ACTA BIOLOGICA SLOVENICA LJUBLJANA 2013 Vol. 56, [t. 1: 85–90 ACTA BIOLOGICA SLOVENICA LJUBLJANA 2013 Vol. 56, [t. 1: 85–90 Secondary structures of Potato spindle tuber viroid variants detected in Slovenia Sekundarna struktura v Sloveniji najdenih genotipov viroida vretenatosti krompirjevih gomoljev Mojca Viršcek Marn*, Irena Mavric Pleško, Barbara Geric Stare Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, 1000 Ljubljana, Slovenia *correspondence: mojcavm@kis.si Abstract: A survey of Potato spindle tuber viroid was initiated in Slovenia in 2006. Until the end of 2010, 100 samples of ornamental plants were found to be infected. Analysis of 96 complete master sequences of Slovene samples revealed new genetic variants. Our sequence variants showed considerable variation in their predicted secondary structure. The variability was observed in the pathogenic, central and variable domains. In several cases even single mutations were sufficient for the change in predicted secondary structure. Keywords:Potato spindle tuber viroid, PSTVd,pospiviroid,predictedsecondary structure, sequence variants Izvlecek: Leta 2006 smo v Sloveniji uvedli posebni nadzor viroida vretenatosti krompirjevih gomoljev (Potato spindle tuber viroid). Do konca leta 2010 smo okužbo potrdili v 100 vzorcih okrasnih rastlin. Analizirali smo 96 celotnih prevladujocih nukleotidnih zaporedij in predvideli njihove sekundarne strukture. Odkrili smo nove genotipe in znatno variabilnost sekundarnih struktur in sicer v patogeni, osrednji in variabilnidomeniviroida.Vdolocenihprimerihježemutacijaenegasameganukleotida povzrocila spremembo predvidene sekundarne strukture viroida. Kljucne besede: Potato spindle tuber viroid, PSTVd, pospiviroid, sekundarna struktura, razlicice nukleotidnega zaporedja Introduction et al. 2003). The members of genus Pospiviroid show a rod-like secondary structure which is Viroids are circular, covalently closed RNA divided into 5 structural domains: terminal left, molecules with a high degree of self-complemen-pathogenic, central, variable and terminal right tationresultingincompactfolding.Approximately domain(KeeseandSymons1985).Thissecondary 30viroidsareknowntoday,manyofwhichcause structure is assumed to be the key for biological serious losses of important crops. Potato spindle activity (replication, processing, transport, and tuber viroid (PSTVd) is the type species of the pathogenesis) by being functional as such or by genus Pospiviroid and can cause losses up to providing binding signals to host factors (Tabler 64% in potato and up to 45% in tomato (Singh and Tsagris 2004, Verhoeven 2010). Acta Biologica Slovenica, 56 (1), 2013 Viroidspropagate in their plant hostsaspopulations of closely related variants. In the family Pospiviroidae one genotype usually dominates the viroid population in host plant and is called the predominant genotype or master sequence (Verhoeven and Roenhorst 2010). Materials and methods In the years 2006-2010 389 samples of ornamental plants were tested for PSTVd infection as described in details by Viršcek Marn et al. (2013). Direct sequencing (Macrogen, Korea) of RT-PCR amplification products using primer pairs of Shamloul et al. (1997) and of Di Serio (2007) was performed to obtain whole PSTVd sequences. Additionally, amplification products fromthreeselectedsampleswerepurified,cloned into pGEM-T easy vector (Promega, WI, USA) and sequenced (Macrogen, Korea). Obtained sequences were analysed using the computer software BioEdit version 7.0.5.3 (Hall 1999). Thermodynamic prediction of RNA secondary structurewasperformedusingcomputersoftware mfold 2.3 in circular mode at 25oC (http://mfold. rna.albany.edu/?q=mfold/RNA-Folding-Form2.3; Zuker 2003). Results anddiscussion PSTVdinfectionwasconfirmedin88samples of Solanum jasminoides, 5 samples of Solanum rantonnetii, 3 samples of Petunia spp., 3 samples of Solanum muricatum and one sample of Brugmansia cordata. Ninety-six whole viroid sequences were obtained. Determined PSTVd variants are presented in Table 1. Some of these variants weredetected in numerous samples and/ orvarioushosts.Ahotspotwasfoundonposition 65. Multiple peaks of similar height for G and U; U and A; or G and U and Awere observed and/or sequences of the same sample amplified with differentprimershaddifferentnucleotides( G,UorA) at position 65. The occurrence of the hotspot was confirmed by cloning tree samples showing ambiguity at this position. Apart from polymorphism at position 65, other substitutions or insertions were observed in 9 out of 33 clones (Table 1). Slovene sequences showed differences in predicted secondary structure models, calculated at 25oC (Fig. 