bouvet, M. Bovio, L. Cecchi, R. Di Pietro, G. Domina, S. Fascetti, G. Fenu, F. Festi, B. Foggi, L. Gallo, G. Gottschlich, L. Gubellini, D. Iamonico, M. Iberite, P. Jiménez-Mejias, E. Lattanzi, M. Marchetti, E. Mar- tinetto, R.R. Masin, P. Medagli, N.G. Passalaqua, S. Peccenini, R. Pennesi, B. Pierini, L. Poldini, F. Prosser, F.M. Raimondo, F. Roma-Marzio, L. Rosati, A. San- tangelo, A. Scoppola, S. Scortegagna, A. Selvaggi, F. Selvi, A. Soldano, A. Stinca, R.P. Wagensommer, T. Wilhalm & F. Conti (2018): An updated checklist of the vascular flora native to Italy. Plant Biosyst., 152(2), 179-303. Ciaschetti, G., L. Di Martino, A.R. Frattaroli & G. Pirone (2004): La vegetazione a leccio (Quercus ilex L.) in Abruzzo (Italia centrale). Fitosociologia, 41(1), 77-86. Cicchitti, A. & T. Carunchio (1999): Atessa Le im- magini. la storia. Tabula Edizioni, Atessa (Ch). Cicchitti A., L. Cuomo, C. Iacovone & N. Tieri (1996): Monte Pallano. Scenari naturali e persistenze storico-archeologiche. Editrice Itinerari, Lanciano (CH). Cicchitti, A. & M. Pellegrini (2014): Monte Pallano il fascino senza tempo della montagna madre che con- tinua a raccontare la storia del passato. Terra e Gente, A. XXXIV (1), 7-16. Conti, F., F. Bartolucci, A. Manzi, M. Paolucci, B. Santicci, B. Petriccione, M. Miglio, G. Ciaschetti & A. Stinca (2016): Integrazioni alla flora vascolare dell’I- talia Centrale. Atti Soc. Tosc. Sci. Nat., Mem., Serie B, 122(2015), 33-42. Conti, F., A. Manzi & M. Paolucci (2011): Segn. Fl. Ital.: 1874. Inform. Bot. It,. 43(2), 370. Conti, F., F. Bartolucci, A. Manzi, M. Paolucci, B. Santucci, B. Petriccione, M. Miglio, G. Ciaschetti & A. Stinca (2016): Integrazioni alla flora vascolare dell’I- talia Centrale. Atti Soc. Tosc. Sci. Nat., Mem., Serie B, 122, 33-42. Conti, F., M. Paolucci, F. Bartolucci, F. Di Carlo, A. Manzi, P. Paris & B. Santucci (2017): Aggiunte alla flo- ra vascolare d’Abruzzo e aree limitrofe. IV contributo. Natural History Sciences. Atti Soc. it. Sci. Nat. Museo civ. Stor. Nat. Milano, 4(1), 97-104. Conti, F. & M. Pellegrini (1990): Orchidee sponta- nee d’Abruzzo. Cogecstre, Penne (PE). Conti, F. & G. Pirone (1992): Le cenosi di Fraxinus oxycarpa Bieb. e di Carpinus betulus L. del bosco di Vallaspra nel bacino del fiume Sangro (Abruzzo, Italia). Doc. Phytosoc. n.s. 14, 167-175. Delforge, P. (2015): Nouvelles contributions taxo- nomiques et nomenclaturales aux Orchidées d’Europe. Naturalistes Belges, 96(Orchid 28), 14-21. De Simoni, M.G. & M. Biagioli (2016): Ophrys sphegodes Mill. subsp. classica (Devillers-Tersch. & Devillers) Kreutz. In: GIROS), Orchidee d’Italia. Guida alle orchidee spontanee, p. 224. Ed. Il Castello, Corna- redo (MI). Di Francesco, N., L. Di Tizio, C. Iacovone & M. Pellegrini (2010): Campionamento post-riproduttivo della popolazione di Hyla intermedia e check list degli Anfibi e dei Rettili presenti nel territorio del lago Nero di Monte Pallano (Tornareccio, CH, Abruzzo). Atti VIII Congresso Nazionale Societas Herpetologica Italica, pp. 75-82. Di Lena, B., F. Antenucci, D. Giuliani & R. Rampa (2017): Analisi Spazio temporale delle precipitazioni nella Regione Abruzzo. ARSSA, Servizio Area Ter- ritoriale Lanciano-Vasto Centro Agrometeorologico Regionale, Scerni (Ch). Gallucci, M. (2002): Analisi delle relazioni tra variazioni spaziali dei principali fattori ecologici e tipologie vegetazionali nel territorio di Monte Pallano (Ch, Abruzzo). Tesi sperimentale in conservazione della natura e delle risorse umane. Università degli Studi, Bari, facoltà di Scienze Matematiche, Fisiche e Naturali. Corso di laurea in Scienze Naturali. Giros (a cura), (2016): Orchidee d’Italia. Guida alle orchidee spontanee. 2a ed. Ed. Il Castello, Cornaredo (MI). Giuliani, D. & F. Antenucci (2017): I valori medi climatici dal 1951 al 2000 nella Regione Abruzzo. Regione Abruzzo, Dipartimento Politiche dello Svi- luppo Rurale e della pesca, Servizio Presidi Tecnici di Supporto al Settore Agricolo. DPD023, Ufficio Coor- dinamento servizi vivaistici e agrimeteo, Scerni (CH). Hertel, S. & H. Presser (2006): Zur Kenntnis der Italienischen Orchideen. J. Eur. Orch., 28(3), 485-532. Köppen, W. & R. Geiger (1954): Klima der Erde (JPG), Gotha, Klett-Perthes. Pellegrini, M., F.P. Pinchera, M. Agrillo, N. Alessi, M. Massimi, M. Masciovecchio, G. Di Menna, T. Mari- ni, C. Iacovone, M. Di Lorenzo, M. Staniscia, N. Zinni, A. Di Domenica, M. Ranalli & J.D. Totaro (2014): Piano di gestione del SIC IT7140211 “Monte Pallano e Lecceta d’Isca d’Archi”, CISDAM, Atessa (Ch). Pellegrini, M., F.P. Pinchera & A. Cicchitti (2018): All’ombra del Pallano. Guida al Sito di Interesse Comunitario Monte Pallano e Lecceta d’Isca d’Archi IT7140211. MS3, Pescara. Pezzetta, A. (2010): Gli elementi appennino-bal- canici, illirici, pontici e sud-est-europei della flora italiana: origini e distribuzione geografica. Ann. ser. Hist. Nat., 20, 75-88. Pezzetta, A. (2011): Fitogeografia delle orchidee italiane. GIROS Not., 47, 36-53. Pezzetta, A. (2016): Le Orchidaceae della Provincia di Chieti. Atti Mus. Civ. Stor. Nat. Trieste, 58, 57-83. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 312 Amelio Pezzetta et al.: LE ORCHIDACEAE DEL SITO DI INTERESSE COMUNITARIO “MONTE PALLANO E LECCETA D’ISCA D’ARCHI” E DELLE ZONE LIMITROFE, 301–312 Pezzetta, A. (2018): Le orchidee della flora italiana: distribuzione geografica e origini. GIROS Orch. Spont. Eur., 61(1), 218-248. Pignatti, S. (2017): Flora d’Italia. (Ed. 2a) Vol. II. Edagricole di New Business Media, Milano. Pirone, G. (1995): Vegetazione dei Calanchi di Atessa (Abruzzo) e problematiche sintassonomiche della vegeta- zione calanchiva appenninica in fitoclimi temperato-me- diterranei di transizione. Fitosociologia, 30, 221-232. Pirone, G. (2020): La biodiversità forestale in Abruzzo. Fratello albero, Giornale Online del Co.n.al. pa. http://www.conalpa.it/category/fratello-albero- giornale-online-del-co-n-al-pa/. Poldini, L. (1991): Atlante corologico delle piante vascolari nel Friuli-Venezia Giulia. Inventario floristico re- gionale. Regione Auton. Friuli-Venezia Giulia - Direz. Reg. Foreste e Parchi, Univ. Studi Trieste - Dipart. Biol., Udine. Rivas Martinez, S. (1996): Sistema de clasificación bioclimática de la Tierra. Folia Botánica Matritensis, 16, 1-29. Selli, R. (1962): Il Paleogene nel quadro della geo- logia dell’Italia meridionale. Mem. Soc. Geol. Ital., 3, 737-790. Soca, R. (2017): Ophrys molisana in Abruzzo, Molise and Latium (Central Italy). J. Eur. Orch., 49(2), 361-386. Tullo, N. & A.P. Apilongo (2006): Lago Nero Report 2006. Sangro Valley Project. http:// www.sangro.org/ sangro/documents/2006_Lago_Nero.pdf. SITOGRAFIA Monte Pallano Home page: Pallano. https://pallano. altervista.org/(visitato il 24/6/2021). ANNALES · Ser. hist. nat. · 30 · 2020 · 1 313 DELO NAŠIH ZAVODOV IN DRUŠTEV, 123–125 DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS ANNALES · Ser. hist. nat. · 30 · 2020 · 1 314 DELO NAŠIH ZAVODOV IN DRUŠTEV, 123–125 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 315 OKOLJSKI MANIFEST Težava človekovega čezmernega poseganja v okolje ni posledica neinformiranosti, pač pa prej hotene nevednosti in načrtnega izogibanja ter za- nikanja podatkov, ki kažejo na katastrofalne posle- dice teh posegov. Razmišljanje o nenadni radikalni