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1 Introduction

It is well-known that the Cartesian product of two Hamiltonian graphs is
Hamiltonian, and therefore it is interesting to investigate conditions under
which the product is Hamiltonian if at least one of the factors is not Hamilto-
nian. In 1982, Batagelj and Pisanski [1] proved that the Cartesian product of a
tree T and a cycle C,, has a Hamiltonian cycle if and only if n > A(T'), where

* This work was supported in part by the Slovenian research agency, grant P1-
0285-0101.

Email addresses: irena.hrastnik@uni-mb.si (Irena Hrastnik Ladinek),
janez.zerovnik@imfm.uni-1j.si (Janez Zerovnik).

Preprint submitted to Elsevier



A(T) denotes the maximum vertex degree of 7. They introduced the cyclic
Hamiltonicity ¢H(G) of G as the smallest integer n for which the Cartesian
product C,0G is Hamiltonian. More than twenty years later, Dimakopoulos,
Palios and Paulakidas [2] proved that cH(G) < D(G) < cH(G) + 1, as con-
jectured already in [1]. (Here D(G) denotes the minimum of A(7T") over all
spanning trees T of G.) These results can be extended in a certain way to
Cartesian graph bundles, see [7] and [6].

It is natural to ask whether similar theory may be developed for other graph
products. In the case of direct product, the question of hamiltonicity seems to
be much more complicated, because even the direct product of two cycles is
not necessarily Hamiltonian ([5] gives a characterization which direct products
of Hamiltonian graphs are Hamiltonian). For example, the direct product of
two even cycles is not connected so it can not be Hamiltonian. Furthermore,
the product of a tree (on at least 3 vertices) with any graph is not Hamiltonian,
However, the direct graph bundle with even cycles as base and as fiber can be
connected. When is it Hamiltonian?

In this paper, we study the connectivity and hamiltonicity of direct graph
bundles. We give a complete list of necessary and sufficient conditions for
connectedness of graph bundles where the fibers are cycles (Theorem 4.4). In
special case when also the base graph is a cycle, a complete list of connected
bundles can be written. More precisely, we prove:

Theorem 1.1 The direct graph bundle Cy x* Cy, with fiber Cy, and base C,
s,t > 3, 1s connected:

(1) if t is odd, for any automorphism o € Aut(Cy).

(2) if t is even, and s is odd if and only if « is identity, even cyclic (-shift
or reflection with two fixed points ps.

(3) ift is even, and s is even, if and only if o is odd cyclic £-shift, or reflection
without fixed points pg.

Otherwise, Cy x* Cy is not connected.

Then we study hamiltonicity of direct graph bundles where both fibers and
bases are cycles. We prove that all connected direct bundles of cycles over
cycles are Hamiltonian:

Theorem 1.2 Let X = Cy x* Cy be a direct graph bundle with fibre Cy and
base Cy. X is Hamiltonian iof and only iof X is connected.

The rest of the paper is organized as follows. In the next section we introduce
terminology and notation, and recall some basic definitions including the def-
inition of graph bundles. In Section 3 we consider a simple case, bundles over
Py, for a later reference. In Section 4 we study the connectivity of direct bun-



dles: first a complete characterization of bundles of cycles over cycles is given,
and then a necessary and sufficient condition for bundles over arbitrary base is
proved. Hamiltonicity of direct graph bundles is discussed in Section 5. Finally,
constructions of Hamiltonian cycles of direct bundles of cycles over cycles are
given, first constructions for shifts (Section 6) and then for reflections (Section
7).

2 Terminology and notation

A finite, simple and undirected graph G = (V(G), E(G)) is given by a set of
vertices V(G) and a set of edges E(G). As usual, the edges {i,j} € F(G) are
shortly denoted by 7j. Although here we are interested in undirected graphs,
the order of the vertices will sometimes be important, for example when we
will assign automorphisms to edges of the base graph. Is such case we assign

two opposite arcs {(i,7), (7,7)} to edge {i,7}.

