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Abstract

An equation to account for the shear strength of unsatu-
rated soils is proposed in this paper. This equation is 
defined as the equivalent stress, and is an extension of 
Murray’s equation. This approach applies to the general 
case of bi-modal structured soils showing a macrostruc-
ture and microstructure. The theoretical development 
considers the existence of a dry fraction in addition to 
the saturated and unsaturated fractions of the soil. These 
different fractions are included in a porous model, which 
allows an evaluation of the parameters of the equivalent 
stress equation. Finally, the paper includes a comparison 
between theoretical and experimental results. The 
comparison shows that the proposed equation can be used 
to estimate the shear strength of unsaturated soils.

1 INTRODUCTION

The volumetric behavior and shear strength of saturated 
soils can be clearly explained using the principle of effec-
tive stress, as established by Terzaghi [1]. For the case of 
unsaturated soils, a general effective stress equation has 
not been established yet. Bishop’s equation [2] has been 
used as an effective stress equation for unsaturated soils. 
However, there is still no consensus on how to evaluate or 
determine the parameter χ, which varies between 0 and 
1, for the dry and the saturated conditions, respectively. 
Other effective stress equations have been proposed 
by different researchers, for example: Croney et al. [3], 
Skempton [4], Aitchison [5, 6], Jennings [7], and Richards 
[8]. These equations hold to the idea of effective stress and 
include empirical factors similar to Bishop's parameter χ.

For this reason, the behavior of unsaturated soils has been 
studied on the basis of the independent stress variables 
proposed by Burland [9]. In general, the net stress and 
the suction have been used as the two independent stress-
state variables to simulate the behavior of these materials.

Recently, Bishop’s equation has regained importance, 
since new developments in the modeling of porous 
structures make it possible to determine the parameter 
χ. Also, the hydro-mechanical coupling observed in 
unsaturated materials can be easily introduced in effec-
tive stress formulations. To that purpose, the influence 
of the volumetric deformation on parameter χ should 
be included. Various equations have been proposed to 
determine Bishop’s parameter χ, for example: Öberg and 
Sällfours [10], Vanapalli et al. [11], Khalili and Khabbaz 
[12] and Rojas [13]. These equations include the degree 
of saturation and/or the suction as variables. Rojas [13] 
proposes the following equation. 
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(1 ) u
s s wf f Sc= + -         (1)

where fs and u
wS  represent the saturated fraction and 

the degree of saturation of the unsaturated fraction, 
respectively.

One way to relate the suction and the degree of satura-
tion is by means of the soil-water characteristics curves 
(SWCCs). There are several proposals for a general 
equation for the SWCCs, most of them containing 
empirical fitting parameters. Some of these equations 
have been proposed by Gardner [14], Brooks and 
Corey [15], Farrell and Larson [16], Van Genuchten 
[17], McKee and Bumb [18], Seber and Will [19] and 
Fredlund and Xing [20]. There are also relations oriented 
to determine the SWCCs from the granulometric 
distributions: Arya, L.M. and Paris, J. F. [21], Huang, M. 
[22]. Other researchers use the properties of mass and 
volume, such as Fredlund, M. D. [23, 24]. Sillers [25] has 
applied statistical methods, while Johari et al. [26] have 
used numerical techniques such as genetic algorithms to 
predict the SWCCs. 

Another way to obtain both the effective stress as well 
as the SWCC is by means of a porous-solid model. 
This type of model attempts to reproduce the porous 
structure of soils and is able to simulate the distribution 
of water in the pores of the soil depending on the value 
suction. This property makes it possible to determine 
Bishop’s parameter χ as a function of the saturated and 
unsaturated fractions of the soil (fs, fu); for example, 
the the case of equation (1), in which fs + fu = 1. The 
saturated fraction represents all the zones where solids 
are completely surrounded by saturated pores, while 
the unsaturated fraction is formed by solids surrounded 
by a combination of saturated and unsaturated pores. 
However, in this paper it is demonstrated that a dry frac-
tion may eventually appear at high suctions, affecting the 
value of the parameter χ. The dry fraction is formed by 
solids completely surrounded by dry pores. In this paper, 
an equation of equivalent stress that includes the dry 
fraction is proposed.

