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Introduction

We begin with a remark attributed to the philoso-
pher and mathematician Bertrand Russel in which
he states, clearly not just anecdotally, “Probability is
the most important concept in modern science,
especially as nobody has the slightest notion what
it means“. We take this citation from the book ‘Pa-
radoxes in Probability Theory and Mathematical Sta-
tistics’, in which the mathematician Gábor Székely
(1990) discusses some of the many curiosities that
may result from the invalid application of statistical
theory. Of immediate relevance to our topic is the
date attributed to this anecdote. It appears to have
been formulated in the year 1929. If assigned to Rus-
sel and correctly dated, albeit that Székely (1990)
expresses some doubt concerning both these points,
Bertrand Russel would have made this comment
some four years prior to the first (German language)

publication of Andrei Nikolaevitch Kolomorow’s pro-
bability theory (Kolmogorov 1933). After its transla-
tion into English (Kolmogorov 1956), mathemati-
cians were soon to accept Kolomorov’s theory, al-
though there were exceptions, including the philoso-
pher of science Karl Popper, who was always dissa-
tisfied with the manner in which Kolmogorov pre-
supposed its foundation in Boolean algebra (Pop-
per 1934; 1959; 1976). In the theory of Kolmogo-
rov, which has three basic axioms, the concept of
probability is introduced in Axiom I as a non-nega-
tive real number. In Axiom II, this number is limited
to a minimum value 0 and maximum value 1. Axiom
III defines the mathematical operations (e.g., addi-
tion, multiplication) that can be applied to given
probabilities in order to produce new probabilities.
This is a simplified version of Kolmogorov’s theory,

ABSTRACT – In this paper we explore the meaning of the word probability, not in general terms, but
restricted to the field of radiocarbon dating, where it has the meaning of ‘dating probability assi-
gned to calibrated 14C-ages’. The intention of our study is to improve our understanding of certain
properties of radiocarbon dates, which – although mathematically abstract – are fundamental both
for the construction of age models in prehistoric archaeology, as well as for an adequate interpreta-
tion of their reliability.

IZVLE∞EK – V ≠lanku raziskujemo pomen besede verjetnost, ne na splo∏no, temve≠ omejeno na po-
dro≠je radiokarbonskih datacij, kjer ima beseda pomen ‘verjetnost datiranja dodeljena kalibrirani
14C starosti’. Namen na∏e ∏tudije je izbolj∏ati na∏e razumevanje dolo≠enih lastnosti radiokarbonskih
datumov, ki – ≠eprav so matemati≠no abstraktni – so temeljnega pomena tako za gradnjo modelov
starosti v prazgodovinski arheologiji kot tudi za ustrezne razlage njihove zanesljivosti.

KEY WORDS – radiocarbon calibration; Bayesian inference; noncommutative algebra; noncommu-
tative probability; chronology

DOI> 10.4312\dp.38.2



Bernhard Weninger, Kevan Edinborough, Lee Clare and Olaf Jöris

2

but one which in our judgement adequately mirrors
the manner in which the concept of probability is
introduced in the majority of school textbooks today.

It is perhaps of little surprise that statistics and rela-
ted fields are often experienced as boring and dull.
Indeed, and following some three hundred years of
advanced and often quite controversial mathemati-
cal, philosophical, and even religious discussion, to-
day’s widely accepted definition of probability is
slightly disappointing. Probability is a number, no
more, no less. Some may stress that probabilities are
not just any numbers, but rather special, random
numbers. Others may emphasise that it is only we,
as humans, who have random experiences with num-
bers, and that numbers themselves cannot support
such experiences, in which case the discussion be-
comes more lively. The problems we address in the
present paper are not, however, related to such dis-
course. We do not participate in the discussion –
however far-reaching – as to whether a subjectivist,
objectivist, frequentist, or even Bayesian interpreta-
tion of probability is the most preferable. Instead,
we are quite happy with the notion that probability
is nothing more than a number (with a value less
than 1) and nothing less than a number (with a va-
lue greater than 0), i.e., 0 ≤ p ≤ 1.

The noncommutative properties of radiocar-
bon ages

In the course of the following paper, we assemble
some observations to illustrate why, in our judge-
ment, present methods of 14C-analysis do not pro-
vide a mathematically sufficient (in the sense of com-
plete) description of the properties of calibrated
14C-ages. We focus here on those properties of 14C-
ages that are relevant to the construction of 14C-ba-

sed archaeological chronologies. Unfortunately, the
mathematical properties of archaeological 14C-data
can be quite subtle as well as misleading, even to the
extent of being deceitful, and a clear understanding
of these properties is difficult to achieve. Fortunately,
the mathematical background to these subtleties can
at least be introduced in simple terms, and this is
the focus of the following paragraphs.

Generally speaking, mathematical operations are
termed commutative when study variables can be
combined in any order without changing the result.
This means that when applied to the addition opera-
tion (+) the following equation must be valid: a + b
= b + a. The same applies to the multiplication ope-
rator (x) with a x b = b x a. We easily confirm that
both the operations of addition and multiplication
are commutative, at least for the following two in-
teger numbers a = 2 and b = 3. The test for the com-
mutativity of addition is: 2 + 3 = 3 + 2 = 5 (con-
firmed) and for multiplication: 2 x 3 = 3 x 2 = 6
(confirmed).

In mathematics, an operation is called commuta-
tive if changing the order of the operands does not
change the end result. Conversely, noncommuta-
tive variables are known as ordered. Let us now test
whether radiocarbon calibration, when represented
as a mathematical operator, can be deemed commu-
tative. Note that in the following, we run the com-
mutativity test for numbers, although these are, of
course, in place of probabilities (more precisely, pro-
bability densities, since probabilities are assigned to
intervals).

To simplify the test, we take as an elementary fre-
quency distribution only two numbers on the calen-
dric time-scale, which we call (samples) a and b. Fol-

Fig. 1. Commutativity test for the radiocarbon calibration operator.
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lowing idealised (error-free) 14C-measurement, sam-
ples a and b provide 14C-ages A and B. Assuming
that A and B have been correctly obtained, then the
initially unknown calendric ages (a and b) can be
reconstructed by comparing A and B with previous-
ly measured 14C-values for known-age samples ta-
ken from the tree-ring 14C-age calibration data-base.
The commutativity test for the radiocarbon calibra-
tion operator as illustrated in Figure 1.

We test the commutativity of the calibration opera-
tor cal in terms of the addition of dates/samples on
the two scales (14C- and calendric) by analysing Equa-
tion 1:

This equation may be read as follows: when the
measured 14C-age A (for sample a) and the measu-
red 14C-age B (for sample b) are added on the 14C-
scale and divided by 2, we obtain the 14C-scale va-
lue (A+B)/2. This represents the average 14C-age of
the two samples. Similarly, the average sample age
is calculated on the calendric time scale, where it is
defined as (a+b)/2. It should be stressed that, due
to inherent difficulties concerning the graphic repre-
sentation of the problem at hand, both in Figure 1
and in Equation 1 the operator cal is in actual fact
the inverse calibration.

As shown in Figure 1, for two differently shaped ca-
libration curves, the calibration operator has the
property of being commutative only under the con-
dition that there is a linear relation between the 14C-
scale and the calendric time-scale. Indeed, for the
linear calibration curve (Fig. 1, left) identical results
are achieved irrespective of whether we first mea-
sure the 14C-ages for samples a and b and calculate
their average 14C-age on the 14C-scale, or put the car-
bon of both samples together and measure the 14C-
age of the combined sample. For the linear calibra-
tion curve the calibration operation is commutative.
However, as shown in Figure 1 (right), in the reali-
stic case that the calibration curve is not linear, but
wiggly, results obtained by averaging are dependent
upon whichever of the two scales the operation is
first performed. We abbreviate this by stating that
the calibration operator is noncommutative in re-
spect to the addition of dates and samples on their
respective scales.