Two graphs G and H are called isomorphic, in symbols G ~ H, if there exists
a bijection ¢ from V(G) onto V(H) that preserves adjacency and nonadja-
cency. In other words, a mapping ¢ : V(G) — v(H) is an isomorphism when:
o(i)p(j) € E(H) if and only if ij € E(G). An isomorphism of a graph G
onto itself is called an automorphism. The identity automorphism on G will
be denoted by idg or shortly id.

The cycle C,, on n vertices is defined by V(C,,) = {0,1,...,n — 1} and ij €
E(C,)ifi = jt1modn. P, is the pathon n > 1 distinct vertices 0, 1,2, ..., n—
1 with edges ij € E(P,) if j =i+ 1,0 <i <n — 1. (Note that a subgraph
isomorphic to the path graph is also called path.)

An arbitrary connected graph G is said to be Hamiltonian if it contains a
spanning cycle called a Hamiltonian cycle.

Let G and H be connected graphs. The direct product of graphs G and H
is the graph G x H with vertex set V(G x H) = V(G) x V(H) and whose
edges are all pairs (g1, h1)(g2, ha) with gi1go € E(G) and hihy € E(H). Other
names for the direct product are [4]: Kronecker product, categorical product,
tensor product, cardinal product, relational product, conjunction, weak direct
product or just product and even Cartesian product. The direct product of
graphs is commutative and associative in a natural way. For more facts on the
direct product of graphs and other graph products we refer to [4].

Let B and G be graphs and Aut(G) be the set of automorphisms of G. To any
ordered pair of adjacent vertices u,v € V(B) we will assign an automorphism
of G. Formally, let o : V(B) x V(B) — Aut(G). For brevity, we will write



o(u,v) = 0y, and assume that o,, = o, for any u,v € V(B). Now we
construct the graph X as follows. The vertex set of X is the Cartesian product
of vertex sets, V(X) = V(B) x V(G). The edges of X are given by the rule: for
any biby € E(B) and any ¢190 € E(G), the vertices (b, g1) and (ba, op, 5,(g2))
are adjacent in X. We call X a direct graph bundle with base B and fibre G
and write X = B x7 G.

Clearly, if all o,,, are identity automorphisms, the graph bundle is isomorphic
to the direct product X = B x? G = B x (. Furthermore, it is well-known
that if the base graph is a tree, then the graph bundle is always isomorphic
to a product, i.e. X =T x? G ~T x G for any graph G, any tree T" and any
assignment of automorphisms o [8].

A graph bundle over a cycle can always be constructed in a way that all but at
most one automorphism are identities. Fixing V(C,) = {0,1,2,...,n— 1} we
denote 0,,_10 =0, 0,1, =tdfori=1,2,...,n—1,and C, x*G ~ C,, x? G.

3 Bundles over K,

Automorphisms of a cycle are of two types. A cyclic shift of the cycle by /¢
elements or briefly cyclic ¢-shift, 0 < ¢ < n, maps u; to u;1¢ (index modulo
n). As a special case we have the identity (¢ = 0). Other automorphisms of
cycles are reflections. If C), is a cycle on odd number of vertices, then all the
reflections have exactly one fixed point. If the number n is even, then we have
reflections without fixed points and reflections with two fixed points.

More formally, we define:

e cyclic (-shift, o,, defined as o4(:) = (i + ¢) modn for i =0,1,...,n — 1.

e reflection with no fixed points py, defined as py(i) = n — i — 1 for
i=0,1,...,n—1. (For n even there is no fixed points.)

e reflection with one fixed point p; defined as pi(i) = n —i — 1 for

i=0,1,...,n— 1. (For n odd, there is exactly one fixed point, ,01("7_1) =

n—1 n—1
e reflection with two fixed points p, defined as p2(0) = 0 and pa(i) =
n—ifori=1,2,...,n — 1. (For n even, there is the second fixed point

pa(3) =n—3=13)

We first show that the graph bundle P, x* C} is either isomorphic to one or
to two cycles. (See also Figures 1 and 2.)

