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Choreography description languages aim at specifying from a global point of view interactions among a 
set of services involved in a new system. From this specification, local implementations or peers can be 
automatically generated. Generation of peers that precisely implement the choreography specification is 
not always possible: this problem is known as realizability. When peers corresponding to this specification 
are being executed we may want to modify the choreography specification and reconfigure dynamically the 
system. This is the case for instance if we add or remove interactions due to the addi ti on of functionalities 
to the system at hand or the loss of a service. In this article, we present our solutions to check if a 
choreography is realizable and if a specific reconfiguration can be applied or not. 

Povzetek: Opisanaje metoda preverjanja moznosti implementacije sistema na osnoviopisa. 

1 Introduction 

A choreography describes how a set of services interact 
together from a global point of view. Several formalisms 
have already been proposed to specify choreographies: 
WS-CDL, collaboration diagrams, process calculi (such 
as Chor), BPMN, SRML, etc. Choreography specifica-
tion, correctness, realizability and implementation are cru-
cial issues in Service Oriented Computing. Several works 
aimed at studying and proposing solutions to the realizabil-
ity problem [7, 18, 4, 2, 20] that consists in checking if a 
set of existing peers implements a choreography. In this ar-
ticle, we first present some techniques to check realizabil-
ity of choreographies. Next, we focus on the dynamic re-
configuration of a choreography which has been distributed 
and deployed. Such reconfigurations correspond to the ad-
dition or removal of some interactions (loss of a service, 
extension of the functionalities, substitution of a service, 
etc.). 

We use the Chor calculus [18] as choreography speci-
fication language, because it is an abstract model of WS-
CDL coming with a formal syntax and semantics (not the 
case of WS-CDL). Our goal here is first to check the realiz-
ability of a choreography. To do so, we propose an encod-
ing of Chor into the FSP process algebra and reuse equiv-
alence checking tools to verify that the behaviors of both 
systems (centralized and distributed) are the same. Next, 
we formalize a reconfigurability test that checks if a set of 
peers that have been obtained from a choreography, can be 
reconfigured with respect to a second choreography spec-
ification which consists in an extension (addition of some 

interactions) or a simplification (removal of some interac-
tions) of the original choreography. If these reconfigura-
tions are possible, new peers are generated and replace the 
former ones. In addition, we also propose some analysis 
techniques to check some properties on the reconfiguration, 
e.g., if modifications coming from the new choreography 
specification impact current peer behaviors only after their 
current execution state. Finally, if a choreography is realiz-
able or can be reconfigured, we can automatically generate 
Java code for the corresponding peers for rapid prototyping 
purposes. 

The rest of this article is organized as follows: Sec-
tion 2 introduces Chor, Peer, and FSP, respectively as our 
choreography, peer, and intermediate languages. Section 3 
presents some automatic techniques to first convert chore-
ographies to an intermediate language, and then to check 
whether this choreography is realizable or not. In Sec-
tion 4, we present our approach to check if some reconfig-
urations specified as a new choreography can be applied or 
not. We also present some techniques to analyze the impact 
of reconfigurations. In section 5 we describe our prototype 
tool, and comment on some experimental results. Also, we 
briefly overview code generation for peers. Section 6 com-
pares our approach to related works, and Section 6 ends the 
article with some concluding remarks. 
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2 Preliminaries: Chor, Peer, and 
FSP 

2.1 Chor and Peer 

Chor [18] is a simple process language, and a simplified 
model of WS-CDL, for describing peers from a global 
point of view. From this global specification, behavioral 
specifications of peers can be generated by projection. In 
this section, we will overview both the Chor language 
(global view) and the Peer language (local view) introduced 
in [18]. 

Table 1 shows the syntax and semantics of Chor (C, C1 

and C2 are arbitrary Chor specifications). It uses weak 
traces (T actions are hidden) for specifying its semantics 
(where [[C]] stands for the weak trace set of C). The reader 
interested in more details on the language may refer to [18]. 
Also, operators on sets of traces which are used in Table 1 
have been formally defined in [19]. 

The loop operator "*" has the highest priority among the 
others. After that, priority of the sequential composition 
operator ";" is higher than the other operators, as an ex-
ample, *C1 n C2; C3 is not ambiguous. Priority of paral-
lel "||" and choice "n" operators is equal, as an example, 
C1II*C2nC3 = (C1 | |(*C2))nC3 (leftassociativity). 

Chor is implemented by the coordination of a set of inde-
pendent processes. The Peer language is a simple calculus 
for describing these processes. In this language, e is an 
empty process which means do nothing, and for an arbi-
trary trace t if P e we have t e [[P]] (we use f to denote 
deadlock). Table 2 gives the syntax and semantics of the 
Peer language (P, P1 and P2 are arbitrary Peer specifica-
tions). 

The Peer language mainly differs from Chor by the de-
scription of interactions. Peer specifies them from a local 
point of view. Therefore, at the Peer level, an interaction 
activity is either an emission or a reception, and peers inter-
act together by handshake communication (same channels, 
opposite directions). 

