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Abstract. In Ref. [1] one of the authors (N.S.M.B.) study the second quantization of fermions
with integer spin while describing the internal degrees of freedom of fermions in Grass-
mann space. In this contribution we study the representations in Grassmann space of the
groups SO(5,1), SO(3,1), SU(3) x U(1), and SO(4), which are of particular interest as the
subgroups of the group SO(13, 1). The second quantized integer spin fermions, appearing
in Grassmann space, not observed so far, could be an alternative choice to the half integer
spin fermions, appearing in Clifford space. The spin-charge-family theory, using two kinds
of Clifford operators — y* and ¥* — for the description of spins and charges (frst) and
family quantum numbers (second), offers the explanation for not only the appearance of
femilies but also for all the properties of quarks and leptons, the gauge fields, scalar fields
and others [2-5]. In both cases the gauge fieldsin d > (13 + 1) — the spin connections wab«
(of the two kinds in Clifford case and of one kind in Grassmann case) and the vielbeins %
— determine in d = (3 + 1) scalars, those with the space index a = (5,6, - - - , d), and gauge
fields, those with the space index « = (0, 1, 2, 3). While states of the Lorentz group and all
its subgroups (in any dimension) are in Clifford space in the fundamental representations of
the groups, with the family degrees of freedom included [2,3,1], states in Grassmann space
manifest with respect to the Lorentz group adjoint representations, allowing no families.

Povzetek. V ¢lanku [1], ki uporabi za opis notranjih prostostnih stopenj fermionov Grass-
mannov prostor, predstavi eden od avtorjev (N.S.M.B.) drugo kvantizacijo fermionov s
celostevilskimi spini. Prispevek predstavi lastnosti upodobitev grup SO(5,1), SO(3,1),
SU(3) x U(1) in SO(4) v Grassmannovem prostoru. Te grupe so posebej zanimive kot
podgrupe grupe SO(13, 1). Kreacijski in anihilacijski operatorji, ki ustrezejo komutacijskim
relacijam za fermione, nosijo v Grassmannovem prostoru celosteviléni spin. Fermioni s
celostevilénim spinom ponudijo alternativni opis fermionom v Cliffordovem prostoru,
ki nosijo polsteviléni spin. OpaZeni so le fermioni s polStevilénim spinom. Teorija spinov-
nabojev-druZin, ki uporabi dve vrsti operatorjev y v Cliffordovem prostoru — y® in y¢ —
prvega za opis spina in vseh nabojev in drugega za opis druzinskega kvantnega $tevila,
ponuja razlago ne samo za pojav druzin, ampak tudi pojasni vse lastnosti kvarkov in
leptonov, umeritvenih polj, skalarnih polj in drugo [2-5]. Umeritvena poljavd > (13+1) —
spinske povezave wqv« (dveh vrst v Cliffordovem primeru in ene vrste v Grassmannovem
primeru) in “vielbeini” f*« — dolo¢ajo v obeh primerih v d = (3 + 1) skalarje, ¢e nosijo
prostorski indeks « = (5,6, -, d), ter umeritvena polja, kadar imajo prostorski indeks

* This contribution developed during the discussions at the 20" — Bled, 09-17 of July,
2017 — and 21*" — Bled, 23 of June to 1 of July — Workshops “What Comes Beyond the
Standard Models”, Bled, 09-17 of July, 2017.
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a = (0,1,2,3). Stanja Lorentzove grupe in vseh njenih podgrup so za poljubno dimenzijo
v Cliffordovem prostoru v fundamentalni upodobitvi in vklju¢ujejo druZzinske prostostne
stopnje [2,3,1], v Grassmannovem prostoru pa so glede na Lorentzovo grupo v adjungirani
upodobitvi in ne dopuscajo druZin.

Keywords: Spinor representations in Grassmann space, Second quantization of
fermion fields in Grassmann space, Higher dimensional spaces, Kaluza-Klein
theories, Beyond the standard model
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17.1 Introduction

In Ref. [2] the representations in Grassmann and in Clifford space were discussed.
In Ref. ([1] and the references therein) the second quantization procedure in both
spaces — in Clifford space and in Grassmann space — were discussed in order to
try to understand “why nature made a choice of Clifford rather than Grassmann
space” during the expansion of our universe, although in both spaces the creation
operators 'BJT and the annihilation operators b; exist fulfilling the anticommutation
relations required for fermions [1]

{65, 6]} o > = 84j o >,
{61, b5} ho > =0 o >,
{61, 6]} o > =0 o >,
B;rhbo > = hp; >
Bihho > =0, > . (17.1)

[P, > is the vacuum state. We use (o >= |1 >.

The creation operators can be expressed in both spaces by products of eigen-
states of the Cartan subalgebra, Eq. (17.33), of the Lorentz algebra, Egs. (17.3,17.11).
Starting with one state (Ref. [1]) all the other states of the same representation are
reachable by the generators of the Lorentz transformations (which do not belong
to the Cartan subalgebra), with S presented in Eq. (17.32) in Grassmann space
and with either $¢° or $9°, Eq. (17.34), in Clifford space.

But while there are in Clifford case two kinds of the generators of the Lorentz
transformations — S®° and S¢Y, the first transforming members of one family
among themselves, and the second transforming one member of a particular
family into the same member of other families — there is in Grassmann space
only one kind of the Lorentz generators — S?°. Correspondingly are all the states
in Clifford space, which can be second quantized as products of nilpotents and
projectors [9,10,1], reachable with one of the two kinds of the operators Sab and
§ab while different representations are in Grassmann space disconnected.

On the other hand the vacuum state is in Grassmann case simple — [\, >=
|1 > — while in Clifford case is the sum of products of projectors, Eq. (17.17).

In Grassmann space states are in the adjoint representations with respect
to the Lorentz group, while states in Clifford space belong to the fundamental
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representations with respect to both generators, S*® and 5¢°, or they are singlets.
Correspondingly are properties of fermions, described with the spin-charge-family
theory [3,4,6,5,8,7], which uses the Clifford space to describe fermion degrees
of freedom, in agreement with the observations, offering explanation for all the
assumptions of the standard model (with families included) and also other observed
phenomena.

In Grassmann case the spins manifest, for example, in the case of SO(6) or
SO(5, 1) decuplets or singlets — triplets and singlets in Clifford case, Table 17.2 —
while with respect to the subgroups SU(3) and U(1) of SO(6) the states belong to
either singlets, or triplets or sextets, Tables 17.3, 17.4 — triplets and singlets in the
Clifford case.

In what follows we discuss representations, manifesting as charges and spins
of fermions, of subgroups of SO(13,1), when internal degrees of freedom of
fermions are described in Grassmann space and compare properties of these
representations with the properties of the corresponding representations appearing
in Clifford space. We assume, as in the spin-charge-family theory, that both spaces,
the internal and the ordinary space, have d = 2(2n + 1)-dimensions, n is positive
integer, d > 14 and that all the degrees of freedom of fermions and bosons originate
in d = 2(2n + 1), in which fermions interact with gravity only.