Lemma 3.1 The direct graph bundle Py, x* C; for odd t is isomorphic to
the cycle Cy for every automorphism « of Cy. If t is even, then for every



automorphism « of Cy the graph bundle Py x“Cy has two connected components
that are isomorphic to Cy.

Proof: First note that each vertex of P, x*(C} is of degree two, hence the graph
is a union of cycles. Now consider vertex (0,7). Observe that the vertices at
distance two are (0, (i + 2) modt) and (0, (i — 2) mod ¢). (Using the fact that
(0,4) and (0, (¢ + 2) modt) have a common neighbor (1, (i + 1)) and (0,1%)
and (0, (4 —2) mod t) have a common neighbor (1, (i —1)).) Hence if ¢ is even
the vertices (0,1) for even i are on one cycle, and consequently it must be of
length ¢. Similarly, vertices (0,4) for odd ¢ are on the other cycle of the same
length. If ¢ is odd then all vertices (0,7) are on the same cycle. O

Let us emphasize that the lemma applies to the product (case o = id).
Remark 3.2 P, x Cy >~ Cy; if t is odd and Py x Cy ~ 2C; if t is even.

For a later reference let us write explicitly the vertex sets that induce the two
cycles of P, x* Cy for even t. Denote the subsets of odd and even vertices of

Cyby Wy ={1,3,..., 2(%1 —1} and Wy ={0,2,4, ..., QL%J}, respectively.
Hence V(Cy) = Wy U Wy, and recall that V(P,) = {0,1}. From the proof of

Lemma 3.1 the next two lemmas directly follow.

Lemma 3.3 Let t be even and o be identity, an even shift or reflection ps.
Then V(C”) = Zy = ({0} x Wo) U ({1} x W3) and V(CV) = Z, = ({0} x
W)U ({1} x Wy).

Lemma 3.4 Lett be even and o be an odd shift or reflection py. Then V(Ct(o)) =
{0,1} x Wy and V(C™M) = {0,1} x W;.

4 4 4
3 3 3
2 2 2
1 1 1
0 0 0
0 1 0 1 0 1
a) b) ¢)

Fig. 1. The direct graph bundles P, x* C5: a)a = id, b)a = o1 and ¢)a = p;



4 4 4
3 3 3
2 2 2
1 1 1
0 0 0
0 1 0 1 0 1
a) b) ©)

Fig. 2. The direct graph bundles P, x® Cg: a)a = id, b)a = py and ¢)a = py

4 Connectivity of direct graph bundles

The fact that the direct product G x H of connected and bipartite factors GG
and H has exactly two components was first proved by Weichsel [9]. Hence if
G and H are bipartite, then G x H can not be Hamiltonian. In particular, the
direct product C x Cy, where Cy and C, are even cycles, is not connected and
hence not Hamiltonian.

Below we give necessary and sufficient conditions for connectivity of a direct
graph bundle Ci x® C; and for graph bundles with fibre C; over arbitrary base
graph B. The case when t is odd is easier and is considered first.

Lemma 4.1 Let C; be a cycle on t vertices, where t is odd. Then B x* C} is
connected for every connected base graph B.

Proof: Follows directly from Lemma 3.1. O
As B = ( is just a special case of interest, we can write

Corollary 4.2 Let t be odd. The direct graph bundle Cs x* C} is connected
for every automorphism o € Aut(Ch).

We now consider the graph bundles with fiber C} for even t and this time we
start with the case when the base graph is a cycle. We first observe a subgraph
of Cs x* Cy in which the edges corresponding to the only (possibly) nontrivial
automorphism are missing. As the subgraph P, x C} is not connected, we have
to look at the missing edges to see whether Cs x“ C} is connected.

Let us denote V(P,) = V(C,) = Vo UV, where Vp = {0,2,4,...,2[*]} and
Vi = {1,3,...,2[55%] — 1} are the sets of even and odd vertices. Similarly,



write V(C}) = Wy U W7y, a union of odd and even vertices. Furthermore, write

ZOZ(‘/OXWO)U(%XVV&)
le(vb XWl)U(‘/l XWO).