spremembi življenjskega sloga, ki je potrebna, da bi naše ravnanje postalo bolj okoljsko vzdržno, za marsikoga predstavlja velik stres. Pomenilo bi namreč spremembo dosedanjega načina življenja, iz katerega posamezniki in družba črpamo svoje identitete in smisel. Kljub vsemu danes postaja etični imperativ, da se odrečemo svoji pristranskosti in nepotrebnemu potrošništvu. Planet moramo zavarovati, zato da bi lahko na njem preživeli mi, naši potomci in ves živi svet. Zavezani znanosti za boljši svet Nacionalni inštitut za biologijo in Mladi za pod- nebno pravičnost smo pripravili razpravo o biodiver- ziteti, vodi in razogličenju v obliki intredisciplinarne- ga simpozija, ki je potekal 14. in 15. oktobra 2021. Ključna sporočila simpozija, povzeta iz razprav in okroglih miz ponujajo nabor predlogov ter rešitev za izboljšanje odziva na globalne okoljske spremembe. Pozivamo znanstvenike s področij ved o življenju, ekonomije, tehnologije, filozofije in družboslovja, politike in vse ljudi, da dogovorno in odgovorno rešimo kompleksna okoljska vprašanja, ki ogrožajo planet in z njim nas same. Da bi bil zeleni dogovor mogoč, je nujen interdisciplinarni pregled preteklih in sedanjih praks za ustvarjanje inovativne, a realne prihodnosti. Zemlja, imamo problem Za podnebne spremembe ne moremo več kriviti zunanjih dejavnikov, smo njihov izvirni del, kot del kom- pleksnega prilagodljivega sistema planeta Zemlja. Zaradi antropogenih izpustov toplogrednih plinov je danes površ- je planeta za 1,1 °C toplejše glede na obdobje 1850–1900. Ogrevanje na kopnem je večje od svetovnega povprečja, na Arktiki pa več kot dvakrat višje. Podnebne spremembe prinašajo izrazite spremembe kroženja vode – večje izhla- pevanje, intenzivnejše padavine in s tem povezane popla- ve ter močnejšo sušo v mnogo regijah, pa tudi spremembe vlažnosti, vetrov, snega in ledu ter spremembe obalnih območij in oceanov. V urbanih območjih se nekateri vidiki podnebnih sprememb še bolj izrazijo. Raznovrstne posledice človekovega delovanja, med katere spadajo podnebne spremembe, se odražajo tudi v biodiverziteti. Hitrost izumiranja ptic, kot primer bolje pro- učene skupine organizmov, zaradi posledic evolucije naj bi bila ena vrsta v 83 letih, danes pa se je ta hitrost pospeši- la na eno vrsto v 3–4 letih. Samo na območju Slovenije je v zadnjih 500 letih lokalno izumrlo 10 % sesalcev, 7 % ptic, 4 % rib in 20 % hroščev, za veliko večino organizmov pa teh podatkov sploh ni. Ohranjanje biodiverzitete tako ne sme ostati le zanesenjaško naravovarstvo, pač pa je nuja za preživetje prihodnjih generacij ljudi. Voda omogoča življenje vseh organizmov na Zemlji – tako vodnih, vključno s tistimi v podzemnih vodah, za katere je Slovenija tudi na globalni ravni vroča točka biodiverzitete, kot kopenskih. Morja in oceani so največji zemeljski ekosistem, ki ima ogromen vpliv na vremenske pojave, predstavlja skladišče ogljikovega dioksida in proizvede polovico kisika na Zemlji, poleg tega je tudi pomemben vir hrane. Reke pa so kot ožilje planeta, ki s pretakanjem vode od gora proti morjem oblikujejo ANNALES · Ser. hist. nat. · 31 · 2021 · 2 316 življenje na kopnem. Pitna voda je kot pravica vsakega celo zapisana v našo ustavo. Slovenci se radi ponašamo z vodnim bogastvom svoje dežele. Večina prebivalcev se, sodeč po nedavnem referendumu o vodah, tudi zaveda pomembnosti vodnih in priobalnih ekosistemov, katerih stanje žal ni tako dobro. Človekov vpliv se danes zaradi rabe in izrabe vodnih virov, naseljevanja v bližini vodnih površin in na poplav- nih ravnicah, izsuševanja mokrišč, kmetijstva in gnojenja ter onesnaževanja čuti na vseh porečjih. Podatki Mini- strstva za okolje in prostor kažejo, da je bilo v obdobju 2016–2019 51 % vodnih teles v zmernem, slabem ali zelo slabem ekološkem stanju, kar je zelo slab rezultat. V Sloveniji je predvsem zaradi poseljenosti poplavnih površin degradiranih 50 % poplavnih območij, kar je 10 % več od evropskega povprečja. Na slovenske reke smo namestili več kot 60.000 pregrad in pragov. Na drugi stra- ni je na ravni EU v okviru evropskega zelenega dogovora vključen načrt, da bi 25.000 km rek prosto teklo in se po potrebi tudi razlivalo, saj je ravnanje in ukalupljanje strug rek v betonska korita preživet koncept. Strategija EU za biodiverziteto predvideva vzpostavi- tev zaščitenih območij za najmanj 30 % morskih površin do leta 2030. V Sloveniji smo še zelo daleč od te številke, saj morska zavarovana območja – KP Strunjan, KP De- beli rtič in NS Rt Madona ter območja Natura 2000, ki vključujejo tudi del morja – obsegajo le nekaj več kot 3 % slovenskega morja. Zaradi podnebnih sprememb spremenjene temperatur- ne in hidrološke razmere še dodatno vplivajo na pestrost in distribucijo vodnih organizmov – od novih mikrobnih patogenov in škodljivih organizmov, do bioinvazije vreten- čarskih vrst, predvsem rib. Nekateri organizmi se v spreme- njenih okoljih odlično počutijo, na primer cianobakterije v celinskih vodah ob povečani vsebnosti hranil, ali pa tujero- dne ribe, raki in polži v še neizkoriščenih ekoloških nišah. Ti lahko močno vplivajo na stanje ekosistemov, večinoma v negativnem smislu. Včasih lahko v te vplive posežemo, jih spremljamo in ovrednotimo in, kot v primeru pojava toksičnih cvetenj cianobakterij v manjših vodnih telesih, morebiti celo zatremo. Do določene mere lahko z umetnim obnavljanjem ekosistemov nadomestimo tudi izginjanje morskih travnikov in koral. Posledice okoljskih sprememb so pogosto nepovratne in izven našega dosega. Taki sta predvidena rast gladine morja, ki bo močno vplivala na obalna območja, in izgubljanje celokupne biodiverzitete določenih ekosistemov. Poškodo- vani ekosistemi so zaradi temperaturnih, vodnih in drugih vremenskih šokov še bolj na udaru, kar nas mora skrbeti, saj so organizmi ključni pri blaženju tovrstnih pojavov. To je pomemben razlog, zakaj se mora biodiverziteta ohranjati. Pri preprečevanju globalne rasti gladine in temperature morja so edine možne rešitve že znane: čim širše in hitrejše razogljičenje proizvodnje energije in zmanjševanje njene porabe na način, ki ne bo poglobil krize biodiverzitete. Že predlagani ukrepi za prilagajanje podnebnim spre- membam se odražajo v evropskem zelenem dogovoru. Dogovor utira pot k zakonodaji, ki obravnava podnebno nevtralnost in tudi povečuje odpornost proti že zaznanim ali pričakovanim posledicam podnebnih sprememb s prilagoditveno strategijo EU. EU sveženj »Pripravljeni na 55« se nanaša na cilj zmanjšanja izpustov toplogrednih plinov za najmanj 55 % do leta 2030 ter vsebuje številne zakonodajne spremembe na različnih področjih. Čeprav predlagana evropska zakonodaja predstavlja pomemben korak naprej, je ekonomsko in socialno nezadostna ter le delno v skladu s podnebno znanostjo. Za preprečitev najhujših posledic podnebnih sprememb nam namreč slednja predlaga 65 odstotno znižanje toplogrednih plinov do leta 2030 ter doseganje neto brezogljične družbe okoli leta 2040. Dolgoročna podnebna strategija Slovenije do leta 2050, ključni dolgoročni podnebni do- kument v Sloveniji, je nezadostna, socialno nepravična ter ni v skladu s podnebno znanostjo. Predvideva namreč le 36 odstotno zmanjšanje izpustov do leta 2030, ob tem pa bi se pospešila še degradacija narave (npr. s spod- bujanjem gradnje hidroelektrarn in izrabe biomase) ter povečali