After the break of the starting symmetry SO(13, 1) into SO(7, 1) x SU(3) x UL(1),
and further to SO(3,1) x SU(2) x SU(2) x SU(3) x U(1), fermions manifest in
d = (3 + 1) the spin and the corresponding charges and interact with the gauge
fields, which are indeed the spin connections with the space index m = (0, 1, 2, 3),
originating in d = (13, 1) [7]. Also scalar fields originate in gravity: Those spin
connections with the space index a = (5, 6,7,8) determine masses of fermions,
those with the space index a = (9,10, ..., 14) contribute to particle/antiparticle
asymmetry in our universe [4].

We pay attention on fermion fields, the creation and annihilation operators of
which fulfill the anticommutation relations of Eq. (17.1).

17.1.1 Creation and annihilation operators in Grassmann space

In Grassmann d = 2(2n + 1)-dimensional space the creation and annihilation
operators follow from the starting two creation and annihilation operators, both
with an odd Grassmann character, since those with an even Grassmann character
do not obey the anticommutation relations of Eq. (17.1) [1]

BT = ()% (60— 6%)(0" + 167)(0° + 16%) - (0% + 109,

o1 _( 90 .0, (0 0

b3 = (5" (Gga ~igpa) " (Fgo ~ 203

B = ()% (60 +6%)(0" + 167)(6° + 16%) -+ (0% + 109,

o (g0 0,00

61 = (55)% (ggat —iga) (g0 + 363 (172)
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All the creation operators are products of the eigenstates of the Cartan subalgebra
operators,Eq. (17.33)
S (Y + €QP) = :Fi“T(ea + e0b),
e=1, forn* =1, e=1i, forn**=-1,
S (090° + €0°04) =0, S (090" +€0°09) =0. (17.3)

The two creation operators, 6?” and B?ZT, if applied on the vacuum state,
form the starting two states ¢] and ¢4 of the two representations, respectively.
The vacuum state is chosen to be the simplest one [1] — [¢po >= |1 >. The rest
of creation operators of each of the two groups, B? " and B?ZT, follow from the
starting one by the application of the generators of the Lorentz transformations in
Grassmann space S, Eq. (17.32), which do not belong to the Cartan subalgebra,
Eq. (17.33), of the Lorentz algebra. They generate either |¢] > of the first group or
b > of the second group.

Annihilation operators 69! and 592 follow from the creation ones by the
Hermitian conjugation [1], when taking into account the assumption

0

aT: aa _ _; fa.aa 17.4
(64) 30" ip n®e, (17.4)

from where it follows

( 0

304

)T :naa ea, (pea)T :7inaaea. (175)

The annihilation operators 6! and 592 annihilate states |¢] > and |p? >,
respectively.

The application of S°' on 3?1 I, for example, transforms this creation operator
into b3'" = (J5)% 7" (6090 +10702) (6° +16°)--- (04~" — i0¢). Correspondingly
its Hermitian conjugate annihilation operator is equal to 6" = (% )2 (g2 —
{90 _o0__90__ 4.0 9
1 d0d ) e ( 1 )

All the states are normalized with respect to the integral over the Grassmann

coordinate space [2]

< PPy > = Jdd*‘xdde“ w < {10 >< Blpy >=8 8y,

0
00y

W =TT{_o(—5— +6%), (17.6)

where w is a weight function, defining the scalar product < d){‘|d>jb >, and we
require that [2]

{de9,0%}, =0, Jdea =0, Jdeaeﬂ =1,

Jddeeoe‘med:u

d4e = do?...de°, (17.7)
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with =%-0¢ = n“c

There are 1 42 T d‘ in each of these two groups of creation operators of an odd

Grassmann character in d = 2(2n + 1)-dimensional space.

The rest of creation operators (and the corresponding annihilation operators)
would have rather opposite Grassmann character than the ones studied so far: like
a. 090" for the creation operator and [% a%o] for the corresponding annihilation
operatorind = (1+1) (since {6°0, 5%+ 535}, gives (1 +(1 +1)6°91 52+ 5%5)), and
like b. (6°F6%)(6" +£i8?) for creation operator and [( 55+ Fiz3z) (53 309 F535)] for the
annihilation operator, or 6°636' 67 for the creation operator and [ 53> ag 535 3951
for the annihilation operator in d = (3 + 1) (since, let say, {1 (6° — 0°)(0" + 92)
L (507537 (33— 3% )b+ gives (14+-H(1+1)(0°—63) (01 +162) (33r —i33s) (535 —
595) and equivalently for other cases), but applied on a vacuum states some of
them still fulfill some of the relations of Eq. (17.1), but not all (like {15 (8°—03)(0" +
i02), 1(6° + 03)(0" —102)}, =106°0'026%, while it should be zero).

Let us add that, like in Clifford case, one can simplify the scalar product in
Grassmann case by recognizing that the scalar product is equal to 5°° &;;

< P10 >< Blpy > =590 5y, (17.8)

without integration over the Grassmann coordinates. Let us manifest this in the

caseof d = (1 + 1)< ”7(% — W)T(GO 8|1 >= 1, |1 > is the normal-

ized vacuum state, < 1|1 >= 1. It is true in all dimensions, what can easily be
understood for all the states, which are defined by the creation operators BI on

the vacuum state [1 >, [¢p? >= GI |1 >, fulfilling the anticommutation relations of
Eq. (17.1).

17.1.2 Creation and annihilation operators in Clifford space

There are two kinds of Clifford objects [2], ([3] and Refs. therein), y* and ¥¢, both
fulfilling the anticommutation relations

eyl =M =34, 9%),

{y*,¥°} =0. (17.9)

Both Clifford algebra objects are expressible with 8¢ and % [2,1], ([3] and Refs.
therein)

(00 + o),
=160 o),
6% = %(v -9,
3. % (v +1vY), (17.10)

from where it follows: (y®) =y9n99, (¢)7 = §9n29, yoy® =n%, yo(y)l =1,
,T/a,f/a :naa, ,f/a(,?a)’r =1.
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Correspondingly we can use either y“ or ¥ instead of 8¢ to span the internal
space of fermions. Since both, y* and ¥¢, are expressible with 8¢ and the deriva-
tives with respect to 8¢, the norm of vectors in Clifford space can be defined by
the same integral as in Grassmann space, Eq.(17.6), or we can simplify the scalar
product (as in the Grassmann case, Eq. (17.8) by introducing the Clifford vacuum
state Yo >, Eq. (17.17), instead of |1 > in Grassmann case.

We make use of Y to span the vector space. As in the case of Grassmann
space we require that the basic states are eigenstates of the Cartan subalgebra
operators of S¢® and 5%, Eq. (17.33).

ab 1 naa b abT ab
(k): = E(Ya + kY ), (k) =n% (=k),
ab 1 : i @ b abJr ab
ab 1 ab ab 1 ab
S (k) = 5k (k), $° [kl= 5k [k,
- ab 1 ab _ ab ab
Sab (k) = Sk (), Sab [k]= —5k ik, (17.11)

_ ab _ ab
with k? =1n%91°?. To calculate $S¢° (k) and S [k] we use [10,9] the relation on
any Clifford algebra object A as follows

(VoA = i(=) M Ay ) boe >, (17.12)

where A is any Clifford algebra object and (—)*) = —1, if A is an odd Clifford
algebra object and (—)(A) =1, if A is an even Clifford algebra object, (P, > is
the vacuum state, replacing the vacuum state {p, >= |1 >, used in Grassmann
case, with the one of Eq. (17.17), in accordance with the relation of Egs. (17.10, 17.6,
17.7), Ref. [1].