Using rules defined in Table 2, trace sets of Peer pro-
cesses are obtained as follows: 

skip/a=± a/a'= 

P —> p 

P =U P' 

P P P P 

P P ' 

Last, operator / : Peer x Activity ^ Peer returns the pro-
cess obtained after executing the activity which is speci-
fied as the second input parameter of the " / " operator, and 
function fst (abbreviation for first): Peer ^ P (Activity), in 
which P(Activity) is the power set of all possible activities, 
computes activities of a Peer process which can be exe-
cuted first. Formal definitions of operator " / " and function 
fst are as follows (L denotes an undefined process): 
f s t ( a ) = { a } 
fst(e) = fst(skip) = fst (P1 n P2) = fst(*P)=0 
fet(A;P2)=fst(P1) fst(P1||P2)=fst(P1) Ufst(P2) 

e if a = a 
L if a = a' 

(P1;P2)/a=P1/a;P2 (P1 n P j ) / a = ( * P ) / a = L 
P1/a||P2 if a e fst (Pi) 

(P1 | |P2)/a= { P1§P2/a if a e fst(P2) 
L else 

Example. We will use throughout this article a metal 
stock market as running example. There are three peers in 
our example. First, peer Broker selects one of two metals, 
namely iron and steel, then look at the market as many 
times as needed until a sale on the selected metal becomes 
available. Broker sends his/her bid on the selected metal to 
the second peer (Market) of our example. After receiving a 
bid, Market performs the following two tasks concurrently: 
saving the bid in its own database, and checking to see if 
this bid is better than the best current one or not. Then, 
Market sends the result of this check and the name of the 
broker to the announcement Board (third peer of our exam-
ple). If this bid is the best so far, Board will change the 
current winner and notifies the broker. Otherwise, Board 
does nothing (skip). In the Chor specification below, bk, 
mk, bd respectively stand for Broker, Market, and Board: 

Stock = 
(ironbk n steelbk); lookbk; *lookbk; bid[bkmk]; 
(savemk||checkmk); result[mk'bd]; 
(changebd; notify[bd'bk] nskip) 

2.2 FSP 
FSP is a process calculus that takes inspiration in Milner's 
Calculus of Communicating Systems (1980) and in Hoare's 
Communicating Sequential Processes (1985), as explained 
by Magee and Kramer in [12]. FSP was originally designed 
for distributed software architecture specification, and dis-
tinguishes sequential and composite processes. Table 3 in-
troduces FSP operators which are used in the rest of this 
article (x, y, new, and old are actions, P and Q are FSP 
processes). 

3 Realizability of Chor specifications 

3.1 Translating Chor into FSP 
There are two main solutions in order to perform the re-
alizability check automatically: (i) generate and compare 
sets of traces for Chor and Peer in an ad-hoc manner, or 
(ii) translate Chor and Peer to some intermediate language 
and use existing tools to compare their behaviours. We pre-
fer the second solution because it enables the designers to 
take advantage of existing tools such as equivalence check-
ing to verify realizability, or model-checking tools for val-
idation and verification purposes. We chose FSP because 
it relies on a simple language yet expressive enough to 
encode Chor operators. Moreover, FSP is equipped with 
the LTSA toolbox which provides efficient tools for state 
space exploration and verification. This encoding allows 
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Table 1: Syntax & Semantics of Chor 
skip 
ai 

cM 

Ci;C2 
Ci n C2 
Ciyc2 
* c 

means do nothing, its trace set is equal to {(}} 
is an arbitrary local activity performed by peer i, and its trace set is {(a'}} 
is a communication between two peers i (sender) and j (receiver) through channel c, its 
trace set is { (c ' j ] }} 
means first Ci and then C2, [[Ci C2]] = [[Ci]| 
means either Ci or C2, [[Ci n C2]] = [[Ci ]] U | 
means C i and C2 run concurrently, [[Ci 11C2]] = [[Ci]] 1x1 [ 
means execute C an arbitrary number of times, [[ * C]] = [[C]]* 

Table 2: Syntax & Semantics of Peer 
P ::= BP (basics) BP ::= skip (no action) 

| P; p (sequential) 1 a (local) 
| P n P (choice) 1 c! (send) 
| Pl P (parallel) 1 c? (receive) 
| *P (loop) 

Skip: skip 

Sequential: 

Choice: 

Parallel: 

e Local: 
a 

(a) 0 a e 
Pi Pi () 

Pi;P2 a Pi;P2 

Pi n P2 

elle ^ 

() 
Pi 

e;P 

Pi n P2 P2 

Pi P[ 

Pi |P2 Pi|P2 

P2 a P2 

c! € fst(Pi) c? € fst(P2) 

Pi |P2 P i /c! |P2 /c? 
c? € fst(Pi) c! € fst(P2) 

Loop: 

•Pi|P2 
() 

Pi |P2 
(c) 

*P —> skip *P 
() 

Pi/c?||P2/c! 

