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Abstract

We study tent map inverse limits, i.e. inverse limits of inverse
sequences of unit segments I with a tent map being the only bonding
function. As the main result we identify an infinite family of curves in
I? such that if top points of graphs of tent maps belong to the same
curve, the corresponding inverse limits are homeomorphic, and if they
belong to different curves, the inverse limits are non-homeomorphic.
The inverse limits corresponding to certain families of top points are
explicitly determined, and certain properties of the inverse limit are
proved in the case of (0,1) as the top point.

1 Introduction

Continua as inverse limits have been studied for a long time. One reason
for such intense research in this area is the fact that inverse sequences with
very simple spaces and simple bonding maps can give extremely complicated
continua as their inverse limits. The inverse limits may be both complicated
and useful even in the case, when all the spaces are unit intervals [0, 1]
and all the bonding functions are the same. Such inverse sequences and
their inverse limits play an important role in the continuum theory as well
as in the theory of topological dynamical systems. They also appear in
applications in such diverse areas as economy, mechanics of fluids, physics
and more; see [34, 36, 37, 38, 40, 41].
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Even such a simple case when the graph of the bonding function is the
union of two segments may be highly non-trivial. Such functions are called
tent maps and they are the main object of our study. In Definition 1.1 we
introduce the basic notation related to them, which we use later in the

paper.

Definition 1.1. For any a,b € [0,1], the tent function f( : [0,1] = [0, 1]
is defined as the set-valued function with the graph I'( f(4,)) being the union
of the segment (possibly degenerate) from (0,0) to (a,b) and the segment
(possibly degenerate) from (a,b) to (1,0). The point (a,b) is called the top
point of the graph I'(fy ). The inverse limit obtained from the inverse
sequence of closed unit intervals [0,1] and the bonding function f(,p) is
denoted by
Kap) = Imf[0,1], flap) fntr-

Note that f(,p is single-valued if and only if a ¢ {0,1} or (a,b) €
{(0,0), (1,0)}.

The first and the most famous example of continua K,y is K 11y called
the Brouwer-Janiszewski-Knaster continuum or sometimes just the Knaster
continuum.

The whole family of continua K(%vb), % < b <1, has been called Knaster
continua and the famous Ingram conjecture, stated in 1992, claimed that
all of them are pairwise non-homeomorphic. It generated a large number
of articles, such as Barge, Brucks, Diamond [6], Barge, Diamond |8, 9],
Barge, Jacklitch, Vago [10], Barge, Martin [11, 12, 13|, Block, Jakimovik,
Kailhofer, Keesling [14], Block, Keesling, Raines, Stimac [15], Brucks, Bruin
[16], Brucks, Diamond [17|, Bruin [18, 19, 20|, Collet, Eckmann [22|, Good,
Knight, Raines [26|, Good, Raines [27|, Kailhofer [32, 33|, Raines [47],
Raines, Stimac |48, 49|, Stimac [50, 51, 52, 53|, Swanson, Volkmer [54],
and others, in which certain special cases of the conjecture were proved.
Finally, the conjecture was proved in 2009 by M. Barge, H. Bruin and S.
Stimac [7].

In spite of such great effort and many obtained results the complete
classification of all inverse limits K'(,p) is still an open problem. In this
paper we continue the study of inverse limits of tent maps f,3 and their
classification.

Note that in some cases the tent maps are not single-valued and therefore
the concept of inverse limits of inverse sequences with upper semicontinuous
set-valued bonding functions is needed. Such a generalization of the concept
of inverse limits was introduced in [31, 39| by W. T. Ingram and W. S.



Towards the complete classification 3

Mahavier. They gave conditions under which the inverse limit of an inverse
sequence of Hausdorff spaces with upper semicontinuous set-valued bonding
functions is a Hausdorff continuum, provided some interesting examples of
such inverse limits, and discussed their dimension. The concept of these
generalized inverse limits has become very popular since their introduction
and has been studied by many authors and many papers appeared; for
examples see [1, 2, 3, 4, 5, 21, 23, 29, 30, 31, 35, 39, 45, 46, 55|.

2 Definitions and notation

Our definitions and notation mostly follow [31] and [43].

A continuum is a nonempty, compact and connected metric space.

Let W = {(z,sini) € R* | 0 < z < 1}. Any continuum homeomorphic
to CI(W) is called a sint-continuum.