We can define now the creation and annihilation operators in Clifford space
so that they fulfill the requirements of Eq. (17.1). We write the starting creation
operator and its Hermitian conjugate one (in accordance with Eq. (17.11) and
Eq.(17.33)) in 2(2n + 1)-dimensional space as follows [1]

B — (LU - )
1 d-1d 56 12 03
bl = () - (2= . (17.13)

The starting creation operator B”, when applied on the vacuum state P, >,
defines the starting family member of the starting “family”. The corresponding
starting annihilation operator is its Hermitian conjugated one, Eq. (17.11).

All the other creation operators of the same family can be obtained by the
application of the generators of the Lorentz transformations S°, Eq. (17.34), which
do not belong to the Cartan subalgebra of SO(2(2n + 1) — 1, 1), Eq. (17.33).

b1 oc Seb.SeBIT,
B! o blsef..sab (17.14)
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with §abT =naanbbgab The proportionality factors are chosen so, that the corre-
sponding states (p] >= 61 t [{oc > are normalized, where [\, > is the normalized
vacuum state, < Poc[boec >=1.

The creation operators creating different ”families” with respect to the starting
“family”, Eq. (17.13), can be obtained from the starting one by the application of
Sab, Eq. (17.34), which do not belong to the Cartan subalgebra of §E)(2(Zn +1)—
1,1), Eq. (17.33). They all keep the “"family member” quantum number unchanged.

bt oc §ab...Sef BT, (17.15)

Correspondingly we can define (up to the proportionality factor) any creation
operator for any “family” and any “family member” with the application of $%°
and $9P [1]

bt o Sab...gefgmn . gprpli
o §MM...gPrhigab. . gef (17.16)

All the corresponding annihilation operators follow from the creation ones by the
Hermitian conjugation.

There are 22" x 2%~ creation operators of an odd Clifford character and
the same number of annihilation operators, which fulfill the anticommutation
relations of Eq. (17.1) on the vacuum state o > with 221 summands

N’oc >=
03 12 56 d—1d 03 12 56 d—1d 03 12 56 d—1d

a (U - ] IS e )+ R ] 0>,
1

ford=2(2n+1), (17.17)

X =

n is a positive integer. For a chosen o« = —-— the vacuum is normalized:

291
< 1-l—’oc'lpoc >=1.
It is proven in Ref. [1] that the creation and annihilation operators fulfill the
anticommutation relations required for fermions, Eq. (17.1).

17.2 Properties of representations of the Lorentz group
SO(2(2n + 1)) and of subgroups in Grassmann and in
Clifford space

The purpose of this contribution is to compare properties of the representations
of the Lorentz group SO(2(2n + 1)), n > 3, when for the description of the
internal degrees of freedom of fermions either i. Grassmann space or ii. Clifford
space is used. The spin-charge-family theory ([6,5,3,4,8,7,11] and the references
therein) namely predicts that all the properties of the observed either quarks and
leptons or vector gauge fields or scalar gauge fields originate in d > (13 + 1), in
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which massless fermions interact with the gravitational field only — with its spin
connections and vielbeins.

However, both — Clifford space and Grassmann space — allow second quan-
tized states, the creation and annihilation operators of which fulfill the anticom-
mutation relations for fermions of Eq. (17.1).

But while Clifford space offers the description of spins, charges and families
of fermions in d = (3 + 1), all in the fundamental representations of the Lorentz
group SO(13, 1) and the subgroups of the Lorentz group, in agreement with the
observations, the representations of the Lorentz group are in Grassmann space the
adjoint ones, in disagreement with what we observe.

We compare properties of the representations in Grassmann case with those in
Clifford case to be able to better understand “the choice of nature in the expanding
universe, making use of the Clifford degrees of freedom”, rather than Grassmann
degrees of freedom.

In introduction we briefly reviewed properties of creation and annihilation
operators in both spaces, presented in Ref. [1] (and the references therein). We pay
attention on spaces with d = 2(2n + 1) of ordinary coordinates and d = 2(2n + 1)
internal coordinates, either of Clifford or of Grassmann character.

i. In Clifford case there are 27~ creation operators of an odd Clifford
character, creating “family members” when applied on the vacuum state. We
choose them to be eigenstates of the Cartan subalgebra operators, Eq.(17.33), of the
Lorentz algebra. All the members can be reached from any of the creation operators
by the application of $°, Eq. (17.34). Each “family member” appears in 291
”families”, again of an odd Clifford character, since the corresponding creation
operators are reachable by 5¢°, Eq. (17.34), which are Clifford even objects.

There are correspondingly 2% 1. 22 creation and the same number (2% -
2% 1) of annihilation operators. Also the annihilation operators, annihilating states
of 251 “family members” in 251 ”families”, have an odd Clifford character,
since they are Hermitian conjugate to the creation ones.

The rest of 2- 22~'. 22~ members of the Lorentz representations have an
even Clifford character, what means that the corresponding creation and annihila-
tion operators can not fulfill the anticommutation relations required for fermions,
Eq. (17.1). Among these 291 products of projectors determine the vacuum state,
Eq. (17.17).

ii. In Grassmann case there are & operators of an odd Grassmann
character, which form the creation opera%orzs, fulfilling with the corresponding
annihilation operators the requirements of Eq. (17.1). All the creation operators are
chosen to be products of the eigenstates of the Cartan subalgebra $*°, Eq. (17.33).
The corresponding annihilation operators are the Hermitian conjugated values of
the creation operators, Eqgs. (17.4, 17.5, 17.2). The creation operators form, when
applied on the simple vacuum state |¢, >= |1 >, two independent groups of
states. The members of each of the two groups are reachable from any member
of a group by the application of $¢°, Eq. (17.32). All the states of any of the two
decuplets are orthonormalized.
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We comment in what follows the representations in d = (13 + 1) in Clifford
and in Grassmann case. In spin-charge family theory there are breaks of the starting
symmetry from SO(13,1) to SO(3,1) x SU(2) x SU(3) x U(1) in steps, which lead
to the so far observed quarks and leptons, gauge and scalar fields and gravity.
One of the authors (N.5S.M.B.), together with H.B. Nielsen, defined the discrete
symmetry operators for Kaluza-Klein theories for spinors in Clifford space [19]. In
Ref. [1] the same authors define the discrete symmetry operators in the case that
for the description of fermion degrees of freedom Grassmann space is used. Here
we comment symmetries in both spaces for some of subgroups of the SO(13,1)
group, as well as the appearance of the Dirac sea.

17.2.1 Equations of motion in Grassmann and Clifford space

We define [1] the action in Grassmann space, for which we require — similarly as

aeo 2 @

is Lorentz invariant. The corresponding equation of motion is

A= %{J d4x d%0 w ($f(1 —26°

%[(1 — 290%) 0%+ ((1— 290%) 09 pald? > =0, (17.19)
Pa=1 a%ﬂ, leading to the Klein-Gordon equation
(120022 10°pa)! 0°pul > = p*pal >=0. (17.20)
In the Clifford case the action for massless fermions is well known
A= J d%x % WYy pa) + hc., (17.21)

leading to the equations of motion
Yepap® > =0, (17.22)
which fulfill also the Klein-Gordon equation

YEPLYPPLbE > = popalhE >=0. (17.23)

17.2.2 Discrete symmetries in Grassmann and Clifford space

We follow also here Ref. [1] and the references therein. We distinguish in d-
dimensional space two kinds of dicsrete operators C, P and 7 operators with
respect to the internal space which we use.

