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Abstract

Let d ≥ 3 be an integer. It is known that the number of edges of the edge polytope
of the complete graph with d vertices is d(d − 1)(d − 2)/2. In this paper, we study the
maximum possible number µd of edges of the edge polytope arising from finite simple
graphs with d vertices. We show that µd = d(d−1)(d−2)/2 if and only if 3 ≤ d ≤ 14. In
addition, we study the asymptotic behavior of µd. Tran–Ziegler gave a lower bound for µd

by constructing a random graph. We succeeded in improving this bound by constructing
both a non-random graph and a random graph whose complement is bipartite.
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1 Introduction
The number of i-dimensional faces of a convex polytope has been studied by many re-
searchers for a long time. One of the most famous classical results is “Euler’s formula.”
The extremal problem concerning the number of faces is an important topic in the study of
convex polytopes. On the other hand, the study of edge polytopes of finite graphs has been
conducted by many authors from viewpoints of commutative algebra on toric ideals and
combinatorics of convex polytopes. We refer the reader to [2, 3] for foundations of edge
polytopes. Faces of edge polytopes are studied in, e.g., [2, 4, 5]. Recently, Tran and Ziegler
[6] studied this extremal problem on edge polytopes. In particular, using [5, Lemma 1.4],
they gave bounds for the maximum possible number µd of edges of the edge polytope aris-
ing from finite simple graphs with d vertices. Following [1, Question 1.3], we wish to find
a finite simple graph G with d vertices such that the edge polytope of G has µd edges and
to compute µd.

Recall that a finite simple graph is a finite graph with no loops and no multiple edges.
Let [d] = {1, . . . , d} be the vertex set and Ωd the set of finite simple graphs on [d], where
d ≥ 3. Let ei denote the ith unit coordinate vector of the Euclidean space Rd. Let G ∈ Ωd

and E(G) the set of edges of G. If e = {i, j} ∈ E(G), then we set ρ(e) = ei + ej ∈ Rd.
The edge polytope PG of G ∈ Ωd is the convex hull of the finite set {ρ(e) : e ∈ E(G)}
in Rd. Let ε(G) denote the number of edges, namely 1-dimensional faces, of PG. For
example, consider the case of the complete graph Kd on [d]. By [5, Lemma 1.4], for edges
e and f (e 6= f) ofKd, the convex hull of {ρ(e), ρ(f)} is an edge of the edge polytopePKd

if and only if e and f have a common vertex. Hence, ε(Kd) = d
(
d−1
2

)
= d(d−1)(d−2)/2.

On the other hand, ε(Km,n) = mn(m+ n− 2)/2, where Km,n is the complete bipartite
graph on the vertex set [m ] ∪ {m+ 1, . . . ,m+ n} for which m,n ≥ 1 (see [4, Theorem
2.5]). In this paper, we are interested in µd = max{ ε(G) : G ∈ Ωd } for d ≥ 3.

Theorem 1.1. For an integer d ≥ 3, let Ωd be the set of finite simple graphs on [d]. Given
a graph G ∈ Ωd, let ε(G) denote the number of edges of the edge polytope PG of G. Then,
the following holds:

(a) If 3 ≤ d ≤ 13 and G ∈ Ωd with G 6= Kd, then ε(G) < ε(Kd).

(b) Let G ∈ Ω14 with G 6= K14. Then ε(G) ≤ ε(K14). Moreover, ε(G) = ε(K14) if
and only if either G = K14 −K4,5 or G = K14 −K5,5.

(c) If d ≥ 15, then there exists G ∈ Ωd such that ε(G) > ε(Kd).

We devote Section 2 to giving a proof of Theorem 1.1. At present, for d ≥ 15, it
remains unsolved to find G ∈ Ωd with µd = ε(G) and to compute µd. (Later, we will see
that µ15 ≥ ε(K15) + 50 = 1415.) In Section 3, we study the asymptotic behavior of µd.
Recently, Tran–Ziegler [6] gave a lower bound for µd by a random graph:

ε(G(d, 1/
√

3)) =
1

54
d4 +

1

18
d3 − 8

27
d2 +

1

3
d.