A harmonic fan is any continuum, homeomorphic to the continuum,

defined as the union (U K, | UK, where for each n, K,, is the segment in
n=1

the plane from (0,0) to (1,2), and K is the segment from (0,0) to (1,0).
Let (X, d,,) be a sequence of metric spaces, where all metrics are bounded

by 1. Then
D(,’L‘,y) — Sup {dn(znayn) } ,
nef{l1,2,3,...} n

where © = (21, 29,23, ...), ¥y = (Y1, Y2, Y3, - . .), will be used for the metric on
the product space HX" (it is well known that the metric D induces the

n=1
product topology |24, p. 190], |42, p. 123]).
If (X,d) is a compact metric space, then 2% denotes the set of all
nonempty closed subsets of X. Let for each € > 0 and each A € 2%

Ny(e,A) ={z € X | d(z,a) < ¢ for some a € A}.

We will always equip the set 2% with the Hausdorff metric Hy, which is
defined as

Hy(H,K) =inf{e > 0| HC Nye,K), K C Ny(e, H)},

for H, K € 2. Then (2%, Hy) is a metric space, called the hyperspace of the
space (X, d). For more details see [28, 43].

Let X and Y be compact metric spaces. A single-valued function f :
X — 2¥ is also called a set-valued function f : X — Y. A set-valued
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function f : X — Y is upper semi-continuous (abbreviated w.s.c.) if for
each open set V C Y the set {x € X | f(z) C V} is an open set in X.

The graph T'(f) of an u.s.c. set-valued function f : X — Y is the set of
all points (x,y) € X x Y such that y € f(z).

Ingram and Mahavier gave the following characterization of u.s.c. func-
tions [31, p. 120]:

Theorem 2.1. Let X and Y be compact metric spaces and f: X — Y a
set-valued function. Then f is u.s.c. if and only if its graph I'(f) is closed
in X xXY.

In this paper we deal with inverse sequences { Xy, fn}22,, where X,, are
compact metric spaces and f, : X1 — X, are u.s.c. set-valued functions.
We denote {X,,, f,}>, also by

x,Lx, Ex, &

The inverse limit of an inverse sequence {X,, f,}>2, is defined to be
the subspace of the product space [[7_, X, of all x = (x1,22,23,...) €
[, X, such that z,, € f,(x,41) for each n. The inverse limit is denoted
by l&q{Xm fn}22 ;. The notion of the inverse limit of an inverse sequence
with u.s.c. bonding functions was introduced by W. S. Mahavier in [39] and
W. T. Ingram and W. S. Mahavier in [31].

For any compact metric space X we use dim(X) for the topological
(covering) dimension of X (for the definition see |25, p. 385] or [44, p. 10]).

For the reader’s convenience we list the following well-known results that

will be used later:

Theorem 2.2. |25, p. 393| Let X and Y be compact metric spaces such
that dim(X) = 0. Then

dim(X x Y) = dim(Y).

Theorem 2.3. [44, p. 15] Let {X,,}22, be a sequence of compact subspaces
of a metric space and let k be a nonnegative integer, such that dim(X,,) < k
for all n. Then

dim (G Xn> <k.
n=1
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3 Main results

In this section we formulate and prove the main results.
First we introduce basic notation and facts.
Let a € (0,1) and b € (0,1]. Note that fi) is single-valued. Then

by ; if t€]0,q]
fap(t) = {l(t —1) ; if t€a,1]
a—1 ’ ’ .

-1
The point e = f,4)(b) = b(b_l

K (4. The restrictions of f(,4 mapping [0, a] onto [0, b], and [a, b] onto [e, b],

plays an important role in the study of

respectively, are bijections. Therefore they have the inverse functions and
we denote them by L : [0,b] — [0,a] and R : [e,b] — [a,b], respectively. It
is easy to see that L(t) = %t and R(t) = %2t + 1.

For any point (x1,72,23,...) € K and any positive integer n, x, =
fap) (@ns1). If 2py1 < a then z,1 = L(x,,), if 2,41 > a then 2,41 = R(z,,),
and finally if x,,1 = @ then z, = b and z,.; = L(z,) = R(x,). Note that
if 2,11 > a then z,11 € [a,b], because ;11 = f(ap)(Tny2) < b. Therefore in
that case z,, € [a,e]. This fact was the main reason for the introduction of
e and our choice of the restriction of f(,) in the definition of R.

That means that z,,,1 = R(z,) is possible only for x, > e, but note that
for x,.1 = L(x,) there are no restrictions.

We continue with the following lemma which will be used in the proof
of Theorem 3.2.