In the Clifford case [19], when the whole d-space is treated equivalently, we
have

d—1
o= [1vK, Ta=7" [ v*KLe , P "=+,
Yeed YeER

_ a a __ 0 2 v
Lix® =—x%, Lox®%=(—x",X), Izxgx=-—X,

Ie.x® = (x° —x", —x2, —x3,x°,x%, ..., x%). (17.24)
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The product [ [ y* is meant in the ascending order in y.
In the Grassmann case we correspondingly define

d—1
CG: H y%K) TG:Y% H Y%KIXO) Pé ):'YOGL?,
YEETYe YGERY

(17.25)
with y¢& defined as

vye=0- zeanaai) , (17.26)
004
while I, Iz, is defined in Eq. (17.24). Let be noticed, that since y& (= —in®*y*y)
is always real as there is y®iy“, while y¢ is either real or imaginary, we use in
Eq. (17.25) y“ to make a choice of appropriate y¢. In what follows we shall use
the notation as in Eq. (17.25).
We define, according to Ref. [1] (and the references therein) in both cases
— Clifford Grassmann case — the operator “emptying” [6,5] (arxiv:1312.1541)
the Dirac sea, so that operation of “emptyingn” after the charge conjugation
Cy in the Clifford case and “emptyingg” after the charge conjugation Cg in the
Grassmann case (both transform the state put on the top of either the Clifford or
the Grassmann Dirac sea into the corresponding negative energy state) creates the
anti-particle state to the starting particle state, both put on the top of the Dirac sea
and both solving the Weyl equation, either in the Clifford case, Eq. (17.22), or in
the Grassmann case, Eq. (17.19), for free massless fermions

"emptying" = H v*K in Clifford space,
Ry

"emptying " = H v¢ K in Grassmannspace, (17.27)
Ry

although we must keep in mind that indeed the anti-particle state is a hole in the
Dirac sea from the Fock space point of view. The operator “emptying” is bringing
the single particle operator Cy in the Clifford case and Cg in the Grassmann case
into the operator on the Fock space in each of the two cases. Then the anti-particle
state creation operator — ¥ [W,] — to the corresponding particle state creation
operator — can be obtained also as follows

Wil vac > = Cp W W, ] lvac >= J Wi (X) (Coy Wp (%) ' Vx Ivac >,
Cy ="emptying,," - Cy (17.28)

in both cases.
The operators Cy, and Cg

Cy = "emptying," - Cy,
Cg ="emptying, ;" - Cc, (17.29)

operating on ¥, (X) transforms the positive energy spinor state (which solves
the corresponding Weyl equation for a massless free fermion) put on the top of
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the Dirac sea into the positive energy anti-fermion state, which again solves the
corresponding Weyl equation for a massless free anti-fermion put on the top of
the Dirac sea. Let us point out that either the operator "emptying," or the operator
'emptying, ;" transforms the single particle operator either C3 or Cg into the
operator operating in the Fock space.

We use the Grassmann even, Hermitian and real operators y¢, Eq. (17.26), to
define discrete symmetry in Grassmann space, first we did in ((d + 1) — 1) space,
Eq. (17.25), now we do in (3 + 1) space, Eq. (17.30), as it is done in [19] in the
Clifford case. In the Grassmann case we do this in analogy with the operators in
the Clifford case [19]

I I m
CNG = YaG KIX5X8...Xd)
YEERY™

0
NG =%YG | | Klolisyr  xa—1,
’Ygle’j’y1n

d
d—1
Pl(\lG ) :'Y% H 'YEI%)
s=5

(CNG = H YE‘)IxGXS...xd )

YGERYS
d
d—1
CNGP](\IG ) = ‘Y% H Y% I,z3 Iioxs  ya,
Y§ETYS,s=5
—1
CneTnePrg = ] v& LK. (17.30)

Y EIYVe

17.2.3 Representations in Grassmann and in Clifford spaceind = (13 + 1)

In the spin-charge-family theory the starting dimension of space must be > (13 + 1),
in order that the theory manifests in d = (3 4 1) all the observed properties of
quarks and leptons, gauge and scalar fields (explaining the appearance of higgs
and the Yukawa couplings), offering as well the explanations for the observations
in cosmology.

Let us therefore comment properties of representations in both spaces when
d = (13 + 1), if we analyze one group of “family members” of one of families in

Clifford space, and one of the two representations of & 4%
2°2°

a.  Let us start with Clifford space [3,5,4,6,13,12,2]. Each “family” repre-
sentation has 27~ = 64 “family members”. If we analyze this representation
with respect to the subgroups SO(3,1), (SU(2) x SU(2)) of SO(4) and (SU(3)x
U(1)) of SO(6) of the Lorentz group SO(13,1), we find that the representations
have quantum numbers of all the so far observed quarks and leptons and anti-
quarks and antileptons, all with spin up and spin down, as well as of the left and
right handedness, with the right handed neutrino included as the member of this
representation.

Let us make a choice of the “family”, which follows by the application of
S on the ”family”, for which the creation operator of the right-handed neutrino
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03 12 56 78 910 1112 1314
with spin 7 would be (+i) (+) | (+) (+) | (+) (+) (+). (The corresponding
1314 1112 910 78 56 12
annihilation operator of this creation operatoris (=) (=) (=) Il (=) (=) (=)

(331)). In Table 6.3 (see pages 112-113 in this volume) presented creation operators
for all the “family members” of this family follow by the application of S°
03 12 56 78 910 1112 1314
on S (+1) () | (H) () I (+) (+)  (+). (The annihilation operator of S'
03 12 56 78 910 1112 1314 1314 1112 910 78 56 12 03
HHIEHEENE ) FHis H H G NEHTHED)

This is the representation of Table 6.3 (see pages 112-113 in this volume),
in which all the "family members” of one ”"family” are classified with respect to
the subgroups SO(3,1) x SU(2) x SU(2) x SU(3) x U(1). The vacuum state on
which the creation operators, represented in the third column, apply is defined
in Eq. (17.17). All the creation operators of all the states are of an odd Clifford
character, fulfilling together with the annihilation operators (which have as well
the equivalent odd Clifford character, since the Hermitian conjugation do not
change the Clifford character) the requirements of Eq. (17.1). Since the Clifford
even operators $°° and S$%° do not change the Clifford character, all the creation
and annihilation operators, obtained by products of S¢° or $¢° or both, fulfill the
requirements of Eq. (17.1).

We recognize in Table 6.3 (see pages 112-113 in this volume) that quarks
distinguish from leptons only in the SO(6) part of the creation operators. Quarks
belong to the colour (SU(3)) triplet carrying the “fermion” (U(1)) quantum num-
ber * = 1, antiquarks belong to the colour antitriplet, carrying the “fermion”

quantum number t* = —1. Leptons belong to the colour (SU(3)) singlet, carrying
the “fermion” (U(1)) quantum number t* = 715, while antileptons belong to the

colour antisinglet, carrying the “fermion” quantum number t* = J.