They also gave an upper bound for µd: µd ≤ ( 1
32 + o(1))d4. (However, this upper bound

is not sharp. See [6, Remark].) In this paper, we succeeded in improving their lower
bound by constructing a non-random graph (see Example 3.1) and a random graph whose
complement is bipartite (see Theorem 3.2):

ε(G) =
5
√

5− 11

8
d4 − 12

√
5− 27

2
d3 +

19
√

5− 44

2
d2 + d,
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where G = Kd −G(Kd/2,d/2, p) with p = 3−
√

5. These results suggest the following:

Conjecture 1.2. Let G ∈ Ωd with µd = ε(G). Then, the complement of G is a bipartite
graph.

Note that, by Theorem 1.1, this conjecture is true for 3 ≤ d ≤ 14.

2 Proof of Theorem 1.1
In this section, we give a proof of Theorem 1.1. The following lemma is studied in [5,
Lemma 1.4].

Lemma 2.1. Let e and f (e 6= f) be edges of a graph G ∈ Ωd. Then, the convex hull
of {ρ(e), ρ(f)} is an edge of the edge polytope PG if and only if one of the following
conditions is satisfied.

(i) e and f have a common vertex in [d].

(ii) e = {i, j} and f = {k, l} have no common vertices, and the induced subgraph of G
on the vertex set {i, j, k, l} has no cycles of length 4.

The complement graph G of a graph G ∈ Ωd is the graph whose vertex set is [d] and
whose edges are the non-edges of G. For a vertex i of a graph G, let degG(i) denote the
degree of i in G. We translate Lemma 2.1 in terms of the complement G of G.

Lemma 2.2. Let H be the complement of a graph G ∈ Ωd. Then, we have

ε(G) =

d∑
i=1

(
d− 1− degH(i)

2

)
+ a(H) + b(H) + c(H)

= ε(Kd) +
1

2

d∑
i=1

deg2
H(i)− (2d− 3)|E(H)|+ a(H) + b(H) + c(H),

where a(H), b(H) and c(H) are the number of induced subgraphs ofH on 4 vertices of the
form (a) a path of length 3; (b) a cycle of length 4; (c) a path of length 2 and one isolated
vertex, respectively.

Proof. First, the number of pairs of edges satisfying Lemma 2.1 (i) is equal to

d∑
i=1

(
d− 1− degH(i)

2

)
=

d∑
i=1

(d− 1)(d− 2)− (2d− 3) degH(i) + deg2
H(i)

2

= ε(Kd) +
1

2

d∑
i=1

deg2
H(i)− (2d− 3)|E(H)|.

Second, the number of pairs of edges satisfying Lemma 2.1 (ii) is equal to the number of
the induced subgraphs W of G where W is one of the following: (a’) W is a path of length
3; (b’) W consists of two disjoint edges; (c’) W is a graph on {i, j, k, `} with E(W ) =
{{i, j}, {j, k}, {i, k}, {k, `}}. Note that each induced subgraph has exactly one such pair
of edges. The complement of each (a’), (b’), and (c’) is (a), (b) and (c), respectively.
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For a graph H ∈ Ωr with r ≤ d, let Kd − H denote the graph G ∈ Ωd such that
E(G) = E(Kd) \ E(H). Using Lemma 2.2, we have the following:

Proposition 2.3. Let H ∈ Ωr and let ψ(H) denote the number of induced paths in H of
length 2. Then, the function ϕ(d) = ε(Kd −H) − ε(Kd) for d = r, r + 1, r + 2, . . . is a
linear polynomial of d whose leading coefficient is ψ(H)− 2|E(H)|.

