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The anomaly detection in automated video surveillance is considered as one of the most critical tasks to
be solved, in which we aim to detect a variety of real-world abnormalities. This paper introduces a novel
approach for anomaly detection based on deep reinforcement learning. In recent years, deep reinforce-
ment learning has been achieving a significant success in various applications with data of a high degree of
complexity such as robotics and games, by mimicking the way humans learn from experiences. Generally,
the state-of-the-art methods classify a video as normal or abnormal without pinpointing the exact location
of the anomaly in the input video due to the unlabeled clip-level data in training videos. We focus on
adapting the prioritized Dueling deep Q-networks to the anomaly detection problem. This model learns to
evaluate the anomaly in video clips by exploiting the video-level label to obtain a better detection accuracy.
Extensive experiments on 13 cases class of real-word anomaly show that our DRL agent achieved a near
optimal performance with a high accuracy in the real world video surveillance system compared to the
state-of-the-art approaches.

Povzetek: Razvita je nova metoda globokega spodbujevalnega ucenja za prepoznavanje anomalij pri

videonadzoru.

1 Introduction

In video surveillance systems, the ability to recognize ac-
tions can be used to detect and prevent abnormal or sus-
picious events. Such intelligent systems would be greatly
helpful for providing security to people. Indeed, the
surveillance cameras also make some people feel more
safe, knowing that the culprits are being watched. Gen-
erally, these kinds of systems are powered by different
algorithms[1, 2, 3], which are action recognition, object
tracking and object classification. The conception of such
algorithms is typically addressed in computer vision re-
search which works on how to make machines gain some
human understanding of data from digital images and
videos.

In this work, we focus on designing an intelligent visual
surveillance system, which aims to detect abnormalities in
urban places. The anomaly detection task has been one of
the most talked about issues for decades, and is still a very
hot topic due to the broad real-world applications including
visual surveillance. To address the abnormality detection
problem, some researchers attempted to give a general def-
inition, which covers all existing normal/abnormal motions
in daily life. Otherwise, many workers considered the task
as an activity classification problem. All these researches
share one main purpose which is to build an intelligent ma-
chine imitating the human capability of interpreting com-

plex human behaviors in a cluttered environment. Is it pos-
sible that a machine could perform the recognition task at
the same level as humans?

In our paper, we try to answer the question above by
demonstrating that a machine can be as efficient as a hu-
man as long as it succeeds in reproducing the human’s
native learning mechanism. Indeed, we consider build-
ing an agent able to learn from the environment through
a sequence of trial/error. The video analytics framework
takes a video clip as input, then the pre-trained agent will
provide two principal elements separately: the first is an
estimation of the existence of an abnormal content in the
video. The second, indicates the anomaly score for each
segment in the video. The system architecture is inspired
by a trending approach called deep reinforcement learning,
which is a branch of machine learning based on the con-
cept that an agent learns from interacting with an environ-
ment. The agent training was done through a new large-
scale dataset of 1900 videos, 128 hours long, untrimmed
real-world surveillance footage, with 13 cases of realistic
abnormalities.

The organization of this paper is given as follows: After
the introduction in this section, we will present the state-
of-the-art anomaly detection approach in section 2. Subse-
quently, we introduce how to implement the system using
the Dueling DQN as well as the anomaly localization in
section 3. Section 4 will present the results and conclu-
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System Techniques Scene Localization Dataset(s) Accuracy
. Outdoor .
Schuldt et al [4] Patterns Represtation Indoor Disable Action database 1) 54 g,
SVM classification (available on request)
Uncrowded
Modeling trajectories Outdoor . Action database
Huetal [6] Cluster-based crowded traffic Disable (available on request) 80%
Modeling Outdoor Lawn
Qiao et al [7] Optical flow Disable indoor 98.33%
Indoor
Deep autoencorder plaza
Khaleghi et al [8] deep learning O}E}jioo(;r Enable UCSD dataset 88.1%
Spatiotemporal architecture Outdoor
Shean Chong et al [9] Convolutionnel network Enable UCSD dataset 89.9%
Crowded
Autoencoder
CUHK Avenue 70,2%
Learnine pattern model Outdoor UCSD Ped1 81.0%
Hasan et al [10] Augt (i neoder Indoor Enable UCSD Ped2 90.0%
Crowded Subway Entrance 94.3%
Subway Exit 80.7%
Sultanietal [11] | Multiple instance learning Outdoor Enable UCF Dataset 75.41%
deep learning Crowded
. . . GeoLife GPS 35%
Ohetal [12] Reinforcement learning Disable TST 93%