But why should we be interested in ordering proper-
ties of the calibration operator? In archaeology, we
are interested in (1) the transfer of 14C-ages from
the 14C-scale to the calendric time-scale and (2), in

a second scaling direction, the transfer of sample
ages from the calendric time-scale to the 14C-scale.
Only the first direction is known sensu stricto as
14C-age calibration. However, in archaeological mo-
delling studies, the second operational scaling direc-
tion is also of importance, e.g., when the aim is to
reconstruct the (theoretical) frequency distribution
of samples from the given (measured) distribution
of 14C-ages.

Let us further evaluate the commutativity of the ca-
libration operator, but now in terms of multiplica-
tion. The multiplication operation is of particular im-
portance in archaeological 14C-analysis, e.g., in Baye-
sian sequencing methods, when the aim is to con-
strain the range of calendric ages initially obtained
for a larger set of individual 14C-ages. This is accom-
plished by a combination of the given 14C-data with
external (archaeological) information, such as the
known or assumed relative-age position of the dated
samples. Depending on many details of the specific
Bayesian application, the combination of 14C-radio-
metric and archaeological information inevitably re-
quires the formulation of a mathematical equation,
often a complex undertaking. However, a common
feature of all such equations is that they contain
sums and products of (measured) 14C-scaled proba-
bilities, and of associated (measured or assumed) ca-
lendric-scale probability distributions. An example
of how complex such an equation can be is illustra-
ted by a case study taken from Christopher Bronk
Ramsey (2009). A typical application of the Bayesian
sequencing method, in this case applied to a set of
14C-ages from a multiple phase archaeological site,
is shown in Equation 2.

We do not provide a description of variables used in
this equation, since these are given in detail by
Bronk Ramsey (2009.348). We are interested in the
mathematical syntax. As noted above, in Kolmogo-
rov’s theory, probabilities are defined as variables
with values in the range 0 ≤ p ≤ 1. Applying such
notions to the above equation, where the different
symbols p represent different probabilities, and
where the symbol Π is used to abbreviate their mul-
tiplication, it becomes evident that Equation 2 con-
tains not only products of probabilities, but – more
complicatedly – actually contains products of these
products. Nevertheless, and irrespective of the over-
all complexity of these calculations and whatever
the result could mean in archaeological terms, ulti-
mately the resulting overall probability must be a

(1)

(2)
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number in the range 0 ≤ p ≤ 1. What is the mean-
ing of the proportional symbol ‘∝’? Clearly, it con-
nects the left and the right side of the equation. Nor-
mally, in mathematics the symbol ‘∝’ is used as a
dimensionless scaling number (and not as a func-
tion), although is this the case here? In Equation 2,
the symbol ‘∝’ is apparently used to define a secon-
dary linear scaling operation to be applied at the
end of the task. But why should this final scaling
operation be necessary? Is there, perhaps, some-
thing missing from the equation? As a result of ap-
plying the axioms of probability theory, we would
usually expect the equation (or algorithm) to be
complete in terms of all operations, including scal-
ing (e.g., graphics –> paper size) and – in particular
– in terms of the necessary normalisation of proba-
bilities (0 ≤ p ≤ 1). We will return to this question
later, but note that the formulation of Equation 2
using this proportional symbol ‘∝’ differs from Ba-
yes’ theorem where it does not appear (see below).

Clearly, when developing Bayesian sequencing mo-
dels that include integral-products for probabilities
as illustrated by the above equation, great care must
be taken that results are not dependent on the or-
der in which the multiplication is performed. To en-
sure this, the following mathematical equation must
be valid:

This equation, using Paul Diracs’ commutator nota-
tion, can be read as follows: We call two probabili-
ties p1 and p2 commutative when the result of their
multiplication is independent of the order in which
the multiplication is performed.

An example would be: [0.4,0.8] = 0.4 x 0.8 – 0.8 x
0.4 = 0.32 – 0.32 = 0.00

Since 14C-measurements are defined as rational num-
bers on the 14C-scale, it is possible – for example, in
radiocarbon inter-laboratory exercises – to define
14C-scale probabilities in terms of a Boolean (commu-
tative) event algebra. However, in light of the above
observations (Fig. 1) this should not be generalised.
To be clear, the problems of commutativity addres-
sed in this paper only arise when the two scales are
connected, i.e., as is required for radiocarbon cali-
bration. In light of these observations, we conclude
that the calibration operator is noncommutative,
both in respect to addition and to multiplication.

Although seemingly rather elementary, the observa-
tion that radiocarbon calibration is noncommutative

will resonate as music in the ears of mathematicians
and physicists, who – we expect – will be immedia-
tely reminded of topics such as quantum mechanics,
non-linear geometry, uncertainty principle, wave-
particle complementarity, Hilbert Space, C*-algebra,
Lie-algebra and non-classical probability theory.

Looking back, these mathematical properties of the
calibration operator indeed resonated, if only as a
warning bell, in the ears of the first generation of
14C-calibration software-developers. This we deduce
from comments by Minze Stuiver and Paula Reimer
(1989), Mieczyslaw Pazdur and Danuta Michczynska
(1989), and Bernhard Weninger (1986), all of whom
emphasised the unusual character of the mathema-
tical problem to be solved: “There are some mathe-
matical pitfalls to be avoided … We conclude that
distortion of [age-calibrated] histograms is unavoi-
dable, even with the most precise mathematical
procedure and high-precision 14C dating (Stuiver,
Reimer 1989.818, 823).

The specific mathematical pitfalls in radiocarbon ca-
libration addressed here by Stuiver and Reimer
(1989) pertain to the large number of clearly unac-
ceptable oscillations that appear in the calibrated di-
stribution when the calibration is performed from
the perspective of the 14C-scale (Fig. 2, right). Fortu-
nately, these oscillations can be avoided by a change
in perspective, in which the calibration is performed
from the viewing direction of the calendric-time
scale (Fig. 2, left).

As illustrated in Figure 3 (right), the technical prob-
lem is to see if a horizontal line drawn parallel to
the calendric time scale during calibration hits a
point on the calibration curve or not. This problem,
i.e. whether a (2-dimensional) line can actually hit
a (1-dimensional) point, or not, is a long-standing
problem in the history of geometry.

Yet, this is not the end of the story, as can be re-
cognised from the following comments on this me-
thod by Mieczyslaw Pazdur and Danuta Michczynska
(1989.831), who state in dismay: “The resulting [ca-
librated] probability distribution in most cases sig-
nificantly differs from the initial [14C-scale] Gaus-
sian distribution and general rules for simple pre-
sentations of calibration output cannot be formu-
lated. Moreover, because of the same reason, the
concepts that are widely used and familiar to non-
experts in statistics and probability (e.g., mean va-
lue, median, confidence interval) begin to lose
their seemingly unshakable credibility”.

(3)
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Initially, in the late 1980s and early 1990s, only
technical reasons were put forward in support of
this calibration approach. Clearly, there was a need
for its more general foundation in probability the-
ory. This foundation was soon to be identified with
the Theorem of Bayes (Pazdur, Michczynska 1898;
Michczynska et al. 1990; Niklaus 1993; Dehling,
van der Plicht 1993). In retrospect, this decision
possibly rests on the simple fact that Bayes’ Theo-
rem is described in much detail in text-books on
classical statistics (cf. below). Even today, it is taken
for granted that Bayesian Theory is applicable, with-
out amendment, to the calibration of radiocarbon
14C-ages. For example, according to Bayliss (2009),
Blockley and Housley (2009), Bronk Ramsey (2009),
the Bayesian dating methodology provides a cohe-
rent framework by which essentially any kind of 14C-

Fig. 2. (Left) 14C-age calibration a 14C-scaled Gaussian probability from the perspective of the calendric
time-scale. (Right) 14C-age calibration of the same Gaussian from the perspective of the 14C-scale. Note the
existence of unacceptable oscillations in the calendric-scale distribution, when calibration is performed
from the perspective of the 14C-scale. Redrawn (with changes in scaling) from Stuiver and Reimer (1989).

