
https://doi.org/10.31449/inf.v45i5.3321 Informatica 45 (2021) 675–686 675

An Improved Pattern Mining Technique For Graph Pattern Analysis

Using a Novel Behavior of Artificial Bee Colony Algorithm

Shriya Sahu, Meenu Chawla and Nilay Khare

Manit, Bhopal, India

E-mail: s.shriya88@gmail.com, chawlam@manit.ac.in, nilay.khare@rediffmail.com

Keywords: pattern mining, swarm intelligence, machine learning

Received: September 28, 2020

Rising data complexity and volume in the network has attracted researchers towards substructure

analysis. Subgraph mining is an area that has gained remarkable attention in the last couple of years to

offer an intelligent analysis of more massive graphs and complicated data structures. It has been observed

that graph pattern mining faces issues regarding the matching ruleset and complex instruction set

execution problem. This paper introduces modern-day intelligence architecture based on Swarm

Intelligence that is cross-validated by supervised machine learning mechanisms. A new behavior

incorporated with a new inter and intra hive behavior is incorporated in Swarm based Artificial Bee

Colony. The proposed work model is evaluated over two different datasets with more than 4900 nodes in

the graph. The proposed framework is evaluated using True Detection Rate, False Detection Rate,

precision, and F-Measure, demonstrating an average improvement of 9.8%, 8.35%, 8.35% and 9.15%

against existing GraMi work that represent an enhanced performance of the proposed pattern mining

technique.

Povzetek: Uporabljene so raznovrstne metode umetne inteligence in strojnega učenja za iskanje vzorcev,

tj. podgrafov v grafu.

1 Introduction
Frequent Subgraph Mining (FSM) plays a central role in

solving complex problems for various applications such as

text retrieval, computer vision, social networks,

computational chemistry, and bioinformatics.

Additionally, FSM also caters to the graphical problems in

data mining tasks such as designing database, clustering,

and classification of graphs. The main objective of the

mining graphs is to compute the subgraphs whose

appearances exceeds a certain threshold. Such a

perspective is quite useful in understanding real-life

applications. For example, protein-protein structures and

their interactions easily modeled by labeled graphs. But it

is a challenging task for uncertain graphs. Therefore,

researchers focussed on efficient mining of frequent

patterns on such graphs (Chen et al., 2018). Recently,

there is a quite interest of the researchers to study the

relationship between the entities and attributes in a social

graph. Such a relation widely used in social media

marketing likewise 90%, 14%, and 60% users said that

customer’s trust, advertisement, and Twitter respectively

play a critical role in shopping. Nonetheless, the mining

subgraph in social graphs is more related than rules in case

of itemsets. Consequently, the researcher of

bioinformatics may determine the substructures within

protein interaction graphs and structures. Such graphs

have nodes and edges which represent proteins and their

interactions. In addition, these graphs are updated

whenever there is a need to represent the interactions of

new proteins. However, a critical task for the researcher is

to forecast the working of a newly added protein without

any experimentation. But it is possible only through

frequent mining by interacting with the new proteins

having identical interactions.

The problem of FSM is categorized into two phases,

such as determining frequent patterns in either (a)

graphical database having multiple inputs (Protein

interaction or chemical compounds) or (b) large graph

having single input (e.g., social media,) (Elseidy et al.,

2014). The main task of FSM is to calculate all the

subgraphs having support or frequency exceeds the

minimum frequency threshold. In the case of multiple

graphs, frequency is the count of pattern graphs (Ingalalli

et al., 2018). But it is quite challenging to define the

support notion in a single large graph. Thus, it is not

enough to define the pattern that exists in a graph, whether

it exists or not. Therefore, it is vital to determine all the

isomorphisms (I) of A, which are distinct in nature from

the pattern graph (G). Actually, ‘I’ is the exact match of

A in the graph, which is used to pair the nodes, and edges

with their respective labels (Cheng et al., 2014). For

instance, if we talk about the collaboration graph (G) as

depicted in Figure 1, subgraph (U1) is having four

isomorphisms. However, a typical approach to mine

frequent subgraphs is using grow and store method which

includes different phases such as (Gu et al., 2016; Yuan et

al., 2012; Li et al., 2012) (a) Computation of all the nodes

which exists at least user-defined threshold (£) and load

their appearances (b) Frequently, extend the loaded

mailto:s.shriya88@gmail.com
mailto:chawlam@manit.ac.in2

676 Informatica 45 (2021) 675–686 S. Sahu et al.

appearances to build large, frequent subgraphs and then

assess their frequency (c) new frequent subgraphs

appearances storage (d) Repeat the phase 2 until no more

these subgraphs detected (Rehman et al., 2018;

Abdelhamid et al., 2017).

A graph is the simplest form to represent the data by

modeling relationships between the various objects. The

interesting problem that comes in concern is pattern

matching when handling graphical data. This matching

sorted using the problem of subgraph isomorphism. For

instance, there are two graphs, Y and Z, the role of

subgraph isomorphism is to describe whether Z includes a

subgraph which is isomorphic to Y, and it is an NP-hard

problem. There are various algorithms proposed in the

literature to solve this complex problem using genetic

algorithm, MapReduce and Pregel (Bhuiyan & Hasan,

2015; Zhao et al., 2016; Choi et al., 2019). Moreover,

generalized subgraph problem of the isomorphism sorted

by developing some algorithms but these are limited to

uncertain graphs which increases complexity, limited

scalability and work with redundant data having

supplementary data such as attributes or edge labels.

Alternatively, researchers rely on metaheuristic

algorithms such as Genetic algorithms to address the

consequence of this problem. Most of the algorithms

provide quality solutions with less time, but these are

limited to the search capability in case of large space for

the problem of subgraph isomorphism (Choi et al., 2019).