P; *P 

e 

to: (i) validate and verify Chor specifications using the 
LTSA toolbox, (ii) generate peer protocols from its chore-
ography specified in Chor, (iii) test for realizability of the 
Chor specification, and (iv) generate Java code from FSP 
for rapid prototyping purposes. One could decide to spec-
ify choreographies and peers directly using FSP. However, 
domain-specific languages such as Chor and Peer are more 
adequate to write such specifications, since they provide 
the exact level of expressiveness to do so. 

Basic activities are translated into simple FSP processes 
with one transition from the source to the final state (we 
use T for the skip action). The Chor sequential operator is 
encoded using the FSP sequential operator. As regards the 
choice operator, we prefix each operand by a T transition, 
therefore similarly to the Chor language, selecting a choice 
operand is performed non-deterministically. In the FSP 
parallel operator, actions which are in alphabets of both 
operands can only evolve through synchronization, but the 
Chor parallel operator does not synchronize activities of 
its operands (interleaving). Consequently, we first prefix 
operands of each parallel operator with a unique value, thus 
no synchronization occurs. Then, we use the renaming op-
erator of FSP to replace these new action names with their 
original values. The loop operator *C is specified in FSP 
using a non-deterministic choice between performing skip, 

or performing C and then a recursive call to the FSP process 
that encodes the loop operator. 

Definition 1 (Chor into FSP). Encoding a Chor specifica-
tion C into FSP is achieved using function c2f : Chor — 
FSPdescription, as presented in Figure 1 ("\" operator 
hides actions in the FSP process, "/" operator renames 
actions in the FSP process, and ac(C) returns non-skip ba-
sic activities of its Chor operand). 

FSP does not allow actions to have subscript or super-
script. Therefore, we respectively translate ai and c[i, j] 

into a_i and c_i_j. c2fpi is a one-to-one function of 
type Chor — Processldentifier generating fresh identifiers 
(the same ones for identical Chor specifications) as out-
put, which obey naming rulesi of FSP process identifiers. 
7\c2fpi returns a process identifier which is obtained by 
prefixing the result of c2fp i by T. For all C and C such 
that c2f (C) has a process identifier c2fpi (C') in its specifi-
cation, the result of c2f (C') must be included in the result 
of c2f (C), because whenever we use one FSP identifier in 
our specification, we must include the specification of that 
process in our final specification. We proved that this trans-
lation preserves the semantics of the Chor language [i9]. 

i These rules are defined in Section 2 of Appendix B in [i2]. 



42 Informatica 35 (2011) 39-49 N. Roohi et al. 

Table 3: FSP Operators and Informal Semantics 
(x->P) 
(P; Q) 
(x->P\y->Q) 
(P\\Q) 

x : P 
P/{new1/old1, 
..., newn/oldn} 
P\{xi,..., Xn} 

P@{X1,..., Xn } 

describes a process that initially executes action x and then behaves as P. 
describes a process that first behaves as P, and then (after completion of P) behaves as Q. 
describes a process that either executes action x and then P, or action y and then Q. 
represents the concurrent execution of P and Q. This operator synchronizes shared actions of P 
and Q. 
prefixes each label in the alphabet of P with x. 
renames action labels. Each old label in P is replaced by the new one. 

removes action names xi,..., xn from the alphabet of P and makes these actions "silent". These 
silent actions are labeled by T. Silent actions in different processes are not shared. 
hides all actions in the alphabet of P which do not belong to the set [xi,..., xn}. 

Figure 1: Encoding Chor into FSP 
c2f (skip) = SKIP = (sk ip ->END)\[sk ip} . 
c2f (a i) = c2f pi(ai) = (a_i->END). 
c2f ( S j ) = c2f pi(c[i'j) = (c_i_j->END). 
c2f (Ci; C2) = c2fpi(Ci;C2) = c2fpi(Ci); SKIP; c2fpi(C2); END. 
c2f (Ci nC2) = c2fpi(Ci nC2) = (z->c2fpi(Ci);END\z->c2fpi(C2);END)\[z}. 

assuming z is neither in the alphabet of c2f p i (C i ) nor c2f p i(C 2) . 
c2f (Ci^Cz) = \\T.c2fpi(Ci | |C2)=(pi : c2fp,-(Ci)\\p2 : c2fpiC)). 

c2fpi(Ci\\C2)=T.c2fpi(Ci \C2);SKIP;END/ 
[bai/pi.bai\bai £ ac(C i )}U[ba 2 /p2.ba 2 \ba 2 £ ac(C2)}. 

c2f (*C) = c2f pi(*C) = (z->SKIP; END\z->c2fpi(C); SKIP; c2fp,-(*C))\[z}. 
assuming z is not in the alphabet of c2fpi(C). 