Let us also comment that the oddness and evenness of part of states in the
subgroups of the SO(13,1) group change: While quarks and leptons have in
the part of SO(6) an odd Clifford character, have antiquarks and antileptons in
this part an even odd Clifford character. Correspondingly the Clifford character
changes in the rest of subgroups.

Families are generated by $¢° applying on any one of the ”family members”.
Again all the “family members” of this “family” follow by the application of all
S® (not belonging to Cartan subalgebra).

The spontaneous break of symmetry from SO(13,1) to SO(7, 1) x SU(3) x U(1),
Refs. [3-5], makes in the spin-charge-family theory all the families, generated by
Smtand S5, [m = (0,1,2,3), s = (5,6,7,8),t = (9,10,11,12, 13, 14)], massive of
the scale of > 10'® GeV [14-16]. Correspondingly there are only eight families of
quarks and leptons, which split into two groups of four families, both manifesting
the symmetry S/ﬁ(ZJ X S/fl(Z) xU(1). (The fourth of the lower four families is pre-
dicted to be observed at the LHC, the stable of the upper four families contributes
to the dark matter [17].)

In the spin-charge-family theory fermions interact with only gravity, which
manifests after the break of the starting symmetry in d = (3 + 1) as all the known
vector gauge fields, ordinary gravity and the higgs and the Yukawa couplings [7,3—-
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5,11]. There are scalar fields which bring masses to family members. The theory
explains not only all the assumptions of the standard model with the appearance of
families, the vector gauge fields and the scalar fields, it also explains appearance
of the dark matter [17], matter /antimatter asymmetry [4] and other phenomena,
like the miraculous cancellation of the triangle anomalies in the standard model [8].

b. We compare representations of SO(13, 1) in Clifford space with those in
Grassmann space. We have no “family” quantum numbers in Grassmann space.
We only have two groups of creation operators, defining — when applied on the

vacuum state |1 > — J % equalin d = (13 + 1) to 1716 members in each of
2°2°

the two groups in comparison in Clifford case with 64 “family members” in one
“family” and 64 “families”, which the breaks of symmetry reduce to 8 “families”,
making all the (64 — 8) ”families” massive and correspondingly not observable at
low energies ([5,14] and the references therein).

Since the 1716 members are hard to be mastered, let us look therefore at each
subgroup — SU(3) x U(1), SO(3,1) and SU(2) x SU(2) of SO(13,1) — separately.

Let us correspondingly analyze the subgroups: SO(6) from the point of view
of the two subgroups SU(3) x U(1), and SO(7,1) from the point of view of the
two subgroups SO(3,1) x SO(4), and let us also analyze SO(4) as SU(2) x SU(2).

17.2.4 Examples of second quantizable states in Grassmann and in Clifford
space

We compare properties of representations in Grassmann and in Clifford space for
several choices of subgroups of SO(13, 1) in the case that in both spaces creation
and annihilation operators fulfill requirements of Eq. (17.1), that is that both kinds
of states can be second quantized. Let us again point out that in Grassmann case
fermions carry integer spins, while in Clifford case they carry half integer spin.

States in Grassmann and in Clifford space for d = (54 1) We study properties
of representations of the subgroup SO(5, 1) (of the group SO(13, 1)), in Clifford and
in Grassmann space, requiring that states can be in both spaces second quantized,
tulfilling therefore Eq. (17.1).

a. In Clifford space there are 251 , each with 251 family members, that is
4 families, each with 4 members. All these sixteen states are of an odd Clifford
character, since all can be obtained by products of S*°, $¢° or both from an Clifford
odd staring states and are correspondingly second quantizable as required in
Eq. (17.1). All the states are the eigenstates of the Cartan subalgebra of the Lorentz
algebra in Clifford space, Eq. (17.33), solving the Weyl equation for free massless
spinors in Clifford space, Eq. (17.22). The four familes, with four members each,
are presented in Table 17.1. All of these 16 states are reachable from the first one in
each of the four families by S¢°, or by 59 if aplied on any family member.

Each of these four families have positive and negative energy solutions, as
presented in [19], in Table I.. We present in Table 17.1 only states of a positive
energy, that is states above the Dirac sea. The antiparticle states are reachable from

the particle states by the application of the operator Cy Pj(\}ifn = v%y51g, L,
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keeping the spin 1, while changing the charge from J to —J. All the states above
the Dirac sea are indeed the hole in the Dirac sea, as explained in Ref. [19].

’ ‘ Il) ‘503‘512‘556‘503‘512‘556‘
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Table 17.1. The four families, each with four members. For the choice p® = (p°, 0, 0,p3,0,0)
have the first and the second member the space part equal to e PO gng
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e PN representing the particles with spin up and down, respectively. The third
and the fourth member represent the antiparticle states, with the space part equal to
e PO gng e PO XTHIPTNT ith the spin up and down respectively. The antipar-
ticle states follow from the particle state by the application of Car Pj(\}ifl )= y0yS Iz, Lis. The

charge of the particle states is J, for antiparticle states — 1.

b.0 In Grassmann space there are % second quantizable states as required
22"

in Eq. (17.1), forming in d = (5 + 1) two decuplets — each with § 594 states —

2 dydy

all are the eigenstates of the Cartan subalgebra of the Lorentz algebra in (internal)
Grassmann space. All the states of one (anyone of the two) decuplets are reachable
by the application of the operators S®° on a starting state. The two decouplets are
presented in Table 17.2

Let us first find the solution of the equations of motion for free massless
fermions, Eq. (17.19), with the momentum p¢ = (p°,p',p?,p3,0,0). One obtains
for P; = x(0° — 03)(0" + 102)(8° + 10°) +PB(0°03 + i0'02)(0° + 10°)+ v(8° +
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93)(0" —i02%)(0° + i0°) the solution

2v(p' —ip?)  2y(p°+p3)  2a(p®—p3)  2alp’ +ip?)
PO —p3) (' +ip?) (' —ip?) (PO +p3)

P2 ="+ P+ ()3,
B _ v
—X —X

=

b

_2(p°—p%) _ P -p’)? (17.31)

(p' —ip?)’ (p! —ip2)?"

One has for p® = [p°| the positive energy solution, describing a fermion above
the “Dirac sea”, and for p® = —|p°| the negative energy solution, describing a
fermion in the “Dirac sea”. The “charge” of the “"fermion” is 1. Similarly one finds
the solution for the other three states with the negative “charge” —1, again with the
positive and negative energy. The space part of the "fermion” state is for “spin up”
equal to e *P°IX°+1PY for his antiparticle for the same internal spin e~ 1P°/x°~1F%,

The discrete symmetry operator Cng ”P](\Jdg ", which is in our case equal to
Y22 I, Lis, transforms the first state in Table 17.2 into the sixth, the second state
into the fifth, the third state into the fourth, keeping the same spin while changing
the “charge” of the superposition of the three states 1 1,,. Both superposition of
states, Eq. (17.31) represent the positive energy states put on the top of the ”"Dirac”
sea, the first describing a particle with “charge” 1 and the second superposition
of the second three states {14, describing the antiparticle with the”charge” —1.
We namely apply C g ’Pj(\}ig Y on Wi [WP°*] by applying Cig 73/(\}15 Y on WPOS as
follows: Cprg Prg ' WHIWPOS] (Cug Prig )1 = ¥hng[Cag Prg ' WHO%. One
recognizes that it is Cyrg P/(\}ig 1) ypos _ ypos (Taple 17.2), which must be put
on the top of the “Dirac” sea, representing the hole in the particular state in the
“Dirac” sea, which solves the corresponding equation of motion for the negative
energy.