socialno ekonomska neenakost in brezposelnost. Ali bomo del rešitve ali pa ostanemo del problema Podnebnih sprememb ne moremo več ustaviti, lahko pa jih omejimo in se jim prilagodimo, a za to potrebujemo hitre, pametne in sistemske odzive. Za pripravo ukrepov je nujno poznavanje vzrokov sprememb, ki nam jih lahko odkrije le znanost. Koncept sonaravnega razvoja in zasle- dovanje cilja dostojnega življenja za vse znotraj naravnih omejitev planeta sta obvezi človeštva, saj lahko le tako uresničujemo skupne cilje družbe. Žal pa je varstvo okolja vse preveč zgolj mantra političnih in družbenih gibanj, ne pa prepoznana praksa. Pri tem radi pozabljamo, da je temelj vsega narava. Naravo moramo zaščititi, kjer je to še mogoče, oz. jo revitalizirati, kjer so za to danosti. Predlagamo spoštovanje, upoštevanje in omogočanje neodvisnosti državnih inštitucij s področja varstva nara- ve in okolja, katerih odločitve naj temeljijo izključno na strokovni presoji temelječi na znanstvenih izsledkih. Da bi obrnili trend uničevanja svojega bivanjskega prostora, potrebujemo novo vizijo razvoja družbe, ki mora vklju- čevati celostno, družboslovno, humanistično in naravo- slovno obravnavo okoljskih tematik. Te tematike morajo biti tudi del učnih načrtov na vseh ravneh izobraževanja. Predlagamo ustanovitev posvetovalnega konzorcija, sestavljenega iz biologov in energetskih strokovnjakov, ki naj pripravi okoljsko vzdržno energetsko strategijo Slo- venije, upoštevaje nizkoogljičnost, trajnost in okoljsko neoporečnost. Ohranjanje biodiverzitete Organizme moramo varovati v njihovih ekosistemih, vključno z zavarovanimi območji, in v nadomestnih oko- ljih. Za zagotovitev tega morajo biti izpolnjeni številni pogoji. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 317 • Pri projektih upravljanja prostora in izkoriščanja naravnih virov mora vrednost biodiverzitete prevladati nad takojšnjimi gospodarskimi in družbenimi koristmi. Potrebujemo nacionalno strategijo spremljanja biodiverzitete in ukrepov za njeno varovanje ter predlagamo ustanovitev vladnega posvetovalnega organa (oz. konzorcija inštitucij) za reševanje biodiverzitetne krize. Za biodiverzitetno znanost in stroko potrebujemo posebne nacionalne sklade za financiranje razi- skav in znanstveno podprtih ukrepov. • Učinkovito upravljanje zavarovanih območij vključuje spremljanje stanja z vidika ohranjanja biodiverzitete (razvoj monitoringov, ki bodo na- kazovali širše stanje biodiverzitete v ekositemih, vključujoč ključne vrste, združbe in ogrožene vrste), pa tudi spremljanje in usmerjanje obi- ska ter zagotavljanje predpisanih varstvenih režimov, kar pa ni izvedljivo brez ustreznega, dolgoročno stabilnega financiranja. • V slovenskem morju in na morskem obrežju smo šele na pol poti opredelitve reprezentativne mreže zavarovanih območij, kakor tudi s stališča njihovega učinkovitega upravljanja. Skromni obseg ter majhno število morskih in obalnih zavarovanih območij nikakor ne predstavljajo zadostne protiuteži razvojnim trendom in ne- gativnim vplivom vseh človekovih dejavnosti, vezanih na morski in obrežni prostor jadran- skega bazena. Ključen izziv na politični ravni, povezan z upravljanjem slovenskega morja in morskega obrežja, je proaktivno sodelovanje v subregionalnih, regionalnih in globalnih pro- cesih ter mehanizmih, kot so jadransko jonska komisija, Barcelonska konvencija in Konvencija o biološki raznovrstnosti. • Zagotovljeno mora biti redno posodabljanje rdečih seznamov ogroženih vrst kot ključnega orodja za preprečevanje propadanja biodiverzi- tete. • Nobenih ovir ni, da ne bi človeštvo s svojimi znanji preprečilo nadaljnjega izumiranja vrst in propadanja ekosistemov. Za učinkovito in gospodarno ohranjanje vrst in ekosistemov je ključno ustanavljanje rezervatov, trajnostno izkoriščenje naravnih virov z ozirom na biodi- verziteto in biodiverzitetna genomika. • Ker ni tehnološkega razloga, zaradi katerega bi morala neka vrsta izumreti, je skrajna možnost ohranjanja organizmov ohranjanje njihovih zamrznjenih tkiv in genetskih zasnov v zbirkah zamrznjencev – kriozbirkah. Za to pa potrebu- jemo nacionalno, medinštitucionalno zbirko dednega materiala vrst – nacionalno zbirko zamrznjencev in njeno vključitev v mednarodne sheme, kot je Global Genome Biodiversity Ne- twork. Pitna voda je eno največjih naravnih bogastev Slovenije Stanje voda v Sloveniji je bistveno slabše, kot se zdi iz oglasov o Sloveniji kot zeleni turistični destinaciji. Podatki monitoringov stanja voda, habitatov in vrst niso spodbudni. Skrajni čas je, da obrnemo trend. V času vse pogostejših pritiskov zaradi hitrega spreminjanja podne- bja bo odpornost vodnih in priobalnih ekosistemov še posebno dragocena. Skupaj nam lahko uspe izboljšati ekološko stanje voda za dobrobit sedanje in prihodnjih generacij in predlagamo več ukrepov. • Priprava celovitih in dolgoročnih načrtov upravljanja porečij, ki bodo zapolnili vrzel med premalo konkretiziranimi strateškimi načrti (PUN, NUV, NZPO, NUMO) in umestitvijo posameznih posegov ter drugih obremenitev v porečja prek prostorskega načrtovanja in gradnje. Porečni načrti bi dali podlago za optimizacijo ukrepov oziroma posegov na posameznih porečjih ali na morju. • Zagotovitev platforme za sodelovanje deležnikov (strokovnjakov državnih in neodvisnih inštitucij s področja inženirskih strok, biologe in naravovar- stvenike, kakor tudi prebivalce, ki živijo ob vodah, ter splošno javnost) pri pripravi načrtov. Iz več projektov celovitih posegov v porečjih, so znane odlične prakse sodelovanja vseh deležnikov ob reki. • Ureditev področja nadzora in odgovornosti nad upravljanjem vodnih in priobalnih ekosistemov ter spremljanja učinkov ukrepov in posegov. • Vodi je treba dati prostor, npr. prek odkupov zemljišč za odpiranje rek, meandre in obnovo obrežne ter poplavne vegetacije, saj s tem upoča- snimo tok reke, omogočimo ponovno vzpostavitev neprekinjenega prenosa sedimentov ter povečamo območja širjenja poplav in s tem preprečujemo poplave urbanih površin. • Pri obnovi ekološkega stanja rek uporabimo dobre prakse v EU, npr. v Franciji in tudi v Sloveniji. Tovrstni ukrepi kažejo odlične rezultate glede revitalizacije narave, hkrati pa zvišujejo kakovost življenja lokalnega prebivalstva in prinašajo koristi tudi za širšo družbo. • Nadaljuje naj se vzpostavitev zaščitenih območij za najmanj 30 % morskih površin najkasneje do leta 2030. • Zagotovi naj se stabilno financiranje za izvedbe revitalizacije, odstranjevanja ovir na vodnih telesih, vzpostavitev zaščitenih območij ter za upravljanje in nadzor. • Predlagamo trajnostne, na znanstvenih spoznanjih in okoljskih danostih temelječe prakse v kmetij- stvu, ki bi omogočale lokalno pridelavo večjih količin kakovostne in predvsem rastlinske hrane, s čim manjšo odvisnostjo od razpoložljive vode za ANNALES · Ser. hist. nat. · 31 · 2021 · 2 318 namakanje in brez čezmerne uporabe pesticidov ter drugih onesnaževal. • Predlagamo vpeljavo rastlinskih sort, ki so bolje prilagojene na okoljske danosti v Sloveniji, upo- števajoč tudi spreminjajoče se podnebne razmere. Naravi prijazno razogljičenje • Ukrepe za učinkovito rabo energije v industriji in gospodinjstvih ter njihovo izvajanje je treba postaviti na vrh prioritetnega seznama. Ti ukrepi znižujejo ali vsaj upočasnjujejo rast porabe ele- ktrične energije. Posledično