Lemma 3.1. Let X be a compact metric space and let A be a continuum
and for each positive integer n, let A, be an arc in X from a, to a,,; such
that

1. for each positive integer n, A, N A1 = {an11},

2. AinA; # 0 if and only if |i — j| <1,

3. there is a point z € X \ (U An> such that lim A, = {z} in 2%,
n—o0

n=1

4. A= <D An) U{z}.

Then the subspace A of X is an arc.
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Proof. Let for each positive integer n, f, : [, -2

— i) = An be a homeomor-
phism such that f,,(*1) = a, and fo(i7) = ang1. Next, let f:[0,1] - X
be a function, defined by f(t) = fu(t) if t € [%4, 5] for some positive
integer n, and f(1) = z. Since fu(;37) = a@ny1 = fur1(;4g) for each positive
integer n, it follows that f is continuous on [0,1) [24, p. 83]. Let {t;}2,
be a sequence in [0, 1] such that lim ¢; = 1. Then it follows from 3. that
lim f(¢;) = z and therefore f is C(;;t?fnuous at t = 1. It also follows from 4.
ﬁi;& f is surjective and from 1., 2., and 3. that f is injective. Therefore f

is a homeomorphism from [0, 1] onto A. O

Theorem 3.2. Let a,b € (0,1), a < band b < 1—a. Then K, is an arc.

Proof. Let e = fp)(b) = % It follows froma <b < landb<1—a

that a < e.
Define A; to be the set of all points (1, %2, 23,...) € K, such that
xir1 = L(x;) for each positive integer i. It follows that A; is an arc from

a; = (0,0,0,...) to ay= (b,a,L(a),L*(a),...),

since one easily proves that t ~ (¢, L(t), L(t),...) is a homeomorphism
from [0, b] onto A;.

Let A, be the set of all points (21,2, %3,...) € K such that z, =
R(zq) and x;1; = L(x;) for each positive integer i > 2. It follows that A, is

an arc from
as = (b,a, L(a), L*(a),...) to as= (e b,a,L(a),*(a),...),

since t — (t, R(t), L(R(t)), L*(R(t)),...) is a homeomorphism from [e, b]
onto As.

Also, for each positive integer n > 3 define the set A, to be the set of
all points (21,22, x3,...) € K4 such that z, = R(2,-1) and x;41 = L(x;)
for each positive integer i > n. It follows that A, is an arc from from

an = (f"2(e),..., f*(e), f(e),e,b,a, L(a), L*(a), L*(a),...)

to
tnp1 = (f"70(e), .o f2(e), f(e). e b,a, L(a), L*(a), L¥(a), .. ),
since t — (f"72(t),..., f2(t), f(t),t, R(t), L(R(t)), L*(R(t)),...) is a home-
omorphism from [e, b] onto A,,.
Since R is an expansive map the only point of the form (¢, R(t), R?(t),...)

is obtained in the case when t = R(t). One easily checks that t = —2—. Let

1+b—a
b b b )
1+b—a’ 1+b—a’ 14+b—a’ " "/"

2=
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Since a < e and L(b) = a, it follows that L(t) < L(b) = a < e for
each t € [e,b], and therefore R(L(t)) is not defined. It follows that Kz =

<U An> U{z}.

One can easily check that A, N A, 11 = {a,.1} for each positive integer
n and that for positive integers m and n such that [m —n| > 1 it holds that
A, NA, =0.

The function f(, ;) is a contraction mapping on [e, b] with the contraction
factor M = -2 < 1. Using this we show that lim A, = {z} in 2@ Take

1-a n— 00
any € > (0. Choose a positive integer k, such that % < €. Let ng be a positive
integer such that M" < = for each n > ng. Then for each n > ng and for

each t € [e, b],

__ b
1+b—a

b

f—
1+b—a

< M"

= <eE.

f(t)

b
nt _ n
fi) - f (1 +b— a)
Next we prove that for each n > ng + k 4+ 1 and for each x € A,, it holds
that D(x,z) < €. Take any

Tr = (xl,l’g,...,xk,...)
= ("), o FrN), L P, f (0,8 R(E), LR(E), LP(R(D)), )

in A,. Take arbitrary positive integer m. If m > k then

b
d(:vm>m)<i<l<€
m ~m =k '

Ifm<kthenn—m—1>n—k—12> ng, hence

d(xnw H—%) _ }fn_m_l(t) - 1+Z—a}

< E.
m m
It follows that D(x, z) < ¢ for each « € A,, and therefore Hp(A,,{z}) <e.
Using Lemma, 3.1 it follows that K, is an arc. ]

Definition 3.3. For any t € [1,00) let
Cy = {(z,y) €[0,1] x [0,1] | 2" — 2" = ¢ — 4", 0 <z < y}.
See Figure 1.

