

The study of the Roper resonance in double-polarized pion electroproduction

S. Šircaa,b

Investigations of the structure of the Roper resonance by using coincident electron scattering have been presented at several previous Mini-Workshops, and the most recent result on double-polarized pion electroproduction in the energy region of the Roper has recently been published [1]. This extended abstract is therefore just a reminder of the basic features of this experiment and just lists the highlights of that paper.

Our experimental study of the $p(\boldsymbol{e}, \boldsymbol{e'p})\pi^0$ process was performed at the three spectrometer facility of the A1 Collaboration at the Mainz Microtron (MAMI). The kinematic ranges covered by our experiment were $W \approx (1440 \pm 40)$ MeV for the invariant mass, $\theta_p^* \approx (90 \pm 15)^\circ$ and $\varphi_p^* \approx (0 \pm 30)^\circ$ for the CM scattering angles and $Q^2 \approx (0.1 \pm 0.02) (\text{GeV/c})^2$ for the square of the four-momentum transfer.

We have extracted the two helicity-dependent recoil polarization components, P_x' and P_z' , as well as the helicity-independent component P_y , and compared them to the values calculated by the state-of-the-art models MAID [2], DMT [3] and the partial-wave analysis SAID [4]. With the possible exception of P_y at high W which is reproduced by neither of the models, MAID is in very good agreement with the data, while DMT underestimates all three polarization components and even misses the sign of P_x' . The SAID analysis agrees less well with the P_x' data, while it exhibits an opposite trend in P_y and is completely at odds regarding P_z' . This might be a consequence of very different databases used in the analysis and calls for further investigations within these groups.

We were also able to determine the scalar helicity amplitude $S_{1/2}$ in a model-dependent manner. In contrast to its transverse counterpart, $A_{1/2}$, this amplitude is accessible only by electroproduction ($Q^2 \neq 0$) and becomes increasingly difficult to extract at small Q^2 . This is a highly relevant kinematic region where many proposed explanations of the structure of the Roper resonance and mechanisms of its excitation give completely different predictions. This is also a region in which large pion-cloud effects are anticipated. In the most relevant region below $Q^2 \approx 0.5 \, (\text{GeV/c})^2$ where quark-core dominance is expected to give way to

 $^{^{\}rm a}$ Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

^b Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

manifestations of the pion cloud — and where existing data cease — the predictions deviate dramatically.

Given that the agreement of our new recoil polarization data with the MAID model is quite satisfactory and that the transverse helicity amplitude $A_{1/2}$ is relatively much better known, we have performed a Monte Carlo simulation across the experimental acceptance to vary the relative strength of $S_{1/2}$ with respect to the best MAID value for $A_{1/2}$ and made a χ^2 -like analysis with respect to our experimentally extracted P_x' , P_y and P_z' , of which P_y was the most convenient for the fit. Fixing $A_{1/2}$ to its MAID value and taking $S_{1/2}^{\rm MAID}$ as the nominal best model value, we have been able to express $S_{1/2}$ from our fit as the fraction of $S_{1/2}^{\rm MAID}$, yielding

$$S_{1/2} = \left(0.80^{+0.15}_{-0.20}\right) S_{1/2}^{MAID} = \left(14.1^{+2.6}_{-3.5}\right) \cdot 10^{-3} \text{Ge}^{-1/2} \; .$$

This result is shown in Fig. 3 of Loather Tiator's contribution to these Proceedings.

References

- 1. S. Štajner et al., Phys. Rev. Lett. 119 (2017) 022001.
- 2. D. Drechsel, S. S. Kamalov, and L. Tiator, Eur. Phys. J. A 34 (2007) 69.
- G. Y. Chen, S. S. Kamalov, S. N. Yang, D. Drechsel, and L. Tiator, Phys. Rev. C 76 (2007) 035206.
- 4. R. A. Arndt, W. J. Briscoe, M. W. Paris, and I. I. S. R. L. Workman, Chin. Phys. C 33 (2009) 1063.