Fig. 3. (Left) Zoom into the 14C-age calibration curve INTCAL09 (Reimer et al. 2009) showing underlying
raw data of the High-Precision Laboratories Belfast, Seattle and Heidelberg. (Right) Hypothetical calibra-
tion curve with downward spike followed by an extended plateau. Note the difficulty (indicated by the
question mark) in providing a unique reading for the 14C-scale value of 2460 BP at the lower end of the
spike, but which only exists from the perspective of the 14C-scale. The horizontal dotted line with arrow
indicates the reading direction.

To conclude these opening comments on the mathe-
matical problems encountered in 14C-calibration,
here is the explanation for the observed effects pro-
vided by Bernhard Weninger (1986.27): “A graphic
representation of calibrated dates based on Eucli-
dian geometry is not possible. Any method of map-
ping calibrated dates necessitates construction of
a non-linear picture of dating probability”.

In the following years, the approach by which 14C-
data are inversely calibrated from the perspective of
the calendric time-scale was quickly taken up by the
Radiocarbon Community. This approach, since ter-
med probabilistic or Bayesian, is schematically illu-
strated in Figure 4. The caption to this figure contains
some comments as to the existence of a remaining,
and rather awkward, normalisation problem.
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analysis can be performed. Quite unanimously, these
authors postulate that the future of 14C-analysis will
be a continuation of existing Bayesian calibration
concepts. Further to this point, Bronk Ramsey (2009)
notes that although a high degree of refinement is
still possible, Bayesian analysis of 14C-dates today is
a mature methodology sufficiently flexible for adap-
tation to future needs. We will return to these points,
later.

Terminology

Before continuing, our study at this point requires
some terminological clarification. In the mathemati-
cal sciences and perhaps most clearly in modern
physics, the meaning of the term classical is quite
specific, but it differs significantly from the use of
this term by contemporary Radiocarbon scientists.
To clarify this issue: in this paper, we use the word
classical in the sense it is used in quantum physics.
In quantum physics, and related mathematical stu-
dies, the term classical is used to describe the strik-
ing dichotomy between the purely probabilistic (clas-
sical) physical laws that govern (or appear to go-
vern) the macroscopic world, in contrast to the curi-
ously unexpected non-classical (quantum mechani-
cal) properties that emerge when a closer look is ta-
ken at the underlying microscopic properties of the
same world. Further, when the term classical is used
in quantum physics, the intention is to provide a con-
trast with the results of earlier (e.g., 18th and 19th

century) physics theory. Let us take as an example

(which will reappear later in our study) some physi-
cal measurements made on certain paired and con-
strained variables such as energy/time and position/
momentum. For these variables, as stated in the Hei-
senberg uncertainty principle, it is not possible to si-
multaneously measure the present position and mo-
mentum of a quantum-mechanical wave-particle, at
least not to unlimited precision, since any measure-
ment of the position of the wave-particle will strong-
ly influence its present momentum, and vice versa.
In particular, regardless of the ingenuity of the phy-
sical device that is constructed in an effort to avoid
measurement uncertainty, the uncertainty principle
also applies to the future values of these variables.
This was shown in the so-called ‘EPR-Gedankenex-
periment’ thought experiment (Einstein, Podolsky
and Rosen 1935).

The immediate analogy to EPR, and for radiocarbon
dating if only cum grano salis, is that it is equally
impossible to actually correct 14C-data for atmosphe-
ric 14C-variability. This might appear possible, since
the term radiocarbon calibration is often (mislea-
dingly) referred to as meaning ‘correction of atmo-
spheric 14C-variability’. However, in reality, there is
really nothing out there that could be corrected: we
can neither eliminate the disturbing atmospheric
14C-variations by any method, nor do we want to
change nature. What is actually meant by the term
correction is that we must allow for past fluctuations
of atmospheric 14C-levels in the construction of 14C-
based age models in archaeology.

Fig. 4. Schematic application of Bayes’ Theorem to the calibration of a Gaussian-shaped 14C-age distribu-
tion. For a calibration curve with extended plateau (e.g., 800–400 calBC) there are two (extreme-case)
possibilities of transferring a Gaussian shaped 14C-probability from the 14C-scale to the calendric time-
scale. (Right) The input Gaussian is divided into two halves in an effort to maintain Kolmogorov’s defini-
tion of probability as number 0 ≤≤ p ≤≤ 1. (Left) The plateau region (800–400 calBC) is assigned additional
probability. (Right) The resulting archaeological chronology contains artificial gaps. (Left) The archaeo-
logical chronology contains artificial enhancement. In both cases, a secondary correction of the chrono-
logy is required, the correct application of which is impossible since the true sample age remains un-
known. Graph redrawn from Weninger (1986.Fig. 11).
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The main point in terminology to be made here,
however, is that empirical observations exist whose
interpretation may be dependent (sometimes unex-
pectedly) on the order in which they were made. In
physics, as is well-known, the existence of noncom-
mutative variables was first discovered in the early
20th century. However, even before Heisenberg, the
study of noncommutative systems was an impor-
tant branch of mathematics. With research interest
increasing strongly in the 1950s, and as such paral-
lel to the study of Bayesian statistical theory, today
there are research departments with buildings in-
habited from top to bottom with mathematicians
whose research is dedicated to the study of noncom-
mutative systems. However, beyond the fact that
many people (subjectively) experience the proper-
ties of noncommutative variables as curious, in more
objective terms there is nothing unnatural about
them, although we need to familiarise ourselves
with their properties. We will take a closer look at
corresponding traits of 14C-dates below.

The radiocarbon interferometer

Continuing with such analogies, and as ‘Gedanken-
experiment’, we now introduce the concept that the
calibration system can be interpreted as a hypothe-
tical device which we call a radiocarbon interfero-
meter. As with the many devices developed in phy-
sics to study the complementary character of wave-
particles, in the following we use the radiocarbon
interferometer (RI) to observe what happens when
14C-dates are age-calibrated under controlled condi-
tions (Fig. 5).

For example, we may be interested in studying what
happens on age-calibration of a Gaussian-shaped
14C-scale probability when the shape of the calibra-
tion curve is varied. To this purpose, we can choose
a certain value on the 14C-scale, assign to this value
a measuring error, let the Gaussian enter the radio-
carbon interferometer, and observe its exit on the
calendric time-scale. Such an experiment can be per-
formed either on a macroscopic level by choosing a
measuring error that is large in relation to the am-
plitude of the calibration curve wiggles, or else on a
microscopic level, by assigning dating errors to the
Gaussian that are small in relation to the amplitude
of the calibration wiggles. All that we require in
order to run such experiments is corresponding soft-
ware. In the present paper, we use software called
CalPal (Weninger, Jöris 2008).

Radiocarbon calibration at the macroscopic
level
A simple model for what we mean by macroscopic
level is provided by a linear calibration curve, in
which case the calibration operator is commutative.
In general terms, on the macroscopic (linear curve)
level, we observe that the input-Gaussian is transfor-
med into an exit-Gaussian, i.e., nothing of much in-
terest happens: the input and output Gaussian have
the same shape (Fig. 5, Left). However, this situa-
tion changes significantly when dates are entered on
the microscopic level: We note both a (slight) bimo-
dal change in the shape of the calibrated Gaussian
in comparison to the input 14C-Gaussian, as well as
an emerging problem of how to define a central va-
lue for the calendric-scale probability distribution,
here indicated as a vertical line (Fig. 5, right).