Example. Let us illustrate our encoding with some of 
the FSP processes generated for our example. In Table 4 we 
can see for instance how the choice operator is performed 
non-deterministically by prefixing the choice's operands by 
z and then hiding this action. Figure 2 shows the minimized 
LTS, obtained by compilation with LTSA, of the generated 
FSP code (c2fpi(Stock)). First, Broker decides what metal 
(s)he wants, iron or steel. Then, (s)he looks at the market 
as many times as needed until a sale on the selected metal 
becomes available (there is a loop on state 2 in the LTS). 
After that, (s)he sends his/her bid to the market. Next, 
Market saves the price and checks it, concurrently (there 
are two different paths from state 4 to state 6 in the LTS). 
Then, Market sends the result of the performed check to 
the board. Finally, Board either does nothing (if the result 
says the bid was not good enough), or changes itself and 
notifies the broker (if the result says the bid was the best 
one so far). This LTS was run several times using LTSA 
animation techniques, and the system behaved as expected. 
Model-checking was not required here because we chose a 
simple example in this article for the sake of comprehen-
sion. 

3.2 Peer Generation 

Given a Chor specification, one can generate the specifica-
tion of each Peer using natural projection. Natural projec-

tion2 of a Chor specification to Peer P first replaces each 
observable action with skip iff P does not perform that ac-
tion. Chor and Peer share parallel, sequential, choice, and 
loop operators. For these operators the natural projection 
replaces each Chor operator by its equivalent in Peer, and 
applies recursively to their operands. Projection of basic 
activities from a Chor specification C to a Peer specifica-
tion P is achieved as follows: 

1. each activity not performed by P is replaced by skip, 

2. a local activity performed by P remains unchanged, 

3. a communication activity involving P is replaced by a 
channel input activity (if P is the receiver) or a channel 
output activity (if P is the sender). 

Generation of FSP processes for an arbitrary Chor speci-
fication is performed using function c2f, defined previously 
in this section. The behavior of each Peer P in the chore-
ography C is generated by hiding in the corresponding FSP 
(c2f p i(C)) all actions to which P does not participate (Def-
inition 2). 

Definition 2. Given a Chor specification C and a Peer 
identifier p, the FSP process corresponding to nproj (C, p), 
the natural projection of the Chor specification C to the 
Peer p, is generated as follows (p2f pi is defined similarly 
to c2fpi): 

2The reader may refer to [i8] for the formal definition of natural pro-
jection. 
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Table 4: Some FSP Processes Generated for the Running Example 
Chor Specification FSP Process Specification 

,bk 
skip 
iron1 

lookbk 

bidlbk'mkl 
ironbk n steelbk 

*lookbk 

(ironbk n steelbk); lookbk 

savemk||checkmk 

SKIP = (skip->END)\{skip}. 
Iron_bk = (iron_bk->END) 
Look_bk = (look_bk->END). 
Bid_bk_mk = (bid_bk_mk->END). 
Ch = (z->Iron_bk; END|z->Steel_bk; END)\{z}. 
L = (z->SKIP; END|z->Look_bk; SKIP; L)\{z}. 
S = Ch; SKIP; Look_bk; END. 

||TP = (p1 : Check_mk||p2 : Save_mk). 
P = TP; SKIP; END/{check_mk/p1.check_mk, 

save_mk/ p2. save_mk}. 

Figure 2: Minimized LTS of the Stock Market Case Study 

p2f (C, p) =p2f pi(C, p) = 
c2f pi(C)@ {b\b is an activity ofp}. 

As specified in [18] for projecting Chor to peers, the 
name of each Peer process is taken as a part of each activ-
ity name (for instance, here we add it as suffix). Therefore, 
local activities of different peers are pair-wise different, 
and peers use exclusive channels for communicating with 
each other. Thus, each channel synchronizes activities of 
exactly two peers. Hence, in p2fpi(C, 1) || • • • || p2fpi(C, n), 
only actions which represent communication activities are 
synchronized with each other, and each of these actions be-
longs to alphabets of exactly two FSP processes of the par-
allel operator's operands. We also proved that this transla-
tion preserves the semantics of the Peer language [19]. 

Example. For each Peer P, all actions in c2fpi(Stock) in 
which P is not involved, are hidden. The three peers of our 
example are encoded by the following FSP specifications: 
Broker = c2f pi(Stock); END@{iron_bk, steel_bk, 

bid_bk_mk, look_bk, notify_bd_bk}. 
Market = c2f pi(Stock); END@{save_mk, check_mk, 

bid_bk_mk, result_mk_bd }. 
Board = c2f pi(Stock); END@{result_mk_bd, 

notify_bd_bk, change_bd }. 
Figure 3 shows the minimized LTSs of these peers gen-

erated from the FSP processes presented above. 

3.3 Realizability 
Definition 3 formalizes the notion of choreography realiz-
ability we use in this article. We chose a strong realizabil-
ity [2, 7] for experimentation purposes, but weak notions 
could be used instead [7]. 

