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Abstract

We prove several identities of the type α(n) =
∑∞
k=0 β

(
n−k(k+1)/2

2

)
. Here, the func-

tions α(n) and β(n) count partitions with certain restrictions or the number of parts in
certain partitions. Since Watson proved the identity for α(n) = Q(n), the number of parti-
tions of n into distinct parts, and β(n) = p(n), Euler’s partition function, we refer to these
identities as Watson type identities. Our work is motivated by results of G. E. Andrews
and the second author who recently discovered and proved new Euler type identities. We
provide analytic proofs and explain how one could construct bijective proofs of our results.
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1 Introduction
Any positive integer n can be written as a sum of one or more positive integers, i.e.,

n = λ1 + λ2 + · · ·+ λk. (1.1)

When the order of integers λi does not matter, this representation is known as an integer
partition [1] and can be rewritten as

n = m1 + 2m2 + · · ·+ nmn,

where each positive integer i appears mi times. If the order of integers λi is important,
then the representation (1.1) is known as a composition. For

λ1 > λ2 > · · · > λk,
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we have a descending composition. In the literature, partitions are often defined as de-
scending compositions and this is also the convention used in this paper. We refer to
λ1, λ2, . . . , λk as the parts of λ and use the notation λ ` n to denote a partition of n,
i.e., a partition whose parts add up to n. We denote by `(λ) the number of parts of λ, i.e.,

`(λ) = k or `(λ) =

n∑
j=1

mj .

As usual, for a positive integer n, we denote by p(n) the number of partitions of n and we
set p(0) = 1.

In 1936, Watson [24] computed tables of the number of partitions of n into distinct parts
Q(n) and the number of partitions of n into distinct odd parts Qodd(n) up to n = 400. He
notes that his “computations were considerably simplified by the use of certain formulae
of elliptic functions in conjunction with the existing table of values of p(n), the number
of unrestricted partitions of n, up to n = 200 which was constructed by MacMahon and
published by Hardy and Ramanujan” [13] in 1918. Watson [24, p. 551] stated two identities
whose developments lead to

Q(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

2

)
(1.2)

and

Qodd(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

4

)
, (1.3)

where p(x) = 0 when x is not a nonnegative integer.
In 2016, the second author [17, Theorem 1] considered the identity (1.2) and obtained

a method to compute the values of the partition function p(n) that requires only the values
of p(k) with k 6 n/2, namely

p(n) =

bn/2c∑
k=0

∞∑
j=0

p(k)p

(
n− j(j + 1)/2

2
− k
)
. (1.4)

One year later, the identity (1.2) was used by the authors [6, Theorem 2.7] to prove the
following parity result related to sums of partition numbers and squares in arithmetic pro-
gressions. For n > 0, ∑

16k+1 square

p(n− k) ≡ 1 (mod 2)

if and only if 48n+ 1 is a square.
Recently, Fu and Tang [10] generalized Vandervelde’s bijection [23] and gave a com-

binatorial proof of the identity (1.2). A combinatorial proof of (1.3) can be found in [25]
where the author uses abacus displays which were first introduced in [14]. We remark that
[25] also refers to [16, Proposition 5.2] for a combinatorial proof of (1.2).

In this paper, motivated by these results, we investigate other identities of Watson type
(1.2). To begin, we consider a recent paper [2] in which Andrews solved a problem of Beck
and provided the following result: For all n > 1,

a1(n) = b1(n) = c1(n),

where:
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• a1(n) is the number of partitions of n in which the set of even parts has only one
element;

• b1(n) is the difference between the number of parts in all partitions of n into odd
parts and the number of parts in all partitions of n into distinct parts;

• c1(n) is the number of partitions of n in which exactly one part is repeated.

Shortly after that, inspired by Andrews’s proof of this result, the second author [19] dis-
covered and proved analytically an analogue of the identity (1.2) involving the number of
parts in partitions.

Theorem 1.1. For n > 0,

b1(n) =

∞∑
k=0

S

(
n− k(k + 1)/2

2

)
, (1.5)

where S(n) denotes the total number of parts in all partitions of n, with S(x) = 0 if x is
not a positive integer.

