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Abstract. In the future-included complex and real action theories whose paths run over not
only the past but also the future, we briefly review the theorem on the normalized matrix
element of an operator Ô, which is defined in terms of the future and past states with a
proper inner product IQ that makes a given Hamiltonian normal. The theorem states that,
provided that the operator Ô isQ-Hermitian, i.e. Hermitian with regard to the proper inner
product IQ, the normalized matrix element becomes real and time-develops under a Q-
Hermitian Hamiltonian for the past and future states selected such that the absolute value
of the transition amplitude from the past state to the future state is maximized. Discussing
what the theorem implicates, we speculate that the future-included complex action theory
would be the most elegant quantum theory.

Povzetek. Avtorja obravnavata teorijo z realno in kompleksno akcijo, ki poleg preteklosti
vključi tudi prihodnost. Na kratko predstavita izrek o normaliziranih matričnih elemen-
tih operatorja Ô, ki operira na stanja preteklosti in prihodnosti tako, da je v primerno
izbranem skalarnem produktu IQ hamiltonka normalna. Če je operator Ô hermitski glede
na ta skalarni produkt, so normalizirani matrični elementi realni, njihov časovni razvoj pa
poteka po tistih preteklih in prihodnjih stanjih, za katere je absolutna vrednost amplitude
prehoda iz preteklega v prihodnje stanje maksimizirana. Obravnavata posledice izreka
in domevata, da je najbolj elegantna kvantna teorija prav teorija kompleksne akcije, ki
vključuje prihodnost.

Keywords: Complex action theories, Future-included action theories, Influence
from the future

9.1 Introduction

Quantum theory is formulated via the Feynman path integral (FPI). Usually an
action in the FPI is taken to be real. However, there is a possibility that the action
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9 Reality from Maximizing Overlap in the Future-included theories 133

is complex at the fundamental level but looks real effectively. If we pursue a
fundamental theory, it is better to require less conditions imposed on it at first.
In this sense such a complex action theory (CAT) is preferable to the usual real
action theory (RAT), because the former has less conditions at least by one: there
is no reality condition on the action. Based on this speculation the CAT has been
investigated with the expectation that the imaginary part of the action would
give some falsifiable predictions [1–4], and various interesting suggestions have
been made for Higgs mass [5], quantum mechanical philosophy [6–8], some fine-
tuning problems [9,10], black holes [11], de Broglie-Bohm particles and a cut-off in
loop diagrams [12]. Also, in Ref. [13], introducing what we call the proper inner
product IQ so that a given non-normal Hamiltonian becomes normal with respect
to it, we proposed a mechanism to effectively obtain a Hamiltonian which is Q-
Hermitian, i.e., Hermitian with respect to the proper inner product, after a long
time development. Furthermore, using the complex coordinate formalism [14], we
explicitly derived the momentum relation p = mq̇, where m is a complex mass,
via the FPI [15]. In general, the CAT1 could be classified into two types: one is the
future-not-included theory [21]2, i.e., the theory including only a past time as an
integration interval of time, and the other one is the future-included theory[1], in
which not only the past state |A(TA)〉 at the initial time TA but also the future state
|B(TB)〉 at the final time TB is given at first, and the time integration is performed
over the whole period from the past to the future.

In the future-included theory, the normalized matrix element [1] 〈Ô〉BA ≡
〈B(t)|Ô|A(t)〉
〈B(t)|A(t)〉 , where t is an arbitrary time (TA ≤ t ≤ TB), seems to have a role of an

expectation value of the operator Ô. Indeed, in Refs. [23,24] we argued in the case
of the action being complex that, if we regard 〈Ô〉BA as an expectation value in the
future-included theory, we obtain the Heisenberg equation, Ehrenfest’s theorem,
and a conserved probability current density. So 〈Ô〉BA is a strong candidate for the
expectation value in the future-included theory. The normalized matrix element
〈Ô〉BA is called the weak value [25] in the context of the future-included RAT, and
it has been intensively studied. The details are found in Ref. [26] and references
therein.