Properties of SO(6) in Grassmann and in Clifford space when SO(6) is em-
bedded into SO(13,1) a. Let us first repeat properties of the SO(6) part of the
SO(13,1) representation of 64 “family members” in Clifford space, presented in

Table 6.3 (see pages 112-113 in this volume). As seen in Table 6.3 (see pages 112-
910 1112 1314
113 in this volume) there are one quadruplet (2%_1 =4 —((+) [-] -],
910 1112 1314 9710 1112 1314 910 1112 1314
=l (+) =, = = (+),(+) (+) (+)) representing quarks and leptons
910 1112 1314 910 1112 1314 910 1112 1314
— and one antiquadruplet — ([-] (+) (+),(+) [ (+),(+) (+) [,
910 1112 1314
(-] [-] [-]), representing antiquarks and antileptons, which both belong to
the 64t"-plet, if SO(6) is embedded into SO(13,1). The creation operators (and
correspondingly their annihilation operators) have for 32 members (represent-
ing quarks and leptons) the SO(6) part of an odd Clifford character (and can be
correspondingly second quantized (by itselves [1] or) together with the rest of
space, manifesting SO(7, 1) (since it has an even Clifford character). The rest of 32
creation operators (representing antiquarks and antileptons) has in the SO(6) part
an even Clifford character and correspondingly in the rest of the Clifford space in

SO(7,1) an odd Clifford character.
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Table 17.2. The creation operators of the decuplet and the antidecuplet of the orthog-
onal group SO(5, 1) in Grassmann space are presented. Applying on the vacuum state
|do >= |1 > the creation operators form eigenstates of the Cartan subalgebra, Eq. (17.33),
(S8°3,8'2, 85%). The states within each decuplet are reachable from any member by Sab,
The product of the discrete operators Cng (= [ [g1,s VG Ix6xs...xa, denoted as C in the last
column) Pfj‘g B (=v% ]_[‘::5 Y& lx,) transforms, for example, Pl into P, P} into Pl and
3 into ). Solutions of the Weyl equation, Eq. (17.19), with the negative energies belong
to the “Grassmann sea”, with the positive energy to the particles and antiparticles. Also
the application of the discrete operators Con, Eq. (17.30) and Cne P](\ldG_ Y, Eq. (17.30) is
demonstrated.

Let us discuss the case with the quadruplet of SO(6) with an odd Clifford char-
acter. From the point of view of the subgroups SU(3) (the colour subgroup) and
U(1) (the U(1) subgroup carrying the “fermion” quantum number), the quadru-
plet consists of one SU(3) singlet with the “fermion” quantum number —J and
one triplet with the “fermion” quantum number . The Clifford even SO(7, 1)
part of SO(13, 1) define together with the Clifford odd SO(6) part the quantum
numbers of the right handed quarks and leptons and of the left handed quarks
and leptons of the standard model, the left handed weak charged and the right
handed weak chargeless.

In the same representation of SO(13, 1) there is also one antiquadruplet, which
has the even Clifford character of SO(6) part and the odd Clifford character in
the SO(7, 1) part of the SO(13, 1). The antiquadruplet of the SO(6) part consists of
one SU(3) antisinglet with the “fermion” quantum number J and one antitriplet
with the “fermion” quantum number —%. The SO(7,1) x SO(6) antiquadruplet
of SO(13,1) carries quantum numbers of left handed weak chargeless antiquarks
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and antileptons and of the right handed weak charged antiquarks and antileptons
of the standard model.

Both, quarks and leptons and antiquarks and antileptons, belong to the same
representation of SO(13, 1), explaining the miraculous cancellation of the triangle
anomalies in the standard model without connecting by hand the handedness and
the charges of quarks and leptons [8], as it must be done in the SO(10) models.

b. In Grassmann space there are one (} # = 10) decuplet representation

of SO(6) and one antidecuplet, both presented in Table 17.3. To be able to second
quantize the theory, the whole representation must be Grassmann odd. Both decu-
plets in Table 17.3 have an odd Grassmann character, what means that products
of eigenstates of the Cartan subalgebra in the rest of Grassmann space must be
of an Grassmann even character to be second quantizable. Both decuplets would,
however, appear in the same representation of SO(13, 1), and one can expect also
decuplets of an even Grassmann character, if SO(6) is embedded into SO(13,1) 1.
With respect to SU(3) x U(1) subgroups of the group SO(6) the decuplet man-
ifests as one singlet, one triplet and one sextet, while the antidecuplet manifests
as one antisinglet, one antitriplet and one antisextet. All the corresponding quan-
tum numbers of either the Cartan subalgebra operators or of the corresponding
diagonal operators of the SU(3) or U(1) subgroups are presented in Table 17.3.
While in Clifford case the representations of SO(6), if the group SO(6) is
embedded into SO(13, 1), are defining an Clifford odd quadruplet and an Clifford
even antiquadruplet, the representations in Grassmann case define one decuplet
and one antidecuplet, both of the same Grassmann character, the odd one in our
case. The two quadruplets in Clifford case manifest with respect to the subgroups
SU(3) and U(1) as a triplet and a singlet, and as an antitriplet and an antisinglet,
respectively. In Grassmann case the two decuplets manifest with respect to the
subgroups SU(3) and U(1) as a (triplet, singlet, sextet) and as an (antitriplet,
antisinglet, antisextet), respectively. The corresponding multiplets are presented
in Table 17.4. The ”fermion” quantum number t* has for either singlets or triplets
in Grassmann space, Table 17.4, twice the value of the corresponding singlets and
triplets in Clifford space, Table 6.3 (see pages 112-113 in this volume): (—1,+1) in

! This can easily be understood, if we look at the subgroups of the group SO(6).i. Let
us look at the subgroup SO(2). There are two creation operators of an odd Grassmann
character, in this case (87 —10'°) and (87 +16'°). Both appear in either decuplet or in
antidecuplet — together with 6°0'° with an even Grassmann character — multiplied
by the part appearing from the rest of space d = (11,12,13,14). But if SO(2) is not
embedded in SO(6), then the two states, corresponding to the creation operators, (99 F
1019, belong to different representations, and so is 070'°. ii. Similarly we see, if we
consider the subgroup SO(4) of the group SO(6). All six states, (07 +10"%) . (8" +1i0'2),
(99 _ielO) . (e] 1 _ielZ)/ (99610 +e1 1 912), (99 +ie]0) ) (91 1 _1912), (99 _1910) ) (91 1 +ie12),
(070'° — 0''0'?), appear in the decuplet and in the antidecuplet, multiplied with the
part appearing from the rest of space, in this case in d = (13, 14), if SO(4) is embedded in
SO(6). But, in d = 4 space there are two decoupled groups of three states [2]: [(67 +i0'9).
(611 + 1612), (99610 + 6]1612), (69 o ie]O) . (eﬂ o 1912)] and [(e‘? o :LGTO) . (e]] + ,-Le]Z),
(0761 —0'19'2), (687 +10'%) - (8" —10'2)]. Neither of these six members could be second
quantized in d = 4 alone.