zmanjšujejo potrebo po novih energetskih objektih, ki imajo na naravo pogosto zelo negativne učinke. • Potencial sončnih elektrarn v Sloveniji ostaja v veliki meri neizkoriščen. Predlagamo, da se pospešeno usmeri k spodbujanju in umeščanju malih in velikih sončnih elektrarn tja, kjer vpliva na naravo ni oz. je zanemarljiv. Pripravi naj se strokovna karta izključitvenih območij, kjer postavitev večjih sončnih elektrarn zaradi varo- vanja narave ni mogoča. Kot splošno načelo naj se gospodinjstva, skupnosti, občine, industrijo in večje investitorje z različnimi ukrepi usmerja k po- stavitvi manjših sončnih elektrarn na strehe, večje pa tam, kjer njihovo umeščanje ne bo poslabšalo stanja v naravi (npr. degradirana območja, vzdolž avtocest, sobivanje s kmetijskimi dejavnostmi). Pri sončni tranziciji naj imajo pomembno vlogo tudi energetske zadruge, kjer se lokalne skupnosti ali prebivalci bloka povežejo in skupno investirajo v sončno oz. vetrno elektrarno. Ker imajo skupnosti od tega finančne in druge koristi, se posledično olajša umeščanje objektov v prostor, poveča pod- pora takšnim projektom in pospeši razogljičenje elektroenergetskega sektorja. • Približno dve tretjini s strani osnutka Nacionalnega energetskega programa identificiranega potenciala vetrnih elektrarn v Sloveniji sta z vidika varovanja ptic povsem sprejemljivi. Obstajajo tudi območja, podrobneje določena v znanstveni študiji Karta občutljivih območij za ptice za umeščanja vetrnih elektrarn v Sloveniji, ki so zaradi varovanja ptic za gradnjo vetrnih elektrarn nesprejemljiva. Predlaga- mo, da se Karta znanstveno in strokovno posodobi s stališča varovanja celotne biotske pestrosti, določi izključitvena območja in investitorje usmeri na sprejemljive lokacije. Študijo, s katero se določijo te lokacije, razumemo kot konstruktiven, strokoven in tehten pristop k sočasnemu varovanju narave ter procesu razogljičenja elektroenergetike. Odloče- valcem predlagamo, da tudi za ostale nizkoogljične elektrarne, predvsem sončne izdelajo oz. naročijo podobno študijo, ki naj usmerja umeščanje elek- trarn. Tako se bo okrepil proces uporabe tistih nizkoogljičnih virov energije, katerih potencial je v Sloveniji danes slabo izkoriščen in ima dokazano manjše negativne vplive na naravo. Tak način delo- vanja bo zmanjšal nepotrebne konflikte in pospešil proces razogljičenja. • Nuklearne elektrarne imajo, upoštevajoč njihov življenjski cikel, v primerjavi z drugimi vrstami elektrarn na proizvedeno enoto električne energije enega najmanjših vplivov na naravo in okolje. Ker pa se po drugi strani spopadajo s posebnimi izzivi, naj o sprejemljivosti potencialne gradnje novega bloka jedrske elektrarne steče široka javna razpra- va, utemeljena na predstavitvi naravoslovnih in družboslovnih strokovnih stališč. • Na energetskem področju predlagamo pospešen razvoj in hitrejše uvajanje sodobnih tehnologij (npr. baterij) in pristopov (npr. aktivni odjem), ve- čje vlaganje v ter povezovanje različnih sektorjev (npr. mobilnost, sektor toplote, elektroenergetika). To lahko prispeva k nemotenemu delovanju vedno kompleksnejšega elektroenergetskega sistema, k učinkovitemu vključevanju spremenljivih virov energije in novih porabnikov v sistem ter k manjši potrebi po novih konvencionalnih energetskih objektih s pogosto bistvenim vplivom na naravo. Ob tem je treba razvoj in uvajanje sodobnih tehnologij in pristopov ter povezovanje sektorjev izvajati sistemsko s preseganjem partikularnih interesov ter s širšo sliko v mislih, zato naj se daje pri usmerjanju razvoja večja vloga strokovnim in javnim inštitucijam. Pripravili organizatorji simpozija V vrtincu spre- memb: povezanost vode, življenja in podnebja z Nacionalnega inštituta za biologijo in gibanja Mladi za podnebno pravičnost na osnovi prispevkov in razprav, dosegljivih na povezavah: https://www.youtube.com/ watch?v=pXLEK109P7s in https://www.youtube.com/ watch?v=8BrVV6N4smQ. Marina Dermastia (Nacionalni inštitut za biologijo, NIB), Tina Eleršek (NIB), Jadranka Jezeršek (Kontekst svetovanje), Lučka Kajfež Bogataj (Biotehniška fakulteta, Univerza v Ljubljani), Matjaž Kuntner (NIB), Tamara Lah Turnšek (NIB), Matjaž Ličer (Agencija Republike Slovenije za okolje in NIB), Lovrenc Lipej (NIB), Miha Mikelj (Mladi za podnebno pravičnost, MZPP), Izidor Ostan Ožbolt (MZPP), Maja Ravnikar (NIB), Katja Sinur (NIB), Darja Stanič (NIB), Timotej Turk Dermastia (NIB), Al Vrezec (NIB) Poljudna priredba Okoljskega manifesta: Marjan Žiberna ANNALES · Ser. hist. nat. · 30 · 2020 · 1 319 OCENE IN PRIPOROČILA, 129–129 IN MEMORIAM ANNALES · Ser. hist. nat. · 30 · 2020 · 1 320 OCENE IN PRIPOROČILA, 129–129 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 321 IN MEMORIAM PROF. DR. JOŽE ŠTIRN (1934 - 2021) Konec avgusta se je poslovil bivši predstojnik Morske biološke postaje Nacionalnega inštituta za biologijo (MBP NIB) kolega prof. dr. Jože Štirn, upokojeni znanstveni svetnik na Nacionalnem inštitutu za biologijo in upokojeni redni profesor na Univerzi v Ljubljani. Rodil se je leta 1934 v Ljubljani. Po končani gimnaziji leta 1946 je študi- ral biologijo na Univerzi v Ljubljani in diplomiral 1965. Še pred diplomo je ustanovil Center za podvodna raziskovanja (1962) in organiziral od- mevno odpravo v Rdeče morje in Etiopijo. Center je nato prerastel v Zavod za raziskovanje morja v Portorožu, kjer je prof. Štirn izvajal obsežno razi- skovanje pelagiala severnega Jadrana s temeljnimi oceanografskimi in kemijskimi meritvami, pred- vsem pa analizami fitoplanktona. S te tematike je tudi leta 1968 doktoriral na ljubljanski univerzi in naslednje leto izdal pri SAZU odmevno disertacijo v knjižni obliki z naslovom “Pelagial severnega Jadrana”. Delo, v katerem je med prvimi opozoril na vpliv dotoka hranil s Pada, ostaja eden izmed temeljev oceanografskega znanja o severnem Ja- dranu. Po letu 1968 je vodil Oddelek za bentoške nevretenčarje ameriškega Inštituta Smithsonian v Salamboju v Tuniziji. Leta 1970 se je vrnil v domovino in prevzel vo- denje Morske biološke postaje Inštituta za biologi- jo Univerze v Ljubljani v Portorožu. S praktičnimi izkušnjami iz biološke oceanografije ter z bogatimi mednarodnimi zvezami je podprl začetne korake novoustanovljene postaje in njene mlade razisko- valne skupine. Začel je z obsežnim raziskovalnim projektom, ki je vključeval raziskave bioloških, fizikalnih in kemijskih lastnosti obalnega morja vključno s pritoki, morskega rastlinstva in živalstva ter morskih združb in onesnaženja so bile osrednje teme razsiskav. Lokalna ribja industrija (Delama- ris) je podprla raziskave populacijske dinamike in ekologije malih pelaških rib, predvsem sardele in inčuna, pa tudi možnosti gojenja školjk. Ker so za- prta in obalna morja, kakršno je tudi Jadransko in še posebej severni Jadran, med najbolj ogroženi- mi, se je raziskovalna skupina pod vodstvom prof. Štirna usmerila v raziskave onesnaženja morja z različnimi onesnaževali, med katerimi so izstopale težke kovine (z Institutom Jožef Stefan, Kemijskim inštitutom) in pesticidi (s Kmetijskim inštitutom). Podobno kot v mnogih obalnih območjih so se tudi v severnem Jadranu pokazale posledice prekomernega vnosa hranil s pogostimi cvetenji fitoplanktona, velikimi masami nekaterih pridne- nih alg in pomanjkanjem kisika v slojih na dnu morja. Raziskovalna