In Ref. [27], we considered a slightly modified normalized matrix element
〈Ô〉BAQ ≡ 〈B(t)|QÔ|A(t)〉

〈B(t)|QA(t)〉 , where 〈B(t)|Q ≡ 〈B(t)|Q, and Q is a Hermitian operator
that is appropriately chosen to define the proper inner product IQ. This matrix
element is obtained just by changing the notation of 〈B(t)| as 〈B(t)|→ 〈B(t)|Q in
〈Ô〉BA. We proposed a theorem in the future-included CAT, which states that, pro-
vided that an operator Ô is Q-Hermitian, 〈Ô〉BAQ becomes real and time-develops
under aQ-Hermitian Hamiltonian for the future and past states selected such that
the absolute value of the transition amplitude defined with IQ from the past state

1 The corresponding Hamiltonian Ĥ is generically non-normal. So the set of the Hamiltoni-
ans we consider is much larger than that of the PT-symmetric non-Hermitian Hamiltoni-
ans, which has been intensively studied [16–20].

2 In our recent study [22], we have pointed out that, if a theory is described with a complex
action, then such a theory is suggested to be the future-included theory rather than the
future-not-included theory.
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134 K. Nagao and H.B. Nielsen

to the future state is maximized. We call this way of thinking the maximization
principle. This theorem applies to not only the CAT but also the RAT. In Ref. [27],
we proved this theorem only in the CAT, i.e., in the case of non-Hermitian Hamilto-
nians, by finding that essentially only terms associated with the largest imaginary
parts of the eigenvalues of the Hamiltonian Ĥ3 contribute significantly to the abso-
lute value of the transition amplitude defined with IQ, and that 〈Ô〉BAQ for such
maximizing states becomes an expression similar to an expectation value defined
with IQ in the future-not-included theory. This proof is based on the existence
of imaginary parts of the eigenvalues of Ĥ, so it cannot be applied to the RAT.
In Ref. [28], we presented another theorem particular to the case of Hermitian
Hamiltonians, i.e., the RAT case for simplicity, and proved it. In this paper, we
review the maximization principle and clarify what the theorems implicate based
on Refs. [27–29].

This paper is organized as follows. In section 2 we briefly review the proper
inner product and the future-included theory. In section 3 we present the theorems,
and prove them in section 4. Section 5 is devoted to discussion.

9.2 Proper inner product and future-included complex action
theory

We suppose that our system that could be the whole world is described by
a non-normal diagonalizable Hamiltonian Ĥ such that [Ĥ, Ĥ†] 6= 0. Based on
Refs.[13,14,29], we first review the proper inner product for Ĥ which makes Ĥ
normal with respect to it. We define the eigenstates |λi〉(i = 1, 2, · · · ) of Ĥ such
that

Ĥ|λi〉 = λi|λi〉, (9.1)

where λi(i = 1, 2, · · · ) are the eigenvalues of Ĥ, and introduce the diagonalizing
operator P = (|λ1〉, |λ2〉, . . .), so that Ĥ is diagonalized as Ĥ = PDP−1, where D is
given by diag(λ1, λ2, · · · ). Let us consider a transition from an eigenstate |λi〉 to
another |λj〉 (i 6= j) fast in time ∆t. Since |λi〉 are not orthogonal to each other in the
usual inner product I, I(|λi〉, |λj〉) ≡ 〈λi|λj〉 6= δij, the transition can be measured,
i.e., |I(|λj〉, exp

(
− i

~ Ĥ∆t
)
|λi〉)|2 6= 0, though Ĥ cannot bring the system from |λi〉

to |λj〉 (i 6= j). In any reasonable theories, such an unphysical transition from an
eigenstate to another one with a different eigenvalue should be prohibited. In
order to have reasonable probabilistic results, we introduce a proper inner product
[13,14]4 for arbitrary kets |u〉 and |v〉 as

IQ(|u〉, |v〉) ≡ 〈u|Qv〉 ≡ 〈u|Q|v〉, (9.2)

where Q is a Hermitian operator chosen as Q = (P†)−1P−1, so that |λi〉 get orthog-
onal to each other with regard to IQ,

〈λi|Qλj〉 = δij. (9.3)

3 In the CAT the imaginary parts of the eigenvalues of Ĥ are supposed to be bounded from
above to avoid the Feynman path integral

∫
e
i
~SDpath being divergently meaningless.