352 D. Lukman and N.S. Manko¢ Bor$tnik

73
~g
3

77
N

77
w
H

A
iy

A
8

A
g

I decuplet
1 (99+i9]°)(9” +19]2)(9]3+ie14)
2 (99 %-1610)(911612 +—613614)
3 (99 +ielo)(ell 4*19]2)(9]3 4*i914)
4 (99910 +_911912)(913 %-1914)
5 (99 Afielo)(e]l 471912)(913 +1614)
6 0 +18™)(870™ +08™0™)| 0 1 0
7 )
8 )
9 )
0 )

_‘
-
[
4
=)
=)

=
=
|

o = ==
\
o —
\
—_ =
|+

—_
—_
—_

0 =100 +i0"%) (0" —10™
@70 —0'"g"%)(8"> —i0"
@70 —a 0@ —i0"?
@ —10) 00"z —0" 0"

1I decuplet

—_
—_
—_

|
Qo] =] o] = o] = o] = o] = o] —=f Lo = o] —f wo| =
|
[N}
+

[
-
=)
=)
+

»n
0
J

»
.

»
W
IS

'-]HB

g

q
&

1167 —i6™) (6™ —i0™%) (6" —i0™)| —1| —1] —=1[+1] © 0
2 (07— 10”0 —1[ o] o[+i|-3[-35
3[(67 —i6™) (0" +i0"5)(0"F +i0™)| —1 1 1-3-1] ——%
4 (076" +06'0™) (6 —16™)| o o —T|+i| O] +5
5[(67+16™) (0" +16"*) (67 —16'™)| 1 11 —1]-3] o] +%
6 0T —i0™) (8707 + 0730 o] —1 0+3[+3]-55
7[(67+10™) (8" —i0"H)(8" +10™)] 1] -1 -3+ —>
8 070 — 0™ (" +16™)| 0 0 -3 o ——%
9 (076 —e" 00" +i0™)| o 1] o[-3|-3[+35
10 07 +1070) (8707 — 0TS0 1 0 0-i|+3|+34

Table 17.3. The creation operators of the decuplet and the antidecuplet of the orthogonal
group SO(6) in Grassmann space are presented. Applying on the vacuum state [po >=[1 >
the creation operators form eigenstates of the Cartan subalgebra, Eq. (17.33), (87 '°,S'" 12,
§'3'). The states within each decouplet are reachable from any member by S*°. The
quantum numbers (%%, 1) and T* of the subgroups SU(3) and U(1) of the group SO(6) are
also presented, Eq. (17.38).

Grassmann case to be compared with (f%, +%) in Clifford case and (+1§, —13) in
Grassmann case to be compared with (—i—]g, —%) in Clifford case.

When SO(6) is embedded into SO(13, 1), the SO(6) representations of either
even or odd Grassmann character contribute to both of the decupled, 1716 states
of SO(13, 1) representations contribute, provided that the SO(8) content has the
opposite Grassmann character than the SO(6) content. The product of both repre-
sentations must be Grassmann odd in order that the corresponding creation and
annihilation operators fulfill the required anticommutation relations for fermions,
Eq. (17.1).

Properties of the subgroups SO(3,1) and SO(4) of the group SO(8) in Grass-
mann and in Clifford space, when SO(8) is embedded into SO(13,1) a. Let
us again repeat first properties of the SO(3,1) and SO(4) parts of the SO(13,1)
representation of 64 “family members” in Clifford space, presented in Table 6.3
(see pages 112-113 in this volume). As seen in Table 6.3 (see pages 112-113 in
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1 T4 T33 T38
singlet | [(67 +10™)(8'T +i0™*)(0" +i0")[ 1] O 0
triplet |1 (07 +i070)(0'70"2 + 00" [—1[+3][+515

2 (69610+9”612)(913+1614) _% 0 _%

3 (6” +16]2)(69610+913614) 7% 7% +ﬁ

sextet [1](67 +10"°)(0"" —i0'%)(0"° —10™")] I[+1] +=
2/(6” —i0'°)(8"" —i6'?)(0" +10™)| 1| O] —%
3[(67—i0")(0"" +i0'7)(6"7 —10™")| I|—T1] +%

4 (69610—6”9]2)(6]3—i614) % 0 +L3

5 (69610—913914)(9”—1612) %+% _ﬁ

6 8080 _ 030" %7% *ﬁ

II T4 T33 38

antisinglet| (67 —16™0)(6"" —i0"%)(6"> —i0™)[+1] o] ©
antitriplet [1 (07 —10")(0"70"7 + 070" )[+1[- 1515
2 (99610—1—6”612)(613—1614] +% of £

3 (0" —i0'%)(070° + 00" |+1 [+ 515

antisextet [1/(67 —107°) (8T +10'%)(0" +i8'")[—5[ 1] —55
2[(67 +i0'°)(6" +1i0'%)(6"° —10"")|—3| O] +%
3[(67+10™)(6" —10") (8" +1i0™")|—1[+1] — %

4 [99610—9”6]2)(6]3—%1614) _% 0 _%

5 (99610—613614)(6”4-1612] _% _% +ﬁ

6 (69+i9]°)(6”6127613614) 7% +% +ﬁ

Table 17.4. The creation operators in Grassmann space of the decuplet of Table 17.3 are
arranged with respect to the SU(3) and U(1) subgroups of the group SO(6) into a singlet,
a triplet and a sextet. The corresponding antidecuplet manifests as an antisinglet, an
antitriplet and an antisextet. T = (8710 —8'"1%) 1 = 2%@ (S7104-81112_pgi31dy ¢4 —

1 910 1112 1314y. gab _ :rpna 0 b 9
'g(s +S +S ),S —1(6 m_e ﬁ).

A T Vo

A

Fig.17.1. Representations of the subgroups SU(3) and U(1) of the group SO(6) in Grass-
mann space for two Grassmann odd representations of Table 17.4 are presented. On the
abscissa axis and on the ordinate axis the values of the two diagonal operators, T and
8 of the coulour (SU(3)) subgroup are presented, respectively, with full circles. On the
third axis the values of the subgroup of the “fermion number” U(1) is presented with the
open circles, the same for all the representations of each multiplet. There are one singlet,
one triplet and one sextet on the left hand side and one antisinglet, one antitriplet and one
antisextet on the right hand side.
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this volume) there are four octets and four antioctets of SO(8). All four octets,
having an even Clifford character and forming 32 states when embedded into
SO(13,1), are the same for either quarks or for leptons, they distinguish only in
the SO(6) part (of an Clifford odd character) of the SO(13,1) group, that is in
the colour (SU(3)) part and the “fermion quantum number” (U(1)) part. Also
the four antioctets, having an odd Clifford character, are all the same for the 32
family members of antiquarks and antileptons, they again distinguish only in the
Clifford even SO(6) part of SO(13, 1), that is in the anticolour (SU(3)) part and the
“fermion quantum number” (LL(1)) part.