It is easy to see that C; is the graph of the function f: (0,3) — (3,1),
f(z) =1 — . One can easily see that for each t € (1,00), C is a subset of

[0,1] x [0,1] containing (3, y) for exactly one y € (3, 1).
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Figure 1: C, for t =1, 2, 3, 4.

Theorem 3.4. Let n be a positive integer and (a,b), (¢c,d) € C,. Then
Ky and K(.q) are homeomorphic.

Proof. In this proof for any closed interval L = [u,v] the corresponding
open interval (u,v) will be denoted by L.

Let e = fiap (b) = "= and f = fiea(d) = “57.
Next define Ly : [0,b] — [0,a] and R; : [e, b] — [a,b] with

-1
Li(t) = %, Rult) = Z—t+1,
b b
and Lo : [0,d] = [0,c] and Ry : [f,d] — [c, d] with
c c—1
Lo(t) = = = —t+ 1
(1) = St Balt) = 24
From (a,b),(c,d) € C, it follows that (3) le = (a)"_lb(ci’__ll) = a,
(Byre = (= =, (21 f = (A e gy = (IR = g
Moreover
0 <e< fanle) < flaple) << fuple) < fane),

and f(ab (e) = (2)ke for each k =0,1,...,n. Similarly

0<f < fealf) < fla(f) << fn(f) < flea(h),



Towards the complete classification 9

and f(kad)(f) = (g)kf for each k =0,1,...,n.
Let Iy = [0, €] and

I = [£i306), fhe)] = [(9) . (9)]

foreach k =1,...,n.

Since Ri(e) = b and Ry(b) = a, it follows that Ry([e,b]) = I, and
therefore Ry (Ix) C I, for each k = 1,...,n. Recall that R; is not defined
on Iy \ {e}.

Since Li((2)%e) = ()" ~'e it follows that L;(I;) = I;_; for each k =
1,...,n. Also Ly(ly) C I,.

For any z € [0,b] let Sy(z) ={Ix | k=0,1,2,...,n,x € I;;}. Obviously,
Si(z) is a singleton, except for z = (2)¥e, k =0,1,...,n—1, when S (z) =
{It, Ir4+1}. This notation will simplify the description of the dynamics of the
mapping f(,p that will be the crucial part of the proof.

Analogously, we define Jy = [0, f],

5= (15000, Fha(F)] = [(‘—l) (4 f]

for each k = 1,...,n and prove that Ry([f,d]|) = Jn, L2(Jx) = Jx_1 for each
k=1,2,...,n, and Ly(Jy) C Jp.

Also for any x € [0,d] we define Sy(z) = {Ji | kK =0,1,2,...,n,x €
Ji} which again turns out to be a singleton, except for z = (9)*f, k =
0,1,...,n—1, when Sy(x) = {Jk, Jp41}-

Now define the continuous piecewise linear increasing function ¢ : [0, b] —
[0, d], which maps each interval [ afinely onto Ji, for k =0,1,2,... n. Ex-
plicitly ¢ is given by

(

Lt Cif el
dpe
L (t— be)+ 4f - if tel
fdy2p_d _
" GRSt (e + (92 5 iftel
p(t) = dysp_(ay2¢ _
((z))ge_ﬁziz t—(2)Pe)+ (4)3f 5 if tel;
dyn ¢ (dyn—1 .
I~ e + (" i tel,.
\ a a

We will prove that the function ® : K, — K. q) defined by

(1'1,1132,1’3, .. ) — (ylay27y3a . ')a
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where
(3.1) 1 = ¢(x1),
and
L o if =L
(3.2) Vert = 2(yk) ; 1 Tpt1 1(%)
Ro(yr) 5 if 2pp1 = Ri(z)

for each positive integer k, is well-defined and that it is a homeomorphism.
The well-definedness of ® follows from the following inductive argument.
Let © = (21, 72,23, ...) € K(4p) be arbitrary. By induction on m we prove
that for each m and for each j = 1,2,...,m, y, is uniquely determined by
(3.1) and (3.2), and that

1 =0=y; =0, 2; =b<=y; =,

as well as
Iy € Si(z;) <= Ji € Sa(y;),

forany £k =0,1,...,n.

The claim is obviously true for m = 1, by (3.1) and the definition of ¢.
Assume that the claim is true for a positive integer m. Now we distinguish
several cases.

Case 1. S1(Tms1) = {Ii}, for some k =0,1,...,n.