Table 1: The comparison of properties between state-of-the-art approaches.

sions are finally made in Section 5.

2 Related work

The initial studies on anomaly detection have been reported
in [4, 5, 6, 7], where the systems model the normal motion
of individuals as trajectory, the anomaly is detected as a
deviation from that normal trajectory. More recently, the
following works used deep learning, which achieves com-
petitive performances in video data. In this paper [8] a deep
learning-based technique is used on both features extrac-
tion phase and rare events detection phase. The authors in
[9] employ a spatiotemporal autoencoder to design a frame-
work for events detection, which is composed of both spa-
tial feature representation and the learning temporal evolu-
tion of the spatial features. Hasan et al [10] also used deep
learning with autoencoders to present a fully connected au-
toencoder to learn the model of anomaly detection. To
learn anomalous events, Waqas et al [11] constructed a
new framework based on a deep multiple instance learn-
ing which leverages weakly labeled training videos. The
authors in [12] applied the inverse reinforcement learning
(IRL) for sequential anomaly detection, the system cap-
tures the sequence of actions of a target agent as input data,
to return observation and evaluate whether it follows a nor-
mal pattern or not. The proposed approach works with a
reward function which is inferred via IRL.

Table 1 compares the properties between previous sys-
tems. ’Scene’ indicates where the anomaly occurs and
the number of individuals on-site(crowded, uncrowded);

’Localization’ specifies the property to locate where the
anomaly is occurring. The ’scene’ column of [12] is in-
dicate as (-), because the used dataset is represented by a
sequence of time-stamped points, each of which contains
the information of latitude, longitude and altitude.

3 System modelisation

In this paper, we formulate the anomaly detection as a
sequential decision-making process, then we propose the
concept of a deep anomaly detection network to estimate
the probability of covering an abnormality for each video
segment. We assume that for a given video only a small
number of segments contain the anomaly. Hence, we em-
ploy the reinforcement learning approach to train our de-
tection network, which encourages high scores anomalous
video segments as compared to normal segments. The lat-
ter is the equivalent of going through the process of finding
the N segments with the highest abnormality scores from
an input video.

Figure 2: A sample of a distribution of anomaly segments
in an abnormal video(red).

Deep reinforcement learning offers two different struc-
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Figure 1: The system selection process.

tures where a machine can teach itself based on the results
of its actions. One is the Deep Q-network DQN structure
which only relies on the evaluation of actions to make de-
cisions, while the other is the Deep Dueling Q-network
DDQN that unlike the first, it takes advantage of both ac-
tion value and environment information.

We adopted the dueling structure that was introduced by
Wang et al [13], which explicitly sets apart the representa-
tion of state value and the state-dependent actions advan-
tage via two separate streams.

Q(s,a) = V(s) + A(s, a) (1)

A(s, a) denotes the advantage stream that outputs a vec-
tor having dimensionality equal to the number of actions,
representing the value of selecting an action a; at state s;.
V' (s) denotes the value stream which outputs a scalar to
represent the value of state s; . The Value of a state is inde-
pendent of actions. Both streams are combined at the end
to produce the Q-function estimate through the combining
module that can simply aggregate the value and the advan-
tage streams as in [14]. The final output is a set of () values
Q(s, a), one for each action.