Lemma 4.3 Ift is even, then the direct product Py x Cy has two connected
components, the first induced by the vertices of Zy and the second on the
vertices from Z.

The proof is straightforward and therefore ommited.

For s odd, the graph C x® C; will be connected exactly when there is an
edge connecting the set {s — 1} x Wy with {0} x W) (or there is an edge
connecting the set {s — 1} x W; with {0} x Wy). This is true exactly when
the automorphism « is the identity, even cyclic ¢-shift or reflection with two
fixed points (see Lemma 3.3). On the other hand, when « is odd cyclic ¢-shift
or reflection without fixed points, there is no such edge by Lemma 3.4.

By analogous reasoning as above Cs x* C; for even s will be connected exactly
when there is an edge connecting the set {s — 1} x Wy with {0} x W, or
{s — 1} x Wy with {0} x Wj. This is when the authomorphism « is odd cyclic
(-shift or reflection without fixed points (recall Lemma 3.4). On the other
hand, if the automorphism « is either identity, even cyclic /-shift or reflection
with two fixed points, there is no such edge (by Lemma 3.3), and therefore
Cy x* C} is not connected in these cases.

The observations are summarized in Theorem 1.1 and in Table 1.

Table 1
Connected direct graph bundles Cs x* C}

t odd | for any automorphism « of C}

t even | s odd List 1, L;:
a=1id
a = oy, £ is even

a = po

s even List 2, Lo:

a = oy, £ is odd

a = po

Recall that all graph bundles with connected base B and fibre C; for odd
t are connected. We conclude the section stating a necessary and sufficient



condition for connectedness of a graph bundle with connected base B and
fibre C; for even t.

Theorem 4.4 Let X be a direct graph bundle with fiber Cy. If Cy is an odd
cycle, then X is connected. If C; is an even cycle, then X 1s connected if and
only if there is a cycle C = vyvy ... v in B such that either

o |V(C)| =k isodd and o = 0y, 4y, © 0o, 10, O+ O Tpyuy O Ty 1S AN automor-
phism from Ly, or

o [V(C)| =k is even and a = 0y, © Oy, 10, O+ O Opypy © Ty 15 AN auto-
morphism from L.

Proof: (sketch) If the fibre C; is an odd cycle, X is clearly connected.

Let C; be an even cycle. (1) First assume that X is connected. Let T be
an arbitrary spanning tree of B. Then the subgraph spanned by edges of T,
T x? Cy has two connected components, V; and V5. There must be an edge
e = (b1, 91)(b2, g2) in X that connects two vertices from different components
Vi and V;. Let p(e) = biby be the projection of this edge to B. There is a
unique path P that connects b; and by in T'. The subgraph of X over the cycle
C' = PUp(e), C x7 Cy, is connected, hence the automoprhism on the edges of
C must be as claimed.

(2) Now assume there is a cycle C' in X that fulfills the conditions given in
the theorem. Then C x? C} is connected which directly implies that X is
connected. O

5 Hamiltonicity of the direct graph bundles

Obviously, a Hamiltonian graph is connected, so from now on we will only
be interested in the direct graph bundles that are connected graphs. Among
connected graphs, we can easily exclude the direct graph bundles over trees.
One can easily prove that the direct product of a tree T' % P, and an arbitrary
graph G is not Hamiltonian. The statement also holds for graph bundles:

Lemma 5.1 Let T % P, and G an arbitrary connected graph. Then the direct
graph bundle T' x° G is not Hamiltonian.

Proof: Let G be a graph on n vertices. Suppose for contradiction that the
bundle 7' x? G is Hamiltonian and let C' be a Hamiltonian cycle. Projection of
C' to the base graph T spans all vertices of T'. Let us walk along C' and count
how many times each vertex of 7' is visited and how many times edges will
be traversed. Let u be a vertex of degree one. As T' % P,, u has a neighbor,
say v, with degree more than one. The vertex u has to be visited exactly n



times, hence the edge uv is traversed n times in each direction. As v has other
neighbors, there is an edge vw that is used at least once, but then the vertex
v was visited more than n times, or, equivalently, at least one of the vertices
(v, %) has been visited twice in C. Contradiction. O

Therefore we will start with direct graph bundles of cycles over cycles. In the
next two sections several constructions of Hamiltonian cycles will be given
which will prove that all connected graph bundles X = C x* C}; with fibre C}
and base (s are Hamiltonian. Formally, the constructions that will be given
in the last two sections will imply

Theorem 1.2. Let X = C; x“ C; be a direct graph bundle with fibre C; and
base Cs. X is Hamiltonian iof and only iof X is connected.