Subcase 1.1. 2,01 = Ri(zp). Now 1 € I, ie. k = n. Ty # a
therefore z,, # b. It follows that x,,,1 = L;(z,,) does not hold and therefore
Ym+1 18 uniquely determined as y,,+1 = Ra(yy). Since x,, # b it follows that
Ym # d, hence y,, 11 # ¢. That means S3(ypmi1) = {Jn}. Note that x,,.1 = b
implies 2,41 = Ri(zp,), for x,, = e, and since Si(e) = {Io, I}, it follows
by the induction assumption that Ss(y.,) = {Jo, J1}, hence y,, = f, and
therefore y,,11 = Ro(f) = d.

Subcase 1.2. 2,41 = L1(%y), Tm # 0. In this case x,,41 €I and k < n.
Therefore x,, €Ix1. It follows that vy, €Jxi1, since y,, # d and Sz (y,,) =

{Ji+1} by the induction assumption. It follows that ¥, 1 = L2(y,) €J) and
therefore So(Ym+1) = {Jk}. Uniqueness of y,,,1 is clear, since it is not true
that z,11 = Ri(xm,).

Subcase 1.3. ;01 = Li(zp), ,, = 0. Note that this is equivalent to
Tma1 = 0. By the induction assumption it follows that y,,, = 0, and therefore
Ymt+1 = L2(0) = 0. Ry(0) is not defined and the uniqueness is therefore
proved. Also, S1(zmy1) = {lo} and So(Yms1) = {Jo}-
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Case 2. S1(Tms1) = {Ix_1, I}, for some k = 1,... n. This is equivalent

t0 Ty =€ (3)k_1.

Subcase 2.1. k < n. In this case 41 = Li(z,,), where z,,, = e (g)k, and
it is not true that x,,1; = Ri(x,,). Therefore Sy(z,,) = {Ix, Ix+1} and by
the induction assumption So(y,,) = {Jk, Jr+1}. It follows that y,, = f (%)k
Finally 9,,+1 is uniquely determined as v,,11 = Lo(ym) = f (%)k_l, and
So(Ym+1) = {Jk—1, Ji}-

Subcase 2.2. k = n. Now z,,41 = a, and therefore x,,.1 = Ri(x,,) =
Li(z,), for x,, = b. By the induction assumption y,, = d, and it follows
that y,+1 = Ro(d) = La(d) = ¢, proving the uniqueness part of the claim.
Obviously S2(Yms1) = {Jn-1, Jn}-

The whole inductive proof is completed by the following two observa-
tions. First, from y,,,+1 = 0 it follows that y,, = 0 (since y,, = f(q)(0) = 0),
and by the induction assumption it follows that x,, = 0, and therefore
Tmi1 = L1(0) = 0 (since R;(0) is not defined). Similarly, from y,,11 = d
it follows that ¥, = f (since ¥, = fc,a)(d) = f), and by the induction as-
sumption it follows that z,,, = e (since from Sy(y,,,) = {Jo, J1} it follows that
S1(zm) = {lo, I}), and therefore x,,.1 = Ri(e) = b (since x,11 = Li(e)
would imply i1 = Lo(f) # d).

This proves that ® : K — Kqq) is a well-defined function. But
replacing a, b, e, @, 11, by ¢, d, f, ¢!, yi respectively, one obtains the proof
of the well-definedness of the function ¥ : K. 4 — K43, which is defined
by

(y17y27y37 . ) L — ($1,$2,$3, .- ')7

where
€T = 90_1 (y1)>

and

S La(xe) 5 i yre = La(y)
Tk+1 = .
Ri(zy) 5 if yre1 = Ra(uyw)

for each positive integer k.

Obviously W o ® = 1 and & o ¥ = 1. Therefore both & and ¥ are
bijections.

It remains to be proved that & and ¥ are continuous functions.

Let © € K, be an arbitrary point and let {z'}3°, be any sequence
in K converging to x. We shall prove that ®(z') converges to ®(x).
Coordinatewisely it means that if for each positive integer j, zliglo T =
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for ¢ = (24, 2%, 2%, ...) and x = (x1, 72, 23, ...), then
zll>rg>yj — Y
for each j, where
(Y1 Y2, Y5 - - -) = D(a, 25, 25, . .)
and
(yla Y2,Ys3, - ) = q)(xla Lo, X3, .. )

For each positive integer ¢ we fix a sequence (N7, Ni, Ni ...) of symbols
Ly, Ry, such that for each positive integer k, it holds that
Tjopr = Ni(a}).
Then we introduce the sequences (O}, O3, O, ...) of symbols Ly, R, as
follows:

OZ:L2<:>N£:L1, 02:R2<:>N£:R1,
for each k and 7. By the definition of ® it follows that

yli—i—l = Olzg(ylle>7

for each k.
First we show that lim y! = y;. It follows from the definition of ® that
1— 00

y1 = (z1) and for each positive integer 7, y! = ¢(z}). Since  is continuous,
lim y; = lim o(21) = ¢(lim 27) = p(z1) = y1.
1—00 1—00 1—00
Assume that for a positive integer j, it holds that lim y; = y;. We show
71— 00

that im ., = yj.1.