4 Similar inner products are studied also in refs.[30,19,20].
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9 Reality from Maximizing Overlap in the Future-included theories 135

This implies the orthogonality relation
∑
i |λi〉〈λi|Q = 1. In the special case of Ĥ

being hermitian,Q is the unit operator. We introduce the “Q-Hermitian” conjugate
†Q of an operator A by 〈u|QA|v〉∗ ≡ 〈v|QA†

Q

|u〉, so

A†
Q

≡ Q−1A†Q. (9.4)

If A obeys A†
Q

= A, A is Q-Hermitian. We also define †Q for kets and bras as

|u〉†Q ≡ 〈u|Q and (〈u|Q)†
Q

≡ |u〉. In addition, P−1 =

 〈λ1|Q〈λ2|Q
...

 satisfies P−1ĤP =

D and P−1Ĥ†
Q

P = D†, so Ĥ is “Q-normal”, [Ĥ, Ĥ†
Q

] = P[D,D†]P−1 = 0. Thus
the inner product IQ makes Ĥ Q-normal. We note that Ĥ can be decomposed as

Ĥ = ĤQh + ĤQa, where ĤQh = Ĥ+Ĥ†
Q

2
and ĤQa = Ĥ−Ĥ†

Q

2
are Q-Hermitian and

anti-Q-Hermitian parts of Ĥ respectively.
In Refs.[1,23,24], the future-included theory is described by using the future

state |B(TB)〉 at the final time TB and the past state |A(TA)〉 at the initial time TA,
where |A(TA)〉 and |B(TB)〉 time-develop as follows,

i~
d

dt
|A(t)〉 = Ĥ|A(t)〉, (9.5)

−i~
d

dt
〈B(t)| = 〈B(t)|Ĥ, (9.6)

and the normalized matrix element 〈Ô〉BA ≡ 〈B(t)|Ô|A(t)〉
〈B(t)|A(t)〉 is studied. The quantity

〈Ô〉BA is called the weak value[25,26] in the RAT. In refs.[23,24], we investigated
〈Ô〉BA and found that, if we regard 〈Ô〉BA as an expectation value in the future-
included theory, then we obtain the Heisenberg equation, Ehrenfest’s theorem,
and a conserved probability current density. Therefore, 〈Ô〉BA seems to have a
role of an expectation value in the future-included theory.

In the following, we adopt the proper inner product IQ for all quantities.
Hence we change the notation of the final state 〈B(TB)| as 〈B(TB)|→ 〈B(TB)|Q so
that the Hermitian operator Q pops out and the usual inner product I is replaced
with IQ. Then 〈B(TB)| time-develops according not to eq.(9.6) but to

−i~
d

dt
〈B(t)|Q = 〈B(t)|QĤ ⇔ i~

d

dt
|B(t)〉 = Ĥ†

Q

|B(t)〉, (9.7)

and the normalized matrix element is expressed as

〈Ô〉BAQ ≡ 〈B(t)|QÔ|A(t)〉
〈B(t)|QA(t)〉

. (9.8)

In addition, we suppose that |A(TA)〉 and 〈B(TB)| areQ-normalized by 〈A(TA)|QA(TA)〉 =
1 and 〈B(TB)|QB(TB)〉 = 1. In the RAT, since Q = 1, 〈Ô〉BAQ corresponds to 〈Ô〉BA.

9.3 Theorems of the maximization principle

In Ref. [27] we proposed the following theorem :
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Theorem 1. Maximization principle in the future-included CAT
As a prerequisite, assume that a given Hamiltonian Ĥ is non-normal but diagonalizable
and that the imaginary parts of the eigenvalues of Ĥ are bounded from above, and define a
modified inner product IQ by means of a Hermitian operatorQ arranged so that Ĥ becomes
normal with respect to IQ. Let the two states |A(t)〉 and |B(t)〉 time-develop according to
the Schrödinger equations with Ĥ and Ĥ†

Q

respectively: |A(t)〉 = e− i
~ Ĥ(t−TA)|A(TA)〉,

|B(t)〉 = e− i
~ Ĥ
†Q(t−TB)|B(TB)〉, and be normalized with IQ at the initial time TA and the

final time TB respectively: 〈A(TA)|QA(TA)〉 = 1, 〈B(TB)|QB(TB)〉 = 1. Next determine
|A(TA)〉 and |B(TB)〉 so as to maximize the absolute value of the transition amplitude
|〈B(t)|QA(t)〉| = |〈B(TB)|Q exp(−iĤ(TB − TA))|A(TA)〉|. Then, provided that an opera-
tor Ô isQ-Hermitian, i.e., Hermitian with respect to the inner product IQ, Ô†Q = Ô, the
normalized matrix element of the operator Ô defined by 〈Ô〉BAQ ≡ 〈B(t)|QÔ|A(t)〉

〈B(t)|QA(t)〉 becomes
real and time-develops under a Q-Hermitian Hamiltonian.