We postpone the proof of this theorem to the last two sections.
This theorem, together with the Theorem 1.1, implies

Theorem 5.2 Let B and F be Hamiltonian graphs, with t = |V(F)| odd.
Then any direct graph bundle X with fiber F' and base graph B is Hamiltonian.

Proof: Consider the subgraph Cp x? Cp of X that has vertex set V(Cp) X
V(Cp) = V(B) x V(F) and edges defined by the rule: for any b1by € E(Cpg)
and any ¢192 € E(CFr), the vertices (b1, g1) and (ba, 04, 4,(g92)) are adjacent.
Clearly, C'p x? C'r is Hamiltonian by Theorem 1.2 and because it is a spanning
subgraph of X, X is Hamiltonian. O

For t = |V(F)| even we are only able to state sufficient conditions for Hamil-
tonicity.

Theorem 5.3 Let B and F' be Hamiltonian graphs, with t = |V (F)| even.
Then we have:

o Let s = |V(B)| be odd. A direct graph bundle X with fiber F' and base graph
B is Hamultonian if there is a Hamiltonian cycle Cg = vivs ... vs in B such
that o = 0y, 4y O Oy, 1w O O Ougyy O Tyyuy 15 an automorphism from L.

o Let s = |V(B)| be even. A direct graph bundle X with fiber F' and base
graph B is Hamiltonian if there is a Hamiltonian cycle Cg = vivy ... vs in
B such that o = 0y, 4, © Oy, |0, O+ O Opyug O Oy 48 an automorphism from

L.

Proof: (sketch) Consider the spanning subgraph Cp x? Cr of X as in the
proof of Theorem 5.2. Observe that Cg x? Cp ~ Cp x* Cr where a = 0, ,, ©
Oy 10 O O Oyyyg © Oy, and all other automorphisms are identities. If s is
even, then by Theorem 1.1 Cg x® CF is Hamiltonian exactly when « is odd
cyclic £-shift or reflection without fixed points, as claimed.



The same Theorem implies the condition for odd ¢. O

The next two sections provide proofs (constructions) that together imply cor-
rectness of Theorem 4.4. We start with shifts and first give a construction that
provides a union of cycles which cover Cs x* C; with p cycles. When p > 1
another construction will be used to combine the p cycles into one Hamil-
tonian cycle. Reflections will be considered in the last section: four different
constructions will cover all possible cases.

6 Hamiltonicity of the direct graph bundles - cyclic shifts

Construction 1. Let X be the subgraph of Cy x C; in which only edges
(4,,5)(t+1,(j +1)modt), i =0,1,...,s =2, 5 =0,1,...t — 1 and (s — 1, )
(0,(j+1+¢)modt), j=0,1,...t — 1 are present. O

Informally, one can also say that in X, reading from left to right, only edges
directed "up” are taken from X.

Obviously, vertices of X are of degree two, so X is a union of cycles (see Figure
4, a) and b)). Due to obvious symmetry, we have

Lemma 6.1 X is isomorphic to a union of p cycles of length S;f. Moreover p is
odd number and the i-th cycle meets the first fibre in vertices (0, (i+p) mod ).

If p =1 then X gives a Hamiltonian cycle of X, but this is of course not
always the case. (Examples with p = 1 and p = 3 are given on Figure 4.a)
and b).) Now we will show how one can always combine the cycles into one
by replacing only a few edges.