Fig. 5. (Left) Radiocarbon interferometer with linear calibration curve (diagonal line) showing the trans-
fer of a Gaussian-shaped probability distribution from the 14C-scale (vertical axis) to the calendric time-
scale (horizontal axis). (Right) Radiocarbon interferometer with wiggly calibration curve. Note the slight-
ly bimodal change of the calibrated Gaussian compared to the input Gaussian, and an emerging (small)
offset of the median values (vertical lines) on the calendric time scale.
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Radiocarbon calibration at the microscopic
level
We define the term microscopic level for cases in
which radiocarbon study data show effects (whe-
ther in their statistical, geometrical or other prop-
erties) that can be attributed to the noncommuta-
tive character of the calibration operator. Whether
the data show these effects or not is largely a func-
tion of dating precision. To this specific point: whe-
reas it is impossible to recognise the atmospheric
14C-variations with single 14C-ages, this proves eas-
ier for larger data sets, and easiest when an inde-
pendent absolute chronology is available for purpo-
ses of comparison. In historical terms, the microsco-
pic level that we assign to radiocarbon analysis was
already reached around 1970, e.g., with the publi-
cation by Hans Suess of the first widely applied tree-
ring based 14C-age calibration curve (Suess 1970).
Using this curve, it was possible for the first time to
recognise the existence of secular fluctuations in the
global atmospheric 14C-level. The underlying 14C-
measurements have standard deviations in the or-
der of σ ~80 BP. However, a later paper by Arie de
Jong et al. (1979) entitled ‘Confirmation of the Suess
wiggles: 3200–3700 BC’ shows that it is no easy task
to differentiate conclusively between atmospheric
14C-variability and chance statistical effects in any
given data, even for high-precision 14C-measure-
ments (σ < 25 BP). This is further indicated by the
many papers published over the years in which sear-
ches to identify the atmospheric 14C-fluctuations in
the archaeological 14C-data have been undertaken.
The invariable problem lies in the differentiation be-
tween atmospheric 14C-fluctuations and chance sta-
tistical fluctuations of the study data.

By extension, we might even today expect difficul-
ties in recognising the atmospheric 14C-variations in
any given set of real archaeological 14C-ages. For
real data, the analytical challenge is to evaluate whe-
ther the observed data frequencies are due to the
underlying temporal spread of samples, the recon-
struction of which would be the analytical goal, or
not simply due to a) chance statistical effects, b) the
folding properties of the calibration curve, and also
– perhaps the most difficult to evaluate – c) the non-
commutative properties of the calibration operator
as implemented in the specific analytical methodo-
logy (software) used.

To begin, a clearly reliable differentiation between
atmospheric 14C-fluctuations and chance statistical
effects is only possible once the study data have suf-
ficient measuring precision. In physics, the effects as-

sociated with the noncommutativity of certain phy-
sical measurements were only recognised once a
microscopic level of sensitivity was reached. The
same applies to radiocarbon analysis, where the mi-
croscopic level is attained only for data with stan-
dard deviations in the range of σ ~80 BP, but the
smaller the better. Once the data have this precision,
then all sorts of interesting effects become apparent
on both time-scales (14C- and calendric), not only for
larger data sets, but also for single dates.

List of effects caused by the noncommutativ-
ity of radiocarbon calibration
Although all the effects caused by the noncommuta-
tivity of the calibration operator can be shown for
individual 14C-dates, to simplify matters they are in-
troduced in combination in Figure 6. For individual
dates, they can be listed as follows:
● dispersal of the exit-Gaussian and its separation

into different components on the calendric time-
scale;

● lateral shift along the calendric time-scale of the
calibrated median;

● dispersal and lateral shift of the area normalised
Gaussian also on the 14C-scale;

● separation of calendric-scale confidence intervals
into multiple disjunct regions;

● lock-in of numeric-values for confidence intervals
(e.g., 95% or 68%) that are used to abbreviate ca-
lendric-scale age distributions, also for multiple dis-
junct intervals;

● the ‘probability values’ assigned to these multiple
disjunct intervals seldom sum to 100%.

For larger sets of radiocarbon dates, these proper-
ties of individual 14C-ages combine to produce the
following new effects (Fig. 6):
● clustering of 14C-ages on the 14C-scale;
● clustering of readings on the calendric time-scale;
● attraction of 14C-ages towards predefined inter-

vals on the 14C-scale;
● attraction of calendric readings towards predefi-

ned intervals on the calendric scale.

The effects listed above are readily observable both
for individual 14C-dates and larger data sets, with no
restrictions. In the course of the last three decades,
many authors have reported on such properties of
14C-data.

A more complicated issue relates to the question
whether it is possible to correct for such effects, as
was proposed by Stolk et al. (1989; 1994) for the
widely used 14C-histogram method (e.g., Geyh 1969;
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1971; 1980; Jaguttis-Emden 1977; Breunig, 1987;
Weninger 1986; 1997; 2009; Gkiasta et al. 2003;
Collard et al. 2010). The underlying idea is to coun-
teract the artificial clustering of 14C-ages, which
show up quite clearly in many 14C-histograms, by
applying corrections to the histogram shape. This
appears possible, since the histogram shape can be
calculated to any degree of precision required, for
any assumed sample distribution. Hence, it seems
necessary only to reduce the histogram amplitude
for 14C-values that are known to be artificially en-
hanced (e.g., calibration curve plateaus) and to en-
hance the amplitude when the calibration curve is
steep (or has few wiggles). In practise, however, this
correction introduces an additional distortion of the
data frequencies, with an intensity that is typically
well beyond that of the initial distortion. This curi-
ous problem can be described as follows.

● A uniform age distribution on the calendric time-
scale translates into a non-uniform distribution on
the 14C-scale. Hence the (entire) 14C-scale histogram
can be corrected on that scale, by division by itself,
to produce a uniform 14C-distribution. Upon back-ca-
libration, the uniform distribution leads to a uniform
distribution on the calendric time-scale i.e. the cor-
rection appears practicable.

● However, real archaeological data sets contain
14C-ages with admixtures of many different standard
deviations. Hence, the necessary shape-correction
must be applied to each individual 14C-age. This is
technically possible, although it entails considerable
number-crunching, since the normalisation func-
tion must be calculated and applied to each 14C-
Gaussian individually. Alternatively, the shape cor-
rection can be performed on the individual age dis-
tributions, on the calendric time-scale. But the real
problem lies yet deeper: although 14C-histograms
may appear to be continuous, in fact they show a se-
quence of discrete events. Hence, in Bayesian ana-
lysis we must be cautious in the formulation of prior
expectations, since the law of large numbers is not
necessarily applicable. If applied, it may produce er-
roneous results. We further exemplify this particular
property of radiocarbon dates in an example below
(Fig. 7), and for cases where radiocarbon analysis is
taken to what we call the ‘high energy’ extreme.