Definition 3 (Realizability of Chor). For a Chor specifica-
tion C with n peers, we say C is realizable under natural 
projection, if and only if the following two conditions hold: 

1. [[C]] = [[nproj(C, 1)|| • • • ||nproj(C,n)] 

2. $t. nproj(C, 1)|| • • • ||nproj(C, n) f 

Both Chor and Peer languages use trace semantics. 
Therefore, for checking the realizability of a Chor speci-
fication we need to compare the trace set of a Chor speci-
fication with the trace set of the parallel composition of all 
peers. We proved in [19] that the trace set of a Chor spec-
ification is equal to the trace set of its FSP encoding, we 
also proved our encoding preserves the semantics of the 
Peer language. Thus, we have to check that FSP specifi-
cations for Chor and peers produce the same set of traces 
(in which T actions are hidden) and terminate. Although 
the Chor specification is deadlock-free, the specification of 
the final system made of interacting peers (generated us-
ing natural projection) may cause deadlock. In addition to 
check that both specifications have the same set of traces, 
the parallel composition of the different peers has also to 
be deadlock-free. This check is easily computed using the 
LTSA toolbox. Also, one can perform any kind of test that 
is provided by LTSA, such as checking temporal properties 
between different activities in the Chor and Peer specifica-
tions. 

Example. As for the realizability test, we first com-
pute LTSs from FSP processes Stock and Peers, using 
LTSA. The FSP process for the whole system is: || Peers = 
(Broker||Market||Board). Then, we compare trace sets of 
these processes using ltscompare, one of the tools belong-
ing to the mCRL2 toolset3 [6], and find out they produce 

3LTSA does not allow to compute trace equivalence of two LTSs. 
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"taiv /^steeLbk look_bk 
Brakel 

tau"" vVirori_bk tau 

tau /-~xhange_bd 

notify_bd_bk 

Board 

tau 

save mk.^.check_mk 

bid_bk_mk, 
; o ) — — 

tau ^^hotify_bd_bk check_mk^^save_mk 

Figure 3: Stock Market: Minimized LTSs of Peers 

the same set of traces (first realizability condition, Defi-
nition 3). For a Chor specification to be realizable, it is 
also required to satisfy the second condition of Definition 3. 
LTSA helps us on validating this condition, and using the 
check safety test, we find that the following trace causes 
deadlock: 

(iron_bk, look_bk, bid_bk_mk, check_mk, 
save_mk, result_mk_bd) 

Indeed, after Broker sends his/her bid to the market, (s)he 
should decides if (s)he will be notified by the board or 
not. On the other hand, Board also makes this decision 
according to the result which is received from the market. 
So if peers Broker and Board make different decisions, a 
deadlock occurs. To make our specification realizable we 
slightly change it as follows: Whatever value is received 
from the market, Board always notifies the broker about 
the result. Thus, the specification of the system becomes as 
follows: 

Stock = 
(ironbk n steelbk); lookbk; *lookbk; bid[bk'mk]; 
(savemk||checkmk); result[mk'bd]; 
(changebd nskip); notify[bd bk] 

This new specification satisfies both realizability condi-
tions. 

4 Dynamic reconfiguration of Chor 
specifications 

4.1 Reconfigurability Definition 
In this section, we show how we check whether a recon-
figuration can be applied or not. Note that here our goal 
is not to verify the reconfiguration specification, it can be 
checked beforehand on the choreography specification us-
ing validation and verification techniques (see Section 3). 
Instead, we propose some techniques to check if, from 
a protocol point of view, a reconfiguration preserves the 
global flow of control executed so far. 

This process accepts as input two choreographies (an ini-
tial one, say Ci, and a reconfigured one, say CR) and a trace 

Therefore, we first save them in a format Itscompare accepts, and then 
use it to check if LTSs have the same set of traces or not. 

t which corresponds to the history of the current execution 
(sequence of local or communication activities, that inter-
acting peers have performed). Traces only contain observ-
able activities (T corresponding to internal actions and used 
to encode non-deterministic choices in peers are not stored 
in these traces). From the choreography specification CR, 
peer LTSs are obtained using techniques presented in Sec-
tion 3. If the trace t executed by peers obtained out of Ci 
can also be executed in reconfigured peers generated from 
CR, then the reconfiguration can take place. 

Definition 4 (Reconfigurability). Given two choreogra-
phies Ci and CR, two sets of peers Pi and PR respectively 
obtained from those choreographies, and a trace t, the cur-
rent system consisting of peers Pi is reconfigurable to peers 
PR if there exists PR such that PR PR, where stands 
for the execution of local or communication activities as 
specified in trace t. 

In practice, a reconfiguration is applied as follows: First, 
actual peers matching with abstract descriptions (LTSs) de-
rived from the choreography CR are seeked into databases 
of peers (e.g., UDDI) or directly reused from the former 
system for peers which have not been modified. Next, these 
peers are instantiated and executed (using the history stored 
in trace t) up to the point where the reconfiguration has 
been applied (this last part can be enforced by an external 
controller or a monitoring engine for instance). To sum up, 
our reconfigurability check aims to be transparent from an 
external point of view. 

Example. Now imagine that after peer Broker selects 
iron (t = (ironbk)), we want to reconfigure the current 
choreography for Stock market, in a way that i) in addi-
tion to iron and steel, Broker can select gold, and ii) Broker 
can send his/her bid to the Market without looking at the 
market. The new specification of the system is as follows: 

Stock = 
(ironbk n steelbk n goldbk); *lookbk; bid [bkmk]; 
(savemk||checkmk); result[mk'bd]; 
(changebd n skip); notify[bd'bk] 

Figure 4 shows the minimized LTS of the new peer 
(Broker). We first compute the parallel composition of 
peers PR using LTSA, then we check in this system if it is 
possible to perform activities which are specified in t. The 
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answer is yes, and PI is reconfigurable to PR. This is auto-
matically checked using a prototype tool we implemented 
(see Section 5). 