2 EQUIVALENT STRESS EQUATION WITH THE 
DRY FRACTION 

An unsaturated soil is formed by solid particles where 
the voids are occupied by two other phases: air and 
water. The structure of the soils depends on the shape, 
size and stresses applied to the solid particles. The 
mechanical behavior of these materials is influenced 
by the presence of water and its interaction with air. 
The water contained in most soils is present in differ-
ent states: as a solid in the inner layers of the so-called 

adsorption layer. When the molecules of water move 
away from the surface of the fine particles of soil, it 
becomes less viscous. Farther away, the water molecules 
show a normal viscosity where the capillary and 
gravitational forces are predominant. The capillary 
phenomenon is produced by the meniscus of water 
formed mainly at the contact between the solid particles. 
This capillary effect produces additional contact stresses 
between the solid particles. These additional contact 
stresses need to be evaluated in order to propose an 
effective stress equation for unsaturated materials. One 
way to obtain these additional contact stresses was 
proposed by Murray [27]. Murray applied the concept 
of enthalpy to determine the coupling stress between the 
solid particles ´cp  as a function of the total stress p, the 
air pressure ua, the value of the suction s, the void ratio e 
and the degree of saturation Sw, in the form 

1
´

1
w

c a
eS

p p u s
e

æ ö+ ÷ç ÷= - + ç ÷ç ÷ç +è ø
        (2)

It is clear that equation (2) keeps the structure 
of equation (3) proposed by Bishop, in which 

(1 ) / (1 )weS ec= + + .

´ au ss s c= - +         (3)

where σ' is the effective stress, σ – ua is the net stress, 
s is the suction and χ is Bishop’s parameter. Following 
Murray’s proposal, the strength of the material can be 
represented with the following relationship

'
1c

t
pq M

s s
é ù
ê ú= - +Lê úë û

        (4)

where Mt represents the slope of the line for the coordi-
nated system ´ / /cp s q s- , and L  is the coordinate to the 
origin of such a straight line.

Notice that equation (4) becomes undetermined for the 
saturated case (i.e., the suction is zero). In that sense 
Murray’s model is unable to consider the effect of the 
saturated fraction of the soil.

These equations were obtained by considering a mono-
modal structure of soils. However, according to Srid-
haran et al. [28], most soils show a bimodal structure: 
consisting of a macrostructure and a microstructure. The 
first one is related to larger particles and inter-particle 
pores, also called macropores. The second one refers to 
smaller particles (for example, packets of clay) and intra-
particle pores or micropores. By following Murray’s 
procedure, but considering a bi-modal structured soil, 
Rojas [13] obtained an alternative expression for the 
equivalent stress as represented by Equation (5). This 
equation also follows the structure of Bishop’s equation 
(3), where χ is given by equation (1). 
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where p is the total stress, V is the total volume, uw is the 
water pressure, Vw is the volume of water, ua is the air 
pressure, Va is the volume of air, us is the stress in the 
solid particles, Vs is the volume of solids, and ´cp is the 
coupled stress. The coupling stress ´cp  can be seen as a 
component of the enthalpy by unit of total volume. This 
stress links the independent stress variables and allows 
defining in a clearer way the behavior of unsaturated soils. 

The volume of the sample can be divided into three 
parts: the saturated fraction Vs, the unsaturated fraction 
Vu and the dry fraction Vd in the form:

s u dV V V V= + +         (8)

Dividing equation (8) by V the following relationship is 
obtained:

1 s u df f f= + +         (9)

where fs, fu and fd represent the saturated, the unsatu-
rated and the dry fractions, respectively.