We remark that combinatorial proofs of a1(n) = b1(n) and c1(n) = b1(n) are given in
[4] and, as a result of a generalization, in [26]. A combinatorial proof of a generalization
of a1(n) = c1(n) was initially given in [11]. Thus, a purely combinatorial proof of Theo-
rem 1.1 follows from the combinatorial proof of either of the next two theorems which we
present in Section 3.

Theorem 1.2. Let αj(n) denote the number of partitions of n whose set of even parts
consists of the single element 2j and let Sj(n) be the number of parts equal to j in all
partitions of n. Then, for n > 0, we have

αj(n) =

∞∑
k=0

Sj

(
n− k(k + 1)/2

2

)
. (1.6)

Theorem 1.3. Let γj(n) denote the number of partitions of n in which exactly one part is
repeated and the repeated part is j. Then, for n > 0, we have

γj(n) =

∞∑
k=0

Sj

(
n− k(k + 1)/2

2

)
. (1.7)

Very recently, Andrews and the second author [3] proved that for all n > 1,

a2(n) = (−1)nb2(n) = c2(n),

where:

• a2(n) is the number of even parts in all partitions of n into distinct parts;

• b2(n) is the difference between the number of partitions of n into an odd number of
parts in which the set of even parts has only one element and the number of partitions
of n into an even number of parts in which the set of even parts has only one element;

• c2(n) is the difference between the number of partitions of n in which exactly one
part is repeated and this part is odd and the number of partitions of n in which exactly
one part is repeated and this part is even.
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Combinatorial proofs of a2(n) = c2(n) and (−1)nb2(n) = c2(n) are given by the authors
in [5]. We obtain a new analogue of the identity (1.2) which we prove both analytically and
combinatorially in Section 4.

Theorem 1.4. For n > 0,

a2(n) =

∞∑
k=0

So−e

(
n− k(k + 1)/2

2

)
, (1.8)

where So−e(n) denotes the difference between the number of odd parts and the number of
even parts in all partitions of n, with So−e(x) = 0 if x is not a positive integer.

Let S′(n) be the number of parts that appear at least once in a given partition of n,
summed over all partitions of n, i.e., S′(n) equals the number of different parts in all
partitions of n. For example, S′(5) = 12 since the number of different parts in (5), (4, 1),
(3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1) and (1, 1, 1, 1, 1) is 1 + 2 + 2 + 2 + 2 + 2 + 1 =
12. The following result in partition theory has been widely attributed to Richard Stanley,
although it is a particular case of a more general result that had been established by Nathan
Fine fifteen years earlier [12]: The number of parts equal to 1 in the partitions of n is
equal to S′(n). Recently, the second author and Schmidt [20] provided a new identity
for the number of parts equal to 1 in the partitions of n involving a well-known object in
multiplicative number theory: Euler’s totient φ(n). We have the following analogue of the
identity (1.2) which we prove both analytically and combinatorially in Section 5.

Theorem 1.5. For n > 0,

E(n) =

∞∑
k=0

S′
(
n− k(k + 1)/2

2

)
,

where E(n) counts the partitions of n with exactly one even part and S′(x) = 0 if x is not
a positive integer.

Related to Theorem 1.5, we have the following result which we prove combinatorially
in Section 6.

Theorem 1.6. For n > 0,
E(n) =

∑
λ∈O(n)

l2(λ),

where O(n) is the set of all integer partitions of n into odd parts and

l2(λ) =

n∑
k=1
mk>0

blog2(mk)c.

Let S′2(n) be the number of parts equal to 2 in all partitions of n that do not contain
1 as a part. We have the following analogue of the identity (1.2) which we prove both
analytically and combinatorially in Section 7.
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Theorem 1.7. For n > 5,

Q2(n− 4) =

∞∑
k=0

S′2

(
n− k(k + 1)/2

2

)
,

where Q2(n) is the number of partitions of n into distinct parts, none being 2 and S′2(x) =
0 if x is not a positive integer.