Therefore, this paper solves this problem in frequent

pattern mining using the Cuckoo search algorithm. The

main advantage of using this algorithm is that it works

efficiently within a large space in case of an NP-hard

problem. The leveraged search capability detected the

frequent patterns in a subgraph and evaluated the problem

of subgraph isomorphism.

Preliminaries
A collaborative graph 𝐺 = (𝑆, 𝑇, 𝐾) contains various

nodes S, edges T with a labeling function K which assigns

labels to S and T. A subgraph of G consists of Y and Z

such as 𝑌 ⊆ 𝑆, 𝑇 and 𝑍 ⊆ 𝑆, 𝑇 if 𝑆𝑌𝑎𝑛𝑑 𝑆𝑍 ⊆
𝑆and 𝑇𝑌𝑎𝑛𝑑 𝑇𝑍 ⊆ 𝑇.

1.1 Subgraph Isomorphism (SI)

Definition 1: There are two graphs given such as G: Y=

(SY, TY) and Z = (SZ, TZ), the SI is an injective function

such as d: 𝑆𝑌 → 𝑆𝑍 such as (m, n) Є 𝑇𝑌 in case of

(d(m), d(n))Є 𝑇𝑅 where 𝑅 = (𝑆𝑅 , 𝑇𝑅) ⊆ 𝑍. However, d is

an induced SI in case if (𝑚, 𝑛) ∉ 𝑇𝑌 , then(d(m), d(n)) ∉

𝑇𝑅.

The basic difference between SI and induced SI is that

edge absence in Y corresponds to the presence of an edge

in Z must not present in case of induced SI. This mapping

preserves the nodes and edges labels. For instance,

subgraph Y has four isomorphism (𝑚12 𝑚26𝑚310𝑚4)

with respect to collaborative graph G, and

(𝑛12 𝑛26 𝑛320𝑛4; 𝑛410𝑛54 𝑛6 𝑎𝑛𝑑

𝑛010𝑛610 𝑛7 ; 𝑛86 𝑛910𝑛10). But, an intuitive way to

determine the frequency of a subgraph in a graph is to

count the number of isomorphism. In a given graph, the SI

problem is the computation of subgraphs 𝑍 ⊆ 𝑅 such that

𝑓: 𝑆𝑌 → 𝑆𝑍 is an isomorphism from Y to R. This is rather

a complex problem. Consequently, it is not an anti-

monotone as the graphical representation shows that

extension exceeds the subgraphs. For instance, in a given

graph, node A appears 3 times while its extension (B)

appears 4 times such that 𝐴 4 𝐵. The graph having such

anti monotonic nature is of prime importance as it

provides various methods without avoiding a situation.

There are several anti-monotone metrics developed in

literature (Talukder and Zaki, 2016; Elseidy et al., 2014).

Definition 2: There are two directed graphs such as G: Y=

(SY, TY) and Z = (SZ, TZ) where ⌈𝑆𝑌 ≤ 𝑆𝑍⌉, the problem of

SI represented by SI (Y, Z) is to determine an injective

function 𝑑: 𝑆𝑌 → 𝑆𝑍 that reduces the value of fitness

function (f). The optimal solution using the Cuckoo search

having f=0 is the SI from Y to Z.𝑠𝐺(𝑈) = min {𝑡|𝑡 =
⌊𝐹(𝑚)| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ 𝑌

The fitness function (f) is defined as edges count,

which match or may not match during the mapping. This

Figure 1: Directed Graphs with their isomorphism (a) Collaborative Graph (b) Subgraph 1 with four

extensions (c) Subgraph 2 with three isomorphisms (d) Subgraph 3 with their appendices.

An Improved Pattern Mining Technique For Graph... Informatica 45 (2021) 675–686 677

function is used to solve the real-world problems by

constructing into SI problem and then solved it using the

metaheuristic approach. For instance, subgraph U1 in

Figure 1b and the graph G given in Figure 1(a)

have 𝐹(𝑚2) = {𝑛2, 𝑛6, 𝑛7}; 𝐹(𝑚1) =
{𝑛4, 𝑛5, 𝑛0}; 𝐹(𝑚3) = {𝑛4, 𝑛5, 𝑛9}; 𝐹(𝑚4) =
{𝑛0, 𝑛9, 𝑛10}. Thus, 𝑠𝐺(𝑈1) = 4. In order to compare, the

respective minimum support function is 2

𝑛24𝑛410 𝑛5 𝑎𝑛𝑑 𝑛64𝑛510𝑛0as its isomorphism overlap

and minimum support function regarded as unity. So, the

main problem of FSM is given as follows:

Problem 1: In Figure 1, graph G is given with a minimum

threshold (£), so the frequent subgraph mining problem is

to compute all the subgraphs (U) in Graph G, such as

𝑠𝐺(𝑈) ≥ (£).
Actual appearances which exceed the (£) does not

compute in the given problem. This is quite impressive,

and it is useful for many applications, but some prefer

actual appearances such as graph indexing. Definition 1

relies on matching the labels of edges and nodes. For

instance, subgraph U2 has only a single isomorphism

constructed by nodes 𝑛2, 𝑛3, 𝑛4. However, research argues

that developed matching is restrictive in nature and

maintained by developing indirect relationships and

differences of edges graphs and subgraphs. Such matching

may also be possible for 𝑛74𝑛96 𝑛8, as seen in subgraph

U3. Rather, there is an indirect relation between A and C.

This match often recognized as a pattern. For frequent

mining patterns in this document, we use the definition

from past research (Cheng et al., 2014).

Specifically, a distance matric has been employed,

which computes the distance between two nodes, as given

in the graph. In Figure 2 for graph G, a distance function

that connects the m and n has been defined as ∆ℎ(𝑚, 𝑛).

The solid lines represent the relation using graph edges

while dotted lines depict the transition. Let us consider

that ∆ℎ(𝑛0, 𝑛3) =4, then it is easy to use ∆𝑝(𝑚, 𝑛) as the

minimum sum of inversely proportional to the edge

weights between the paths m and n. For instance,

∆𝑝(𝑛7, 𝑛8) =
1

4
+

1

6
= 0.4. Thus, a shorter distance

belongs to robust collaboration.