As known, The markov decision process MDP is the
underlying basis of any Reinforcement Learning model.
Thus, to train the reinforcement learning agent for detect-
ing abnormal events or behaviors on a video, it’s very cru-
cial to structure the environment of the processed video
to the agent in some way to satisfy the Markov property,
which is defined by a tuple (S, A, P, R, ) such as states S,
actions A, etc.

State: we consider that an input video V' contains N
segment x; where V' = vazl x;. The state of the environ-
ment is a set of video segments S = [z}, 2¥ , 2Y ..., z}].
Where the initial state Sy is composed of N = 32 seg-
ments, and for the next states, the initial number of seg-
ments decreases until it reaches the minimum number al-
lowed NV = 5, which is defined as the terminal state.

Action: An action a; € A is every action executed by
the RL agent to achieve its final objective, which is find-
ing the set of segments x; that are covering the anomaly to

trigger an alarm.

Reward: In the literature, we find reward/penalization
functions that are quite simple, as used in games [15], oth-
ers much less simple like the one defined in [16]. Gener-
ally, in more complex environments, the reward function
must be designed in such a way to suit the agent’s environ-
ment to reflect what the agent has actually learned from the
last episodes.

We can describe our environment as real, complex
and unpredictable. In this context we based the reward-
ing/penalizing scheme on two axes:

— Actions A related to segments X from normal
videos V,,: The reward value r(V},, a;) reached the
maximum when Q(s;,a;) = 0. The agent is penal-
ized when Q(s¢,a;) = 1, this means that the action
is judged corresponding to the database annotations
only.

— Actions A related to segments X from abnormal
videos V,,: The reward value r(V,y, a;) reached the
maximum when Q(st,a;) is similar to Expert FE.
evaluation Q(s¢,a;) = F.(s¢,a;), and the minimum
when [Q(s¢, ai) — Ec(se,a:)| = 1.

3.1 Selection process

Two different schemes are assumed to isolate the accu-
rate anomaly representative segments. One is to directly
score each segment and then consider the most representa-
tive one that is judged by the highest anomaly value from
each video. The other is to remove the worst segment that
is judged by the lowest anomaly value gradually, and the
remaining segments are the most representative ones. still,
due to the shortage of data (annotated videos) for the learn-
ing process, its preferable to maximize the iterations within
one video, to increase the learning results even with using
less resources. Additionally, it is not easy to select the right
segments from the first run. It is obvious that finding the
worst segment in a video is less complex and more reward-
ing than directly finding the segments of interest. Thus, we
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adopt the second plan, where an agent performs an action
a; by removing a segment x; at state s;. Therefore the ac-
tion space is limited, and not the same at each step .

The state s; is represented by the remaining segments
after ¢ moves, the action a; is represented by excluding a
segment x; at move t. Excluding a segment may lead to two
states: s;11 and termination, where termination means that
we already found a set of segments that contain an anomaly.

The estimation feedback from environment 7; for
(s¢,a;) is not only provided by video level annotations,
but also by video segment level annotations provided by
a nominated expert E, in anomaly recognition. The expert
teaches our network as its recognition performance indi-
cates the qualities of input segments z;. To force the RL
agent to learn the environment dynamics by itself. The en-
vironment does not provide any other feedback to the agent
apart from the state and the reward.

3.2 Deep dueling-based anomaly detection

The system is mainly based on the dueling structure, which
relies on two different sub-networks. They share the same
features extractor layer [17]. The inputs is a video that is
subsequently fragmented to 32 segments z;, and consid-
ered as the initial state sq at ¢g.

V=S8 ={x; | 1<i<32} 2)

To transform the raw video segment data into an under-
standable format to the artificial agent, for each video seg-
ment x;, we extract the visual features using the C3D Fea-
ture Extractor [17], then we obtain the corresponding final
state format as follows:

V=8 ={f"]1<i<32} 3)

Technically, each state s; is a set of visual features repre-
sentation ff ‘, which encapsulates all the data about the 3D
convolutional features of the video segments X; " %4¢°.