If 241 < a, then there is a positive integer iy, such that for all ¢ > ¢,
2%,y < a, and hence N} = Ly. Therefore for all i > ig, O} = Ly. Obviously
xj41 = Ly(x;), and hence y; 11 = La(y;) as well. It follows from the definition
of ® and from the continuity of Ly that
(3.3) lim yj,, = lim Oj(y;) = lim Ly(y;) = Lo(lim y3) = La(y;) = yj+1-

If ;11 > a, then there is a positive integer ¢y such that for all i > i,
2%,y > a, and hence N} = R;. Therefore for all i > ig, O} = Ry. Obviously
xj41 = Ri(z;), and hence y;11 = Ra(y;) as well. It follows from the definition
of ® and from the continuity of Ry that

(3.4) Zliglo y§+1 = }Ego O;(y;) = }Ego Rz(y;") = R2(iliglo y;) = Ry(y;) = Yj41-
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If ;11 = a, then N; = Ly may hold true for infinitely or finitely many ¢,
and also N; = R; may hold true for infinitely or finitely many ¢. If Nj = L,
is true only for finitely many 4, then (3.4) applies; if N7 = R; is true only for
finitely many i, then (3.3) applies. In case when both N? = L; and N} = R,
hold true for infinitely many ¢, we apply (3.3) and (3.4) respectively for
the two subsequences corresponding to the choice of Ly or R; respectively.
Clearly in each of these cases we get Zlgilo y;-H = Yjt1-

Therefore @ is continuous. Obviously the proof of continuity of ¥ can be
obtained from the proof above by appropriate replacements. O

Corollary 3.5. If (a,b) € C,, and (c,d) € C, for some positive integers
m,n > 2, m # n, then the continua K, ) and K 4 are not homeomorphic.

Proof. Let t1,t5 € (1,1) such that (3,t1) € Cp,, (1, 1) € C,. It follows from
Theorem 3.4 that K is homeomorphic to K(%,tl) and K(.q) is homeo-
morphic to K(%Jz). Since K(%,tl) and K(%h) are not homeomorphic, by the
positive solution of the Ingram conjecture [7], it follows that K, ) and K. g
are not homeomorphic. O

We have proved in Theorem 3.4 that K, and K (.4 are homeomorphic
for any (a,b), (c,d) € C1, but we are able to give more precise information
about these continua, as shown in the following theorem.

Theorem 3.6. If (a,b) € Cy, then K, is a sin %—continuum.

Proof. 1t is easy to see that (a,b) € Cyifand only if 1 > b >aand b= 1—a.
Let

Ag={(t, 1 —t,t,1—t,...) | t €[a,b]},
Ay = {(t, L(t), L*(t), L*(t),...) | t € [0,b]},

and for each positive integer n,

Agn ={(t, 1=t 8,1 =4, t, 1=, L(1 = 1), L*(1 = t),...) | t € [a, 0]},
on
Agppr ={(t, 1 —t,t,1 —t,... t,1 —t,t,L(t), L*(t),...) | t € [a, 1]},

v~

2n+1

where L has the usual meaning (L : [0,b] — [0,a], L(t) = §t for any t).
Note that in this case e = a and R(t) = 1 —t for each ¢ € [a, b] making
the above formulas in coherence with what was said about elements of K, )

at the beginning of this section.
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Obviously K = U A,
n=0

Let 1 =z > 21 > 29 > 23 > ... be a sequence in [0, 1] converging to 0.
Also let Ty, = (wop, —1) and T,11 = (9,41, 1), for all nonnegative integers
n. Next, let By = {0} x [—1,1] be the arc from (0,—1) to (0, 1), and for

each nonnegative integer n,

2
Bop1 = {(7, ————( —22041) +1) € [0, 1] x [-1, 1] [ 2 € [Tan41, T20]}
Ton+1 — Ton

be the arc from T3, to Ts,41,

2
Bopia = {(v, ———————(z—29,41)+1) € [0, 1]X[-1,1] | ¥ € [Tont2, Tonta]}
Lon+1 — T2n42

be the arc from 75,1 to Th, 0.
o
Obviously U B, is a sin %—continuum.