skupina si je kmalu pridobila ugledno mesto v sredozemskem prostoru, zlasti z inovativnimi raziskavami antropogeno pogojene evtrofikacije. Izvirno zasnovan dveletni kontrolira- ni poskus odvajanja komunalnih odplak v zgrajeni bazen v Strunjanski laguni je nazorno prikazal posledice vnosa nečiščenih komunalnih odplak v obalnem ekosistemu, ki smo jih sicer lahko dese- tletja spremljali v notranjosti Koprskega zaliva. Na osnovi teh izsledkov je prof. Štirn formuliral smer- nice za odvajanje komunalnih odplak na Obali, ki so temeljile na ustreznih čistilnih napravah in daljših podvodnih izpustih v morje, in so danes vidne v Piranu. V istem času je prof. Štirn v okviru MBP zasnoval uspešno mednarodno poletno šolo z uglednimi domačimi in tujimi predavatelji, ki ji je Medvladna oceanografska komisija Organizacije Združenih narodov za izobraževanje, znanost in kulturo (Intergovernmental Oceanographic Commission of United Nations Educational, Sci- entific and Cultural Organization – IOC-UNESCO) podelila status regionalnega izobraževalnega centra za temeljno in aplikativno ekologijo. Kot izredni in nato redni profesor je v sedemdesetih Prof. dr. Jože Štirn ANNALES · Ser. hist. nat. · 31 · 2021 · 2 322 in osemdesetih letih prejšnjega stoletja poučeval oceanografijo, ekologijo morja in ribiško biologijo na Oddelku za biologijo Biotehniške fakultete Uni- verze v Ljubljani in bil mentor več diplomantom, magistrantom in doktorantom. Za razvoj MBP je bila zelo pomembna vzpo- stavitev regionalnega programa za Sredozemsko morje (Sredozemski akcijski načrt, Mediterranean Action Plan – MAP) v okviru Programa Združenih narodov za okolje (United Nations Environment Programme – UNEP) leta 1975, v katerem MBP sodeluje še danes. Na osnovi njegovih odmevnih znanstvenih objav iz tistega obdobja sta mu UNEP in FAO pri OZN poverila pripravo projekta raziskovanj ekoloških vplivov morskega onesna- ževanja v Sredozemlju s sedežem v Alžiru. Vse to je bistveno prispevalo k trajajočemu sodelo- vanju Morske biološke postaje v mediteranskih projektih teh organizacij, financiranju razisko- valne opreme in štipendiranju sodelavcev MBP v tujini. Prof. Štirnu s sodelevci je kasneje uspelo pridobiti nove prostore za postajo ulici Fornače v Piranu in jih preurediti v sodoben morski razi- skovalni center. S tem je prof. Štirn zaslužen ne le za razvoj Morske biološke postaje, temveč tudi za mednarodni ugled ustanove, ki danes deluje kot organizacijska enota Nacionalnega inštituta za biologijo. V začetku osemdesetih let je prof. Štirn odšel v tujino. Zaposlil se je pri Medvladni komisiji za oceanografijo pri UNESCO z večletnimi misijami v Jemnu, Adenu in v Kamerunu. Med letoma 1988 in 1990 je bil profesor na Univerzi v Nici. Nato je prevzel odprto profesuro na Univerzi Sultan Qabo- os v Omanu ter poučeval biološko oceanografijo in ekologijo morja. Kot svetovalec je načrtoval in upravljal tam- kajšnji nacionalni program ribištva in sodeloval na ekspedicijah v Indijskem oceanu in Perzijskem zalivu. Raziskoval je oceanografske razmere, bi- oprodukcijo in združbe morskih organizmov ter zbral množico planktonskih vzorcev in v sklopu projekta Tethys, ki ga je vodil, pripravljal mono- grafijo in atlas planktonskih alg Sredozemskega morja, Indijskega oceana in obrobnih morij. Po njem so poimenovali nov rod rdečih alg Stirnia prolifera in sedem živalskih vrst. Vrsto let je predaval na Université Internationale de la Mer v Cagnes-sur-mer, ki mu je leta 2002 podelila naziv zaslužnega profesorja. Še v pokoju je v le- tih 2005-2009 vodil projekt o vplivih delovanja Luke Koper na onesnaževanje Koprskega zaliva. Od leta 1992 je bil dopisni član Evropske akade- mije za okolje v Tübingenu. Leta 1973 je prejel Nagrado Sklada B. Kidriča, leta 2012 pa Veliko nagrado Nacionalnega inštituta za biologijo za življenjsko delo. Prof. Štirn je bil naravoslovec širokih pogledov, pa potapljač, limnolog, oceanograf, predvsem pa morski fitoplanktolog in ekolog. Že zgodaj je spoznal nujnost povezave ekologije morja z oceanografijo ter kemijo in mikrobiologijo morja. Njegova znanstvena zapuščina obsega predvsem izsledke o biološki oceanografiji pelagiala in ribiški biologiji male plave ribe v severnem Ja- dranu ter marikulture, predvsem pa o odvajanju in vplivih odpadnih vod na obalno morje in s tem povezano evtrofikacijo. Tako je postavil temelje za kasnejše bolj specializirano raziskovalno delo v posameznih segmentih ekologije morja na Morski biološki postaji. S številnimi prispevki v poljudno-znanstvenih revijah in dnevnem časo- pisju je pomembno prispeval k osveščanju javno- sti o onesnaževanju morja, opozarjal pa je tudi na njegovo bogastvo in možnost izkoriščanja. Njegovi prispevki so navdušili številne kasnejše strokovnjake s področja morskih ved na Morski biološki postaji in drugod. Jadran Faganeli Izbrana bibliografija prof. Jožeta Štirna Štirn, J. (1961): General report on results of Yugoslav Expedition to Ethiopia and Red Sea. Uni- versity Haila Selasie Press, Addis Abeba, E2/23, pp. 12-21. Štirn, J. (1968): The pollution of Lake Tunis. Revue internationale d‘océanographie médicale, 19, 99-1056. Štirn, J. (1968): The consequence of increased sea bioproduction caused by organic pollution and the possibilities of the protection. Revue internati- onale d‘océanographie médicale, 10, 123-129. Štirn, J., Z. Kralj, M. Richter & T. Valentinčič (1969): Prilog poznavanju jadranskog koraligena. Thalassia Jugoslavica, 5, 369-376. Štirn, J. (1969): Pelagial severnega Jadrana: njegove oceanološke razmere, sestav in razpodeli- tev biomase tekom leta 1965 = The north Adriatic pelagial: its oceanological characteristics, structu- re and distribution of the biomass during the year 1965. Razprave, 12/2, 41-132. Štirn, J. (1969): The distribution of the pelagic organic matter in North Adriatic. Rapports et Proces Verbaux des Réunions - Commission Inter- nationale pour l‘Exploration Scientifique de la Mer Méditerranée, 19, 755-758. Štirn, J. (1971): Modifications of some Medi- terranean communities due to marine pollution. Thalassia Jugoslavica, 7, 401-413. Štirn, J. (1971): The general planktonological characteristics of the North Adriatic during 1965. Rapports et Proces Verbaux des Réunions - Com- ANNALES · Ser. hist. nat. · 31 · 2021 · 2 323 mission Internationale pour l‘Exploration Scienti- fique de la Mer Méditerranée, 20, 425-426. Štirn, J. (1971): Ecological consequences of marine pollution. Revue internationale d‘océanographie médicale, 24, 13-46. Štirn, J. (1972): The general oceanological cha- racteristics of the North Adriatic during 1965. Ra- pports et Proces Verbaux des Réunions - Commis- sion Internationale pour l‘Exploration Scientifique de la Mer Méditerranée, 20, 631-634. Štirn, J. (1973): Plankton biomass of the Me- diterranean during late spring 1969. Rapports et Proces Verbaux des Réunions - Commission Inter- nationale pour l‘Exploration Scientifique de la Mer Méditerranée, 21, 541-544. Štirn, J. & L. Kubik (1974): Prispevki k po- znavanju migracij in obsega populacij sardele in inčuna v Severnem Jadranu = Contributions to the knowledge of migrations and the volume of the pilchard and anchovy populations in the Northern Adriatic. Acta Adriatica, 16, 401-422. Štirn, J., I. Keržan & L. Kubik (1974): Možnosti za razvoj industrijskih marikultur ob