2 Review of a combinatorial proof of (1.2)
The combinatorial proof of (1.2) is key to the combinatorial proofs of all our statements.
In [10], Fu and Tang give a beautiful bijective proof of (1.2). In this section we reformulate
their bijection in a way that is much shorter and easier to convey.

Recall that Dyson [9] defined the rank of a partition λ by r(λ) = λ1 − `(λ). The BG-
rank of λ = (λ1, λ2, . . . , λ`(λ)), denoted by rbg(λ), is defined in [7] as the excess in the
number of odd-indexed odd parts over the number of even-indexed odd parts of λ, i.e.,

rbg(λ) =

`(λ)∑
j=1

(−1)j+1 par(λj),

where par(m) = 1 if m is odd and 0, otherwise.
Start with a partition λ with distinct parts and consider the shifted Young diagram of λ,

i.e., the Young diagram in which row i is shifted i boxes to the right, i = 1, 2, . . . , `(λ).
Remove the first `(λ) columns of the shifted diagram and denote the conjugate of the
resulting partition by ν. We have `(ν) = r(λ). Suppose rbg(λ) = j ∈ Z. Recall [8] that
the 2-core of a partition λ is the partition whose Young diagram is obtained from the Young
diagram of λ by repeatedly removing removing pairs of adjacent squares. At each step, the
resulting diagram must be a valid Young diagram. Then the 2-core of λ is the staircase
partition of size j(2j − 1).

Let a equal the height of the 2-core. It is equal to 2j − 1 if j > 0 and to −2j if j ≤ 0.
Let b = `(λ)− a. Define a partition µ via its Young diagram as follows.

(i) If b = 0, all parts of ν have even multiplicity. Then µ is the partition obtained from
ν by removing half the parts of each size.

(ii) If b 6= 0, set

d0 =

{
b
2 if b is even
a+ d b2e if b is odd

and define recursively di = νi − di−1 for i = 1, 2, . . . , r(λ). To obtain the Young
diagram of µ, begin with a rectangle of size d b2e × (a + d b2e) (i.e., d b2e rows and
a+d b2e columns). If b is odd (respectively, even), for i = 1, 2, . . . append columns of
length d2i−1 (respectively, d2(i−1)) to the right of the rectangle and rows of length d2i
(respectively, d2i−1) below the rectangle. In [10], it is shown that this is a bijection
from the set of partitions with distinct parts and BG-rank j to the set of partitions of
n−j(2j−1)

2 . Summing over all j ∈ Z gives (1.2).

Example 2.1. Let λ = (13, 9, 8, 7, 6, 4, 2) ` 49. We have λ1 = 13 and `(λ) = 7. Then
r(λ) = 13 − 7 = 6. Since the odd parts are the first, second and fourth parts, we have



282 Ars Math. Contemp. 17 (2019) 277–290

rbg(λ) = −1 and a = 2. Then, b = `(λ)− 2 = 7− 2 = 5. The shifted Young diagram of
λ is given below.

After removing the first `(λ) = 7 columns and conjugating, we obtain the partition
ν = (7, 6, 5, 1, 1, 1). Since b = 5 is odd, d0 = a+ d b2e = 5. We calculate recursively

d1 = ν1 − d0 = 7− 5 = 2,

d2 = ν2 − d1 = 6− 2 = 4,

d3 = ν3 − d2 = 5− 4 = 1,

d4 = ν4 − d3 = 1− 1 = 0,

d5 = ν5 − d4 = 1− 0 = 1,

d6 = ν6 − d5 = 1− 1 = 0.

We start with a rectangle of size d b2e × (a + d b2e) = 3 × 5 and append columns of size
d1, d3, and d5 (i.e., columns of size 2, 1, and 1) to the right of the rectangle and rows of
size d2, d4, and d6 (i.e., rows of size 4, 0, and 0) below the rectangle to obtain the Young
diagram of the partition µ = (8, 6, 5, 4) ` 49−(−1)(−2−1)

2 = 23.