To estimate the anomaly value of states s;/video, all the
extracted segment features f;"* are combined together, only
to be used by the advantage stream as an input, which gives
a single output value V'(s;), the latter is given by equation
4. The stream’s output indicates the probability of a video
containing an anomaly.

Vs, 0,8) = V{ S

The action-dependent advantage function A(s,a) com-
putes the value of the advantage of selecting a particular
action(or segment) over the base value of being in the cur-
rent state (or video).

We estimate the advantage stream by using the C3D
features of the IV remaining segments separately as input
where N = 32 at step to/state sy presented by the follow-
ing formula:

1<i<NL6,8) 4

A(St7at,9,a) = A({ff7

L<i< N} f70,0) (5)
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After the state value V(s;) and the video segments’
value A(s;,a;) are calculated, the output values of these
two streams will be combined by an aggregation layer to
evaluate each video segment x;, in accordance with the fol-
lowing equation:

Q(s1,0:,0,0,8) = V(s,0, 8) + A(se, a1, 0, ) — ‘%{ > A(se, a0, a)

At+1
(6)
Q(st, a;) corresponds to the conditional probability of
executing action a;, which represents the deletion of a seg-
ment x; from a state s,y at step ¢, the criteria of deletion
is defined as a minimum @) value among values.

notargmin(s, a)
a; | s¢ = a
il st argmin Q (s, a)
a

x; is a part of s;41

x; is not a part of $;41

@)

The features f; of the selected segments z; will in turn

be extracted at state s, to return the next state s,y as fol-
lowing:

N
Zi:l fzz - lfb

Terminal

if b = argmin Q(s¢, a)
St41 = a
ifN=5
®)

Then, the system judges the agent’s decision by reward
r¢ provided by two different functions. For the videos an-
notated as normal, and abnormal defined by equations 9
and 10 respectively. The reward functions are as follows:

+1 IF Q(s¢,a;) =0

rY (s, ai, s =
n (86, @ir St+1) ~Q(s¢,a) ELSE

®

IF Q(s¢, ai) = Ec(st,a;)
IFQE.<Th,VQ,E.>T,
IFQ|E. < TV Q|E. > T,
10)
T}, is a predefined value 2 < T}, < b representing the
threshold that is used to signal an anomaly. The goal is
reached once the anomaly is located in abnormal videos, or
all segments of a normal video are well-judged Q) = 0.

+1
rap(50, @i, se41) = 1= (1, 0i) — Ee(s1, 05))]
=1 = ((st,a:) — Ec(s1,a:))|

3.3 Prioritized experience replay

It is an improvement [18] to the Experience Replay mecha-
nism used in the DQN algorithm that outperformed humans
in Atari games [15]. The basic Experience Replay samples
the batch uniformly (selecting the experiences randomly
for training) these relevant experiences that occur rarely
have practically no chance of being selected. As the name
suggests, in Prioritized Experience Replay, a buffer is cre-
ated to store the transition tuples by changing the sampling
distribution based on a criterion to define the priority of
each tuple of experience. The replay buffer is a cache D of
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Figure 3: Deep dueling system for training a video surveillance agent.
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finite size to feed the neural network. Each (s;, as, r¢, St+1)
transition relative to the tempral-difference (TD) error. The
highest priority is given to samples that produced a larger
TD error, plus some constant to avoid zero probability for
an experience being chosen.

4 Experimental results

Unlike the dataset used in [12], which is based on GPS
trajectory, we choose to train our system on a dataset in-
cluding multiple anomaly classes that are similar to real-
world anomalies, in order to get as close as possible to
the context of surveillance videos. So, we perform ex-
periments on a large-scale dataset named UCF-Anomaly-
Detection-Dataset[11] to evaluate the performance of our
DRL anomaly event detector agent. The dataset is com-
posed of long untrimmed surveillance videos which cover
13 real-world anomalies, including Abuse, Arrest, Arson,
Assault, Accident, Burglary, Explosion, Fighting, Robbery,
Shooting, Stealing, Shoplifting, and Vandalism. The UCF-
Anomaly-Detection-Dataset collected a 950 unedited real-
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Action n
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Aslas)