n=0
We define for each nonnegative integer n, ¢, : A, — B, as follows.

wolt,1—t,t,1—1¢,...) = (0,

b_a(t—a)—l), t e la,b,

orlt, L), 20, 22(0), ) = (St 4 (1 %t)xo, %t _1), te 0,8,

and for each positive integer n,

Oon(t, 1=t t, 1 —t, ... 6,1 —t, L(1 —1t), L*(1—1t),...)=

g

2n
Ton — Ton—1 —2
= (T (t—b ne1, ——(t—0b)+1), t b,
(P (= b) oy, (= D) + 1), £ € [a, ]
gognﬂ(z,l—t,t,l—t,...,t,l—t,f,L(t),B(t),...):
27:1—1 9
- (W(t—a)m%,m(t—a) —1), t€a,b].

Next, let ¢ : (7", An = U,—, Bn be a function, defined by

p

(po(l') ) if xe A(]
©¥1 (LU) ) if ze€ Al
po(z) 5 if x € Ay

on(x) ;5 if xz € A,
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o0
It is easy to see that ¢ is a bijection and that ¢ is continuous on U A,. To
n=1
see that ¢ is continuous on Ay, take arbitrary zo = (to, 1 —tg, to, 1 —tg,...) €
o

Ap and let {2,}22; be a sequence of points in U A,, such that lim z, = 2.
nzo n—oo

We will show that lim ¢(z,) = ¢(z0).
n—o0

(a) Suppose there is a positive integer ng such that z, € A for all n > ny.
Then for each n > ng fix the unique ¢, € [a,b], such that

2 = (tn, 1 — o, by 1 =t ).

From lim z, = 2z it follows that lim ¢, = ty. Obviously, for each
n—oo n—oo

positive integer n > ng, ¢(z,) = po(2,) € By and hence

lim @(z,) = lm @o(tn, 1 —tp, tn, 1 —t,,...)

n—o0 n—o0
. 2
= Jfim (0,5t —a) = 1)
2
= (0,——(tg—a) — 1
0,y —(to—a)=1)
= wo(to, 1 — to, to, 1 — o, .. .)
= ¢(20).

(b) Suppose there is a positive integer ng, such that for each n > ny,
Zn ¢ Ao.

If there is mg > ng, such that for each n > mo, z, € Ay, for some

positive integer k(n), then

Zn = (b, L=ty tn, 1=ty b, 1=y, L(1 =), L2 (1 = 1), .. )

2k(n)

for some ¢, € [a,b]. Obviously lim ¢, = ¢, and lim 2,y = 0. There-
n—oo n—oo

fore

lim ¢(z,) = nll_{{)lo Par(n) (2n)

n—oo
. Lok(n) — L2k(n)— -2
= nll_}f{)lo( 2K( )a — Zk( L, —b) + Tok(m)-1, b<tn —b)+1)
-2
=(0,——(txg —b) +1
(aa_b(o )_I_)

= SO(ZO)>
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If there is mgy > ng, such that for each n > my, 2z, € Agin)+1 for some
positive integer k(n), then

Zn = (b, L=ty b, 1=ty b, 1= b b, L(L,), L2 (t), )

2k(n)+1

for some t,, € [a,b], and therefore by the same reasoning as above

lim ¢(z,) = n11_>IIolo ©ok(n)+1(2n)

n—o0
n - n 2
_ T}i_{go(mk( )—[;-1_ a£E2k( )(tn —a) + Tok(n), b—a(t" —a)—1)
2
= (0,———(ty —a) — 1
:90(20)7

If z, € Agyy for infinitely many n and z, € A4 for infinitely
many n, then we apply calculations from the previous subcases respec-
tively for the two subsequences corresponding to the choice of Ay
or Agp(n)+1. Clearly in each of these cases we get nh_)rgo ©(zn) = ¢(20)-

(c) If both z, € Ay and z, ¢ Ap hold true for infinitely many n, we apply
(a) and (b) respectively for the two subsequences. Clearly in each of
these cases we get lim ¢(z,) = ¢(20).

n—o0

We have shown that ¢ is a continuous bijection from the compact space

o o
U A,, onto the metric space U B,, and therefore ¢ is a homeomorphism.

O

Ko,1) turns out to be a very complicated continuum. In this section we
give a detailed description of K1), which helps us to recognize some of its
subcontinua as certain familiar continua. The continuum has already been
studied in [5, 21].