Definition 3: In a pattern graph, 𝑄 = (𝑆𝑄 , 𝑇𝑄 , 𝐾𝑄) of a

graph G (S,T,K) if 𝑆𝑄 ⊆ 𝑆, 𝐾𝑄(𝑚) = 𝐾(𝑚)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈

𝑆𝑄 𝑎𝑛𝑑 𝐾𝑄(𝑒𝑑𝑔𝑒𝑠) =∝ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 ∈ 𝑇𝑄 .

In Figure 2, a pattern corresponds to a subgraph

without any edge labels. However, Figure 2 (b) shows a

pattern graph of a G.

Definition 4: Let us consider a pattern graph 𝑄 =

 (𝑆𝑄 , 𝑇𝑄 , 𝐾𝑄)of a graph G =
(S, T, K), and ∆ is a distance metric with a user −
defined threshold (£). An injective function (𝜑)from

pattern Q to G is 𝑆𝑄 → 𝑆 𝑜𝑛𝑙𝑦 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝐾𝑄(𝑚) =

𝐾(𝜑(𝑚)) for all nodes 𝑚 ∈ 𝑆𝑄and ∆(𝜑(𝑛), 𝜑(𝑚)) ≤ £.

The frequency and minimum support function of a

pattern graph denoted by

𝜕𝐺(𝑄)𝑐𝑎𝑛 𝑏𝑒 𝑒𝑎𝑠𝑖𝑙𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 2.

Let us consider a threshold value £ = 0.3 then we get

𝜕𝐺(𝑄) = 2. Notify that there are only two constraints

satisfy through this pattern graph such as

∆(𝜑(𝑛), 𝜑(𝑚)) ≤ £.

In this paper, the GRAMI approach used in

conjunction with the optimization technique to address the

frequent mining problem in graphs. Additionally,

GRAMI is a novel approach that solves the frequent

mining problem by satisfying the constraints without

affecting isomorphism in the graph.

This paper introduces a new algorithmic structure for

the identification of the isomorphic patterns through the

Cuckoo search algorithm. The rest of the paper is

organized in the following manner. Section 3 represents

the related work section, whereas section 4 represents the

issue and solution as the proposed methodology of this

paper.

Figure 2: (a) Computation of distance for Graph G, as given in Figure 1. (b) Pattern graph.

678 Informatica 45 (2021) 675–686 S. Sahu et al.

2 Related work
In today's era, graph pattern mining is a frequent problem

that comes in concern due to wide applications across

various domains. In the literature, various approaches

developed to address this problem, but still, there are

enough gaps related to the isomorphism problem. For

instance, Zhao had developed the Pregel based frequent

subgraph mining approach to improve the scalability.

Pregel is a computational model used to process the vertex

graphs. A modern, distributed framework developed using

this model to overcome the mining problem. The robust

results obtained, but this approach still does not solve the

constrained subgraph patterns on massive pattern graphs

(Zhao et al., 2016). Aridhi and Nguifo had presented a

study that summarized the existing data mining and graph

processing techniques that could address the challenges

faced by big graphs. Further, they provided a detailed

classification of various graph processing designs along

with vivid large-scale patterns or subgraph mining

approaches (Aridhi and Nguifo, 2016). Moussaoui et al.

had addressed the problem faced when subgraphs

similarity could not be established. In this regard,

researchers had proposed a flexible approach based on

probabilistic graph mining to identify similar subgraphs.

In this approach, probabilistic matching was implemented

in comparison to the traditional exact similarity check.

Experimentation against a real dataset of vivid domains

had established that the proposed probabilistic model

demonstrated better performance in terms of time

processing and similar subgraph mining (Moussaoui et al.,

2018). It has been observed that the structure and shape of

the graph vary with respect to their applications. In this

context, Jena et al. had introduced the SparkFSM

approach that was proficient in dealing with isomorphism

as well as directed and undirected graphs related to Spark

or Scala technologies (Jena et al., 2018). Islam group had

proposed WFSM-MaxPWS as an effective approach for

subgraph mining based on weighted graphs. The mining

approach proved to be very efficient in subgraph pruning.

The approach was evaluated against different graph

datasets representing normal and negative exponential

weight distributions. Results had demonstrated that the

runtime has significantly improved in comparison to the

MaxW pattern mining approach (Islam et al., 2018). Iyer

et al. had presented ASAP as an approximation-based

subgraph and pattern mining technique. The authors also

constructed an Error Latency Profile to specify the

fluctuations observed for accuracy and current state in

addition to approximating the graph patterns.

Experimentation demonstrated that ASAP could

successfully handle higher degree graphs comprising of

billions of edges (Iyer et al., 2018). Researchers developed

the metaheuristic-based algorithm to solve the

isomorphism problem. The design issues have been

considered to address the problem, which helps to

decompose the consequences of a problem into the

substructure. The optimal structure obtained using the

hybrid genetic algorithm, which shows better results, but

this approach has limited scalability and works in a

concise search space (Choi et al., 2019). Preti et al.