3 Combinatorial proofs of Theorems 1.2 and 1.3
In this section we use the combinatorial proof of (1.2) reviewed in the previous section
to derive combinatorial proofs of Theorems 1.2 and 1.3. Then, summing over j > 1
and using the combinatorial proofs of b1(n) = a1(n) and b1(n) = c1(n), we obtain two
slightly different combinatorial proofs of Theorem 1.1. For the combinatorial proofs of
b1(n) = a1(n) and b1(n) = c1(n), which are fairly straight forward, we refer the reader to
[4] or [26]. We do not repeat the argument here.

First, we introduce some notation. For any partition λ and any positive integer j we
denote by mj the multiplicity of j in λ. We denote by p(n, j, t) the number of partitions of
n such that mj > t. Removing t parts equal to j from a partition of n with mj > t gives
a partition of n − jt. Conversely, adding t parts equal to j to a partition of n − jt gives a
partition of n with mj > t, Thus,

p(n, j, t) = p(n− jt).

As noted in the introduction, we denote by Sj(n) the number of parts equal to j in all
partitions of n. Then

S(n) =
∑
j>1

Sj(n).

Let A(n) be the set of partitions of n such that the set of even parts has exactly one
element and let C(n) be the set of partitions of n in which exactly one part is repeated.
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Proof of Theorem 1.2. Recall thatαj(n) denotes the number of partitions inA(n) in which
the even part is 2j. Let α(t)

j (n) be the number of partitions in A(n) with m2j = t.

The above argument using removing/adding t parts equal to 2j shows that α(t)
j (n) =

Q(n− 2jt). Therefore,

αj(n) =
∑
t>1

α
(t)
j (n) =

∑
t>1

Q(n− 2jt).

From (1.2), we have

Q(n− 2jt) =

∞∑
k=0

p

(
n− k(k + 1)/2

2
− jt

)
.

For any n > 0, to determine Sj(n) we count, in order, the first appearance of j in all
partitions of n, then the second appearance of j in all partitions of n, and so on. The
number of the tth appearance of j in all partitions of n equals p(n, j, t). Thus,

Sj(n) =
∑
t>1

p(n, j, t) =
∑
t>1

p(n− jt). (3.1)

Then,

αj(n) =
∑
t>1

Q(n− 2jt) =
∑
t>1

∞∑
k=0

p

(
n− k(k + 1)/2

2
− jt

)
and thus

αj(n) =

∞∑
k=0

Sj

(
n− k(k + 1)/2

2

)
.

Summing (1.6) for j > 1, we obtain

a1(n) =

∞∑
k=0

S

(
n− k(k + 1)/2

2

)
.

Since there are purely combinatorial proofs of (1.2) and a1(n) = b1(n), this gives a com-
binatorial proof of Theorem 1.1.

Proof of Theorem 1.3. Recall that γj(n) denotes the number of partitions in C(n) in which
the repeated part is j and, for t > 1 we denote by γ(t)j (n) the number of partitions in C(n)
such thatmj = t. Then, γ(t)j (n) equals the number of partitions of n− tj into distinct parts
such that j does not appear as a part. To any partition of n − (2t + 1)j into distinct parts
such that j does not appear as a part, add a part equal to j to obtain a partition of n − 2tj
into distinct parts such that j appears as a part. Therefore,

γ
(2t)
j (n) + γ

(2t+1)
j (n) = Q(n− 2tj)

and
γj(n) =

∑
t>1

Q(n− 2tj).
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Then, the proof of Theorem 1.2 gives a combinatorial argument for

γj(n) =

∞∑
k=0

Sj

(
n− k(k + 1)/2

2

)
.

Summing (1.7) over j > 1, we have

c1(n) =

∞∑
k=0

S

(
n− k(k + 1)/2

2

)
.

Using the combinatorial proof for c1(n) = b1(n) in [4], this gives a second combinatorial
proof of Theorem 1.1.

4 Proofs of Theorem 1.4
4.1 An analytic proof

We consider the following factorization for a special case of Lambert series [18]:

∞∑
n=1

qn

1 + qn
= (q; q)∞

∞∑
n=1

So−e(n)q
n.