Considering the unsaturated and saturated fractions 
according to figure 1, and using particle i as reference, 
equation (7) can be rewritten as follows:

´
s u u u

w w w sw w sw a sa a a sc
sc c

u V u V u V u V u V V
p u p

V V V V V V
= + + + + + +   (10)

where s u u
s sw sw sa scV V V V V= + + +  is the solids’ volume,  

s
swV is the solids’ volume of the saturated fraction in contact 

with the water, u
swV  is the solids’ volume of the unsaturated 

fraction in contact with the water, u
saV is the solids’ volume 

of unsaturated fraction in contact with the air, Vsc is the 
contact volume among the solid particles, s u

w w wV V V= + ,
where s

wV is the volume of water in the pores of the 
saturated fraction, and u

wV is the volume of water in the 
pores of the unsaturated fraction, and / 0scV V » , accord-
ing to Skempton [29]. This consideration was explained 
by Skempton using the area-ratio concept defined as 

/sca A A= , where Asc represents the area of contact 
between the particles and A is the total area of the cross-
section, figure 1. The total area A results from the addition 
of saturated As, unsaturated Au and dry Ad fractions, that 
is to say s u dA A A A= + + . In this area, a total normal 
stress p, is applied. Parameter a is so small that it can be 
neglected for a unit thickness /scV V , meaning that the 
contact area between the solid particles is being neglected.

By grouping the terms with ua and uw in equation (10) 
the following is obtained

( ) ( )´ s u s u u uw a
c w w sw sw sa a

u u
p p V V V V V V

V V
= - + + + - +   (11)

where s u s u u u
w w sw sw sa aV V V V V V V= + + + + + ,

then the value u u
sa aV V+ can be replaced by 

( )´ 1u
c a s w sp p u s f S fé ù= - + + -ê úë û         (5)

where the term (1 – fs) represents the unsaturated frac-
tion of the soil. These unsaturated and saturated fractions 
naturally appear in a soil sample during a drying or 
wetting process. For example, at the beginning of the 
drying process for an initially saturated soil, all the pores 
are saturated and thus only the saturated fraction exists. 
As the suction increases, some of the largest pores start 
to dry and therefore some solids are surrounded by a 
combination of saturated and dry pores and an unsatu-
rated fraction emerges. However, when a soil is subjected 
to high suctions, most of the macrostructure dries, and 
therefore, large particles may be completely surrounded 
by dry pores, and in that sense a dry fraction appears. 
This paper proposes an extension of Rojas’s equation [13] 
to include the dry fraction of the soil following the proce-
dure established by Murray to obtain a coupling stress.

Fig. 1 represents the elemental volume of a bi-modal 
structured unsaturated soil subjected to a total stress p. 
The enthalpy Ht of the sample is the product pV, where 
V represents the volume of the elemental volume.

Figure 1. Soil fractions under pressure.

The total enthalpy of the sample is represented by the 
sum of the enthalpies of each one of its phases.

t w a sH H H H= + +         (6)

where Ht is the total enthalpy, Hw is the enthalpy of the 
water phase, Ha is the enthalpy of the air phase, and Hs 
is the enthalpy of the solid phase. Following the proposal 
of Murray [27], and keeping the products pV = Ht,
Hw = uwVw, Ha = uaVa, ´s s s cH u V p V= + , it is possible 
to establish the following expression:

´w w a a s s cpV u V u V u V p V= + + +         (7)
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( )s u s u
w w sw swV V V V V- + + +  resulting in 
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The volume of the saturated fraction is s s s
w swV V V= + , 

which when substituted into equation (12) and defining 
s

s Vf
V

= results in

´
u u

w sw
c a s

V V
p p u s f

V

æ ö+ ÷ç ÷ç= - + + ÷ç ÷ç ÷çè ø
        (13)

Reducing the second term in the parentheses of equation 
(13) yields the following expression.

u
u u uw
w v su u u u u u

w sw w sw s v

VS V V
V V V r V V

V V V
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where 
u

u w
w u

v

V
S

V
=  , 

u u
u sw w
sw u u

s v

V V
r

V V
= »  and   

   

u u u u u u u u u
u u u u u uw sw v v v s v v
w w w w w w

V V V V V V V V V
S S S S S S

V V V V V V V
+ -

= + = + = +

( )1
u u

u u u u uv v
w w u w w u w s d

V V
S S f S S f S f f

V V
= + - = = - -

       
(15)