Figure 4: Minimized LTS of new Broker 

4.2 Reconfigurability Analysis 

Our reconfigurability definition, only says if the activities 
that have occurred so far can be reproduced in the new sys-
tem, then peers Pj are reconfigurable to peers PR. We want 
to go further than this check since in some situations, one 
may want these reconfigurations to have an immediate im-
pact on the running system, or to preserve the forthcoming 
behaviour as specified in the former choreography (the sys-
tem can do at least what was possible before, but it can do 
more as well). 

Therefore, Definition 4 is completed with a couple of 
analysis of where the modifications take place, that is we 
check if modifications appear in peers after the current 
global state, and if the evolutions possible from the cur-
rent global state are preserved with respect to the former 
choreography. These analyses may help the designer to de-
cide whether (s)he wants to reconfigure the system or not. 
Indeed, we can imagine situations in which for instance the 
designer may want these modifications to immediately im-
pact the whole behaviour. 

The first case, referred as preservative in the following, 
is computed by first performing reconfigurability check and 
finding PR. Then if PR is found, it is checked that all traces 
which can be executed from P' (assuming Pj =4 P') can 
also be executed from PR. 

Definition 5 (Preservative Reconfiguration). Given two 
choreographies C' and CR, two sets of peers Pj and PR re-
spectively obtained from previous choreographies, and a 
trace t, new peers PR are preservative with respect to for-
mer peers Pj , ifP' is reconfigurable to PR and [[Pj1]] Ç [[PR]], 
assuming Pj =4 P' and PR =4 PR. 

Note that P' and PR obtained by application of trace t 
are unique, because T transitions have been removed from 
peers and they have been determinized (no two transitions 
holding the same label going out from the same state) after 
performing the realizability check presented in Section 3.2. 

The second case, referred as modificative in the follow-
ing, is computed by first extracting the current global state 
from the trace t, and checking for each reconfigured peer 
if all new interactions are reachable from its current execu-
tion state. 

Definition 6 (Modificative Reconfiguration). Given two 
choreographies Ci and CR, two sets of peers Pi and PR re-
spectively obtained from previous choreographies, and a 
trace t, new peers PR are modificative with respect to for-
mer peers P if in addition to be reconfigurable, for each 
peer pi € PR, si € ( s i , . . . , sn), we have reachable(s;, pi) fl 
Mi = Mi, where PR = 4 PR, ( s 1 , . . . , sn) is the current global 
state of peers PR, and Mi stands for all the modifications 
(added or removed interactions) applied between CI and 
CRfor peer i. 

Given a peer i, modifications for this peer between 
choreographies C and CR are obtained by computing the 
difference of both alphabets AIi\ARi (ARi\AIi, resp.) if 
some interactions are removed (added, resp.). Function 
reachable from a state s and a peer LTS p is defined as 
follows: 
Vs,p. reachable(s,p) = 0 • $s', l. (s, l, s') € T 
Vs,p, l. l € reachable(s, p) • 3s ' . (s, l, s') € TV 

(3l'. (s, l', s') € T A l € reachable(s',p)) 
where T is the transition relation belonging to the peer LTS 
p =(A, S,I,F, T). 

Last, realizability of choreography CR can be checked 
using techniques presented in Section 3, and this realizabil-
ity result is another analysis on which the user can rely on 
to decide whether or not applying the reconfiguration. 

Example. Suppose that in addition to be reconfigurable, 
we want our system to verify both properties. Since peers 
PR are reconfigurable with respect to former peers PI , we 
know PR exists such that PR =4 PR. Therefore, assum-
ing PI = 4 P j , for reconfiguration to be preservative we 
need [[Pj]] C [[PR]]. This check can be performed using the 
ltscompare tool, and by performing that check we find that 
our reconfiguration example is preservative. 

As regards the modificative reconfiguration property, 
Mbk = {goldbk}, Mmk = Mbd = 0. After selecting iron, 
there is no way to perform goldbk. Consequently, our re-
configuration is not modificative. We have to wait for the 
current execution to get finished first, and then reconfigure 
the peers if we want this property to be satisfied. 