To conclude the present paragraph, there are a num-
ber of analogies between the properties of 14C-ages
and corresponding observations made for other non-
commutative systems, e.g., in quantum physics. We
therefore feel it is legitimate to introduce the notion
that radiocarbon dates are ‘quantised’. However,

Fig. 6. The Radiocarbon in-
terferometer, showing the fol-
ding properties of the calibra-
tion curve for σσ = ± 50 BP.
The initial data entry is a set
of N = 700 samples artifici-
ally placed in decadel incre-
ments on the calendric scale,
and constructed to provide
an error-free uniform calen-
dric-scale sample distribution
(not shown, but would be a
horizontal line at 100% rel).
The 14C-histogram shows a se-
quence of peaks (e.g., at 6100,
4500, 4100, 2900, 2480 BP)
and troughs (not marked) on
the 14C-scale. Following the
back-calibration of the 14C-hi-
stogram, the calibrated age di-
stribution shows a sequence
of related peaks (e.g., at 5100,
3200, 2700, 1100, 600 calBC)
on the calenderic time scale. Normalisation (First Step): each individual 14C-Gaussian is divided by the
14C-histogram and the individually shape-corrected 14C-Gaussians are added on the 14C-scale. The result is
a uniform distribution on the 14C-scale (vertical line at 100% rel). Second step: on the back-calibration, a
uniform distribution is obtained in the calendric-scale (horizontal line at 100% rel). Note: this normali-
sation is hypothetical and only appears to work correctly (cf. text). The small vertical lines represent the
median values of the individual dates on both time scales. These lines cluster at peak-positions on both
scales. Calculations based on INTCAL86-data (Stuiver, Kra 1986). Redrawn from Weninger (1997).

weninger.qxd  21/11/2011  10:16  Page 9    (Black plate) a l t e n



Bernhard Weninger, Kevan Edinborough, Lee Clare and Olaf Jöris

10

there is the remaining question as to how the un-
certainty principle makes its appearance in the pro-
perties of calibrated 14C-data. We address this speci-
fic question further below.

Classical Bayesian concepts of radiocarbon
analysis

The concepts we are developing in this paper are
not necessarily in accord with contemporary no-
tions held by The Radiocarbon Community. As al-
ready noted above, according to Bayliss (2009),
Blockley and Housley (2009), and Bronk Ramsey
(2009), the Bayesian dating methodology already
provides a coherent conceptual framework in which
essentially any kind of 14C-analysis can be perfor-
med. Further to this point, Bronk Ramsey (2009)
notes that, although a high degree of refinement is
still possible, Bayesian analysis of 14C-dates is al-
ready now a mature methodology. This is indicated
by the wide variety of existing software that allows
for increasingly advanced Bayesian 14C-analysis (soft-
ware: e.g., BCal; BWigg; CALIB; CalPal; OxCal; cf.
Blaauw et al. 2007; Bronk Ramsey, 1994; 1995;
2009; Buck et al. 1996; 1999; Buck 2011; Buck et
al. 2008; Christen 1993; Christen et al. 1995; Danze-
glocke et al. 2007; Jones, Nicholls 2003; Parnell et
al. 2008; Reimer, Reimer 2011; Stuiver, Reimer
1993; van der Plicht 1993; 2011). We can indeed
follow all these many authors in their largely unani-
mous judgement concerning the usefulness, wide
applicability, and flexibility of the Bayesian calibra-
tion methodology. However, problems remain as to
certain mathematical properties of radiocarbon data,
e.g., how to adequately define concepts such as mean
value, median, confidence interval, and also in view
of what the word probability really means when ap-
plied to calibrated 14C-ages. Following some twenty
years of research in the development of Bayesian
concepts of 14C-analysis, we now step back again to
the early 1990s to look at the concepts underlying
Bayesian 14C-modelling in its very earliest develop-
mental stage.

Although seldom cited, one of the very first applica-
tions of the Bayes Theorem to radiocarbon calibra-
tion was undertaken by Thomas R. Niklaus, who –
in the early 1990s – was compiling his PhD thesis at
the Radiocarbon Laboratory of the ETH-Zürich (Eid-
genössische Technische Hochschule) in Switzerland.
In his PhD, Niklaus (1993) covers technical aspects
of the new 14C-AMS-dating method, as well as the de-
velopment of 14C-age calibration software. With re-
spect to the calibration approach, Niklaus provides

two different but complementary formulations of
Bayes Theorem. In a first step, he introduces the ba-
sic Bayesian concepts in terms of set theory (cf.
Equation 4), and in a second step, he translates these
concepts to achieve an integral equation (cf. Equa-
tion 5) into which any requested 14C-age distribu-
tion can be entered, e.g., Gaussian, in order to achi-
eve a calibrated age distribution.

“Die Wahrscheinlichkeit von X unter der zusätz-
lich erfüllten Bedingung Y wird als bedingte Wahr-
scheinlichkeit von X unter der Hypothese Y defi-
niert. Die bedingte Wahrscheinlichkeit X lässt sich
aus der Wahrscheinlichkeit für die Hypothese Y
und der Wahrscheinlichkeit für die Ereignisse X
und Y berechnen, wobei direkt daraus das Multi-
plikationsgesetzt {typo: correct would be Gesetz}
für bedingte Wahrscheinlichkeiten folgt (Eadie et
al. 1971).” (Niklaus 1993.68).

“Entsprechend der bedingten Wahrscheinlichkeit
lässt sich eine bedingte Wahrscheinlichkeitsdichte
definieren. Für die bedingten Dichten gilt das fol-
gende Bayes’sche Theorem, welches den Zusam-
menhang zwischen der Wahrscheinlichkeitsdichte
für X unter der Hypothese Y und der entsprechen-
den bedingten Dichte für Y liefert.” (Niklaus 1993.
68).

Again we are interested in mathematical syntax, not
in probability semantics. Hence, we cite here the ori-
ginal German translation of Bayes’ Theorem as gi-
ven by Niklaus (1993), and have therefore not re-
moved the typo of Multiplikationsgesetzt (correctly,
Multiplikationsgesetz) i.e. the product rule for pro-
babilities. This typo is understandable, since Gesetz
means ‘law’, and gesetzt means ‘to put’. What is im-
portant is the introduction of the conditional proba-
bilities P(X|Y) and P(Y|X), in German bedingte
Wahrscheinlichkeiten. Note, Bayes Theorem is for-
mulated here without requiring the proportional
symbol ‘∝’ (cf., above, Equation 2). Interestingly,
when applying Bayes’ Theorem to provide a mathe-
matical background for radiocarbon calibration, Ni-
klaus (1993) apparently regards it as sufficient to re-
ference a standard statistics text-book (Eadie et al.
1971), ‘Statistical Methods in Experimental Physics’,
in which the concept of probablility is introduced as
a conditional probability. This is quite in accord with

(4)

(5)
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the approach taken in the present paper. On this
point, we make specific reference to Popper (1934).
After studying in detail the meaning of the term pro-
bability in the empirical sciences, Popper concludes –
in his Logik der Forschung – that probability can al-
ways (even in quantum physics) be interpreted as
conditional probability.

Due to this restriction of Popper’s research (to the
1930s), we feel it useful to provide a more recent
perspective. The question of whether – or not – the
probabilistic calibration method can be derived from
classical probability theory was first addressed in a
seminal paper by Herold Dehling and Hans van der
Plicht (1993.244): “Calibration of radiocarbon
dates involves the transformation of a measured
14C age (BP ± σ) into a calibrated age distribution
(cal AD/BC range). Because of the wiggly nature
of the calibration curve, the correct procedure to
obtain calibrated age ranges and confidence inter-
vals is not straightforward. Mathematical pitfalls
can cause calibration procedures to contradict
classical formulas. We show that these ambiguities
can be understood in terms of classical and Baye-
sian approaches to statistical theory.

The classical formulas correspond to a uniform
prior distribution along the BP axis, the [Bayesian]
calibration procedure to a uniform prior distribu-
tion along the calendar axis. We argue that the lat-
ter is the correct choice, i.e. the [Bayesian] compu-
ter programs used for radiocarbon calibration are
correct”.

Whereas the first of the above excerpts substantiates
the earlier observations made by Stuiver and Rei-
mer (1989), Pazdur and Michczynska (1989), and
Weninger (1986), in the second, Dehling and van
der Plicht (1993) use the word classical to differen-
tiate between two alternative calibration strategies.
Whilst the first strategy – calibration from the per-
spective of the 14C-scale – is referenced to classical
statistical theory, the second – calibration from the
calendric time-scale perspective – is referenced to
Bayesian theory. In effect, Dehling and van der
Plicht (1993) implement the term classical to em-
phasise the significance of the Bayesian approach in
comparison to earlier approaches. An alternative
use of the term classical is noted in Bronk Ramsey
(2009), who states that whereas classical probability
theory is aimed at hypothesis testing, the specific idea
underlying Bayesian theory is to promote the deve-
lopment of new ideas; however, he often also stres-
ses the non-classical status of Bayesian theory.