Finally, the equation for the equivalent stress that 
includes the dry fraction is 

( )´ 1u
c a s w s dp p u s f S f fé ù= - + + - -ê úë û         (16)

In equation (16) the value of Bishop’s parameter can be 
easily identified as ( )1u

s w s df S f fc= + - - . For the 
case of a fully saturated soil, s is substituted by a wu u- ,
fs = 1 and fd = 0 or χ = 1, and then equation (14) 
becomes Terzaghi’s equation

´c wp p u= -         (17)

For the case of a dry soil, χ = 0 and equation (16) trans-
forms into

´c ap p u= -         (18)

3 EXPERIMENTAL PROGRAM

In order to experimentally verify the proposed equation 
of equivalent stresses, a laboratory testing program was 
developed. It included the following steps: a) a mixture 
of 79% sand, 21% silt was made, b) the material index 
properties were determined, c) its grain size distribu-
tion was determined, d) a methodology to prepare 
compacted soil samples was established, e) using the 
filter paper technique, water-retention curves for wetting 
and drying were determined f) the porosimetry of the 
sample was obtained by fitting the numerical and experi-

mental retention curves in drying and wetting, and g) 
triaxial tests were conducted in a controlled suction 
triaxial cell on samples following drying and wetting 
paths. Each one of these steps is explained below.

a) The sand and silt were obtained from an extraction 
bank located in the city of Valle de Santiago, Guanaj-
uato, Mexico. The sand was passed through the sieve 
number 10, and washed to remove clay particles.

b) This material has neither plasticity nor linear shrin-
kage. The relative density of the solids is 2.43 and the 
soil was classified as SM (silty sand).

c) All the specimens were fabricated in a metallic 
mould by static compaction in five layers at a water 
content of 19.5% and a dry density of 14.889 kN/m3. 
Under these conditions, the void ratio of the samples 
was 0.54 and their degree of saturation 87%. In order 
to fabricate the sample, each layer was weighed on 
a balance with 0.01-g precision and placed inside 
the mould. In order to avoid planes of contact, the 
surface of the previous layer was carefully scarified 
before placing the material for the next layer.

d) The granulometry of the material was determined 
using the dry and wet methods. 

e) The size distribution of the macropores, sites and 
bonds was obtained by adjusting the water-retention 
curves during drying and wetting, taking into acco-
unt the following: “it is well known that the drying 
curve is mainly dependent on the size of bonds as 
they unsaturate at higher suctions than sites. On the 
contrary, the wetting curve depends mainly on the size 
of sites and macropores as they saturate at smaller 
suctions than bonds. Therefore, it is proposed to use of 
the boundary SWCC at drying in order to define the 
size distribution of bonds. When the porosimetry of the 
material is not available at all, both retention curves 
have to be used to define the size distribution of bonds 
sites and macropores. These distributions are obtained 
from an iterative procedure where an initially proposed 
size distribution for each element is consecutively modi-
fied, until the porous model reproduces with sufficient 
accuracy, both the wetting and the drying soil–water 
characteristic curves”, (Rojas et al. [13], p. 198).

f) The only method to obtain directly the retention 
curve is with the membrane apparatus. However, 
its suction range only reaches 10 MPa. On the other 
hand, the filter-paper method covers the entire range 
of suctions and can be easily applied for wetting and 
drying paths. However, mainly due to the heteroge-
neity of the papers during the fabrication process, it 
is recommended to verify the calibration every time 
a new batch of paper is used. That is the reason why 
the Sleicher and Schuell No. 589 paper batches were 
first calibrated with potassium chloride solutions 
at various concentrations. The whole process was 
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conducted in a controlled-temperature room where 
the filter paper was exposed to a saline atmosphere 
for a period of two weeks. Once the filter paper was 
calibrated, cubic samples with a side of 5 cm were 
made. The drying curve was obtained by introdu-
cing the compacted samples into the oven for time 
ranging from 1 min to 24 hours, then introduced 
in a sealed container along with two pieces of filter 
paper to measure both the total and matrix suctions. 
The samples were left for two weeks in a controlled-
-temperature room to reach equilibrium. In the case 
of the wetting curve the samples were initially oven 
dried for 24 hours and subsequently moistened using 
a fine spray to reach a certain degree of saturation. 
Once the sample reached the required humidity, 
the homogenization process was carried out for two 
weeks in an identical manner as for the drying path.