addressed the issue of pattern mining in large graphs

representing multiple weight patterns. In the study, a

scoring function-based pruning strategy was proposed that

exemplified approximate as well as exact results to present

subgraph mining (Preti et al., 2019). Detection strategies

related to graphs were considered to be a very challenging

task by Rao and Mishra. They had implemented pattern

mining based on Edge Weight Detection (EdWePat)

approach for identifying the subgraph patterns present in

a weighted graph (Rao and Mishra, 2019). Li et al. had

addressed the complex relationships existing in big graphs

by introducing a fuzzy approach to traditional graph and

pattern mining strategies. Authors had presented a multi-

fuzzy based optimization using the Genetic Algorithm

(GA) and Particle Swarm Optimization (PSO). The

experimental evaluation demonstrated the effectiveness of

the proposed strategy over the existing approaches (Li et

al., 2019). Ray et al. had addressed the issue faced by

subgraph mining that needs to be repeated frequently with

respect to streaming larger graphs. In the process, they had

developed a sampling design that could successfully mine

out the subgraphs that represent the latest modification in

the larger graph. Authors had involved 5 large graph

datasets and a network motif mining algorithm to evaluate

the proposed design. The results demonstrated that the

proposed design could speedily identify the changing

patterns (Ray et al. 2019). Priyadarshini and Rodda had

proposed a Geometric Multi-Way Frequent Subgraph

Mining (GMFSM) method. This method took advantage

of the Frequent Subgraph Mining and filtration technique

to shortlist the subgraphs from a single large database. The

approach proved to be very effective and robust in

achieving the required results and reduced the mining time

from 1 3⁄ rd to 1 2⁄ in comparison to the existing approaches

(Priyadarshini and Rodda, 2020). Le and his group had

postulated a Weighted Graph Mining (WeGraMi)

algorithm as an effective approach for subgraph pruning.

The design first calculated the weights of the pruned

subgraphs, followed by applying search space analytics

for subgraph pruning. The subgraph mining approach,

based on the weighted threshold, had effectively

addressed the issues concerning storage space and

processing time (Le et al., 2020). Consequently, the

probabilistic approach was investigated for frequent

mining patterns on the uncertain graphs. An enumeration

evaluation algorithm was proposed to address the

semantic problem. Additionally, the computation sharing

approach was used to obtain better performance.

The issue of mining and proposed solution

2.1 Dataset

The dataset is gathered from the following data sources.

a) http://data-mining.philippe-fournier-

viger.com/subgraph-mining-datasets/ (dataset-1)

b) http://www.kaggle.com (dataset-2)

Both the dataset links have more than 5000 data

elements and are open for download and processing.

The dataset-1 contains two standard subgraph mining

data, which is provided for a small graph dataset. The file

http://data-mining.philippe-fournier-viger.com/subgraph-mining-datasets/
http://data-mining.philippe-fournier-viger.com/subgraph-mining-datasets/
http://www.kaggle.com/

An Improved Pattern Mining Technique For Graph... Informatica 45 (2021) 675–686 679

is available in the form of text, which composed of one or

more graph. The graph is available in different format such

as t≠ 𝑁, vML, ePQL.

t≠ 𝑁→ It represents the first line and is the Nth graph

in the file.

vML→ It represents the Mth vertex of the recent graph

with a label L

ePQL→ This attribute represents an edge with Pth and

Qth vertex for L number of labels.

Dataset-2 has been collected from Kaggle site.

Comma-separated list is the simplest and supported file

type available in Kaggle. Kaggle-loaded CSV’s must have

a header column with field names which can be easily read

by human. The CSV file composed of two columns each

contains metadata and description of data.

2.2 Issue and solution

Big graphs have always been an era of interest for different

research world field experts. In order to understand the

exact laying pattern of the big graphs, the normal mapping

will result in a faulty rate of classification architecture. As

the false placement of the pattern value can be done

smartly and hence the standard mining architecture is not

suitable enough for such kind of processing. This paper

presents an improved behavior of the Artificial Bee

Colony (ABC) algorithm to identify the pattern of the

graphs. The general architecture of artificial bee colony

has three kinds of bees as follows

a) The employed bee

b) The onlooker bee

c) The scout bee

The employed bee is the one who is responsible for

the food collection, onlooker bee is for the monitoring

purpose, and scout bee is searching for food sources

randomly. This paper presents a new behavioral

architecture of the artificial bee colony. At the initial

phase, the entire graph is divided into 4 subsequent parts

taking the initial point to be random, as shown in Figure

3(a) and (b).

As shown in Figure 3(b), the entire graph is divided

into 4 different populations as Area 1, 2, 3, and 4. Now the

bee colony algorithm will form 4 hives in each section,

and the inter, as well as intra mining, will be formed. There

is a semi queen for each population area, which determines

the threshold of the mapped graph in each section,

proceeded by the 20% selection rule. Apart from this inter

clustering mechanism for bees, there is an intra

mechanism as well. Pseudo Code 1 illustrates the working

of ABC for the intracluster region.

PSEUDO CODE 1:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑙𝑦𝐴𝐵𝐶

1. 𝐼𝑛𝑝𝑢𝑡𝑠: 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ 𝑁𝑜𝑑𝑒𝑠, 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛

2. 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ// For every node in

Node List
3. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑁𝑒𝑐𝑡𝑎𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒 //

Initializing the Nectar
4. 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝐵𝑒𝑒 = 𝑛𝑜𝑑𝑒. 𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡 // The

employed bee will be the edge weight of containing

nectar
5. 𝐹𝑖𝑛𝑑 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 ; // Find inputs to the containing

vertex
6. 𝐹𝑖𝑛𝑑 𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 ; // Find outs to the containing

vertex
7. 𝑇𝑜𝑡𝑎𝑙𝐹𝑜𝑜𝑑𝑃𝑒𝑟𝑁𝑒𝑐𝑡𝑎𝑟

= 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 . 𝐸𝑑𝑔𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 +

𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 . 𝐸𝑑𝑔𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 // Total food in the hive

will be equal to the edge weight of inward degree

and the outward degree
8. 𝑆𝑡𝑜𝑟𝑒 𝑡𝑜 𝐹𝑜𝑜𝑑𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 // Add the calculated

value to the Food Container
9. 𝐸𝑛𝑑
10. 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝐵𝑒𝑒𝐹𝑜𝑜𝑑 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙𝐹𝑜𝑜𝑑𝑃𝑒𝑟𝑁𝑒𝑐𝑡𝑎𝑟

 // Two

different ranges are created

C B

A

B

B

B A

C

A

BB

0.10.05

0.6
0.1

0.16

0.16

n1

n2

n3
n4

n0

n5

n6

n7

n8n9n10

G

Figure 3: (a). Normal Pattern which has subsequent sections.