The 64t"-plet of creation operators has an odd Clifford character either for
quarks and leptons or for antiquarks and antileptons — correspondingly have
an odd Clifford character also their annihilation operators — and can be second
quantized [1].

Let us analyze first the octet (2%*1 = §), which is the same for all 32 members

of quarks and leptons. The octet has an even Clifford character. All the right
56 78
handed ug-quarks and vg-leptons have the SO(4) part of SO(8) equal to [+] (+),
56 78
while their left handed partners have the SO(4) part of SO(8) equal to [+] [-]. All

the right handed dgr-quarks and eg-leptons have the SO(4) part of SO(8) equal
56 78
to (—) [-], while their left handed partners have the SO(4) part of SO(8) equal

7
to (5—6) (+8)]. The left handed quarks and leptons are doublets with respect to 7!
and singlets with T2, while the right handed quarks and leptons are singlets with
respect to T' and doublets with T2. The left and right handed quarks and lepton
belong with respect to the SO(3, 1) group to either left handed or the right handed
spinor representations, respectively.

b. In Grassmann space the SO(8) group of an odd Grassmann character has
T 797 = 35 creation operators in each of the two groups and the same number
of annihilation operators, obtained from the creation operators by Hermitian
conjugation, Eq. (17.4). The corresponding states, created by the creation operators
on the vacuum state |¢, >, can be therefore second quantized. But if embedded
the group SO(8) into the group SO(13, 1) the subgroup SO(6) must have an even
Grassmann character in oder that the states in SO(13, 1) can be second quantized
according to Eq. (17.1).

According to what we learned in the case of the group SO(6), each of the
two independent representations of the group SO(13,1) of an odd Grassmann
character must include either the even SO(7, 1) part and the odd SO(6) part or
the odd SO(7, 1) part and the even SO(6) part. To the even SO(7, 1) representation
either the odd SO(3, 1) and the odd SO(4) parts contribute or both must be of the
Grassmann even character. In the case that the SO(7, 1) part has an odd Grassmann
character (in this case the SO(6) has an even Grassmann character) then one of the
two parts SO(3, 1) and SO(4) must be odd and the other even.
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17.3 Concluding remarks

We learned in this contribution that although either Grassmann or Clifford space
offer the second quantizable description of the internal degrees of freedom of
fermions (Eq. (17.1)), the Clifford space offers more: It offers not only the de-
scription of all the “family members”, explaining all the degrees of freedom of
the observed quarks and leptons and antiquark and antileptons, but also the
explanation for the appearance of families.

The interaction of fermions with the gravity fields — the vielbeins and the spin
connections — in the 2(2n + 1)-dimensional space can be achieved, as suggested
by the spin-charge-family theory ([5,4] and references therein), by replacing the
momentum p, in the Lagrange density function for a free particle by the covariant
momentum, equally appropriate for both representations. In Grassmann space
we have: poq = f%¢ Poa, With pox = P — % S v+, Where f*, is the vielbein
in d = 2(2n 4+ T)-dimensional space and Q 4« is the spin connection field of the
Lorentz generators Sab In Clifford space we have equivalently: poq = f*¢ Pow,
Pox = Pa — 35 PWaba — 375%PDapa. Since S = $e° + §9° we find that when
no fermions are present either Q b« Or Wabx OF Wqb« are uniquely expressible by
vielbeins f*, ([5,4] and references therein). It might be that “our universe made
a choice between the Clifford and the Grassmann algebra” when breaking the
starting symmetry by making condensates of fermions, since that for breaking
symmetries Clifford space offers better opportunity”.

17.4 Appendix: Useful relations in Grassmann and Clifford
space

The generator of the Lorentz transformation in Grassmann space is defined as
follows [2]

Sab _ (eapeb _ ebpea) _ Sab + gab , {Sab)gcd}i _ 0, (1732)

where $2° and $° are the corresponding two generators of the Lorentz transfor-
mations in the Clifford space, forming orthogonal representations with respect to
each other.
We make a choice of the Cartan subalgebra of the Lorentz algebra as follows
503 S]Z S56 . Sd*] d
) ) b ) )
SOS S]Z 556 Sd*] d
b b b b )
§03 §12 §56 . gd—1d
b b b ) )
if d=2n. (17.33)

We find the infinitesimal generators of the Lorentz transformations in Clifford
space

(Yayb _YbYa) , Sab]L — T]aanbbsab ,

e 0 A P I B (17.34)
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where y® and ¥¢ are defined in Eq. (17.10). The commutation relations for either
Sab or §ab gr §ab gab — gab 4 Jab 4y

(s°,5°4)_ =0,
{Sab,SCd}, _ i(nadsbc +nbcsad _nacsbd _nbdsaC))
{gab) SCd}_ _ i(nadgbc +nbc§ad _nacgbd _nbdgaC) . (17.35)

The infinitesimal generators of the two invariant subgroups of the group SO(3,1)
can be expressed as follows

—

Ni(=Nig):= %(323 41807, 831 £i502 §12 4 {503y, (17.36)

The infinitesimal generators of the two invariant subgroups of the group SO(4)
are expressible with $° (a,b) = (5,6,7,8) as follows

,.F] - %(858 o 567) 557 + 568‘ 556 o 578) ,

= %(558 +867, 857 — 598, §%6 4 §78) (17.37)

while the generators of the SU(3) and U(1) subgroups of the group SO(6) can be
expressed by S° (a,b) = (9,10,11,12,13,14)

1
,E*3 — 2{5912_51011 )5911 +S1O]Z, S?]O_SH 12,

5914_51013 5913+81014 31114_51213
) )

S]] 13 +S]214’ \}g(s? 10 +s” 12_2813 14)},

b

T4 — —%(89104-81] 12+s]3 14). (1738)

The hyper charge Y can be defined as Y = 123 + 7%

The equivalent expressions for the ”family” charges, expressed by $¢° follow
if in Egs. (17.36 - 17.38) S°° are replaced by $¢°.

The breaks of the symmetries, manifesting in Eqgs. (17.36, 17.37, 17.38), are in
the spin-charge-family theory caused by the condensate and the nonzero vacuum
expectation values (constant values) of the scalar fields carrying the space index
(7,8) (Refs. [5,3] and the references therein). The space breaks first to SO(7,1)
xSU(3) x U(1)1; and then further to SO(3,1) x SU(2); x U(T1); xSU(3) x U(1)1g,
what explains the connections between the weak and the hyper charges and the
handedness of spinors.

Let ius present some useful relations [3]

ab ab ab ab ab ab ab ab ab ab
kK)(k) =0,  (k)(=k)=n**[k], (=Kk)(k)]=n*"[-k], (=Kk)(-k)=0,
abab ab ab ab ab ab ab ab ab
(klk] = [k, (kl[—=k]=0, [—kIkl=0, [—kl[—kl=[-kI,
ab ab abab ab ab ab ab ab ab
(KKl =0, [kl (k)=(k), (k) k]=(—k), (—k)[=k]=0,
ab ab ab ab ab ab ab ab ab ab
(k) [=k] = (k), (k](—k)=0, [—kl(k)=0, [—Kkl(—=k)=(—Kk) .

(17.39)
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