g) Triaxial tests were performed following the wetting 
and drying paths. The suction was controlled using 
the vapor-circulation technique using a peristaltic 
pump with an 11-ml/min flow rate, as recommen-
ded by Cunningham [30]. The soil samples were 
placed in the triaxial chamber, and their initial 
moisture content was slightly higher or lower than 
the moisture of the circulating vapor, so as to follow 
a drying or wetting path, respectively. In order to 
define the equilibrium time for specimens, some 
tests were performed previously, where the samples 
were mounted in the triaxial chamber and weighed 
at regular intervals until equilibrium was achieved. 
In general, it was found that three or four days were 
sufficient to reach equilibrium. In order to ensure 
constant suction tests, all the tests were performed at 
a strain rate of 0.001 mm/min. The confining stress 
for all the samples was 150 kPa. Once the triaxial 
tests were completed, samples were cut in sections 
to verify the value of the suction. Triaxial tests were 
performed on soil samples with water contents 
ranging from saturated to practically dry. For the 
case of the saturated soil samples, confining stresses 
of 50, 100 and 150 kPa were applied.

4 COMPUTATIONAL MODEL

The solid-porous model used herein is similar to that 
proposed by Rojas et al. [31], in which four types of 
elements were considered: the macropores, the sites, the 
bonds and the solids. This model is built on a regular 
network and includes the following elements: cavities, 
bonds, and solids.

Cavities contain most of the void volume of the soils. 
These cavities are subdivided into macropores and meso-
pores. The macropores are the largest pores in the soil and 

are responsible for most of the volumetric behavior of the 
soil (Simms and Yanful, [32]). The mesopores or sites are 
pores that do not change their size during loading. All 
the cavities are interconnected by the bonds or throats. 
Finally, the solids are considered incompressible. The 
model is built on a regular network, where the cavities are 
placed at the nodes of the network, and the connectors 
are the bonds. These elements are represented in Fig. 2.

Figure 2. Network elements: macropores, sites, bonds and 
solids (from Rojas et al. [31], p. 196).

The size of the network determines the number of nodes 
and connectors. This defines the number of cavities, 
bonds and solids. The number of elements of each size is 
defined by the porosimetry and the grain size distribu-
tion of the material. Once the number of elements of 
each size is defined, sites and bonds are randomly placed 
on the network. In order to avoid the superposition of 
bonds converging on one node, a constructive principle 
needs to be respected. This constructive principle estab-
lishes that two bonds converging to a site at 900 should 
comply with expression (19). 

2 2
1 2b b str r r+ £         (19)

where rb1 and rb2 are the radius of the converging bonds 
and rst is the radius of the cavity.

To totally guarantee this principle within the network, this 
procedure must be followed: “at each node, the number of 
violations to the principle is determined. If the number of 
violations at certain site is different from zero, then a substi-
tution with another site (selected at random) is simulated. 
If the number of violations to the principle reduces, then 
the substitution is granted. If not, another site is selected at 
random. The same procedure is followed for bonds, and it 
continues until no violation to the construction principle 
subsists within the network”, (Rojas et al. [31], p. 197).

Once the sites and bonds are located, macropores are placed 
by substituting the required number of sites. Finally, solids 
are also placed at random in the spaces between the pores. 

J. C. Leal Vaca et al.: The dry fraction of unsaturated soils
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The process of drying and wetting the pores is regu-
lated by the Young-Laplace equation (20), Defay and 
Prigogine [33]. This equation is a nonlinear partial 
differential equation that describes the capillary pressure 
difference sustained across the interface between two 
static fluids, such as water and air, due to the phenom-
enon of surface tension or wall tension, although usage 
on the latter is only applicable if we assume that the wall 
is very thin. The Young–Laplace equation for a spherical 
meniscus can be written as:

2 cos
a w

c

Tu u
R

a
- =         (20)

where α represents the contact angle between the water 
and the solid particles, Rc is the critical radius and corre-
sponds to the maximum pore size that remains saturated 
at a certain suction.