680 Informatica 45 (2021) 675–686 S. Sahu et al.

11. 𝑅𝑎𝑛𝑔𝑒1 = 𝐵𝑒𝑒𝐹𝑜𝑜𝑑 + 𝐵𝑒𝑒𝐹𝑜𝑜𝑑 ∗ .20 // The first

is 20 % above the provided belt
12. 𝑅𝑎𝑛𝑔𝑒2 = 𝐵𝑒𝑒𝐹𝑜𝑜𝑑 – 𝐵𝑒𝑒𝐹𝑜𝑜𝑑 ∗ .20 // Second is

20 % below the provided belt
13. 𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑒𝑠𝑢𝑙𝑡𝑅𝑎𝑛𝑔𝑒1 <= 𝐷𝑎𝑡𝑎𝑉𝑎𝑙𝑢𝑒 <=

𝑅𝑎𝑛𝑔𝑒2 // Searching any other value in the same

range
14. 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑆𝑅 𝑖𝑛 𝑆𝑒𝑎𝑟𝑐ℎ_𝑅𝑒𝑠𝑢𝑙𝑡
15. 𝑆𝑢𝑠𝑝𝑒𝑐𝑡𝑀𝑎𝑡𝑐ℎ + + // This could be a suspect

similar graph pattern
16. 𝐸𝑛𝑑𝐹𝑜𝑟

The artificial bee colony creates a random population for

the processing of the graph pattern. Each edge weight

value will act as food to the nectar. The food calculation

is done by summing up the edge weights of the in-degree

and the out-degree of the nectar. The in-degree is

increased by one if any node gets an edge from any other

node in the graph. The out-degree is then incremented by

one if the current node has an edge for any other node in

the graph. Two range belts are created out of which the

first proposed belt is 20% above and the second belt is

20% below the given belt. The search is done on the base

of the calculated two new belts. The working is also

represented by the flowchart, which is illustrated in Figure

4.

The found architectures could be a match of graph

pattern, but it can't be termed as a final match. To find

whether it is an exact match or not, the connecting edge

value is passed to neural network. The ordinal measures

of neural are defined in Table 1.

The pseudo-code for the architecture of neural

network is given by Pseudo Code 2.

PSEUDO CODE 2

1. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑙𝑦 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠
2. 𝐼𝑛𝑝𝑢𝑡: 𝑆𝑢𝑠𝑝𝑒𝑐𝑡 𝑁𝑜𝑑𝑒𝑠 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

𝐺𝑟𝑎𝑝ℎ 𝑉𝑎𝑙𝑢𝑒
3. 𝑆𝑒𝑡 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 𝑡𝑜 𝐸𝑚𝑝𝑡𝑦 // Initialize the

Training Value to Empty, the matched

architecture's edge weight will be passed as the

training value
4. 𝑆𝑒𝑡 𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒 𝑡𝑜 𝐸𝑚𝑝𝑡𝑦 // The associated

target value will be initialized to null
5. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝑢𝑠𝑝𝑒𝑐𝑡 𝑁𝑜𝑑𝑒𝑠
6. 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑠𝑝 𝑖𝑛 𝑆𝑢𝑠𝑝𝑒𝑐𝑡𝐿𝑖𝑠𝑡
7. 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 . 𝐴𝑝𝑝𝑒𝑛𝑑 𝑆𝑒𝑡. 𝐸𝑑𝑔𝑒𝑉𝑎𝑙𝑢𝑒 //

Assigning Edge Value
8. 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒

 𝑆𝑒𝑡. 𝑠𝑝. 𝐼𝑑

9. // Setting the target value as the edge value
10. 𝑆𝑡𝑎𝑟𝑡 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 // Starting the

training architecture as per Ordinal Measures of

Table 1
11. 𝐼𝑓 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 // Check

whether the gradient is satisfied or not
12. 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 // If the gradient is satisfied,

the training is complete
13. 𝐸𝑛𝑑
14. 𝑆𝑡𝑜𝑟𝑒 𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 𝑎𝑠 𝑝𝑒𝑟 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔

// Applying Machine Learning as per
15. 𝑈𝑝𝑙𝑜𝑎𝑑 𝑎𝑙𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑎𝑠 𝑇𝑒𝑠𝑡 𝐷𝑎𝑡𝑎 //

Uploading the test data
16. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑢𝑠𝑖𝑛𝑔 𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒// Classify

the test data as per stored trained value

C B

A

B

B

B A

C

A

BB

0.10.05

0.6
0.1

0.16 0.16

n1

n2

n3
n4

n0

n5

n6

n7

n8
n9n10

G

Population

Area 1

Population

Area 2

Population

Area 3
Population

Area 4

Figure 3: (b). Initially divided sections.

Propagation Iterations 100-500

Hidden Neuron Count 20-100

Hidden Layer Count 2

Back Propagation

Architecture

Levenberg

Satisfaction Criteria Gradient

Back Propagation

Parameter

Mean Squared Error

Table 1: Ordinal Measures of Neural Network.

An Improved Pattern Mining Technique For Graph... Informatica 45 (2021) 675–686 681

17. 𝐼𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐿𝑎𝑏𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙
// If the classified value is not similar to trained

label
18. 𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + + // The architecture is

similar to other architecture
19. 𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

The learning and classification mechanism is represented

in Figure 5. The flow chart is labeled from 1-10 as per its

process occurrence.

Based on the proposed algorithm, the evaluated

results are discussed in Section 5.

3 Results
The performance of the proposed subgraph mining

approach is evaluated in terms of time performance,

memory overhead and number of subgraphs pruned with

variation in the supported threshold frequency. The

supported threshold is varied to investigate its effect in

returning a non-empty set of patterns or subgraphs.