5 Prototype tool 
All the steps of the approach we have presented in Sec-
tions 3 and 4 are automatically computed by a prototype 
tool we implemented (see an overview in Figure 5). Boxes 
and diamonds with dashed borders are optional. We explic-
itly wrote names of tools that we did not implement at the 
bottom of each box or diamond. In Section 3 we have men-
tioned that one reason to choose an intermediate language, 
is that we can reuse tools which have already been created 
for that language. If we assume each box or diamond as 
a unit of work, one can see that using our approach, we 
only implemented 41.4 percent of our prototype tool, and 
58.6 remaining percent are already implemented in existing 
tools. 
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Figure 5: Overview of our prototype tool 

5.1 Experimental Results 

Table 5 shows experimental results on some of the exam-
ples of our database. Each row of this table shows results 
for one reconfiguration request (CI, CR, and t), and respec-
tively presents the number of: peers, distinct basic activities 
used in the Chor specification, basic activities used in the 
Chor specification, basic activities in t (length of t), FSP 
processes resulting while encoding the Chor specification 
into FSP, and states and transitions in the minimized LTS 
corresponding to the parallel composition of peers (PI and 
PR). It also presents result of realizability plus different 
types of reconfigurability checks and amount of consumed 
time and memory. For keeping the table as simple as pos-
sible, we chose examples in which number of peers in Ci 
and CR are equal. Also number of (distinct) basic activities, 
and FSP processes for CI and CR are close to each other (the 
maximum is shown). 

Note that measured time and memory for the reconfig-
urability check include time and memory required for the 
realizability check. Also, time and memory for the two 
other types of reconfigurability check include time and 
memory required for the basic reconfigurability check in 
addition to the realizability check. 

Whenever a reconfigurability check fails, there is no 
need to check the preservability or modificability proper-
ties, since being reconfigurable is a precondition for being 
preservative or modificative. 

5.2 Code Generation 

As mentioned earlier, the final step is to produce Java code 
following guidelines presented in [12]. Like the other steps, 
this is completely automated by our tool. Figure 6 shows 
a simplified version of some classes produced for our run-
ning example. We define an interface Channel and im-
plement it in a c lass ChannelImpl. For each channel in 
the specification, one instance of ChannelImpl is created 
in c lass ChannelServer and registered in a server. Also, 
for each peer we create one interface and one class. The in-
terface contains methods for local and communication ac-
tivities performed by the peer and must be implemented by 
the user, because the semantics of basic activities used in 
the specification is not defined. Code in the class file im-
plements the peer protocol and should not be changed. The 
user only needs to implement interfaces of peers and dis-
tributes classes to different locations, as (s)he needs. 

Let us comment in more details, for illustration pur-
poses, method run in c lass mkController. We can no-
tice that for each operand of the parallel operator we cre-
ated one separate thread, and used c lass CyclicBarrier 
(the Java utility class) to guarantee that the execution 
of both threads must be finished before the next activ-
ities are performed (cb1.wait() and cb2.wait()). Also, 
SynchronousQueue used in c lass ChannelImpl is an-
other Java class which synchronizes its read/write oper-
ations, therefore our communication mechanism remains 
synchronous. 
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Table 5: Experimental Results 
P dBA BA t FSP States Trans. Realizability Reconf. Preservability Modificability 

3 5 5 0 10 3 5 2 6 V 96ms 796K V 174ms 754K V 187ms 771K V 173ms 870K 

3 8 9 1 18 12 19 16 28 V 140ms 815K V 224ms 824K V 248ms 886K V 243ms 949K 

5 16 17 4 29 31 37 52 66 V 174ms 354K V 392ms 900K V 404ms 916K V 378ms 1024K 

5 16 36 6 30 65 194 108 449 X 146ms 978K X 146ms 978K X 1s 978K V 146ms 978K 

4 5 8 8 15 67 47 489 255 V 833ms 1187K V 1.1s 2052K X 1.1s 2055K V 1.1s 2056K 

5 14 672 9 29 757 755 1428 1416 V 3.2s 2965K V 12.1s 3116K X 80s 3130K X 12s 3014K 

6 6 6 0 16 95 141 340 602 V 4.7s 2501K V 5.2s 5212K V 5.5s 5516K V 5.2s 5559K 

7 13 13 8 23 250 374 725 1277 V 1.3s 4170K V 1.7s 6375K V 1.7s 6942K V 1.7s 6454K 

7 17 834 11 35 932 934 1372 1372 V 8.5s 2739K V 42s 2732K V 244s 2947K X 42s 2982K 

public c l a s s mkController e x t e n d s Thread { 
private final mk mk; 
private final Channel bk; 
private final Channel bd; 
public mkController(mk mk, String server) throws 

RemoteException,NamingException{ 
this .mk = mk; 
final Context namingContext = new InitialContext(); 
bk = (Channel) namingContext 

.lookup(" rmi ://"+server+" /bk_mk"); 
bd = (Channel) namingContext 

.lookup(" rmi ://"+server+" /mk_bd");} 
public void run() { 

final Serializable m s g l = bk.recv(); 
mk.recv_from_bk(msg1); 
final CyclicBarrier cb1 = new CyclicBarrier(2); 
new Thread (new Runnable() { 

public void run() { 
mk.check(); 
cb1.wait();}}).start(); 

new Thread (new Runnable() { 
public void run() { 

mk.save(); 
cb1.wait();}}).start(); 

final Serializable m s g 2 = mk.send_bd_value() ; 
bd.send(msg2);}} 

public interface mk { 
void save(); 
void check(); 
void recv_from_bk(Serial izable value); 
Serializable send_bd_value();} 

public c l a s s Channellmpl implements Channel { 
public Channellmpl() throws RemoteExcept ion { 