Advantage Network
Fully Connected Network
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Figure 5: The advantage stream.

world surveillance videos with clear anomalies as well as a
950 normal videos. The UCF dataset provides only video-
level annotations, however, to train the system, we need
segment-video level labels. For that purpose, we used an
external expert system for video segment evaluation. In re-
mainder of this section, we will describe the methods and
the setup used for configuring and evaluating the learning
video surveillance agent, and expose the details of the ex-
periment results. Additionally, we compared our approach
with state-of-the-art video anomaly detection.

4.1 Hyper-parameters

In our experiments, the preprocessing of the video data is
made through the extraction of the visual features from the
fully connected (FC) layer FC6 of the C3D network pro-
vided by authors of [17]. Before computing features, we re-
size each video frame to 240x320 pixels and fix the frame
rate to 30 fps. We compute C3D features for every 16-
frame video clip followed by 12 normalization. The agent’s
network is implemented with a fully connected Feedfor-
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ward neural network setup by the network configuration
described in Table 2. The network includes 3 layers. The
ReLU function [19] is used for the two first layers, the out-
put layer takes the sigmoid function for activation to build
the output.

Layer N 15¢ ond Output
layer layer layer
Type Dense Dense Dense
Unit size 512 256 64
Activation ReLU ReLU Sigmoid
Weight decay decay decay
Regularizer | [2(0.001) | [2(0.001) | 72(0.001)

Table 2: The network configuration.

After splitting every video into 32 non-overlapping seg-
ments, the agent starts learning by playing one episode per
video. During an episode, the agent is allowed to play a
number of steps to find the segments that cover the anomaly
to be reported. The number value of steps depends on the
annotation of the processed video, if it is annotated as nor-
mal, the agent has 32 steps ¢ to remove all segments with
a low abnormality score, otherwise, the segments are re-
moved as there is no anomaly. In the case of an episode of
a video annotated as abnormal, the number 5 has been set
as a minimum of segments per state s, so the agent has 27
chances to remove the segments with the weakest anomaly
score, in other words, it keeps the segment with high pre-
dicted anomaly score. We built our agent on 1600 episodes.
Training was performed on a 4GB NVIDIA GeForce RTX
2070 SUPER GPU. The methods are implemented using
Python with the help of Keras. The training process works
under Adagrad optimizer algorithm [20] with MSE loss
function and a learning rate with a value of 0.01, it’s re-
maining parameters are set as default.

4.2 Results and analysis

Firstly, we study the sample results shown in Figures 6 and
7. Figure 6 represent a successful abnormality detection on
videos containing anomalous events. The localization of
anomalies is highlighted by the red frames, corresponding
to the highest predicted anomaly score, and green frames
highlighted segments corresponding to anomaly score ap-
proaching zero. The figure 7 represents a successful abnor-
mality detection in videos with normal events, all frames in
the video are shown in green. Meaning that all segments in
the video have a low anomaly score.

The false alarms are considered as the weak point of an
artificial video surveillance system. Based on the observa-
tions, we have made several attempts to reduce the false
anomaly detection in the system. During the first evalu-
ation, we noticed a large number of false negative cases,
then we deduced that this was due to the default value of
the number of minimum final segments (equal to 5). So,
we rebuilt our model based on a new criterion, which is the

S. Aberkane et al.

final minimum number of segments will be decide by the
expert .. In others words, for a given video that contains
an anomaly, the stop criterion of the episode is the number
of segments whose anomaly value judged by the expert is
higher than a given threshold. Across many evaluations,
the threshold value with the best results are 3.2.

We also observed a high score of false alarms in case of
sudden people assembly as it happened with our principal
chosen expert F., to reduce this phenomenon, we defined
this case as a very important experience through prioritized
experience replay mechanism. We managed to reduce the
error score by up to 60.1%. However, the system failed in
many cases of very crowded scenes.