In addition, to comply with equation (20) a pore must 
also comply with the continuity principle in order to 
saturate or dry. This continuity principle establishes that 
a pore is able to dry or saturate only if it is connected to a 
boundary of the network where the bulk of gas or water 
is present, respectively, following a continuous path.

Therefore, during a drying process, pores will dry when 
the size of the pore is larger or equal to Rc and one of 
its connected bonds is already dry and connected to 
the bulk of gas. The drying process starts when all the 
pores are saturated and the suction is zero. An increase 
in the suction results in the drainage of the largest pores 
located at the boundaries of the network. The process 
continues only when the bonds connected to these pores 
dry too. This means that the drying SWCC is dependent 
on the size distribution of the bonds.

The saturation of pores will happen only if the pore 
size is smaller or equal to Rc and one of the elements 
connected to this pore is already saturated. During the 
wetting process it is considered that initially all the 
pores are dry and the suction is very high. Then the 
suction decreases in steps and the smallest bonds at the 
boundaries of the network start to saturate. The wetting 
process only continues when the sites connected to those 
bonds saturate. This means that the wetting process is 
controlled by the size distribution of the sites.

A computer program was developed to reproduce the 
porous structure of the soils by fitting the numerical with 
the experimental SWCC. The program also determines 
the saturated, unsaturated and dry fractions of the soil 
during wetting-drying cycles. Finally, the parameter χ is 
determined and the experimental and numerical results 
are compared. In general, logarithmic normal distribu-
tions are used to define the pore size distributions of soils. 

Logarithmic normal distributions are defined with only 
two parameters: the mean value and the standard devia-
tion. Therefore, these two parameters are required for 
each of the elements in the network: sites, macropores, 
bonds and solids. Double logarithmic normal distribu-
tions are required for the case of double structured soils.

5 DISCUSSION OF THE THEORETICAL AND 
EXPERIMENTAL RESULTS.

Table 1 indicates the parameters required by the solid-
porous model: the mean radius ( R ) and the standard 
deviation (δ) for sites (SP1 and SP2), macropores (MP) 
and bonds (B1 and B2). Finally, the void ratio (e) of the 
sample is also required.

Parameter SP1 SP2 MP B1 B2  e
0.05 0.4 3.0 0.0004 2.0

0.54
δ 2 2 3 6 4
R

Table 1. Parameters of the solid-porous model.

The fitting of the numerical with the experimental 
SWCC is shown in Fig. 3. The values included in table 
1 define the logarithmic normal distribution for each 
case. These parameters are initially proposed and then 
adjusted until the best fit with the experimental points is 
achieved. The experimental points of the SWCCs were 
obtained using the filter-paper method.

Figure 3. Numerical and experimental SWCC in drying and 
wetting paths (data from Leal et al. [34]).

J. C. Leal Vaca et al.: The dry fraction of unsaturated soils

s(MPa)

S w

The numerical pore size distribution obtained after the 
fitting process is shown in Fig. 4. The existence of a 
bimodal pore structure can be observed.
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Figure 4. Theoretical pore size distribution of the soil.

Figure 5. Theoretical and experimental grain size distribution.

In the same way, in order to obtain the number of solids 
of each size, the experimental grain size distribution has 
to be fitted with the numerical model using a single or 
double logarithmic normal distribution. These results 
are shown in Fig. 5. It is clear that the fitted curve is 
quite close to the experimental results.

Figure 6. Theoretical values of the dry, unsaturated and satu-
rated fractions for the drying and wetting paths.

Figure 7. Theoretical values for the degree of saturation of the 
unsaturated fraction in drying and wetting (from Leal et al. [34]).