UnicastRemoteObject .exportObject ( this , 0);} 
private final S y n c h r o n o u s Q u e u e syncQueue = new 

SynchronousQueue( ) ; 
public void send(Serial izable value) throws 

RemoteException,InterruptedException{ 
syncQueue.put(value);} 

public Serializable recv() throws 
RemoteException,InterruptedException{ 
return syncQueue.take();}} 

public c l a s s ChannelServer { 
public ChannelServer() throws 

RemoteException,NamingException{ 
final Channel bk_mk = n e w Channellmpl(); 
final Channel mk_bd = new Channellmpl(); 
final Channel bd_bk = new Channellmpl(); 
final Context namingContext = n e w lnitialContext(); 
namingContext.bind("rmi :bk_mk", bk_mk); 
namingContext.bind("rmi :mk_bd", mk_bd); 
namingContext.bind("rmi :bd_bk", bd_bk);}} 

Figure 6: Stock Market: Java Code 

6 Related works 

Several works aimed at studying and defining the con-
formance and/or realizability problem for choreography. 
In [3], the authors define models for choreography and or-
chestration, and formalise a conformance relation between 
both models. These models are assumed given as input 
whereas we focus on the generation of one from the other 
(generation of peers from a global specification). In [22], 
the authors focus on Let's dance models for choreogra-
phies, and define for them an algorithm that determines if a 
global model is locally enforceable, and another algorithm 
for generating local models from global ones. In [15], the 
authors show through a simple example how BPEL stubs 
can be derived from WS-CDL choreographies. However, 
due to the lack of semantics of both languages, correctness 
of the generation cannot be ensured. 

Some works define several realizability notions, and 
classify them in a hierarchy [7]. Bultan and Fu [2] tackle 
the realizability issue in the context of asynchronous com-
munication, and recently defined some sufficient condi-

tions to test realizability of choreographies specified with 
collaboration diagrams. In [18, 11], formal languages 
to describe choreographies were proposed. Conformance 
with respect to an orchestration specification and imple-
mentability issues were studied from a formal point of 
view. 

Other works [4, 18] propose well-formedness rules to 
enforce the specification to be realizable. For example, 
in [4], the authors rely on a ^-calculus-like language and 
session types to formally describe choreographies. Then, 
they identify three principles for global description under 
which they define a sound and complete end-point projec-
tion, that is the generation of distributed processes from the 
choreography. 

Dynamic reconfiguration [14] is not a new topic and 
many solutions have already been proposed in the context 
of distributed systems and software architectures [9, 10], 
graph transformation [1, 21], software adaptation [17, 16], 
or metamodelling [8, 13]. However, to the best of our 
knowledge, nobody has already worked on the reconfig-
uration of service interactions initially described using a 
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choreography specification. 

As regards tools automating the realizability test, 
WSAT [5] takes conversation protocols as input, and 
checks a set of realizability conditions on them. Another 
tool-supported approach [20] computes realizability using 
a LOTOS encoding. However, in [20] the choreography 
language, namely collaboration diagrams, is less expres-
sive than Chor (no choice and a loop operator restricted to 
a single message), and the proposal focuses only on ab-
stract languages (no relationships with implementations or 
real code). 

7 Concluding remarks 

In this article, we have presented an encoding of the chore-
ography calculus Chor into the process algebra FSP. This 
encoding allows to generate a set of peers corresponding 
to the choreography, and in a second step to check that 
(i) they realize the original choreography, and (ii) they en-
sure some expected properties (by animation and model-
checking with LTSA). If the choreography is not realiz-
able or erroneous, the Chor specification can be corrected 
and the process started again. If a choreography is as ex-
pected by the designer, Java code can be generated for rapid 
prototyping purposes. We have also proposed some tech-
niques to verify if some reconfigurations can be applied dy-
namically on some peers that have been generated from a 
choreography specification. For illustration purposes, we 
have used the Chor language and transition systems to de-
scribe peers. Reconfigurations have been specified as a new 
version of the choreography where some interactions have 
been added or removed. Our approach is completely auto-
mated by a prototype tool we implemented and applied to 
a large number of examples. 

Our main perspective plans to extend our approach to 
consider asynchronous communication. In this article, 
we have focused on synchronous communication, and it 
makes the realizability and reconfigurability checking eas-
ier. Dealing with asynchronous communication is a re-
alistic assumption with respect to implementation plat-
forms, however it complicates the analysis and verification 
stage. Asynchronous communication can be specified us-
ing queues. In this context, realizability and reconfigura-
bility results depend on queue size, and some theoretical 
issues are still open problems such as the relationships of 
realizability results for queues of size one, queues of size 
k, and infinite queues. We also plan to extend our analysis 
techniques to take other kinds of reconfigurations into ac-
count. As an example, in some situations one may wish to 
reduce the behaviour of the interacting peers while produc-
ing only traces that were executable before reconfiguring 
the system (this is the opposite of the preservative property 
presented in Section 4). 
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