Proof. Since d is a natural number it is sufficient to show that ϕ(d+ 1)−ϕ(d) = ψ(H)−
2|E(H)| for any d. Let H1 = Kd −H and H2 = Kd+1 −H . Then, H2 is obtained by
adding one isolated vertex d + 1 to H1. Hence, it follows that a(H1) = a(H2), b(H1) =
b(H2), c(H1) + ψ(H) = c(H2) and degH1

(i) = degH2
(i) for all 1 ≤ i ≤ d. Thus, by

Lemma 2.2, we have

ϕ(d+ 1)− ϕ(d)

= ε(Kd+1 −H)− ε(Kd+1)− ε(Kd −H) + ε(Kd)

=

d+1∑
i=1

(
d− degH2

(i)

2

)
−

d∑
i=1

(
d− 1− degH1

(i)

2

)
+ ψ(H)

+
d(d− 1)(d− 2)

2
− (d+ 1)d(d− 1)

2

=

(
d

2

)
+

d∑
i=1

((
d− degH1

(i)

2

)
−
(
d− 1− degH1

(i)

2

))
+ ψ(H)− 3d(d− 1)

2

=

(
d

2

)
+

d∑
i=1

(d− 1− degH1
(i)) + ψ(H)− 3d(d− 1)

2

= ψ(H)−
d∑

i=1

degH1
(i)

= ψ(H)− 2|E(H)|,

as desired.

Proposition 2.4. Let G ∈ Ωd and let H1, H2, . . . ,Hm be all the nonempty connected
components of G. Then, ε(Kd)− ε(G) =

∑m
j=1(ε(Kd)− ε(Kd −Hj)).

Proof. Let H = G and let H ′j = Kd −Hj for 1 ≤ j ≤ m. Then, it is easy to
see that |E(H)| =

∑m
j=1 |E(H ′j)|,

∑d
i=1 deg2

H(i) =
∑m

j=1

∑d
i=1 deg2

H′
j
(i), a(H) =∑m

j=1 a(H ′j), b(H) =
∑m

j=1 b(H
′
j), and c(H) =

∑m
j=1 c(H

′
j). Thus, by Lemma 2.2, we

are done.

A graph G ∈ Ωd is called bipartite if [d] admits a partition into two sets of vertices V1
and V2 such that, for every edge {i, j} of G, either i ∈ V1, j ∈ V2 or j ∈ V1, i ∈ V2 is
satisfied. A complete bipartite graph is a bipartite graph such that every pair of vertices i, j
with i ∈ V1 and j ∈ V2 is adjacent. Let Km,n denote the complete bipartite graph with
|V1| = m and |V2| = n.

Proposition 2.5. Let G = Kd −Km,n such that m+ n ≤ d and m,n ≥ 1. Then,

ε(G)− ε(Kd) =
1

2
mn(m+ n− 6)d− 1

4
mn(3mn+ 2m2 + 2n2 − 5m− 5n− 13).



T. Hibi et al.: The number of edges of the edge polytope of a finite simple graph 327

Proof. Let H = Km,n. Then,

ψ(H)− 2|E(H)| = m

(
n

2

)
+ n

(
m

2

)
− 2mn =

1

2
mn(m+ n− 6).

Moreover, since Km+n −Km,n is the disjoint union of Km and Kn, we have

ϕ(m+ n) =
m(m− 1)(m− 2)

2
+
n(n− 1)(n− 2)

2
+

(
m

2

)(
n

2

)
− (m+ n)(m+ n− 1)(m+ n− 2)

2

=
1

4
mn(mn− 7m− 7n+ 13)

by Lemma 2.1. Hence, by Proposition 2.3,

ε(G)− ε(Kd) =
1

2
mn(m+ n− 6)(d− (m+ n)) +

1

4
mn(mn− 7m− 7n+ 13)

=
1

2
mn(m+ n− 6)d− 1

4
mn(3mn+ 2m2 + 2n2 − 5m− 5n− 13),

as desired.

Let k3(H) denote the number of triangles (i.e., cycles of length 3) of H . The following
lemma is important.

Lemma 2.6. Let H be the complement graph of G ∈ Ωd. Then, we have

ε(G) ≤ ε(Kd) +
d2 − 16d+ 29

7
|E(H)| − 3

7
(d− 8)k3(H).