In our view, however, it is neither adequate nor
important to differentiate between classical and Ba-
yesian probability theory in this manner. Clearly,
the classical theory deserves to be called classical. As
goes for Bayes’ Theorem, the underlying probabi-
lity concepts can also be derived from classical the-
ory. In strong contrast to the terminology introdu-
ced here by Dehling and van der Plicht (1993), in
our view the classical version of probability theory
is one that uses commutative variables i.e. the clas-
sical version represents a rather restricted (special)
case of a more general formulation of probability
theory which is capable of analysing noncommuta-
tive variables. The question is how to provide a ma-
thematically acceptable foundation for noncommu-
tative calibration analysis.

Noncommutative Bayesian concepts of radio-
carbon analysis

As indicated by a web-search for topics such as non-
commutative quantum theory or – more directly –
in search of the code-word noncommutative Baye-
sian probability, due to the large number of hits, it
immediately becomes clear that mathematical re-
search in this field is widely established and rapidly
expanding on a global scale. It is nevertheless dif-
ficult to find an elementary introduction to these to-
pics. What we must mainly take into consideration,
however, is the existence of some flourishing and
even controversial discussions in these fields. In the
following paragraph, as exemplification, we provide
a brief and comparative review of studies underta-
ken by Miklos Rédei (Faculty of Natural Sciences, Lo-
ránd Eötvös University, Hungary) and by Giovanni
Valente (Philosophy Department, University of Mary-
land, USA). Although both authors address the same
question, they come up with entirely different con-
clusions (Rédei 1992; Valente 2007).

The question, as initially put forward by Rédei
(1992) in a paper entitled ‘When can noncommu-
tative statistical inference be Bayesian?’ relates to
the possibility of extending the concepts of classical
Bayesian inference to allow for noncommutative va-
riables. To this aim, Rédei introduces the notion that
an abstract rational person (thereafter called ‘agent’)
may exist – at least in theory – who is capable of
ideally logical thinking. The agent can change his
opinion when confronted with some previously un-
available information. We may quantify the agents’
initial degree of belief in event E by assigning to it
probability p. Based on some new information, the
agent changes his opinion to p’ (i.e. p –> p’). By ap-
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plying Bayes’ rule, this change in opinion can be for-
mulated as follows:

To begin, probabilities p and p’ are assumed to be
defined on a Boolean (commutative) algebra S which
contains events E (= Evidence) and other events x.
We introduce brackets ‘()’, and call the bracketed
events (x) conclusions. Initially, the conclusion (x)
is supposed to be true (i.e., p(x) = 1), but this can
change in view of new evidence E, in which case the
conclusion (x) may be conditionalised (xE) to pro-
vide a revised probability p(xE).

As a ‘Gedankenexperiment’ devised to allow for the
existence of multiple logically disjunct calibration
readings (we may also call E) – let us now allow the
agent to review his initial degree of belief (p’) in the
light of the same evidence E, which is put forward
a second time. To allow for this ‘new’ evidence, we
further conditionalise (xE) (Equation 5) by including
a second E i.e. (xE) –> (xEE) (Eq. 7).

Since the agent is not provided with different infor-
mation, on learning a second time of evidence E, he
does not have to change his opinion and therefore
concludes that p’’(x) is identical to p’(x). Although
this stability seems to be essential in Bayesian statis-
tical inference, according to Rédei (1992) it does not
necessarily apply to the case that the study events
are defined for a noncommutative algebraic space
(e.g., von Neumann). Given such an algebra, in which
the derived probabilities depend on the order in
which the events are observed, it may well be the
case that p’’≠ p’ rather than p’’ = p’. Having reached
this point in his discussion, Rédei (1992) makes re-
ference to the Takesaki Theorem (Takesaki 1972)
and concludes there is no satisfactory (i.e., inferen-
tially stable) solution to the problem. In direct ana-
logy, since the events derived from radiocarbon cali-
bration also belong to a noncommutative algebraic
space, following Rédei we could now conclude that
mathematics does not allow the application of Ba-
yes’ Theorem in radiocarbon analysis. As mentio-
ned in the introduction, Popper was never satisfied
with the manner in which the Kolmogorow axioma-
tic theory of probability is founded in (commuta-
tive) Boolean algebra. Indeed, in view of the above
arguments, his critical notions appear well-founded,

all the more since they apparently apply even to the
more general (noncommutative) case.

A significant objection to these notions is provided
by Giovanni Valente, however, and his arguments
are of immediate relevance to our studies. To begin,
Valente (2007) accepts the introduction of a Baye-
sian agent capable of ideally logical thinking. We
note a change in the agents’ gender from male (Ré-
dei 1992) to female (Valente 2007), which we adopt
in the following. The main point made by Valente
(2007) is that – due to the uncertainty principle – in
quantum-mechanical experiments the agent cannot
be presented with the same evidence, twice. As such,
she is never confronted with the conflict scenario,
described above, at least not in quantum physics
(the topic of Valente’s paper). Apparently, even un-
der extreme logical pressure, the agent can always
retain her capacity for rational statistical inference.
However, this should not be interpreted such that
Rédei’s arguments are wrong. Simply, according to
Valente (2007.840), “the fact that one cannot have
the same evidence twice implies that the stability
condition is not applicable in quantum mechanics.
Hence ... if the rationality constraint does not ap-
ply, one cannot claim its failure”. The analogy to
radiocarbon analysis would be that, whenever radio-
carbon measurements for the archaeological event-
space are replicated, the agent may rationally expect
to obtain the same set of 14C-ages, hence – by impli-
cation – the same set of calendric time-scale read-
ings.

To sum up, assuming that these arguments (which
we have greatly simplified) may be applied to radio-
carbon calibration, which we consider reasonable,
statistical inference can always (i.e. even for non-
commutative systems) be formulated within a Baye-
sian framework.

We raised the question above, of how to obtain a
mathematically acceptable foundation for radiocar-
bon calibration. We conclude this already exists – in
Bayes’ recipe – and by which we confirm a subset of
statements recently made by Bayliss (2009), Block-
ley and Housley (2009), and Bronk Ramsey (2009)
in the 50th Birthday Anniversary edition of the Ra-
diocarbon Journal (Vol. 51, Nr. 1). As it appears, Ba-
yesian calibration analysis is indeed sufficiently fle-
xible to allow for all future refinements in radiocar-
bon dating, and this includes its necessary refor-
mulation to allow for the noncommutative algebra
of radiocarbon calibration. The question remains:
are the results of contemporary Bayesian analysis

(6)

(7)
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correct? To be as clear as possible on this point: it
is not necessarily the numerical output of available
Bayesian calibration software packages that are the
immediately critical issue (they can be tested cf. Ste-
ier, Rom 2000). The crucial question is to identify
the (forecast) effects of the uncertainty principle in
the properties of calibrated 14C-data.

Technical issues

Pearson theorem
Certainly, there are some technical issues still to be
addressed, such as whether or not to assign disjunct
confidence intervals to calibrated data. As applies
to the calibration of single 14C-ages, we presently
prefer to use only the outermost confidence inter-
vals. It is then possible to “leave the probability di-
stribution within calendrically converted band-
widths to the statisticians” (Gordon Pearson 1987.
103). This is a visionary statement that we (infor-
mally) call Pearson’s Theorem (for an application,
cf. below). Nonetheless, the rapidly increasing pre-
cision and accuracy obtained for 14C-measurements
leads, at the latest when reaching high-precision (σ
< 25 BP), to a stabilisation of the often rather ill-de-
fined disjunctness of the multiple calendric-scale in-
tervals. This problem has a practical and a theoreti-
cal component. The practical component is that,
when applied to lower precision 14C-dates, the ob-
tained list of confidence intervals is often so long as
to be unreadable, if not meaningless. For an ideally
historical agent (who can anticipate future revisions
in the applied calibration curve) the solution would
to be to cite only the conventional 14C-ages and cor-
responding laboratory code, both of which are his-
torically stable variables.