We call this way of thinking the maximization principle. This theorem means
that the normalized matrix element 〈Ô〉BAQ , which is taken as an average for an
operator Ô obeying Ô†Q = Ô, turns out to be real almost unavoidably. Also,
in the case of non-normal Hamiltonians, it is nontrivial to obtain the emerging
Q-hermiticity for the Hamiltonian by the maximization principle. The theorem is
given for systems defined with such general Hamiltonians that they do not even
have to be normal, so it can also be used for normal Hamiltonians in addition to
non-normal Hamiltonians. For a normal Hamiltonian Ĥ, Q is the unit operator.
In such a case the above theorem becomes simpler with Q = 1. There are two
possibilities for such a case: one is that Ĥ is non-Hermitian but normal, and the
other is that Ĥ is Hermitian. In both casesQ = 1, but there is a significant difference
between them. In the former case, there are imaginary parts of the eigenvalues of
Ĥ, Imλi, and the eigenstates having the largest Imλi blow up and contribute most
to the the absolute value of the transition amplitude |〈B(t)|QA(t)〉|. In the latter
case, there are no Imλi, and the full set of the eigenstates of Ĥ can contribute to
|〈B(t)|A(t)〉|. So we need to investigate them separately.

In the special case where the Hamiltonian is Hermitian, i.e., in the future-
included RAT, we can consider three possibilities: One is that |A(TA)〉 is given at
first, and |B(TB)〉 is chosen by the maximization principle. Another is the reverse.
The other is that both |A(TA)〉 and |B(TB)〉 are partly given and chosen. Since
we know empirically the second law of thermodynamics, we choose the first
option in the future-included RAT. We suppose that |A(t)〉 is a given fixed state,
and only |B(t)〉 is a random state, which should be chosen appropriately by the
maximization principle, though in the future-included CAT both |A(t)〉 and |B(t)〉
are supposed to be random states at first. In addition, in the future-included
RAT the hermiticity of the Hamiltonian is given at first, so we write the theorem
particular to the case of Hermitian Hamiltonians as follows:

Theorem 2. Maximization principle in the future-included RAT
As a prerequisite, assume that a given Hamiltonian Ĥ is diagonalizable and Hermitian.
Let the two states |A(t)〉 and |B(t)〉 time-develop according to the Schrödinger equation
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9 Reality from Maximizing Overlap in the Future-included theories 137

with Ĥ: |A(t)〉 = e−
i
~ Ĥ(t−TA)|A(TA)〉, |B(t)〉 = e−

i
~ Ĥ(t−TB) |B(TB)〉, and be nor-

malized at the initial time TA and the final time TB respectively: 〈A(TA)|A(TA)〉 = 1,
〈B(TB)|B(TB)〉 = 1. Next determine |B(TB)〉 for the given |A(TA)〉 so as to maximize
the absolute value of the transition amplitude |〈B(t)|A(t)〉| = |〈B(TB)| exp(− i

~ Ĥ(TB −

TA))|A(TA)〉|. Then, provided that an operator Ô is Hermitian, Ô† = Ô, the normalized
matrix element of the operator Ô defined by 〈Ô〉BA ≡ 〈B(t)|Ô|A(t)〉

〈B(t)|A(t)〉 becomes real and
time-develops under the given Hermitian Hamiltonian.

We investigate the above theorems separately.