1). The variability was observed in three out of five structural domains: pathogenic, central and variable domain. The replacement of G with U at position 65 enlarged the loop around this site (loop 10). Loop enlargement was also observed in some other sequences. Clone 1F, which has an additional G at position 100, has an enlarged loop E (loop 16). The substitution at position 83 in clone 3M changed the secondary structure from loop 11 to loop 14. Drastically changed secondary structure was observed from loop 17 to 23 due to the substitution at position 136inclone2C.Otherpolymorphismsintheclone sequences do not affect the secondary structure. Master sequences HQ454933 and HQ454936 havethesamesecondarystructureastheprevalent mastersequencedetectedinSlovenia(HQ454914 –HQ454916).AlloftheSlovenemastersequences with 360 nt have structural changes on the right sidefromtheloop17.Thesechangesaretheresults of several mutations on positions 121, 124, 126, 127 and 238. In sequence variant HQ454937 the substitutionontheposition241contributestothe changes due to the before mentioned mutations, therefore the loop 18 is larger in this 360 nt long sequence.Differencesinthepositionandthesize of loop 10 were also observed among different 360 nt long sequence. The study of secondary structures of genotypes detectedinSloveniaonornamentalplantsshowed several cases where single nucleotide mutation significantly changed the predicted secondary structure of the viroid. Apart from the single-site mutations, multiple mutation events in the same domain also resulted in the secondary structure changes.Inducedmutations,eitherofoneorseveral nucleotides, have been used to study the role of different loops for PSTVd characteristics. It was determined that disruption of nearly every loop had an impact on either replication or systemic trafficking(Qietal.2004,Zhongetal.2008).We havenottestedthefunctionalimpactofvariability in the secondary structure of PSTVd variants determined on ornamental plants in Slovenia, but these changes could have an impact on their characteristics. Marn et al.: PSTVd secondary structures Table 1: Characteristics of the Slovene PSTVd sequences. Differences that influence the predicted secondary structure are highlighted in bold. Mutations that influence the same domain of the secondary structure are shadowed. Tabela 1:Lastnosti slovenskih nukleotidnih zaporedij PSTVd. Razlike, ki vplivajo na predvideno sekundarno strukturo, so oznacene z odebeljenim tiskom. Mutacije, ki vplivajo na isto domeno sekundarne strukture, so sencene. Host Acc. No. No. of Sequence No. of Difference in comparison with HQ454914 sequences name nt on position of the relevant sequence Master sequences Solanum HQ454914 52 G-type 357 – jasminoides S. rantonnetii HQ454915 2 G-type 357 – Petunia sp. HQ454916 1 G-type 357 – S. jasminoides HQ454917 10 U-type 357 G . U on 65 S. rantonnetii HQ454918 2 U-type 357 G . U on 65 S. jasminoides HQ454919 6 K-type 357 G . K on 65 S. jasminoides HQ454920 3 W-type 357 G . W on 65 S. jasminoides HQ454921 12 D-type 357 G . D on 65 S. jasminoides HQ454933 1 B29, B140 357 A . U on 221 Petunia sp. HQ454936 1 B141 357 A . U on 221 S. jasminoides HQ454937 2 B14,B82 360 U .Aob 121, G .Aon 124, insertion of GAon 126-127, insertion of C on 238, U . C on 241 S. jasminoides HQ454934 1 B90 360 U .Aob 121, G .Aon 124, insertion of GAon 126-127, insertion of C on 238, C .Aon 311,A. U on 63, U .Aon 64 S. muricatum HQ454935 2 B313, 360 U .Aob 121, G .Aon 124, insertion B314 of GAon 126-127, insertion of C on 238 S. muricatum HQ454932 1 B315 360 U .Aob 121, G .Aon 124, insertion of GAon 126-127, insertion of C on 238, G . U on 65 Clones S. jasminoides HQ454914 7 G-type 357 – S. jasminoides HQ454917 10 U-type 357 – S. jasminoides HQ454922 7 clone A 357 G .Aon 65 S. jasminoides HQ454923 1 clone 1J 357 A . G on 30 S. jasminoides HQ454924 1 clone 1D 357 A . G on 90, U . C on 258 S. jasminoides HQ454925 1 clone 1F 358 G . A on 65, insertion of G on 100 S. jasminoides HQ454926 1 clone 1G 357 U . C on 35 S. jasminoides HQ454927 1 clone 2C 357 G . U on 65, U . C on 136, U . C on 302 S. jasminoides HQ454928 1 clone 2J 357 U . C on 331 S. jasminoides HQ454929 1 clone 3M 357 G . U on 65, U . C on 83 S. jasminoides HQ454930 1 clone 3J 357 G . U on 65, A . G on 122 S. jasminoides HQ454931 1 clone 3L 357 G . U on 65, A . G on 100 88Acta Biologica Slovenica, 56 (1), 2013 clone 1FHQ454925clone 2CHQ454927clone 3MHQ454929U-typeHQ454917- HQ454918G-typeHQ454914- HQ454916 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 E 17 18 19 20 21 22 23 24 25 26 27 28 29[ t e r m i n a l l e f t ][ pathogenicity ][ c e n t r a l ][ variable ][ terminal right ] Loops ofG-typeB14/B82HQ454937B90HQ454934B313/B314HQ454935B315HQ45493211 clone 1FHQ454925clone 2CHQ454927clone 3MHQ454929U-typeHQ454917- HQ454918G-typeHQ454914- HQ454916 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 E 17 18 19 20 21 22 23 24 25 26 27 28 29[ t e r m i n a l l e f t ][ pathogenicity ][ c e n t r a l ][ variable ][ terminal right ] Loops ofG-typeB14/B82HQ454937B90HQ454934B313/B314HQ454935B315HQ45493211 Figure 1: Thermodynamic predictions of secondary structure for PSTVd sequences detected on ornamental plants. Changed secondary structures in comparison with the most prevalent PSTVd sequence (G-type, HQ454914- HQ454916) are shown above and below G-type. The term loop is used for both loops and bulges. Slika 1: Termodinamicne napovedi sekundarnih struktur nukleotidnih zaporedij PSTVd potrjenih na okrasnih rastlinah v Sloveniji. Spremenjene sekundarne strukture v primerjavi z v Sloveniji najbolj pogosto najdenim nukleotidnim zaporedjem PSTVd (G-type, HQ454914- HQ454916) so prikazane nad in pod G-type nukleotidnim zaporedjem. Marn et al.: PSTVd secondary structures Conclusions Predicted secondary structure of PSTVd sequences detected on ornamental host plants in Slovenia showed considerable variation. The variabilitywasobservedinthepathogenic,central and variable domains. Povzetek Leta 2006 smo v Sloveniji uvedli posebni nadzor viroida vretenatosti krompirjevih go- moljev (Potato spindle tuber viroid, PSTVd). Do konca leta 2010 smo analizirali 398 vzorcev vecinomaokrasnihrastlininokužbopotrdiliv88 vzorcih Solanum jasminoides, 5 vzorcih Solanum rantonnetii, 3 vzorcih Petunia spp., 3 vzorcih Solanum muricatum in enem vzorcuBrugmansia cordata. Dolocili in analizirali smo 96 celotnih prevladujocihnukleotidnihzaporedij.Nekateraod teh nukleotidnih zaporedij smo našli v številnih References vzorcih in/ali v vzorcih iz razlicnih gostiteljskih rastlin.Namestu65smopotrdilivisokopogostnost mutacij.Zatermodinamicnonapovedsekundarne strukture RNAsmo uporabili program mfold 2.3 pri 25 oC. Odkrili smo nove genotipe in znatno variabilnost sekundarnih struktur in sicer v pa- togeni, osrednji in variabilni domeni viroida. V dolocenih primerih je že mutacija enega samega nukleotida povzrocila spremembo sekundarne strukture. Glede na objave drugih avtorjev o pomenu zank v strukturi PSTVd imajo lahko spremembesekundarnestrukturevSlovenijinajdenih nukleotidnih zaporedij PSTVd pomemben vpliv na njihove lastnosti. Acknowledgements The work was financially supported by the MinistryofAgriculture,ForestryandFoodofthe Republic of Slovenia and the Slovenian Research Agency (Grant No. P4-0133). Di Serio, F., 2007. Identification and characterization of Potato spindle tuber viroid infecting Solanum jasminoides and S. rantonnetii in Italy. Journal of Plant Pathology, 89, 297–300. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. Keese, P., Symons, R.H., 1985. Domains in viroids: evidence of intermolecular RNArearrangement and their contribution to viroid evolution. Proceedings of the National Academy of Sciences USA, 82, 4582–4586. Qi, Y., Péllisier, T., Itaya, A., Hunt, E., Wassenegger, M., Ding, B., 2004. Direct role of a viroid RNA motif in mediating directional RNAtrafficking across a specific cellular boundary. The Plant Cell, 16, 1741–1752. Shamloul, A. M., Hadidi, A., Zhu, S. F., Singh, R. P., Sagredo, B., 1997. Sensitive detection of Potato spindle tuber viroid using RT-PCR and identification of a viroid variant naturally infecting pepino plants. Canadian Journal of Plant Pathology, 19, 89–96. Singh, R. P., Ready, K. F. M., Nie, X. 2003. Biology. In Hadidi, A. (ed.): Viroids. CSIRO Publishing, Callingwood, Australia, pp. 30–48. Tabler, M., Tsagris, M. 2004. Viroids: petite RNA pathogens with distinguished talents. Trends in Plant Science, 9,339–348. Verhoeven, J.Th.J., 2010. Identification and epidemiology of pospiviroids. Thesis, Wageningen University, Wageningen, The Netherlands, 1–136. http://edepot.wur.nl/137571 Verhoeven, J.Th.J., Roenhorst, J. W., 2010. High stability of original predominant pospiviroid genotypes upon mechanical inoculation from ornamentals to potato and tomato. Archives of Virology, 155, 269–274. Viršcek Marn, M., Mavric Pleško, I., Geric Stare, B., 2013. Variability of Potato spindle tuber viroid isolates from ornamental hosts in Slovenia. Journal of Plant Pathology, 95, 411–415.. Acta Biologica Slovenica, 56 (1), 2013 Zhong, X., Archual, A.J., Amin, A.A., Ding, B., 2008. Agenome map of viroid RNAmotifs critical for replication and systemic trafficking. The Plant Cell, 20, 35–47. Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, 31, 3406–3415.