Proof. The number of pairs of edges satisfying Lemma 2.1 (i) is, by Lemma 2.2, ε(Kd)−
(2d− 3)|E(H)|+ 1

2

∑d
i=1 deg2

H(i). For an edge {i, j} of H , let k3(i, j) be the number of
triangles in H containing {i, j}. We define three subsets of [d] \ {i, j}:

Xi,j = {` ∈ [d] \ {i, j} : {i, `} ∈ E(H), {j, `} /∈ E(H)},
Yi,j = {` ∈ [d] \ {i, j} : {j, `} ∈ E(H), {i, `} /∈ E(H)},
Zi,j = {` ∈ [d] \ {i, j} : {i, `} /∈ E(H), {j, `} /∈ E(H)}.

It then follows that, |Xi,j |+ |Yi,j |+ |Zi,j |+ k3(i, j) = d− 2, and

1

2

d∑
i=1

deg2
H(i) =

1

2

∑
{i,j}∈E(H)

(degH(i) + degH(j))

=
1

2

∑
{i,j}∈E(H)

(|Xi,j |+ |Yi,j |+ 2k3(i, j) + 2)

= |E(H)|+ 3k3(H) +
1

2

∑
{i,j}∈E(H)

(|Xi,j |+ |Yi,j |).
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Second, we count the number of pairs satisfying Lemma 2.1 (ii). By Lemma 2.2, this
number is equal to a(H) + b(H) + c(H). Here, we count the number of the induced
subgraphs H ′ of type (a), (b) and (c) containing an edge e = {i, j} of H . If e is an
edge of H ′, then the other two vertices ` and m of H ′ satisfy exactly one of the following
conditions:

(i) ` ∈ Xi,j ,m ∈ Yi,j ;

(ii) ` ∈ Yi,j ,m ∈ Zi,j ;

(iii) ` ∈ Zi,j ,m ∈ Xi,j .

If i, j, `,m satisfy condition (i), then one of the following holds:

• H ′ is a path (e1, e2, e3) and e = e2 (type (a)) ;

• H ′ is a cycle of length 4 and e is one of four edges (type (b)).

It then follows that
a(H) + 4b(H) =

∑
{i,j}∈E(H)

|Xi,j ||Yi,j |.

If i, j, `,m satisfy either condition (ii) or (iii), then one of the following holds:

• H ′ is a path (e1, e2, e3) and e ∈ {e1, e3} (type (a)) ;

• H ′ is a path (e1, e2) with one isolated vertex and e ∈ {e1, e2} (type (c)).

It then follows that

2a(H) + 2c(H) =
∑

{i,j}∈E(H)

(|Yi,j ||Zi,j |+ |Zi,j ||Xi,j |) .

Thus, we have

a(H)+b(H)+c(H) = −a(H)

4
+

∑
{i,j}∈E(H)

(
1
4 |Xi,j ||Yi,j |+ 1

2 |Yi,j ||Zi,j |+ 1
2 |Zi,j ||Xi,j |

)
.

Subject to |Xi,j |+ |Yi,j |+ |Zi,j | = d− 2− k3(i, j), we study an upper bound of

α =
∑

{i,j}∈E(H)

(
|Xi,j |+ |Yi,j |

2
+

1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j |

)
.

Each summand of α satisfies

|Xi,j |+ |Yi,j |
2

+
1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j |

=
1

4
|Xi,j ||Yi,j |+

1

2
(|Xi,j |+ |Yi,j |)(d− 1− k3(i, j)− (|Xi,j |+ |Yi,j |))

≤ 1

4

(
|Xi,j |+ |Yi,j |

2

)2

+
1

2
(|Xi,j |+ |Yi,j |)(d− 1− k3(i, j)− (|Xi,j |+ |Yi,j |))

= − 7

16
(|Xi,j |+ |Yi,j |)2 +

d− 1− k3(i, j)

2
(|Xi,j |+ |Yi,j |).
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The last function has the maximum number 1
7 (d − 1 − k3(i, j))2 when |Xi,j | + |Yi,j | =

4
7 (d− 1− k3(i, j)). Hence,∑
{i,j}∈E(H)