Let x = (z1,z2,x3,...) € K 0,1). Suppose there is an integer n such that
x, € {0,1}. If x, = 0, then x,,, € {0,1}. If z,, = 1, then z,,;; = 0. In the
case where z,, =t € (0,1), one can easily see that z,,1 € {0,1 — t}.

Let

A= {(xl,atg,atg,x4, ) E Ky |7 = 0} C Ko,
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and
B = {(I1,$2,I3,I4, . ) c K(O,l) | T = 1} Q K(O,l)-

If © = (21,22, 23,...) € K1), then exactly one of the following is possi-
ble.

1. z € A.
2. ¢z € B.

3. There are an odd positive integer n and a € A such that

v€Aua) = {(t,1—t,t,1—t,... t.a) | 1€ (0,1)}.

-

N
n

4. There are an even positive integer n and a € A such that

reAa)={(t1—tt,1—t,... t,1—ta)|te(0,1))

v
n

5. x € A ={(t,1—t,t,1—t,...) | t € (0,1)}.

One can easily see that Cl(Ay) = {(t,1 —¢,t,1 —t,...) | t € [0,1]} is the
arc from (0,1,0,1,...) € Ato (1,0,1,0,...) € B in K. Here and in the
rest of this section by CI we denote the closure operator in the Hilbert cube.

For each n, Cl(A,(a)) is the arc {(t,1—¢,¢,1—¢,....t,a) | t € [0,1]}

n
from

(0,1,0,1,...,0,a) € A to (1,0,1,0,...,1,a) € B
—_——— —_— ——

if n is odd, and the arc {(¢,1 —¢,¢,1—1¢,..., 1,1 —t,a) | t € [0,1]} from

(0,1,0,1,...,1,a) € A to (1,0,1,0,...,0,a) € B
— ——— — ———

if n is even. We will show that

(4.1) Ko = (U (U Cl(An(a))>> U Cl(As).

n=1 \acA

For each a € A there are two possibilities: either a = (0,0,...) or a =
(0,1,...). In the first case there is an ay € A such that a = (0,a0) and
hence a € Cl(A;(ag)). In the second case a is of the form a = (0,1,0,...)
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and therefore there is an ay € A such that a = (0,1,a9) and hence a €
Cl(Az(ag)). That proves

AC (O (U Cl(An(a))>> U Cl(As).
n=1 \a€A

For each b € B there is ap € A such that b = (1,ag). Therefore b €
Cl(A1(ap)) and hence

BC (G (U Cl(An(a))>> U Cl(Ay),

n=1 \acA

and 4.1 follows.
Using 4.1 we are able to prove some additional properties of K1) as

follows.

a) K1) contains sin +—continua. For example, a proof similar to the
( ) ) xT
proof of Theorem 3.6 can be obtained in order to prove that for a =
(0,0,0,...)€ A

(O Cl(An(a))> U Cl(A)

L _continuum. See also [5].

T

1s a sin
(b) K1) contains harmonic fans. For example,

P = (f] 01<A2n_1<a>>) U Cl(Ax).

n=1

where a = (0,1,0,1,0,1,...) € A, and

where a = (0,1,0,1,0,1,...) € A, are harmonic fans in K ;).

(c) K, is one-dimensional. It is easy to see that A is a Cantor set and
that for each positive integer n,

U Cl(Au(a))

is homeomorphic to the product A x [0, 1]. Since dim(A) = 0, it follows
from Theorem 2.2 that

dim (U Cl(An(a))> = 1.

a€A
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A countable union of one-dimensional compacta is a one-dimensional

compactum, see Theorem 2.3, therefore

dim(K g 1)) = dim ((U (U Cl(An(a)))> U Cl(Aoo)) = 1.

n=1 \a€A

See also |21].

(d) It has been proved in |21] that K1) has trivial shape and is therefore
tree-like.

5 A question

Unfortunately the techniques that were used in the proof of Theorem 3.4
do not work in general, i.e. using them one cannot prove that K is
homeomorphic to K. q) if (a,b), (¢,d) € C; for arbitrary t € [1, 00). Initially
we conjectured such a result, but many unsuccessful attempts to prove it
provided us with evidence of a very complicated behavior, and we are not
so confident anymore. Therefore we just pose the following question.

Question 5.1. Is it true that for any a,b,c,d € (0,1), from (a,b), (¢,d) €
Cy, for some t € [1,00), it follows that K(,p) and K. q) are homeomorphic?
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