According to [3], we have

∞∑
n=0

a2(n)q
n = (−q; q)∞

∞∑
n=1

q2n

1 + q2n

= (−q; q)∞(q2; q2)∞

∞∑
n=1

So−e(n)q
2n

=
(q2; q2)∞
(q; q2)∞

∞∑
n=1

So−e(n)q
2n.

Considering the theta identity [1, p. 23, Eq. (2.2.13)]

(q2; q2)∞
(q; q2)∞

=

∞∑
n=0

qn(n+1)/2,

the proof follows by equating the coefficients of qn in

∞∑
n=0

a2(n)q
n =

( ∞∑
n=0

qn(n+1)/2

)( ∞∑
n=1

So−e(n)q
2n

)
.

4.2 A combinatorial proof

Recall that [5] provides a combinatorial proof for a2(n) = c2(n). Using the notation of
Theorem 1.3, we have

c2(n) =
∑
j>1

(γ2j−1(n)− γ2j(n))
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and the proof of Theorem 1.3 provides a combinatorial argument for

c2(n) =
∑
j>1

∞∑
k=0

(
S2j−1

(
n− k(k + 1)/2

2

)
− S2j

(
n− k(k + 1)/2

2

))

=

∞∑
k=0

So−e

(
n− k(k + 1)/2

2

)
.

Using the combinatorial proof for c2(n) = a2(n) in [5], this gives a combinatorial proof of
Theorem 1.4.

5 Proofs of Theorem 1.5
5.1 An analytic proof

We remark that the sequence E(n) is known as sequence A038348 [21] and can be found
in the On-Line Encyclopedia of Integer Sequence [22]. The generating function function
for E(n) is given by

∞∑
n=0

E(n)qn =
q2

1− q2
· 1

(q; q2)∞
.

On the other hand, according to [20], the generating function for S′(n) is given by
∞∑
n=0

S′(n)qn =
q

1− q
· 1

(q; q)∞
.

Thus we can write
∞∑
n=0

E(n)qn =
(q2; q2)∞
(q; q2)∞

· q2

1− q2
· 1

(q2; q2)∞

=

( ∞∑
n=0

qn(n+1)/2

)( ∞∑
n=0

S′(n)q2n

)
and the proof of the theorem follows by equating the coefficients of qn.

5.2 A combinatorial proof

We first follow [11] to prove the following Euler type identity.

Proposition 5.1. Let n > 1. Then, the number of partitions with exactly one even part
equals the number of partitions in which exactly one part is repeated with multiplicity 2
or 3.

Before we prove the proposition, we introduce some notation. Recall that we denote by
O(n) the set of partitions of n into odd parts. We denote by D(n) the set of partitions of
n into distinct parts. In Section 3 we defined C(n) to be the set of partitions of n in which
exactly one part is repeated. Let T (n) be the subset of C(n) consisting of partitions of n
in which the repeated part has multiplicity 2 and let T ′(n) be the subset of C(n) consisting
of partitions of n in which the repeated part has multiplicity 3. Let c3(n) = |T (n)| and
c4(n) = |T ′(n)|. Moreover, let E(n) be the set of partitions of n with exactly one even
part.
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Proof of Proposition 5.1. Consider the following transformation

ψ : E(n)→ T (n) ∪ T ′(n).

Let µ ∈ E(n) and suppose the even part is 2km with k > 1 and m odd. Denote by µ the
partition consisting of the single part 2km and by µ̃ the partition consisting of the remaining
parts of µ. Thus µ̃ is a partition into odd parts. Let λ = (2k−1m, 2k−1m) and λ̃ be the
partition with distinct parts obtained from µ̃ after applying Glaisher’s bijection (i.e., after
merging equal parts repeatedly). Define ψ(µ) = λ ∪ λ̃, the partition obtained by listing
the parts of λ and λ̃ in non-increasing order. Then, in ψ(µ), the part 2k−1m is the only
repeated part and its multiplicity is 2 or 3. Thus, ψ(µ) ∈ T (n) ∪ T ′(n).