1

7
(d− 1− k3(i, j))2 ≤

∑
{i,j}∈E(H)

1

7
(d− 1)(d− 1− k3(i, j))

=
1

7

∑
{i,j}∈E(H)

(d− 1)2 − 1

7

∑
{i,j}∈E(H)

(d− 1)k3(i, j)

=
1

7
(d− 1)2|E(H)| − 3

7
(d− 1)k3(H)

is an upper bound of α. Thus,

ε(Kd)− (2d− 3)|E(H)|+ |E(H)|+ 3k3(H) +
1

7
(d− 1)2|E(H)| − 3

7
(d− 1)k3(H)

is an upper bound of ε(G) as desired.

Using Proposition 2.5 and Lemma 2.6, we prove Theorem 1.1.

Proof of Theorem 1.1. (a) Let 3 ≤ d ≤ 13 and G ∈ Ωd with G 6= Kd. If d = 3, then
ε(G) < ε(Kd) is trivial. If d = 4, then ε(K4) = 12. Since |E(G)| < 6, we have
ε(G) ≤

(
5
2

)
= 10 < ε(K4). Let d ≥ 5 and let H be the complement graph of G. By

Lemma 2.6,

ε(G)− ε(Kd) ≤ d2 − 16d+ 29

7
|E(H)| − 3

7
(d− 8)k3(H).

If 8 ≤ d ≤ 13, then ε(G)− ε(Kd) < 0 since d2−16d+29
7 < 0, |E(H)| > 0 and k3(H) ≥ 0.

Let 5 ≤ d ≤ 7. Then,

ε(G)− ε(Kd) ≤


− 26

7 |E(H)|+ 9
7k3(H) if d = 5,

− 31
7 |E(H)|+ 6

7k3(H) if d = 6,

− 34
7 |E(H)|+ 3

7k3(H) if d = 7.

Hence, if k3(H) ≤ 2, then ε(G) − ε(Kd) is negative. On the other hand, if k3(H) ≥ 3,
then |E(H)| ≥ 5. Since k3(H) ≤

(
d
3

)
, it follows that ε(G)− ε(Kd) is negative.

(b) Let G ∈ Ω14 with G 6= K14 and let H = G. We need to evaluate the function
which appears in the proof of Lemma 2.6 more accurately by focusing on d = 14. Let
|Zi,j | = 12− k3(i, j)− |Xi,j | − |Yi,j | and

f =
|Xi,j |+ |Yi,j |

2
+

1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j |

g = − 7

16
(|Xi,j |+ |Yi,j |)2 +

13− k3(i, j)

2
(|Xi,j |+ |Yi,j |)

be functions of |Xi,j | and |Yi,j |. Recall that f ≤ g ≤ 1
7 (13 − k3(i, j))2 and g = 1

7 (13 −
k3(i, j))2 when |Xi,j |+ |Yi,j | = 4

7 (13− k3(i, j)). If 1 ≤ k3(i, j) ≤ 12, then

1

7
(13−k3(i, j))2 = 24−13

7
k3(i, j)−11

7
+

1

7
(k3(i, j)−1)(k3(i, j)−12) < 24−13

7
k3(i, j).
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If k3(i, j) = 0, then 1
7 (13− k3(i, j))2 = 24 + 1/7. However, since

4

(
|Xi,j |+ |Yi,j |

2
+

1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j |

)
is an integer, the value of f is at most 24 if |Xi,j | and |Yi,j | are non-negative integers.
Thus, for k3(i, j) = 0, 1, . . . , 12, the value of f is at most 24 − 13

7 k3(i, j) if |Xi,j | and
|Yi,j | are non-negative integers. Thus, by the same argument in the proof of Lemma 2.6,
ε(G)− ε(K14) is at most

−24|E(H)|+ 3k3(H) + 24|E(H)| − 3 · 13

7
k3(H)− a(H)

4
= −18

7
k3(H)− a(H)

4
≤ 0.