J. C. Leal Vaca et al.: The dry fraction of unsaturated soils

With the model, the parameters fs, fu, fd, and u
wS  for 

different degrees of saturation (Sw) are defined. These 
parameters are shown in Fig. 6 and Fig. 7. The volume of 
the saturated fraction ( 1 )s u df f f= - - is obtained by 
adding the volume of solids completely surrounded by 
water to the volume of voids surrounding these solids.

Fig. 6 shows the values of the dry fraction (fd), the 
unsaturated fraction (fu), and the saturated fraction (fs) 
with the degree of saturation (Sw). These values were 
obtained for the drying and wetting paths.

It can be verified that the values shown in Fig. 6 comply with 
Equation (9) for any value of the degree of saturation for both 
the drying and wetting paths. Additionally, Fig. 7 shows the 
variation of the degree of saturation for the unsaturated frac-
tion with respect to the degree of saturation for both paths.

Bishop’s parameter can now be determined using the 
expression ( )1u

s w s df S f fc= + - -  included in Equa-

Sw

Sw

tion (16). To obtain the experimental values of χ, the 
'p q-  diagram is plotted with the triaxial test results of 

saturated samples, carried out at confining pressures of 
50, 100 and 150 kPa. According to the critical state theory 
it is possible to draw a failure line departing from the 
origin of the plane 'p q- . If in this diagram the pairs of 
values (σnet, q) of the unsaturated samples are represented, 
then the difference between their abscissas and the failure 
line represents the suction stress sχ. And because the 
suction is known, it is possible to obtain the value of χ.

The experimental and numerical values for χ are shown 
in Fig. 8, for both the drying and wetting paths. In this 
figure, it can be observed that both the numerical and 
experimental values follow a general tendency, except for 
one experimental point obtained during wetting. “The 
best results are presented in low degrees of saturation. This 
is because at low degrees of saturation volume changes are 
minor and the degree of saturation is influenced by changes 
in volume. One can expect some differences in the final 
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results of fs and therefore also of the resistance because the 
processes of wetting and drying of the solid-porous model 
are developed by invasion. That is, to move water or gas, 
continuity in the phases is required. This means that a 
site or a bond cannot be invaded if at least one adjacent 
element has not been invaded”, (Leal et al. [34], p.401).

When the value of χ is multiplied by its corresponding 
suction, the cohesive stress is obtained. Once the values of the 
parameter χ have been determined, it is possible to estimate 
the equivalent stress values using the following expressions:

1 3 qs s= +         (21)

i ai neto us s= -         (22)

'
i i neto ss s c= +         (23)

In these equations, i varies from 1 to 3, σ1 is the total verti-
cal stress, σ3 is the confining stress, ua is the air pressure 
in the pores, q is the deviator stress applied in the triaxial 
tests, '

is  is the equivalent stress and s is the suction.

All the specimens were tested up to failure according to 
the critical state theory. The relationship between the 
mean and the deviatoric stress is represented by the slope 
M. If the results are plotted in this plane, their alignment 
with the slope M can be observed, and the mean equiva-
lent stress can be obtained using the following expression:

' ' ' '
1 2 3( ) / 3cp s s s= + +         (24)

Following the above equations, it is possible to calculate 
the theoretical equivalent stress ´cp , and the results are 
shown in Fig. 9.

Fig. 9 shows that the solid-porous model can be used to 
obtain Bishop’s parameter χ and simulate the strength of 
the unsaturated soils tested at different values of suction. 
Finally, the inclusion of the dry fraction for the determi-
nation of Bishop’s χ parameter results in a more precise 

χ

Figure 8. Variation of χ with respect to the degree of saturation 
(data extended, from Leal et al. [34]).

description of the behavior of unsaturated soils during 
the wetting-drying cycles.

6 CONCLUSIONS

A general analytical equation has been established to obtain 
Bishop’s parameter χ, that includes the saturated, the unsat-
urated and the dry fractions of the soil. The comparisons 
of the numerical and experimental results show that the 
proposed equation is adequate for simulating the strength 
of unsaturated soils. Although more comparisons are still 
required, the solid-porous model proposed herein to obtain 
the parameter χ seems to be sufficiently accurate.
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