Time performance of the proposed work is evaluated

against the four existing studies namely, Ingalalli et al.,

2018, Qiao et al., 2018, Abdelhamid et al., 2017, Elseidy

et al.,2014 and Le et al., 2020. The considered studies have

proposed subgraph pruning strategies inspired by Elseidy

et al., 2014 work, who had proposed GraMi for subgraph

from larger complex graphs based on the supported

threshold frequency. Ingalalli et al., 2018 had proposed

MuGraM as an algorithm to identify frequent subgraph

patterns from multigraph structure. Qiao et al., 2018 has

proposed SSiGraM as a parallel subgraph mining

algorithm that was based on Apache Spark framework.

Abdelhamid et al., 2017 proposed IncGM+ as a fast

incremental system for frequent subgraph mining to

resolve the challenges of evolving graphs. Le et al., 2020

developed a Weighted Graph Mining algorithm for

subgraph pruning that was named as WeGraMi. In this

approach, the weighted graph mining was followed by

search space analytics for subgraph pruning.

The experiments are conducted for 10 frequency

thresholds that are plotted on X-axis against the running

time on Y-axis to evaluate the effectiveness of the

proposed work as shown in Figure 6. It is observed that

original GraMi required highest running time; however,

MuGraM, SSiGraM, IncGM+, WeGraMi including

proposed work involved lower running time over different

supported thresholds. Further it is also established that the

proposed work exhibited the lowest time for subgraph

mining on the threshold values under study. This

establishes the fact that the proposed work not only

outperformed the GraMi but also proved to be better than

most of the existing works that were inspired by GraMi.

In addition to running time, memory consumption is

another important parameter that decides the feasibility of

the proposed technique. Figure 7 compares the memory

overhead of the proposed work with IncGM+ and

WeGraMi over the supported threshold frequency. It is

observed that with decrease in the threshold, the memory

consumption rises for all the works. However, this trend is

very gradual in case of proposed work. Overall, minimum

memory usage is found for the proposed work in

comparison to IncGM+ and WeGrami.

START

Divide Graph into

Different Hives

For each Hive

Value , Calculate In

Degree and Out

Degree

In degree  In

coming edge

Out Degree 

Outgoing Edge

Calculate the Total

Degree Edge

Weight as Bee

Food

Bee Nector Range

1= Bee Food +

20%

2.= Bee Food –

20%

Find Similar

BeeFoods

If Similar Food

Found

Yes

Add to Suspect List

No

Process Next

All nodes are

Processed
No Pick Next Node

Yes

STOP

Figure 4: The working architecture of Proposed ABC.

682 Informatica 45 (2021) 675–686 S. Sahu et al.

Figure 8 compares the number of subgraphs pruned

using various approaches. In addition to above

evaluations, the performance of the proposed work is also

estimated using quality parameters in terms of True

Detection Rate (TDR), False Detection Rate (FDR) and F-

Measure in comparison to GraMi. The parametric values

are calculated using as follows:

𝑇𝐷𝑅 =
𝑇𝑜𝑡𝑎𝑙𝑡𝑟𝑢𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (1)

Where, 𝑇𝐷𝑅 is the ratio of the total number of true

matchings to the total number of detections.

𝐹𝐷𝑅 =
𝑇𝑜𝑡𝑎𝑙𝐹𝑎𝑙𝑠𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (2)

Where, 𝐹𝐷𝑅 is the total number of false detections

observed to the total number of detections.

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑇𝐷𝑅∗𝐹𝐷𝑅

𝑇𝐷𝑅+𝐹𝐷𝑅
 (3)

Where, 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 is twice the product of 𝑇𝐷𝑅

and 𝐹𝐷𝑅 to the summed-up value of 𝑇𝐷𝑅 and 𝐹𝐷𝑅.

Table 2 and Table 3 summarises the analysis of the

data for precision, TDR, FDR, and f-measure. Precision

and f-measure values observed for both GraMi and

proposed work are listed in Table 2. The range of nodes

for evaluation lies from 100 to 5000.The parametric values

observed for precision calculation are plotted in Figure 9.

The parametric values of precision are plotted against a

number of nodes from 100 to 5000. It is observed that

GraMi achieved an average precision of 66.76%, whereas

the average precision of the proposed work is 75.11%.

Overall, the proposed work achieved an enhanced

precision of 8.35%. F-measure values are compared in

Figure 10. It is observed that f-measure for GraMi lies in

the range of 0.633 to 0.645, and for proposed work, it lies

in the range of 0.721 to 0.751. An average f-measure

observed for GraMi and proposed work is 0.65 and 0.74

respectively.

START 1

For every

suspected Node in

the List 2

Calculate Edge

Weight and assign

target label

3

Initialize Neural

Training with 20-

100 Neurons

Layer Count=2

4

Start Propagation

5

If is satisfied the

gradient
6-Yes

Stop Neural

Training

Store the

Propagated

Structure

6'

6'-No
Continue

Propagation

Assign Test Data 

Multi level Training

Data
7

Reconstruct

Group Size

Simulate Using

Trained Structure

If Simulated Group == Re

constructed Group
10

No match

10'
Similar Pattern

Identified

8

9

STOP11 11'

Figure 5: Process Diagram of Neural Networks.

An Improved Pattern Mining Technique For Graph... Informatica 45 (2021) 675–686 683

F-measure can be understood in terms of the harmonic

mean of precision and TDR. It is observed that both values

are higher for the proposed work as compared to the

GraMi. Therefore f-measure is also higher for the

proposed work. On average, there are 0.0915 differences

in the f-measure values between the two works. True

Detection Rates and False Detection Rates for GraMi and

Proposed work are summarized in Table 3. TDR values

for GraMi and proposed work are listed in columns 2 and

3 while FDR values of GraMi and proposed work are

listed in column 4 and column 5. The numbers of nodes

are in the range from 100 to 5000.

TDR of the GraMi and proposed work are compared

in Figure 11. The parametric values of TDR are plotted on

Y-axis against the number of nodes plotted on the X-axis.