Construction 2. Let X be a subgraph of X that is a union of cycles. Delete
edges (1,4)(2,i+ 1) and (0,7 + 1)(1,i+ 2) and replace them with edges (0, +
1)(1,4) and (1,74 2)(2,i+ 1) for i =0,1,2,...p — 2 to obtain X. O

Assuming that the edges of X between fibres 0,1, and 2 are as given by Con-
struction 1, (i.e. all edges go "up”) we have the situation on Figure 3. The
result of Construction 2 on the graph from Figure 4.b) is given on Figure 4.c).

By Lemma 6.1, the edges (1,7)(2,7+ 1) and (0,7 + 1)(1,i+ 2) are on the i-th
and ¢+ 2-th cycle. The replacement thus combines the two cycles into a larger
one. Note that the edges involved in Construction 2 for different ¢ are disjoint
and that p is odd. Therefore

Lemma 6.2 Let X be obtained by Construction 1 and assume it has p > 1
cycles. Then X, the result of Construction 2 (replacing p — 1 pairs of edges)

10



gwes a Hamiltonian cycle.

/
7/
2
/
7
1
/
7/
0 /
0o 1 2

Fig. 3. Construction 2. We connect cycles p parallel into one (Hamiltonian) cycle.

5
4 4
3 3
2 2
1 1
0 0
o 1 2 3 o 1 2
a) b) c)

Fig. 4. a) X is a Hamiltonian cycle in Cy x°! C5, b)X in O3 x Cg has 3 cycles, c)
Hamiltonian cycle in C3 x Cjy

7 Hamiltonicity of the direct graph bundles - reflections

In this section we give constructions of Hamiltonian cycles for connected graph
bundles of cycles over cycles where the nontrivial automorphism is a reflection.
The four propositions treat cases according to parity of the lengths of cycles,
s and t.

Theorem 7.1 Let Cy, C; be two cycles, where s,t > 3 and s is odd and t even.
Let o = py be reflection with two fixed points. Then Cy x“ Cy 1s Hamiltonian.

Proof: The Hamiltonian cycle is constructed as follows. ¢ disjoint paths of
length s — 1 from (0,7) to (s —1,7), j =0,1,...,¢t — 1 are formed by taking
(for example) edges (4,7)(i + 1, (j + 1) modt)) for even i and edges (i,7)(i +
1,(j —1)modt) for odd i (and j = 0,1,...,t — 1). The edges between fibres
s —1 and 0 are chosen from C”: (0,i)(1, po(i + 1)),i € Wp, and from o

11



(0,4)(1, po(i—1)),7 € Wy, or, equivalently, from Ct(o): (0,9)(1, po(i)—1),i € Wy,
and from CV: (0,4)(1, pa(i) + 1),i € W3

(recall the partition of edges of P, x> C; from Lemma 3.3), see Figure 5.)

The claim that these edges form a Hamiltonian cycle is easy to check, for exam-
ple by observing that the edges (0,4)(1, p2(i) — 1),7 € Wy, and (0,)(1, p2(i) +
1),i € Wy give rise to a permutation of the set {0,1,...,t—1} with one cycle.
We omit the details. O

Fig. 5. The direct graph bundle Cs x?2 C (left), and the cycles C§* C{V.

Theorem 7.2 Let Cy, Cy be two cycles, where s,t > 3 and both s and t are
even. Let o = pgy be reflection without fized points. Then Cy x* Cy is Hamilto-
nian.

Proof: The subgraph induced on two consecutive fibres i and ¢ + 1 (for i =
0,1,...,s — 2) has two connected components (the first on the vertices from
Zy and the second on the vertices from Z;) that are isomorphic to C;. One
of this cycles contains the edge (i, 5)((i + 1) mods, £ — 1), the other the edge
(4,£ —1)((i + 1) mods, ).

Deleting edges (i, 5)((i +1)mods, £ —1) and (i, 5 — 1)((¢ + 1) mod s, £) thus
gives two disjoint paths that span all vertices (and all edges except the two
deleted) of fibres ¢ and i + 1.