Conversely, if λ ∈ T (n) ∪ T ′(n) suppose the repeated part is t. Then the multiplicity
of t in λ is 2 or 3. Let λ = (t, t) and λ̃ be the partition consisting of the remaining parts of
λ (one of which could be t). Let µ = (2t), a partition consisting of a single even part, and
µ̃ be the partition obtained from λ̃ after applying the inverse of Glaisher’s bijection (i.e.,
split even parts repeatedly until all parts are odd). Then, ψ−1(λ) = µ ∪ µ̃ is a partition in
E(n).

Thus, ψ is a bijection and E(n) = c3(n) + c4(n).

Next we complete the proof of Theorem 1.5.

Combinatorial Proof of Theorem 1.5. Let dj(n) denote the number of partitions in
T (n) ∪ T ′(n) with mj > 1. Then mj = 2 or 3. We have c3(n) + c4(n) =

∑
j>1 dj(n).

From the proof of Theorem 1.3, we have

dj(n) = Q(n− 2j) =

∞∑
k=0

p

(
n− k(k + 1)/2

2
− j
)
.

Recall that p
(
n−k(k+1)/2)

2 − j
)

counts the number of first appearances of j in all partition

of n−k(k+1)/2
2 . Since E(n) = c3(n) + c4(n), summing over j > 1, gives a combinatorial

proof of the theorem when S′(n) equals the number of different parts in all partitions of n.
On the other hand, from (3.1), we have that the number of parts equal to 1 in all parti-

tions of n is S1(n) =
∑
t>1 p(n − t). This gives the combinatorial proof of the theorem

when S′(n) is viewed as the number of parts equal to 1 in all partitions of n.

6 Combinatorial proof of Theorem 1.6
Let b3(n) be the difference between the total number of parts in the partitions of n into
distinct parts and the total number of different parts in the partitions of n into odd parts.
Thus, b3(n) is the difference between the number of parts in all partitions in D(n) and the
number of different parts in all partitions in O(n) (i.e., parts counted without multiplicity).

Definition 6.1. Given a partition λ ∈ O(n), suppose the multiplicity of i in λ is mi. If i
appears in λ, we define the binary order of magnitude of the multiplicity of i in λ, denoted
bommλ(i), to be the number of digits in the binary representation of mi.

Note that, if mi > 0, then bommλ(i) = blog2(mi)c+ 1.

Example 6.2. If λ = (5, 3, 3, 3, 3, 3, 1) ` 21, we have m3(λ) = 5. Since the binary
representation of 5 is 101, we have bommλ(3) = 3.
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Let b4(n) denote the difference between the number of parts in all partitions in O(n),
each counted as many times as its bomm, and the number of parts in all partitions inD(n).
Since the number of parts in all partitions in D(n) equals the number of 1 in all binary
representations of all multiplicities in all partitions of O(n), it follows that b4(n) equals
the number of 0 in all binary representations of all multiplicities in all partitions of O(n).

Example 6.3. Let n = 7. We have D(7) = {(7), (6, 1), (5, 2), (4, 3), (4, 2, 1)} and the
number of parts in D(7) equals 10. Denote by zi(λ) the number of 0 in the binary repre-
sentation ofmi(λ). In Table 1 we list the partitions inO(n) with the relevant data (omitting
the subscript λ).

Table 1: Partitions in O(7) and their multiplicity statistics.

λ mi(λ) in binary bommλ(i) zi(λ)

(7) m7 = 1 bomm(7) = 1 z7 = 0
(5, 1, 1) m5 = 1, m1 = 10 bomm(5) = 1, bomm(1) = 2 z5 = 0, z1 = 1
(3, 3, 1) m3 = 10, m1 = 1 bomm(3) = 2, bomm(1) = 1 z3 = 1, z1 = 0

(3, 1, 1, 1, 1) m3 = 1, m1 = 100 bomm(3) = 1, bomm(1) = 3 z3 = 0, z1 = 2
(1, 1, 1, 1, 1, 1, 1) m1 = 111 bomm(1) = 3 z1 = 0

Thus b4(7) = 1 + 1 + 2 + 2 + 1 + 1 + 3 + 3− 10 = 4, which equals the sum of z in
the right column of the table above.