Therefore, ε(G) ≤ ε(K14).
Suppose that ε(G) = ε(K14). Then, − 18

7 k3(H)− a(H)
4 ≥ 0. Since k3(H), a(H) ≥ 0,

we have k3(H) = a(H) = 0. Moreover,

|Xi,j |+ |Yi,j |
2

+
1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j | = 24

and |Xi,j | + |Yi,j | + |Zi,j | = 12 for an arbitrary edge {i, j} of H . It is easy to see that
|Xi,j |+ |Yi,j | ∈ {7, 8}. It then follows that, for an arbitrary {i, j} ∈ E(H), (|Xi,j |, |Yi,j |,
|Zi,j |) ∈ {(3, 4, 5), (4, 3, 5), (4, 4, 4)}. In particular, the degree of each vertex is either 0,
4 or 5. Moreover, since k3(H) = 0, {j}∪Xi,j and {i}∪Yi,j are independent sets. Hence,
by a(H) = 0, the induced subgraph of H on {i, j} ∪Xi,j ∪ Yi,j is the complete bipartite
graph K|Xi,j |+1,|Yi,j |+1.

Suppose that an edge {i, j} of H satisfies (|Xi,j |, |Yi,j |, |Zi,j |) = (4, 4, 4). Then, the
induced subgraph of H on {i, j}∪Xi,j ∪Yi,j is K5,5. Since the degree of any vertex of H
is either, 0, 4 or 5, other four vertices are isolated. Therefore, G = K14 −K5,5.

It is enough to consider the case that (|Xs,t|, |Ys,t|, |Zs,t|) 6= (4, 4, 4) holds for every
edge {s, t}. Suppose that (|Xi,j |, |Yi,j |) = (3, 4). Then, the induced subgraph of H on
{i, j}∪Xi,j ∪Yi,j is K4,5. Since (|Xs,t|, |Ys,t|, |Zs,t|) 6= (4, 4, 4) for each edge {s, t}, the
degree of every vertex in {i} ∪ Yi,j is 4. In this case, K4,5 is a connected component of H .
Since the degree of other five vertices is at most 4, it follows that they are isolated vertices.
Therefore, G = K14 −K4,5.

(c) Let d ≥ 15 and let G = Kd −Km,n ∈ Ωd. By Proposition 2.5, we have

ε(G)− ε(Kd) =
1

2
mn(m+ n− 6)d− 1

4
mn(3mn+ 2m2 + 2n2 − 5m− 5n− 13).

When m = n = 5, we obtain ε(G)− ε(Kd) = 50(d− 14) > 0 as desired.

3 Asymptotic behavior of µd

For 0 < p < 1 and an integer d > 0, let G(d, p) denote the random graph on the vertex
set [d] in which the edges are chosen independently with probability p. For a graph H on
the vertex set [d] and 0 < p < 1, let G(H, p) denote the random graph on the vertex set
[d] in which the edges of H are chosen independently with probability p and the edges
not belonging to H are not chosen. Tran–Ziegler [6] showed that, for the random graph
G(d, 1/

√
3),

ε(G(d, 1/
√

3)) =
1

54
d4 +

1

18
d3 − 8

27
d2 +

1

3
d,
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and hence this is a lower bound for µd.
First, for d � 0, we give an example of a (non-random) graph G on the vertex set [d]

such that ε(G) > ε(G(d, 1/
√

3)).

Example 3.1. Let G = Kd −Kad,ad −K(1/2−a)d,(1/2−a)d where a = 1
28 (7 +

√
21) and

d� 0. By Propositions 2.4 and 2.5, it follows that

ε(G) =
9

448
d4 +

1

7
d3 − 103

112
d2 + d.

Since 1/54 =. . 0.0185 and 9/448 =. . 0.0201, we have ε(G) > ε(G(d, 1/
√

3)) for d� 0.

Second, we give a random graph G on the vertex set [d] such that ε(G)>ε(G(d, 1/
√

3))
for d� 0.

Theorem 3.2. For an integer d, let G be a random graph Kd − G(Kd/2,d/2, p) with p =

3−
√

5. Then,

ε(G) =
5
√

5− 11

8
d4 − 12

√
5− 27

2
d3 +

19
√

5− 44

2
d2 + d.