Furthermore, the subgraph induced on fibres s — 1 and 0 has two connected
components that are isomorphic C}, by Lemma 3.1. The first is induced by
the vertices of {s—1,0} x Wy, the second by the vertices of {s—1,0} x Wy, by
Lemma 3.4. Two disjoint paths that span all vertices (and all edges but two)
of fibres s — 1 and 0 can be constructed by deleting the edges (s — 1, %)(O, %)
and (s —1,£ —1)(0,£ — 1) (because py(£ —1) = £ and py(5) =< —1).

A Hamiltonian cycle on Cy x® C; is constructed as follows. On each of the
pairs of fibres: 1 and 2, 3 and 4,...,s — 3 and s — 2 we take the two spanning

12



paths. Add the edges ((¢ + 1)mods, & — 1)((¢ + 2)mods, 5) and the edges
((i +1)mods, £)((i +2) mod s, £ — 1).

Observation that the edges connect vertices from Z, with vertices from Z
(and vertices from Z; with vertices from Z;) for ¢ = 1,3,...,s — 3 and that
the edges between fibres s — 1 and 0 connect 7, to Z; and Z; to Z, implies
that a Hamiltonian cycle is constructed (see Figure 6). O

Fig. 6. The direct graph bundle Cy x*° Cy

Theorem 7.3 Let C,, C; be two cycles, where s,t > 3 and s is even and t odd.
Let o = py be reflection with one fized point. Then Cy x* Cy is Hamiltonian.

Proof: Note that the edges between two consecutive fibres ¢ and ¢ + 1 (for
i=0,1,...,5—2) form a cycle of length 2¢, because the subgraph induced on
two consecutive fibres is isomorphic to P, x Cy. Also the subgraph induced on
fibres s — 1 and 0 is isomorphic to P, x** Cy ~ (', by Lemma 3.1.

Each of these subgraphs contains the two edges (4, EJ )((i+ 1) mod s, EJ +1)
and (i, EJ +1)((z + 1) mod s, EJ)

Deleting edge (i, EJ)((Z + 1) mod s, EJ + 1) thus gives a path that spans all
vertices (and all edges except the deleted) of fibres ¢ and 7 + 1.

Now we can construct a Hamiltonian cycle on Cs x* C} by taking the spanning
paths on pairs of fibres 1 and 2, 3 and 4, ..., s — 2 and s — 1 and 0, and
connecting them with edges (i, EJ + 1)@+ 1, EJ), i=0,2,4,...,5 — 2 (see
Figure 7.) O

Theorem 7.4 Let Cy, C, be two cycles, where s,t > 3 and both s and t are

odd. Let o = py be reflection with one fized point. Then Cy x* Cy is Hamilto-
nian.

13



1 2 3 4 5 0
Fig. 7. The direct graph bundle Cg x* C
Proof: Consider the following subset of edges (all additions in the second

coordinate are modulo ¢):

(a) (4,7)(i+1,j+1)fori=0,1,3,5,...,s—2and j=0,1,...,t—1,

(b) (i,5)(i+1,j—1)fori=2/4,6,...,s—3and j=0,1,...,t—1, and

(©) (s =L, 7)(O.pr(j — 1)) for j = 0,1, .t — 1.
Observe that edges from (a) and (b) form ¢ parallel paths that join (0, j) with
(s—1,j+2). Aspi(j—1)=t—(j—1)—1=1t—7, the edges defined in (c)
can be written simpler as (s — 1,7)(0,t — j).

Clearly, the edges meet each vertex exactly twice, so they form a union of
cycles. More precisely, we have one (short) cycle

(s—1,1) = (0,t —1) = (0,—1) = - — (s — 1,1)

and | %] longer cycles, namely for j =2,3,...,|%],[L]

t
2
(s—1,7) = (0,t—j) = -+ = (s—1,t—=742) = (0,t—(t—74+2) = (0,7 —2) —

— = (s = 1,7).
Note that by construction each of the [£] cycles, for j = 1,2,..., [], includes
a path (0,7 —2) — (1,7 — 1) — (2,7). Hence we can use the same idea as
before (Construction 2 in Section 6) to obtain a Hamiltonian cycle from the
[£] 7parallel” cycles. O

An example is given in Figure 8.
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