The second component refers to the problem that,
for calibrated age distributions which are often mul-
timodal, qua statistical theory it is not possible to
define a meaningful ‘±1 σ’ (68%-confidence) value.
A practical solution is to assign a rectangular prob-
ability distribution to the 14C-age, collect a corre-
sponding rectangular distribution on the calendric
time-scale, and then apply Pearson’s Theorem to its
interpretation.

‘Görsdorf’ theorem
For larger sets of data, an analogous notion we call
the ‘Görsdorf’ Theorem is to imagine that the curve
represents the “envelope over all possible sample
distributions” (pers. comm., Jochen Görsdorf). This
theorem has recently been generalised by Franz We-
ninger and other members of the Vienna Environ-

mental Research Accelerator (VERA) to allow for Ba-
yesian Sequencing. Although mathematically rather
demanding, by introducing a large (‘infinite’) num-
ber of differently shaped prior distributions to work
around the intrinsic arbitrariness of Bayesian se-
quencing based on only one prior, it does seem pos-
sible to establish robust Bayesian analysis as a safe
sequencing method for 14C-dates (Weninger et al.
2010).

A case study in quantum-theoretical Bayesian
calibration

Within the context of the present paper, the follo-
wing two questions deserve more detailed evalua-
tion: 1) Is it possible to reconstruct the unknown
sample distribution by shape-analysis of the corre-
sponding 14C-histogram (Stolk et al. 1989; 1994);
and perhaps the most compelling question 2) are
there any indications, as forecast by the noncommu-
tative character of the calibration operator, that ra-
diocarbon data show properties that may relate to
the quantum-theoretical uncertainty principle? A
simultaneous answer can be given to these two que-
stions. This is exemplified in a recently published
study by James Steele (2010) in which a direct com-
parison between the chronological results achieved
using different software (CALIB, OxCal, CalPal) for
a set of N = 628 archaeological 14C-ages (cf. Bucha-
nan et al. 2011) is provided (Fig. 7).

When produced with OxCal, (Steele (2010) uses
Bronk Ramsey (1995; OxCal version 4.1b3) and CA-
LIB (Steele (2010) uses Stuiver et al. (2005; version
5.0), the cumulative data distributions show con-
spicuous peaks on the calendric time-scale around

~12.9 ka, 11.3 ka, 10.2 ka, 9.5 ka calBP (Fig. 7).
Analysing the same data with CalPal, these peaks
are virtually non-existent. Steele (2010.7) comments
quite critically on this finding as follows: “It is im-
mediately obvious that the CalPal output publi-
shed by Buchanan et al. (2008) has not summed
the calibrated probability distributions in the same
ways as Calib and OxCal, and that this will have
had a significant influence on any visual inference
of peaks and troughs in event density. A similar
observation about CalPal’s idiosyncratic smooth-
ing algorithm was already made by Culleton
(2008).”

Regarding this second reference, Brendan Culleton
(2008.E111) indeed mentions that: “… CalPal ap-
plies a smoothing algorithm to the summed-prob-
ability distribution which levels out several sharp
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peaks in the true distribution. The result is an in-
sensitive, low-fidelity population proxy incapable
of detecting demographic change.”

However, neither of the two authors provides evi-
dence for their claim that CalPal smoothes away
some otherwise important peaks in the calibrated
age distribution. An alternative interpretation is to
take this example as an experimentum crucis to lo-
calise the exact position within Bayesian calibration
methodology where the effects of the quantum-the-
oretical uncertainty principle become apparent.

Clearly, the four peaks are an artefact of the speci-
fic Bayesian algorithms implemented in OxCal and
CALIB, but differently in CalPal. This becomes ap-
parent when the age distributions are plotted against
the relevant section of the relevant
14C-age calibration curve (INTCAL04).
It then becomes visible that the
peaks at ~12.9 ka, 11.3 ka, 10.2 ka,
9.5 ka calBP are all positioned along
the steepest sections of the 14C-age
calibration curve (Fig. 7, upper).

In OxCal and CALIB, a uniform prior
is applied to the data frequencies
based on the (plausible) assump-
tion that all calendric ages have
equal dating probability. Mathema-
tically, the implementation of this
prior involves providing an equal-
area normalisation to the dates.
Whether the normalisation is under-
taken on the 14C-scale or on the cal-
endric scale is of little consequence.
Both are technically possible, and in
both cases the normalisation corre-
sponds to the same assumption, na-
mely that it is possible to simulta-
neously correct both the shape of
the 14C-histogram and the shape of
the calibrated data frequency distri-
bution in order to allow for its dis-
tortion due to the non-linearity of
the calibration curve. In contrast to
this intention, what actually hap-
pens as a result of frequency norma-
lisation is that the distortive effects
are further enhanced. As such, in-
stead of the intended correction, the
frequency normalisation actually
over-corrects the data to an unaccep-
table degree.

The question at stake is on which of the two scales
– if any – should the corrections be applied? OxCal
and CALIB both make use of a uniform prior on the
calendric scale, and apply corresponding corrections
to the posterior data frequency on the calendric
time-scale. In CalPal the underlying Bayesian as-
sumption is that, similarly, both on the calendric-
scale and on the 14C-scale, there exists a uniform
prior dating probability. However, since this double
a priori assumption is neither plausible nor vali-
dated by archaeological reasoning, CalPal does not
apply the resulting correction to the posterior data
frequency, i.e. the 14C-histogram is simply transfer-
red from the 14C-scale to the calendric time-scale
without further correction (by applying Görsdorf’
Theorem cf. above). From a (classical) Bayesian per-
spective, this approach may appear to be contradic-

Fig. 7. Cumulative probability distributions, each calculated for
the same N = 628 14C-ages using different software (CALIB, OxCal,
CalPal). Shaded areas put focus on the correlation of peaks with
steep sections of INTCAL04. Graph redrawn from Steele (2010.
Fig.5). (Upper) Insertion of INTCAL04 calibration curve (Reimer et
al. 2004).
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gy. In particular, whereas at low energies the wave
character of elementary particles is the most appa-
rent, the particle character becomes increasingly
more apparent at higher energies. Taken to the ex-
treme, when a certain energy limit is reached, the to-
tal energy can – and quite often actually does – allow
for the production of new particles. Obviously, we
are using such analogies to radiocarbon data really
only cum grano salis, but nevertheless, it is interes-
ting to apply such concepts to radiocarbon dates.
The direct analogy to radiocarbon dates would be
to associate their energy-content with the precision
of the 14C-measurements. With this analogy, what
we would expect is that, when increasingly smaller
standard deviations are applied to the 14C-scale Gaus-
sian distribution, the larger and more apparent
should be the forecast quantum-theoretical effects.

In a further ‘Gedankenexperiment’, again using the
hypothetical radiocarbon interferometer as an expe-
rimental device, let us analyse what happens when
calibrating a Gaussian shaped 14C-scale probability
distribution, when only the measuring precision of
raw data underlying the calibration curve is taken
to an extreme. In this case, the calibration curve
could well take on a (hypothetical) zigzag shape as
illustrated in Figure 8.

Although the calibrated age distributions show
strong oscillations, the forecast particle character
does not yet become apparent. In a second ‘Gedan-
kenexperiment’, let us therefore simultaneously ma-
ximise both the measurement precision of the cali-
bration curve and the precision of the archaeologi-
cal 14C-ages to be calibrated.