GraMi achieved an average TDR of 0.624 as compared to

an average TDR of 0.722 for the proposed work. On

average, it is concluded that the proposed work had 9%

better TDR as compared to the GraMi.

FDR observed for GraMi and proposed work are

comparatively plotted in Figure 12. The graph shows that

the proposed work demonstrates comparatively low FDR

as compared to GraMi. On average, FDR of 0.3324 and

0.2488 is observed for GraMi and proposed work

respectively. In other words, the proposed work achieved

an average lower FDR of 8.35%.

4 Conclusion
The paper has addressed the challenges faced by subgraph

pattern mining of larger network graphs. The authors had

designed and evaluated the performance of the proposed

Figure 6: Comparison of Time Performance.

Figure 7: Comparison of Memory Overhead.

10

100

1000

10000

4,5 4,3 4,1 3,9 3,4 3,5 3,3 3,1 2,9 2,7

Ti
m

e
 in

 s
e

co
n

d
s

(l
o

g
sc

al
e

)

Supported Threshold (in 1000)

Time Performance

MuGraM GraMi SSiGraM

0

20

40

60

80

100

3,5 3,3 3,1 2,9 2,7 2,5 2,3

M
e

m
o

ry
 O

ve
rh

e
ad

 in
 M

B

Supported Threshold (in 1000)

Memory Overhead

IncGM+ WeGraMi Proposed

684 Informatica 45 (2021) 675–686 S. Sahu et al.

structure, which is a combination of Swarm Intelligence

and Machine Learning for pattern mining. A new fitness

function and a inter and intra hive behavior are introduced

for Artificial bee Colony and are cross-validated by

Machine learning based Feed Forward Back Propagation

Neural Network. The performance of the proposed work

is evaluated in terms of TDR, FDR, precision, and f-

measure. A range from 100 to 5000 nodes are being

analyzed for both proposed and GraMi. It is observed that

both proposed work and GraMi achieve an average

precision of 75.114% and 66.76%, TDR of 0.7215 and

0.6225, FDR of 0.2488 and 0.3324, and f-measure of

0.736 and 0.645. It is observed that an improved average

precision, TDR, FDR, and f-measure of 8.35%, 9.8%,

8.35%, and 9.15% have been demonstrated by the

proposed work in comparison to the GraMi. Hence, it is

concluded that the proposed work outperformed the

existing work.

References
[1] Chen, Y., Zhao, X., Lin, X., Wang, Y. and Guo, D.,

2018. Efficient Mining of Frequent Patterns on

Uncertain Graphs. IEEE Transactions on Knowledge

and Data Engineering, 31(2), pp.287-300.

https://doi.org/10.1109/tkde.2018.2830336

Figure 8: Comparison of subgraph pruning.

0

10

20

30

40

50

60

70

80

3,5 3,3 3,1 2,9 2,7 2,5

N
u

m
b

e
r

o
f

P
at

te
rn

s

Supported Threshold (in 1000)

Subgraph Pruning

MuGraM

WeGraMi

Proposed

Number of Nodes
 Precision F-measure

 GraMi Proposed GraMi Proposed

100 0.6571 0.7315 0.633 0.721

500 0.6598 0.7414 0.635 0.726

1000 0.6642 0.7465 0.642 0.73

2000 0.6689 0.7546 0.65 0.738

3000 0.6711 0.7587 0.653 0.743

4000 0.6734 0.7599 0.657 0.747

5000 0.6787 0.7654 0.645 0.751

Table 2: Precision and f-measure for both the datasets.

Number of Nodes
 TDR FDR

 GraMi Proposed GraMi Proposed

100 0.6101 0.7089 0.3429 0.2685

500 0.6111 0.7102 0.3402 0.2586

1000 0.6211 0.7141 0.3358 0.2535

2000 0.6314 0.7214 0.3311 0.2454

3000 0.6354 0.7276 0.3289 0.2413

4000 0.6412 0.7329 0.3266 0.2401

5000 0.6144 0.7356 0.3213 0.2346

Table 3: TDR and FDR for both the datasets.

An Improved Pattern Mining Technique For Graph... Informatica 45 (2021) 675–686 685

[2] Elseidy, M., Abdelhamid, E., Skiadopoulos, S., &

Kalnis, P. (2014). Grami: Frequent subgraph and

pattern mining in a single large graph. Proceedings of

the VLDB Endowment, 7(7), 517-528.

https://doi.org/10.14778/2732286.2732289

[3] Ingalalli, V., Ienco, D. and Poncelet, P., 2018. Mining

frequent subgraphs in multigraphs. Information

Sciences, 451, pp.50-66.

https://doi.org/10.1016/j.ins.2018.04.001

[4] Cheng, H., Yan, X., & Han, J. (2014). Mining graph

patterns. In Frequent pattern mining (pp. 307-338).

Springer, Cham.

https://doi.org/10.1007/978-3-319-07821-2_13

[5] Gu, Y., Gao, C., Wang, L., & Yu, G. (2016).

Subgraph similarity maximal all-matching over a

large uncertain graph. World Wide Web, 19(5), 755-

782.

https://doi.org/10.1007/s11280-015-0358-9

[6] Yuan, Y., Wang, G., Chen, L., & Wang, H. (2012).

Efficient subgraph similarity search on large

probabilistic graph databases. Proceedings of the

VLDB Endowment, 5(9), 800-811.

https://doi.org/10.14778/2311906.2311908

[7] Li, J., Zou, Z., &Gao, H. (2012). Mining frequent

subgraphs over uncertain graph databases under

probabilistic semantics. The VLDB Journal, 21(6),

753-777.

https://doi.org/10.1007/s00778-012-0268-8

[8] Rehman, S.U., Asghar, S. and Fong, S.J., 2018.