uporabi ferti- lizacije primarnih producentov z organskimi odpa- dnimi vodami = The possibilities of development of industrial maricultures by using the organic waste waters for the fertilization of primary producers. Acta Adriatica, 16, 423-434. Keržan, I., M. Lenarčič & J. Štirn (1974): Re- cycling of organic pollutants in maricultures III : mass-cultures of selected phytoplankters fertilized by sewage and utilization of crops in secondary pro- ductivity. Revue internationale d‘océanographie médicale, 34, 73-94. Štirn, J., A. Avčin, J. Ceneclj, M. Dorer, S. Go- mišček, S. Kveder & A. Malej, A. (1974): Pollution problems of the Adriatic Sea: an interdisciplinary approach. Revue internationale d‘océanographie médicale, 35/36, 21-78. Štirn, J. (1975): Obstacles to adequate treatment due to the presence of biologically active, sewage- -borne compounds. In: Pearson, E.A., Frangipane, E.F. (eds.): Marine pollution and marine waste dis- posal, (Progress in Water Technology). Pergamon, Oxford, New York, pp. 147-153. Štirn, J. (1975): Criteria for marine waste dis- posal in Yugoslavia. In: Pearson, E.A., Frangipane, E.F. (eds.): Marine pollution and marine waste dis- posal, (Progress in Water Technology). Pergamon, Oxford, New York, pp. 57-66. Štirn, J., A. Avčin, I. Keržan, B.M. Marcotte, N. Meith, B. Vrišer & A. Vukovič (1975): Selected bio- logical methods for assessment of marine pollution. In: Pearson, E.A., Frangipane, E.F. (eds.): Marine pollution and marine waste disposal, (Progress in Water Technology). Pergamon, Oxford, New York, pp. 307-327. Matjašič, J., J. Štirn, A. Avčin, L. Kubik, T. Va- lentinčič, F. Velkovrh & A. Vukovič (1975): Flora in favna Severnega Jadrana, Prispevek 1 = The flora and fauna of the North Adriatic, Contributi- on 1. Slovenska akademija znanosti in umetnosti, Ljubljana, 54 pp. Kosta, L., V. Ravnik, A.R. Byrne, J. Štirn, M. Dermelj & P. Stegnar (1978): Some trace elements in the waters, marine organisms and sediments of the Adriatic by neutron activation analysis. Journal of Radioanalytical Chemistry, 44, 317-332. Malej, A., A. Avčin, J. Faganeli, N. Fanuko- -Kovačić, M. Lenarčič, J. Štirn, B. Vrišer & A. Vu- kovič (1979): Modifications of an experimentally polluted ecosystem in the Lagoon of Strunjan, North Adriatic. In: 4es journees d’etudes sur les pollutions marines en Mediterranee, Antalya 24- 27 Novembre 1978, Rapports et Proces Verbaux des Réunions - Commission Internationale pour l‘Exploration Scientifique de la Mer Méditerranée, pp. 423-429. Salihoglu, I., J. Faganeli & J. Štirn (1980): Chlorinated hydrocarbons (pesticides and PCBs) in some marine organisms and sediments in an experimentally polluted ecosystem in the lagoon of Strunjan (North Adriatic) and its surroundings. Revue internationale d‘océanographie médicale, 58, 3-9. Štirn, J. (1981): Manual of methods in aquatic environment research. Part 8: Ecological asses- sment of pollution effect. FAO Fisheries Technical Reports, 209, Food and Agriculture Organization of the United Nations, Rome, 70 pp. Vučak, Z., A. Škrivanić & J. Štirn (1982): „Andrija Mohorovičić“: 1974-1976: izvještaj i rezultati oceanografskih istraživanja Jadranskog mora = reports and results of the oceanographic investigations in the Adriatic Sea: osnovni f izič- ki, kemijski i biološki podaci = basic physical, chemical and biological data. Split : Hidrograf- ski insti tut jugoslavenske ratne mornarice, 175 pp. Štirn, J., R. Edwards, J. Piechura, M. Ghaddaf, F. Mutlaq, Q. Sabih, M. Savich, S. Shaher & Z. Zu- bairi (1985): Oceanographic conditions, pelagic productivity and living resources in the Gulf of Aden. In: IOC/UNESCO workshop on regional co- -operation in marine science in the central Indian Ocean and Adjacent Seas and Gulfs, Colombo, 8-13 July 1985, IOC Workshop Report 37 Supple- ment, Paris, pp. 255-297. Štirn, J. (1988): Eutrophication in the Mediter- ranen Sea: Scientific background for the Prepara- tion of Guidelines on the Assessment of Receiving Capacity for Eutrophying Substances. UNESCO Report Marine Science, 49, 161-187. ANNALES · Ser. hist. nat. · 31 · 2021 · 2 324 Aubert, M., P. Revillon, J. Štirn, J.M. Pincemin, J. Aubert, N. Fanuko, B. Ogorevc, G. Magazzu, G. Cortese, F., Decembrini, G. Publicano & G. Arena (1989): Mers d‘Europe: etudes hydrologiques, chimiques et biologiques. 1er tome, Detroit de Messine. Revue internationale d‘océanographie médicale, 95-96, 1-88. Gray, J.S., A.D. McIntyre & J. Štirn (1992): Ma- nual of methods in aquatic environment research. Part 11, Biological assessment of marine pollution, FAO Fisheries Technical Reports, 324. Food and Agriculture Organization of the United Nations, Rome, 49 pp. Štirn, J. & K.A. Al-Hashmi (1996): Contributi- ons to the knowledge of the biology of the Arabian Abalone Haliotis mariae W. Wood, 1828. Agricul- ture Science (Oman), 1, 33-40. Štirn, J., G. Bressan, L.A. Ghirardelli & L. Babbini (2000): Calcareus structures built by the coralline alga Pneophyllum confervicola (Kützing) Chamberlain (Corallinales, Rhodophyta) in a marine cave in the Gulf of Oman. Annales: anali za istrske in mediteranske študije, Series Historia Naturalis, 10, 219-226. 325 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 326 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 KAZALO K SLIKAM NA OVITKU SLIKA NA NASLOVNICI: V Sredozemskem morju se je letos prvič pojavil morski pes kitovec (Rhyncodon typus). Opazili so ga na jugovzhodni turški obali v bližini Sirije. Gre za največjo vrsto morskega psa, ki se pre- hranjuje z zooplanktonom. (Foto: B. Furlan) Sl. 1: Pajkoliko mačje uho Ophrys argolica subsp. crabronica je ena izmed najlepših sredozemskih vrst mačjih ušes. Obenem je endemična vrsta kukavičevk, ki jo najdemo v osrednji in južni Italiji. (Foto: A. Pezzetta) Sl. 2: Rumeno mačje uho Ophrys lutea subsp. lutea je značilna sredozemska vrsta kukavičevk, ki jo najdemo v južnoevropskih državah. (Foto: A. Pezzetta) Sl. 3: Skorjasta vrsta polža gološkrgarja Knoutsodonta pictoni je bila odkrita in opisana šele pred nekaj leti. Zato se o tej vrsti, ki se prehranjuje z mahovnjaki, še vedno ve zelo malo, kaže pa, da je v Tržaškem zalivu pogo- stejša, kot smo doslej mislili. (Foto: M. Fantin) Sl. 4: Mačje uho vrste Ophrys promontori je endemična kukavičevka, ki raste le v območju Monte Gargana in nekaterih drugih južnih predelih Apeninskega polotoka. (Foto: A. Pezzetta) Sl. 5: Muholiko mačje uho Ophrys insectifera podobno kot druge vrste teh kukavičevk pritegne opraševalce z obliko, ki zelo dobro oponaša videz njihovih samic. (Foto: A. Pezzetta) Sl. 6: Sredozemsko morje se v zadnjih desetletjih sooča s prihodi raznih vrst iz Rdečega morja in Atlantika. Med slednjimi se je pred kratkim pojavila tudi barvita vrsta polža gološkrgarja Okenia picoensis, ki so jo odkrili in opisali na otoku Pico v azorskem arhipelagu v Atlantiku. (Foto: A. Lombardo). INDEX TO IMAGES ON THE COVER FRONT COVER: This year saw the first appearance of the whale shark (Rhyncodon typus) in the Mediterrane- an. The specimen was spotted on the southeastern Turkish coast near Syria. This is the largest species of shark that feeds on zooplankton. (Photo: B. Furlan) Fig. 1: Ophrys argolica subsp. crabronica is one of the most beautiful Mediterranean orchid species of the genus Ophrys. At the same