In particular, we have ε(G) > ε(G(d, 1/
√

3)) for all d� 0.

Proof. Let m = d/2 and let [d] = V1 ∪ V2 be a partition of the vertex set of Km,m. The
number of pairs of edges {i, j}, {i, k} satisfying Lemma 2.1 (i) is

η1 = m(m− 1)(m− 2) + 2m2(m− 1)(1− p) +m2(m− 1)(1− p)2

where each term corresponds to the case when (i) i, j, k ∈ Vs, (ii) i, j ∈ Vs, k /∈ Vs and
(iii) i ∈ Vs, j, k /∈ Vs, respectively.

Next, we study the number of pairs of edges {i, j}, {k, `} satisfying Lemma 2.1 (ii).
Let Gijk` denote the induced subgraph of G on the vertex set {i, j, k, `} ⊂ [d]. If either
“i, j, k, ` ∈ Vs” or “i, ` ∈ Vs and j, k /∈ Vs” holds, then {i, j, k, `} is a cycle of Gijk`

whenever {i, j}, {k, `} ∈ E(G). Hence, we consider the following two cases:

Case 1. Suppose i, j ∈ Vs and k, ` /∈ Vs. Then, Gijk` has a cycle of length 4 if and only
if either {i, k}, {j, `} ∈ E(G) or {i, `}, {j, k} ∈ E(G) holds. Thus, the expected
number of pairs of edges is η2 =

(
m
2

)2
(1− (1− p)2)2.

Case 2. Suppose that i ∈ Vs and j, k, ` /∈ Vs hold. Then, all of {k, `}, {j, k} and {j, `}
are edges of G. On the other hand, {i, j} is an edge of G with probability 1 − p.
If {i, j} is an edge of G, then Gijk` has a cycle of length 4 if and only if either
{i, k} ∈ E(G) or {i, `} ∈ E(G) holds. Thus, the expected number of pairs of edges
is η3 = m2(m− 1)(m− 2)(1− p)p2.

Therefore, ε(G) = η1 + η2 + η3. If m = d/2 and p = 3−
√

5, then

ε(G) =
5
√

5− 11

8
d4 − 12

√
5− 27

2
d3 +

19
√

5− 44

2
d2 + d,

whose leading coefficient is 5
√
5−11
8 =. . 0.0225425.
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Remark 3.3. By Theorem 3.2, the graph G in Example 3.1 does not satisfy µd = ε(G) for
d� 0. In fact, for d = 20, by Propositions 2.4 and 2.5, it follows that

max

{
ε(G) :

G ∈ Ω20 and each non-empty connected
component of G is a complete bipartite graph

}
= 4176.

Let G′ ∈ Ω20 be the graph such that G′ is the bipartite graph with E(G′) =

{{1, 12}, {1, 14}, {1, 15}, {1, 16}, {1, 18}, {1, 19}, {1, 20}, {2, 11}, {2, 12}, {2, 13}, {2, 15},
{2, 17}, {2, 19}, {2, 20}, {3, 11}, {3, 12}, {3, 13}, {3, 14}, {3, 15}, {3, 16}, {3, 18}, {4, 14},
{4, 15}, {4, 16}, {4, 17}, {4, 18}, {4, 19}, {4, 20}, {5, 11}, {5, 12}, {5, 13}, {5, 15}, {5, 17},
{5, 18}, {5, 20}, {6, 12}, {6, 16}, {6, 17}, {6, 18}, {6, 19}, {6, 20}, {7, 11}, {7, 12}, {7, 13},
{7, 14}, {7, 16}, {7, 17}, {7, 19}, {8, 11}, {8, 12}, {8, 13}, {8, 14}, {8, 15}, {8, 18}, {8, 19},

{8, 20}, {9, 11}, {9, 14}, {9, 15}, {9, 16}, {9, 17}, {9, 18}, {9, 19}, {10, 11}, {10, 13}, {10, 15},
{10, 16}, {10, 18}, {10, 19}, {10, 20}}.

Then, ε(G′) = 4203 > 4176.
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