Optimized and Frequent Subgraphs: How Are They

Related? IEEE Access, 6, pp.37237-37249.

https://doi.org/10.1109/access.2018.2846604

[9] Abdelhamid, E., Canim, M., Sadoghi, M.,

Bhattacharjee, B., Chang, Y. C., &Kalnis, P. (2017).

Incremental frequent subgraph mining on large

evolving graphs. IEEE Transactions on Knowledge

and Data Engineering, 29(12), 2710-2723.

https://doi.org/10.1109/tkde.2017.2743075

[10] Bhuiyan, M. and Hasan, M.A. (2015) An iterative

mapreduce based frequent subgraph mining

algorithm. IEEE Trans. Knowl. Data Eng., 27, 608–

620.

https://doi.org/10.1109/tkde.2014.2345408

[11] Zhao, X., Chen, Y., Xiao, C., Ishikawa, Y. and Tang,

J., 2016. Frequent subgraph mining based on Pregel.

The Computer Journal, 59(8), pp.1113-1128.

https://doi.org/10.1093/comjnl/bxv118

[12] Talukder, N. and Zaki, M.J., 2016. A distributed

approach for graph mining in massive networks. Data

Mining and Knowledge Discovery, 30(5), pp.1024-

1052.

https://doi.org/10.1007/s10618-016-0466-x

[13] Aridhi, S., & Nguifo, E. M. (2016). Big graph mining:

Frameworks and techniques. Big Data Research, 6, 1-

10.

https://doi.org/10.1016/j.bdr.2016.07.002

[14] Moussaoui, M., Zaghdoud, M. and Akaichi, J., 2018.

A New Framework of Frequent Uncertain Subgraph

Figure 12: Precision.

0,6
0,62
0,64
0,66
0,68
0,7

0,72
0,74
0,76
0,78

100 500 10002000300040005000

P
re

ci
si

o
n

Number of Nodes

GraMi Proposed

Figure 9: F-measure.

0,6
0,62
0,64
0,66
0,68
0,7

0,72
0,74
0,76

F-
m

e
as

u
re

Number of Nodes
GraMi Proposed

Figure 11: True Detection Rate

0,5

0,55

0,6

0,65

0,7

0,75

100 500 10002000300040005000

Tr
u

e
 D

e
te

ct
io

n
 R

at
e

Number of Nodes

GraMi Proposed

Figure 10: False Detection Rate.

0,2
0,22
0,24
0,26
0,28
0,3

0,32
0,34
0,36

100 500 10002000300040005000

Fa
ls

e
 D

e
te

ct
io

n
 R

at
e

Number of Nodes

GraMi Proposed

686 Informatica 45 (2021) 675–686 S. Sahu et al.

Mining. Procedia Computer Science, 126, pp.413-

422.

https://doi.org/10.1016/j.procs.2018.07.275

[15] Jena, B., Khan, C., & Sunderraman, R. (2018,

November). SparkFSM: A Highly Scalable Frequent

Subgraph Mining Approach using Apache Spark. In

2018 IEEE International Conference on Data Mining

Workshops (ICDMW) (pp. 990-997). IEEE.

https://doi.org/10.1109/icdmw.2018.00143

[16] Islam, M. A., Ahmed, C. F., Leung, C. K., & Hoi, C.

S. (2018, June). WFSM-MaxPWS: an efficient

approach for mining weighted frequent subgraphs

from edge-weighted graph databases. In Pacific-Asia

Conference on Knowledge Discovery and Data

Mining (pp. 664-676). Springer, Cham.

https://doi.org/10.1007/978-3-319-93040-4_52

[17] Iyer, A. P., Liu, Z., Jin, X., Venkataraman, S.,

Braverman, V., & Stoica, I. (2018). {ASAP}: Fast,

Approximate Graph Pattern Mining at Scale. In 13th

{USENIX} Symposium on Operating Systems

Design and Implementation ({OSDI} 18) (pp. 745-

761).

[18] Choi, H., Kim, J., Yoon, Y. and Moon, B.R., 2019.

Investigation of incremental hybrid genetic algorithm

with subgraph isomorphism problem. Swarm and

Evolutionary Computation, 49, pp.75-86.

https://doi.org/10.1016/j.swevo.2019.05.004

[19] Preti, G., Lissandrini, M., Mottin, D., & Velegrakis,

Y. (2019). Mining patterns in graphs with multiple

weights. Distributed and Parallel Databases, 1-39.

https://doi.org/10.1007/s10619-019-07259-w

[20] Rao, B., & Mishra, S. (2019). An Approach to Detect

Patterns (Subgraphs) with Edge Weight in Graph

Using Graph Mining Techniques. In Computational

Intelligence in Data Mining (pp. 807-817). Springer,

Singapore.

https://doi.org/10.1007/978-981-10-8055-5_71

[21] Li, L., Zhang, F., & Liu, G. (2019). Multi-fuzzy-

objective graph pattern matching with big graph data.

Journal of Database Management (JDM), 30(4), 24-

40.

https://doi.org/10.4018/jdm.2019100102

[22] Ray, A., Holder, L. B., & Bifet, A. (2019). Efficient

frequent subgraph mining on large streaming graphs.

Intelligent Data Analysis, 23(1), 103-132.

https://doi.org/10.3233/ida-173705

[23] Priyadarshini, S., & Rodda, S. (2020). Geometric

Multi-Way Frequent Subgraph Mining Approach to a

Single Large Database. In Smart Intelligent

Computing and Applications (pp. 233-244). Springer,

Singapore.

https://doi.org/10.1007/978-981-32-9690-9_23

[24] Le, N. T., Vo, B., Nguyen, L. B., Fujita, H., & Le, B.

(2020). Mining weighted subgraphs in a single large

graph. Information Sciences, 514, 149-165.

https://doi.org/10.1016/j.ins.2019.12.010

https://doi.org/10.1007/978-3-319-93040-4_52
https://doi.org/10.1016/j.ins.2019.12.010