9.4 Proof of the theorems

To prove the theorems we expand |A(t)〉 and |B(t)〉 in terms of the eigenstates |λi〉
as follows:

|A(t)〉 =
∑
i

ai(t)|λi〉, (9.9)

|B(t)〉 =
∑
i

bi(t)|λi〉, (9.10)

where

ai(t) = ai(TA)e
− i

~λi(t−TA), (9.11)

bi(t) = bi(TB)e
− i

~λ
∗
i (t−TB). (9.12)

We express ai(TA) and bi(TB) as

ai(TA) = |ai(TA)|e
iθai , (9.13)

bi(TB) = |bi(TB)|e
iθbi , (9.14)

and introduce

T ≡ TB − TA, (9.15)

Θi ≡ θai − θbi −
1

~
TReλi, (9.16)

Ri ≡ |ai(TA)||bi(TB)|e
1
~T Imλi . (9.17)

Then, since 〈B(t)|QA(t)〉 is expressed as

〈B(t)|QA(t)〉 =
∑
i

Rie
iΘi , (9.18)

|〈B(t)|QA(t)〉|2 is calculated as

|〈B(t)|QA(t)〉|2 =
∑
i

R2i + 2
∑
i<j

RiRj cos(Θi −Θj). (9.19)

The normalization conditions for |A(TA)〉 and |B(TB)〉 are expressed as∑
i

|ai(TA)|
2 =
∑
i

|bi(TB)|
2 = 1. (9.20)

We proceed with this study separately according to whether the given Hamil-
tonian Ĥ is non-Hermitian or Hermitian.
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9.4.1 Non-Hermitian Hamiltonians case

In the case of non-Hermitian Hamiltonians, there exist imaginary parts of the
eigenvalues of the Hamiltonian, Imλi, which are supposed to be bounded from
above to avoid the Feynman path integral

∫
e
i
~SDpath being divergently mean-

ingless. We can imagine that some of Imλi take the maximal value B, and denote
the corresponding subset of {i} as A. Then, since Ri ≥ 0, |〈B(t)|QA(t)〉| can take a
maximal value only under the following conditions:

|ai(TA)| = |bi(TB)| = 0 for ∀i /∈ A, (9.21)

Θi ≡ Θc for ∀i ∈ A, (9.22)∑
i∈A

|ai(TA)|
2 =
∑
i∈A

|bi(TB)|
2 = 1, (9.23)

and |〈B(t)|QA(t)〉|2 is estimated as

|〈B(t)|QA(t)〉|2 =

(∑
i∈A

Ri

)2

= e
2BT
~

(∑
i∈A

|ai(TA)||bi(TB)|

)2

≤ e 2BT~
{∑
i∈A

(
|ai(TA)|+ |bi(TB)|

2

)2}2
= e

2
~BT , (9.24)

where the third equality is realized for

|ai(TA)| = |bi(TB)| for ∀i ∈ A. (9.25)

In the last equality we have used this relation and Eq.(9.23). The maximization
condition of |〈B(t)|QA(t)〉| is represented by Eqs.(9.21)-(9.23) and (9.25). That is to
say, the states to maximize |〈B(t)|QA(t)〉|, |A(t)〉max and |B(t)〉max, are expressed as

|A(t)〉max =
∑
i∈A

ai(t)|λi〉, (9.26)

|B(t)〉max =
∑
i∈A

bi(t)|λi〉, (9.27)

where ai(t) and bi(t) obey Eqs.(9.22), (9.23), and (9.25).
To evaluate 〈Ô〉BAQ for |A(t)〉max and |B(t)〉max, utilizing the Q-Hermitian part

of Ĥ, ĤQh ≡ Ĥ+Ĥ†
Q

2
, we define the following state:

|Ã(t)〉 ≡ e− i
~ (t−TA)ĤQh |A(TA)〉max, (9.28)

which is normalized as 〈Ã(t)|QÃ(t)〉 = 1 and obeys the Schrödinger equation

i~
d

dt
|Ã(t)〉 = ĤQh|Ã(t)〉. (9.29)
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9 Reality from Maximizing Overlap in the Future-included theories 139

Using Eqs.(9.21)-(9.23) and (9.25), we obtain

max〈B(t)|QA(t)〉max = eiΘc
∑
i∈A

Ri = e
iΘce

BT
~ , (9.30)

and

max〈B(t)|QÔ|A(t)〉max

= eiΘce
BT
~
∑
i,j∈A

aj(TA)
∗ai(TA)e

i
~ (t−TA)(Reλj−Reλi)〈λj|QÔ|λi〉

= eiΘce
BT
~ 〈Ã(t)|QÔ|Ã(t)〉. (9.31)