The results are now as forecast. As illustrated in Fi-
gure 9 for each of the two independently measured

Fig. 8. (Left) Zoom into the presently recommended 14C-calibration curve (INTCAL09) showing underlying
raw data of the High-Precision Laboratories Belfast, Seattle and Heidelberg. (Right) Hypothetical zig-zag
calibration curve.

tory. As argued above, however, the ultimate prob-
lem is that there is a noncommutative algebraic re-
lation between the two scales.

In mathematical terms, whereas OxCal and Calib are
based on a classical Bayesian approach to 14C-cali-
bration, CalPal applies non-classical quantum-theo-
retical (QT) Bayesian probability concepts. The un-
certainty relation well-known in quantum physics
thus re-appears, within the framework of QT-cali-
bration, in the manner that a simultaneously correct
measurement (or reconstruction) of data probability
functions, on the two time-scales, is not possible. In-
terestingly, in QT-calibration, the uncertainty rela-
tion is one- and not two-sided i.e. we can calculate
the shape of the 14C-scale frequency distribution per-
fectly for any given set of calendric-scale events, but
not the reverse.

Radiocarbon calibration at the sub-microsco-
pic level

In the following (final) paragraph, by taking radio-
carbon calibration to the sub-microscopic level, we
turn our attention to the future of Bayesian radio-
carbon analysis. Above, we have made repeated use
of certain analogies between the noncommutive pro-
perties of the calibration operator and of correspon-
ding properties of waves and particles in quantum
physics. In extension, and by taking these analogies
both seriously and one step further, we may now
forecast that radiocarbon dates (alias wave-particles)
should actually show further effects, but which can
only become apparent when the associated ‘energy’
is taken to the extremes. In physics, the energy as-
sociated with a wave-particle is related to the fre-
quency of the wave, such that the higher the fre-
quency of the wave, the higher the associated ener-
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‘high-energy’ 14C-dates (Dates A and
B), what we observe is that corre-
sponding readings in the calendric
time-scale are now clearly seperated,
i.e. they show no temporal overlap.
The readings attributed to the two
different Dates (A and B) also show
no temporal overlap.

In effect, at the ‘high energy’ ex-
treme – although only single (14C-
scale) particles have been entered
into the radiocarbon interferometer
– the noncommutative properties of
the calibration operator (and corre-
sponding folding properties of the
calibration curve) are now sufficient-
ly strong to produce some previous-
ly non-existant particles ‘out of a va-
cuum’ on the calendric time-scale.

We may now re-formulate the question whether –
or not – a correction of the 14C-histogram shape (or
corresponding shape of the calibrated frequency di-
stribution) to allow for the folding properties of the
calibration curve is possible. As already noted above,
the correction must be applied to the probability di-
stribution for each individual date. Now that the di-
stribution is reduced to a series of digital ‘true-false’
(yes-no; 1/0) decisions (Fig. 9), it becomes apparent
that the correction – to be applicable – must assign
an individual truth-value to each of the alternative
readings. Since the readings are mutually exclusive,
only one of these values can be ‘true’. If this cannot
be achieved, the analysis will produce contradictory
results, at least if we apply the notion that a propo-
sition is either true or false, and that a third solution
does not exist. This would accord with the tertium-
non-datur of scholastic logic, in which the statement
(A and ¬ A) always has the truth-value ‘false’. How-
ever, in radiocarbon calibration, we must allow for
a third possibility: the truth-value assigned to any
specific calendric age interval may remain unknown.
As it appears, therefore, once the ‘high-energy’ ex-
treme is reached, the analysis is immediately con-
fronted with a Bayesian inference problem (as de-
scribed above):
❶ Since there is no temporal overlap of the event

sequence (Fig. 9), conditional multiplication of
the associated probabilities will always produce
the value p = 0.

❷ Since the number of events greatly increases with
the number of curve-wiggles, and in particular,
faster than we may (perhaps) be able to provide

additional 14C-ages (or other conditional dating
information) from the archaeological stratigraphy,
perhaps we may never be able to provide a suf-
ficient number of 14C-ages to catch up with the
number of readings. Looking back at what Rédei’s
agent would have concluded when confronted
with the same information twice (or even more
often), it appears – maybe even more frustrating
(Rédei 1992.2) – that the noncommutative char-
acter of the calibration operator is not even sta-
ble, but can vary strongly along the calendric-time
scale (i.e. within the limits of the non-Boolean
algebra as given by the tree-ring 14C-age calibra-
tion data set). Fortunately, again following Ré-
dei (1992.5), we may disregard this specific prob-
lem, since one does not expect mathematical theo-
rems to give insight into the psychological pro-
cesses of the human mind.

Conclusions

The last ‘Gedankenexperiment’ takes us to the very
limits of radiocarbon dating. Having arrived at this
critical point, we must now emphasise that – even
under such extreme analytical conditions – we have
no reason to seriously question the applicability of
the Bayesian approach to radiocarbon analysis. To
be sure, as recently pointed out again by Peter Steier
and Werner Rom (2000), there are many applica-
tions where the prior information necessary to de-
limit the number of disjunct readings is known in
full detail (e.g., in tree-ring ‘wiggle matching’). In
such cases, the available information can be trans-
formed into a Bayesian mathematical form which is

Fig. 9. Radiocarbon calibration at ‘high energy’.
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capable of providing a closed (although not always
unique) mathematical solution to the dating prob-
lem (Bronk Ramsey et al. 2001). Concerning Baye-
sian sequencing, the advantage of this method is
that it is state-of-the-art; however, it will surely be
advantageous to develop graphic methods that allow
the user to actually visualise its chronological (quan-
tum) limits. Although a challenging undertaking, this
would also provide a solution to the problem that
– under certain conditions – Bayesian sequencing is
known to optimise the precision of the dating at the
expense of its accuracy (Steier, Rom 2000).

What archaeologists can do in support of such futu-
ristic efforts is to provide Bayesian sequencing with
as much (quantitative) archaeological input as pos-
sible, along with correspondingly complete error
analysis. Such information may be derived e.g., by
careful selection of single-event samples from high-
resolution archaeological stratigraphies, by the ap-
plication of pottery (or other) seriation, by sequen-
cing of samples with well-defined positions in Har-
ris matrices, and – last, but not least – by the deve-
lopment of architectural (e.g., house construction,
use, destruction, abandonment) as well as cultural
(e.g., demographic) archaeological models. By way
of the rule ‘the higher the requested dating preci-
sion, the more samples must be dated to circum-
vent the simultaneously increasing number of wig-
gles’, it may also be necessary to convince funding
agencies that such dating efforts are really worth-
while.

Most importantly, however, perhaps we should not
overlook the simple fact that it has never been clai-
med that Bayesian analysis can provide a closed so-
lution to all archaeological applications, under all
circumstances. The Bayesian method began as an en-
tirely probabilistic approach some 250 years ago
(Bayes 1763), was further developed as such by ma-
thematicians to allow for the incorporation of revi-
sed probability concepts (e.g., Kolmogorov’s axioma-
tic foundation of commutative probability theory),
and has even survived the many (still running) in-
tellectual revolutions in physics and science-philo-
sophy that resulted from the introduction of non-
commutative probabilities.

We have formulated our studies in (hopefully) un-
derstandable language, such that radiocarbon sci-
entists and archaeologists alike may be interested
in their critical evaluation. If there is need for some
clearly formulated single conclusion, it would be as
follows: In the past, radiocarbon dating probability
was taken to represent a value (number) attributed
to each interval of the calendric time-scale. We need
not change this notion. The new quantum probabi-
lity is again a number. However, it is no longer valid
to assume that the larger this number, the more pro-
bable the dating.

We wish to thank Professor Mihael Budja for encoura-
ging these studies.
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