time, it is an endemic species found only in central and southern Italy. (Photo: A. Pezzetta) Fig. 2: The yellow ophrys Ophrys lutea subsp. lutea is a typical Mediterranean species of orchid found in southern European countries. (Photo: A. Pezzetta) Fig. 3: The encrusting nudibranch Knutsodonta pictoni was discovered and described only a few years ago. Therefore, very little is known about this species that feeds on bryozoans, but apparently it is more common in the Gulf of Trieste than previously thought. (Photo: M. Fantin) Fig. 4: The promontory orchid Ophrys promontori is an endemic species found only in the area of Monte Gar- gano and some other southern parts of the Apennine Peninsula. (Photo: A. Pezzetta) Fig. 5: The fly orchid Ophrys insectifera, like other species of the genus Ophrys, attracts pollinators with its shape that mimics that of pollinator females very well. (Photo: A. Pezzetta) Fig. 6: Over the recent decades, the Mediterranean Sea has witnessed arrivals of various species from the Red Sea and the Atlantic. Among the latter, a colourful species of sea slug, the nudibranch Okenia picoensis, has recently emerged and was discovered and described from the island of Pico of the Azores archipelago in the Atlantic. (Photo: A. Lombardo). 327 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 328 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies VSEBINA / INDICE GENERALE / CONTENTS 2021(1) BIOINVAZIJA BIOINVASIONE BIOINVASION Luca CASTRIOTA & Manuela FALAUTANO Reviewing the Invasion History of the Blue Crab Callinectes sapidus (Portunidae) in Sicily (Central Mediterranean): an Underestimated Alien Species ... Revizija zgodovine invazije modre rakovice Callinectes sapidus (Portunidae) na Siciliji (osrednje Sredozemsko morje): podcenjena tujerodna vrsta Alan DEIDUN, Bruno ZAVA, Maria CORSINI- FOKA, Johann GALDIES, Antonio DI NATALE & Bruce B. COLLETTE First Record of the Flat Needlefish, Ablennes hians (Belonidae) in Central Mediterranean Waters (Western Ionian Sea) ............................................. Prvi zapis o pojavljanju ploščate morske igle, Ablennes hians (Belonidae) v vodah osrednjega Sredozemskega morja (zahodno Jonsko morje) Mohamed Mourad BEN AMOR, Khadija OUNIFI-BEN AMOR, Marouène BDIOUI & Christian CAPAPÉ Occurrence of Reticulated Leatherjacket Stephanolepis diaspros (Monacanthidae) in the Central Mediterranean Sea, and New Record from the Tunisian coast ............. Pojavljanje afriškega kostoroga, Stephanolepis diaspros (Monacanthidae), v osrednjem Sredozemskem morju in prvi podatek za tunizijsko obalo Sara AL MABRUK, Ioannis GIOVOS & Francesco TIRALONGO New Record of Epinephelus areolatus in the Mediterranean Sea: First Record from Syria .......... Novi zapis o pojavljanju rdečepikaste kirnje (Epinephelus areolatus) v Sredozemskem morju: prvi podatki za Sirijo SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Primo MICARELLI, Francesca Romana REINERO & Emilio SPERONE Notes on a Rare Case of Bluntnose Sixgill Shark Hexanchus griseus Stranded on the Coast of Tuscany in the Central Tyrrhenian Sea ................. Zapis o redkem primeru morskega psa šesteroškrgarja Hexanchus griseus, ki je nasedel na toskanski obali v osrednjem Tirenskem morju Alen SOLDO The Occurrence of the Common Angel Shark Squatina squatina in the Adriatic Sea ................... Pojavljanje navadnega sklata (Squatina squatina) v Jadranskem morju Hakan KABASAKAL, Deniz AYAS & Deniz ERGÜDEN Intentional Stranding of a Blue Shark, Prionace glauca (Carcharhiniformes: Carcharhinidae), in Pursuit of Prey ....................... Namerno nasedanje sinjega morskega psa, Prionace glauca (Carcharhiniformes: Carcharhinidae), med zasledovanjem plena Patrick L. JAMBURA, Julia TÜRTSCHER, Alessandro DE MADDALENA, Ioannis GIOVOS, Jürgen KRIWET, Jamila RIZGALLA & Sara A. A. AL MABRUK Using Citizen Science to Detect Rare and Endangered Species: New Records of the Great White Shark Carcharodon carcharias Off the Libyan Coast ........................ Uporaba ljubiteljske znanosti za pridobivanje podatkov o redki in ogroženi vrsti: novi podatki o pojavljanju belega morskega volka Carcharodon carcharias ob Libijski obali 51 1 9 23 37 31 17 45 UDK 5 Letnik 31, Koper 2021 ISSN 1408-533X e-ISSN 2591-1783 329 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Sihem RAFRAFI-NOUIRA, Christian REYNAUD & Christian CAPAPÉ A New Record of Clinitrachus argentatus (Osteichthyes: Clinidae) from the Tunisian Coast (Central Mediterranean Sea)............................ Novi zapis o pojavljanju srebrnice Clinitrachus argentatus (Osteichthyes: Clinidae) iz tunizijske obale (osrednje Sredozemsko morje) Mauro CAVALLARO, Giovanni AMMENDOLIA, Ignazio RAO, Alberto VILLARI & Pietro BATTAGLIA Variazioni pluriennali del fenomeno dello spiaggiamento di specie ittiche nello stretto di Messina, con particolare attenzione alle specie mesopelagiche .............................................. Večletne spremembe v nasedanju ribjih vrst v Mesinski ožini s posebnim ozirom na mezopelaške vrste Sihem RAFRAFI-NOUIRA, Christian REYNAUD & Christian CAPAPÉ Skeletal and Pughead Deformities in the Saddle Bream Oblada melanura (Osteichthyes: Sparidae) from the Tunisian Coast (Central Mediterranean Sea) ... Deformacije skeleta in glave pri črnorepki, Oblada melanura (Osteichthyes: Sparidae) iz tunizijske obale (osrednje Sredozemsko morje) Murat BILECENOGLU & Seydi Ali DOYUK Uncommon Thermophilic Fishes from the Marmara and Black Seas ............................ Nenavadne toploljubne ribe iz Marmarskega in Črnega morja Christian CAPAPÉ, Adib SAAD, Ahmad SOLAIMAN, Issa BARAKAT & Waad SABOUR First Substantiated Record of Armless Snake Eel Dalophis imberbis (Osteichthyes: Ophichthidae) from the Syrian Coast (Eastern Mediterranean Sea) ... Prvi dokumentiran primer pojavljanja kačaste jegulje, Dalophis imberbis (Osteichthyes: Ophichthidae), vzdolž sirske obale (vzhodno Sredozemsko morje) Khaled RAHMANI, Fatiha KOUDACHE, Amaria Latefa BOUZIANI & Alae Eddine BELMAHI Length-Weight Relationships and Metric Characters of the Atlantic Horse Mackerel, Trachurus trachurus (Perciformes: Carangidae), Caught in Béni-Saf Bay, Western Mediterranean (Algeria) ................................ Odnos med dolžino in maso in metrični znaki navadnega šnjura, Trachurus trachurus (Perciformes: Carangidae), ujetega v zalivu Béni-Saf, zahodno Sredozemsko morje (Alžirija) Tülin ÇOKER & Okan AKYOL On the Occurrence of Pomadasys incisus (Haemulidae) in the Turkish Aegean Sea (Eastern Mediterranean Sea) ..................................... O pojavljanju vrste Pomadasys incisus (Haemulidae) v turškem Egejskem morju (vzhodno Sredozemsko morje) Sihem RAFRAFI-NOUIRA, Mohamed Mourad BEN AMOR, Khadija OUNIFI-BEN AMOR, Marouène BDIOUI & Christian CAPAPÉ First Substantiated Record of Opah, Lampris guttatus (Osteichthyes: Lamprididae), from the Tunisian Coast (Central Mediterranean Sea)........ Prvi dokumentiran zapis o pojavljanju svetlice, Lampris guttatus (Osteichthyes: Lamprididae), iz tunizijske obale (osrednje Sredozemsko morje) FLORA FLORA FLORA Claudio BATTELLI & Marcello CATRA First Report of Cystoseira aurantia (Sargassaceae, Fucophyceae) from the Lagoon of Strunjan (Gulf of Trieste, Northern Adriatic) ............................ Prvo poročilo o vrsti Cystoseira aurantia (Sargassaceae, Fucophyceae) v strunjanski laguni (Tržaški zaliv, severni Jadran) Amelio PEZZETTA Le Orchidaceae di Pinguente (Buzet)........................ Kukavičevke Buzeta FAVNA FAVNA FAVNA Ahmet ÖKTENER & Ivan SAZIMA Caligus minimus (Copepoda: Caligidae) Parasitic on the Gills of a Remora Echeneis naucrates Attached to a Seabass Dicentrarchus labrax in Köyceğiz-Dalyan Lagoon Lake, Aegean Sea, Turkey .................................................. Caligus minimus (Copepoda: Caligidae), zajedavec na škrgah prilepa (Echeneis naucrates), pritrjenega na brancina (Dicentrarchus labrax) v laguni Köyceğiz-Dalyan v Egejskem morju, Turčija Kazalo k slikam na ovitku ........................................ Index to images on the cover .................................... 159 165 165 139 129 63 69 95 101 147 123 107 85 330 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 VSEBINA / INDICE GENERALE / CONTENTS 2021(2) BIOINVAZIJA BIOINVASIONE BIOINVASION Cemal TURAN, Mevlüt GÜRLEK, Deniz ERGÜDEN & Hakan KABASAKAL A New Record for the Shark Fauna of the Mediterranean Sea: Whale shark, Rhincodon typus (Orectolobiformes: Rhincodontidae) ....................................................... Nova vrsta v favni morskih psov Sredozemskega morja: morski pes kitovec, Rhincodon typus (Orectolobiformes: Rhincodontidae) Andrea LOMBARDO & Giuliana MARLETTA New Evidence of the Ongoing Expansion of Okenia picoensis Paz-Sedano, Ortigosa & Pola, 2017 (Gastropoda: Nudibranchia) in the Central-Eastern Mediterranean ......................... Novi podatki o širjenju areala vrste Okenia picoensis Paz-Sedano, Ortigosa & Pola, 2017 (Gastropoda: Nudibranchia) v srednjem vzhodnem Sredozemskem morju SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL A Review of Shark Biodiversity in Turkish Waters: Updated Inventory, New Arrivals, Questionable Species, and Conservation Issues ....................................... Pregled pestrosti morskih psov v turških morjih: dopolnjen seznam, novi prišleki, vprašljive vrste in naravovarstveni problemi Hakan KABASAKAL & Erdi BAYRI Great White Sharks, Carcharodon carcharias, Hidden in the Past: Three Unpublished Records of the Species from Turkish Waters ................................ Trije neobjavljeni primeri pojavljanja belega morskega volka, Carcharodon carcharias, iz turških voda izbrskani iz preteklosti IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Malek ALI, Vienna HAMMOUD, Ola FANDI & Christian CAPAPÉ First Substantiated Record of Crested Oarfish Lophotus lacepede (Osteichthyes: Lophotidae) from the Syrian Coast (Eastern Mediterranean Sea) ............ Prvi utemeljeni zapis o pojavljanju čopovke Lophotus lacepede (Osteichthyes: Lophotidae) ob sirski obali (vzhodno Sredozemsko morje) Mohamed Mourad BEN AMOR, Khadija OUNIFI-BEN AMOR, Marouène BDIOUI & Christian CAPAPÉ The Second Record of Oilfish, Ruvettus pretiosus (Gempylidae), in Tunisian Waters (Central Mediterranean Sea) ............................................. Drugi zapis o pojavljanju vrste Ruvettus pretiosus (Gempylidae) v tunizijskih vodah (osrednje Sredozemsko morje) Okan AKYOL & Vahdet ÜNAL On the Occurrence of Seriola fasciata (Carangidae) in the Eastern Mediterranean Sea ............................................... O pojavljanju vrste Seriola fasciata (Carangidae) v vzhodnem Sredozemskem morju Nassima EL OMRANI, Hammou EL HABOUZ, Abdelbasset BEN-BANI, Abdellatif MOUKRIM, Roger FLOWER & Abdellah BOUHAIMI Age and Growth of the Pouting Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) from Moroccan Central Atlantic Waters......................................... Rast in starost francoskega moliča Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) v atlantskih vodah osrednjega Maroka 167 173 195 217 211 181 223 205 UDK 5 Letnik 31, Koper 2021 ISSN 1408-533X e-ISSN 2591-1783 331 ANNALES · Ser. hist. nat. · 31 · 2021 · 2 Mourad CHÉRIF, Rimel BENMESSAOUD & Christian CAPAPÉ Age and Growth Parameters of the Red Mullet Mullus barbatus (Mullidae) from Northern Tunisia (Central Mediterranean Sea) ......... Starostni in rastni parametri pri navadnem bradaču Mullus barbatus (Mullidae) iz severne Tunizije (osrednje Sredozemsko morje) Yana SOLIMAN, Adib SAAD, Vienna HAMMOUD & Christian CAPAPÉ Heavy Metal Concentrations in Tissues of Red Mullet, Mullus barbatus (Mullidae) from the Syrian Coast (Eastern Mediterranean Sea) ........... Vsebnost težkih kovin v tkivih bradača, Mullus barbatus (Mullidae) iz sirske obale (vzhodno Sredozemsko morje) Christian CAPAPÉ, Youssouph DIATTA, Almamy DIABY, Sihem RAFRAFI-NOUIRA & Christian REYNAUD Record of a Single Clasper Specimen in Zanobatus schoenleinii (Chondrichthyes: Zanobatidae) from the Coast of Senegal (eastern tropical Atlantic) .......................................... Najdba primerka vrste Zanobatus schoenleinii (Chondrichthyes: Zanobatidae) le z enim klasperjem iz senegalske obale (vzhodni tropski Atlantik) FAVNA FAVNA FAVNA Ana FORTIČ, Domen TRKOV, Lovrenc LIPEJ, Marco FANTIN & Saul CIRIACO New Evidence of the Occurrence of Knoutsodonta pictoni (Nudibranchia, Onchidorididae) in the Northern Adriatic ................. Novi podatki o pojavljanju vrste Knoutsodonta pictoni (Nudibranchia, Onchidorididae) v severnem Jadranu Noureddine BENABDELLAH, Djillali BOURAS, Mohammed RAMDANI & Nicolas STURARO Biodiversity and Structural Organization of Mollusk Communities in the Midlittoral Coastal Area Between Bouzedjar and Arzew (Western Algeria) ........................................... Biodiverziteta in struktura združbe mehkužcev v bibavičnem območju med predeloma Bouzedjar in Arzew (zahodna Alžirija) Rudi VEROVNIK, Nejc RABUZA, Miroslav REPAR, Matjaž ZADRGAL & Paul TOUT On the Presence of Two-Tailed Pasha (Charaxes jasius (Linnaeus, 1767), Papilionoidea: Nymphalidae) in the Northeastern Adriatic Region .................................... O pojavljanju dvorepega paše (Charaxes jasius (Linnaeus, 1767), Papilionoidea: Nymphalidae) na območju severovzhodnega Jadrana Viktor BARANOV & Borut MAVRIČ New Records of Non-Biting Midges (Diptera, Chironomidae) from Marine and Coastal Habitats of the Slovenian Part of the Adriatic Sea ............................................. Nove najdbe trzač (Diptera, Chironomidae) iz morskih in obmorskih habitatov v slovenskem delu Jadrana FLORA FLORA FLORA Amelio PEZZETTA, Marco PAOLUCCI & Mario PELLEGRINI Le Orchidaceae del sito di interesse comunitario “Monte Pallano e Lecceta d’Isca d’Archi” e delle zone limitrofe ................................. Kukavičevke območja, pomembnega za skupnost “Monte Pallano e Lecceta d’Isca d’Archi” in sosednjih območij DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS Marina DERMASTIA, Tina ELERŠEK, Jadranka JEZERŠEK, Lučka KAJFEŽ BOGATAJ, Matjaž KUNTNER, Tamara LAH TURNŠEK, Matjaž LIČER, Lovrenc LIPEJ, Miha MIKELJ, Izidor OSTAN OŽBOLT, Maja RAVNIKAR, Katja SINUR, Darja STANIČ, Timotej TURK DERMASTIA, Al VREZEC Okoljski manifest ...................................................... IN MEMORIAM Jadran FAGANELI V spomin prof. dr. Jožetu Štirnu (1934-2021) ........... Kazalo k slikam na ovitku ........................................ Index to images on the cover .................................... 321 326 326 291 235 243 261 301 285 267 251 315