The goal was to completely automate the video surveil-
lance system. However, there were some false alarms, so
we decided to set criteria to trigger the alarm (such as call-
ing the police, or locking all the doors, etc). Therefore, the
predicted anomaly score should be greater than a threshold
to trigger the alarm automatically. Otherwise, we propose
to send the video segment to a human assistant to take the
final decision.

4.3 Comparison with SOTA methods

Table 3 summarizes the comparison of the proposed ap-
proach with the existing state-of-the-art methods using two
different datasets. For the case of UCSD-dataset, our ap-
proach demonstrates inferior performance compared to the
methods including Qiao et al [7], Khaleghi et al[8], Shean
Chong et al[9], Hasan et al[10]. On the other side,

UCSD UCF
Approach | References Dataset | Dataset
Machine [21] 63.8% | 543%
Learning
[7] 98.33% -
[8] 88.1% -
& [10] 90.0% | 65.5%
[11] - 75.41%
Proposed
# 87.44% | 83.12%
system

Table 3: AUC comparison of the proposed system with
SOTA baseline models on both UCSD dataset and UCF-
Anomaly-Detection-Dataset using machine learning and
deep learning methods.

the proposed system produces superior performance
compared to the machine learning-based methods as Lu et
al[21].

As far as we know, deep learning is a dominant source
nowadays due to achieving high performance in many
fields. the table shows that deep learning -based methods
achieved better results than our approach. The obtained
performance is due to the volume of data which is consid-
ered insufficient as it includes only 50 video samples for
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Figure 7: Example of anomaly detection in Normal Videos.

training, we assume that it surely affects the agent’s learn-
ing process.

For UCF-Anomaly-Detection-Dataset that is consider-
ably larger than the previous one, our system outperforms
the deep learning and machine learning techniques. We
conclude that the proposed system requires a big amount
of training data for optimal performance.

[11] provides a framework to detect suspicious events
in video surveillance by combining the two techniques of
multiple instance learning with deep learning, resulting in
an anomaly scores for each video.

Expert Basic Proposed model
system F. results results
Deep MIL[11] 75.41 % 83.12 %
Dictionary[21] 54.3 % 65.2 %
Deep
auto-encoder[10] 65.5 % 71.09 %

Table 4: AUC comparison of multiples methods used as
Expert system.

Our agent learned faster since in [11], the system started
to predict the right anomalous score after 3000 iterations,
but in our system, it was just after 1450 iterations. it is due

to the fact that we have strengthened the learning phase
with segment-level labels and the increasing of the explo-
ration time. We were also able to surpass the compared
method [11] in the reduction of false alarms as it gener-
ates a score of 1.9 for normal videos versus a score of
1.02 generated by our system. Additionally, by compar-
ing our anomaly detection approach to two anomaly de-
tection models: dictionary based approach [21] and deep
auto-encoder based approach [10], the settings used for the
comparison of both models are exactly the same ones set
by [11].

Table 4 shows the comparison results for [11, 21,
10] frameworks, while simultaneously using the said ap-
proaches as the anomaly detection expert E., as well as a
provider of the video-segments level annotations.

5 Conclusion

In this paper, an automatic video surveillance system in-
cluding an anomaly detection based on deep reinforcement
learning technique is proposed. In order to accelerate the
agent’s learning process and achieve a higher accuracy,
this approach is relying not only on the annotations of the
videos-level, but also on a video segment-level score pro-
vided by an expert system.
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The system is trained on a variety of real-world anoma-
lies to make it as efficient as possible in real life situations.
The described method has achieved a very competitive per-
formance that has surpassed some expert performances.
Based on those results, we concluded that segment level an-
notations would greatly increase the system’s performance
if the annotations were done by a humans.

We employed many techniques of reinforcement learn-
ing such as prioritized replay and dueling architecture,
though, there are still more recent improvements such as
Rainbow model or NROWAN-DQN for network noise re-
duction.
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