As shown in [4] combinatorially, we have c3(n) = b3(n) and c4(n) = b4(n). Together
with the combinatorial proof of Theorem 1.5, this gives a combinatorial argument for the
identity

b3(n) + b4(n) =

∞∑
k=0

S′
(
n− k(k + 1)/2

2

)
, ∀n > 0. (6.1)

It follows directly from the definition of b3(n) and b4(n) that b3(n) + b4(n) equals the
number of parts in all partitions in O(n), where each part i is counted with multiplicity
bommλ(i)− 1 = blog2(mi)c in each partition λ in which it appears.

Example 6.4. The total number of distinct parts in all partitions in O(7) equals 8. Then
b3(7) = 10−8 = 2 and b3(7)+b4(7) = 2+4 = 6 which equals 0+0+1+1+0+0+2+2,
the number of parts in all partitions in O(7), where each part i is counted with multiplicity
bommλ(i)− 1 in each partition λ in which it appears.

Therefore, we have a combinatorial proof of Theorem 1.6.

7 Proofs of Theorem 1.7
7.1 An analytic proof

The sequence Q2(n) is known as sequence A015744 [15] and can be found in the On-
Line Encyclopedia of Integer Sequences [22]. Since (−q; q)∞ = 1

(q;q2)∞
, the generating

function for Q2(n) can be written as

∞∑
n=0

Q2(n)q
n =

1

1 + q2
· 1

(q; q2)∞
.
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On the other hand, according to [20], the generating function for S′2(n) is given by

∞∑
n=0

S′2(n)q
n =

q2

1− q2
· 1

(q2; q)∞
.

We can write
∞∑
n=0

Q2(n− 4)qn =
(q2; q2)∞
(q; q2)∞

· q4

1 + q2
· 1

(q2; q2)∞

=
(q2; q2)∞
(q; q2)∞

· q4

1− q4
· 1

(q4; q2)∞

=

( ∞∑
n=0

qn(n+1)/2

)( ∞∑
n=0

S′2(n)q
2n

)

and the proof follows by equating the coefficients of qn.

7.2 A combinatorial proof

Let Q′2(n) denote the number of partitions of n into distinct parts containing 2 as a part.
If λ ∈ D(n) has 2 as a part, removing 2 we obtain a partition counted by Q2(n − 2).
Conversely, if µ ∈ D(n− 2) does not have 2 as a part, adding a part equal to 2 we obtain a
partition counted by Q′2(n). Thus, Q′2(n) = Q2(n− 2). Since Q(n) = Q2(n) +Q′2(n), it
follows that Q2(n) = Q(n)−Q2(n− 2). Recursively, we have

Q2(n) =
∑
j>0

(−1)jQ(n− 2j). (7.1)

Here, Q(x) = 0 if x is negative. We rewrite (7.1) as

Q2(n− 4) =
∑
t>1

Q(n− 4t)−
∑
t>1

Q(n− 2− 4t).

From the proof of Theorem 1.2, we have

Q2(n− 4) = α2(n)− α2(n− 2)

=

∞∑
k=0

S2

(
n− k(k + 1)/2

2

)
−
∞∑
k=0

S2

(
n− k(k + 1)/2

2
− 1

)
.

If λ ` m− 1, adding a part equal to 1, we obtain a partition µ of m containing 1. The
number of parts equal to 2 is the same in λ and in µ. Therefore, S2(m) − S2(m − 1) =
S′2(m). This completes the proof of the theorem.

8 Concluding remarks
We presented several Watson type identities of the same shape as identity (1.2)

Q(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

2

)
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and provided both analytic and combinatorial proofs for our results. Since the identity
above has the companion identity (1.3) given by

Qodd(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

4

)
it would be interesting to find Watson type identities of this shape. Because there is a
combinatorial proof for identity (1.3), there is hope that such new identities can be proved
combinatorially.
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