Thus 〈Ô〉BAQ for |A(t)〉max and |B(t)〉max is evaluated as

〈Ô〉BmaxAmax
Q = 〈Ã(t)|QÔ|Ã(t)〉 ≡ 〈Ô〉ÃÃQ . (9.32)

Since
{
〈Ô〉ÃÃQ

}∗
= 〈Ô†Q〉ÃÃQ , 〈Ô〉BAQ for |A(t)〉max and |B(t)〉max has been shown

to be real for Q-Hermitian Ô.
Next we study the time development of 〈Ô〉ÃÃQ . We express 〈Ô〉ÃÃQ as 〈Ô〉ÃÃQ =

〈Ã(TA)|QÔH(t, TA)|Ã(TA)〉, where we have introduced the Heisenberg operator
ÔH(t, TA) ≡ e

i
~ ĤQh(t−TA)Ôe− i

~ ĤQh(t−TA). This operator ÔH(t, TA) obeys the
Heisenberg equation i~ d

dt
ÔH(t, TA) = [ÔH(t, TA), ĤQh], so we find that 〈Ô〉ÃÃQ

time-develops under the Q-Hermitian Hamiltonian ĤQh as

d

dt
〈Ô〉ÃÃQ =

i

~
〈
[
ĤQh, Ô

]
〉ÃÃQ . (9.33)

Thus Theorem 1 has been proven, and the maximization principle provides
both the reality of 〈Ô〉BAQ for Q-Hermitian Ô and the Q-Hermitian Hamiltonian.

9.4.2 Hermitian Hamiltonians case

Theorem 2 can be proven more simply than Theorem 1. Since the norms of |A(t)〉
and |B(t)〉 are constant in time in the case of Hermitian Hamiltonians,

〈A(t)|A(t)〉 = 〈A(TA)|A(TA)〉 = 1, (9.34)

〈B(t)|B(t)〉 = 〈B(TB)|B(TB)〉 = 1, (9.35)

we can directly use an elementary property of linear space, and find that the final
state to maximize |〈B(t)|A(t)〉|, |B(TB)〉max, is the same as |A(t)〉 up to a constant
phase factor:

|B(t)〉max = e−iΘc |A(t)〉. (9.36)

This phase factor presents the ambiguity of the maximizing state |B(t)〉max, and
shows that |B(t)〉max is not determined uniquely. We note that this is quite in
contrast to the case of non-Hermitian Hamiltonians, where only a unique class of
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|A(t)〉 and |B(t)〉 is chosen by the maximization principle. The normalized matrix
element 〈Ô〉BA for the given |A(t)〉 and |B(t)〉max becomes

〈Ô〉BmaxA =
max〈B(t)|Ô|A(t)〉

max〈B(t)|A(t)〉
= 〈A(t)|Ô|A(t)〉
≡ 〈Ô〉AA, (9.37)

where in the second equality we have used Eqs.(9.36) and (9.34). Thus 〈Ô〉BA for
the given |A(t)〉 and |B(t)〉max has become the form of a usual average 〈Ô〉AA, and
so it becomes real for Hermitian Ô. In addition, 〈Ô〉AA time-develops under the
Hermitian Hamiltonian Ĥ as

d

dt
〈Ô〉AA =

i

~
〈
[
Ĥ, Ô

]
〉AA. (9.38)

We emphasize that the maximization principle provides the reality of 〈Ô〉BA for
Hermitian Ô, though 〈Ô〉BA is generically complex by definition.

To see the differences from the case of non-Hermitian Hamiltonians more
explicitly, we investigate Theorem 2 by expanding |A(t)〉 and |B(t)〉 in the same
way as Eqs.(9.9)-(9.12). Then we can make use of Eqs.(9.13)-(9.20) just by noting
that Eqs.(9.17)-(9.19) are expressed as

Ri ≡ |ai(TA)||bi(TB)|, (9.39)

〈B(t)|A(t)〉 =
∑
i

Rie
iΘi , (9.40)

|〈B(t)|A(t)〉|2 =
∑
i

R2i + 2
∑
i<j

RiRj cos(Θi −Θj), (9.41)

since Imλi = 0 and Q = 1. Then, since Ri ≥ 0, |〈B(t)|A(t)〉| can take a maximal
value only under the condition:

Θi = Θc for ∀i, (9.42)

and |〈B(t)|A(t)〉|2 is estimated as

|〈B(t)|A(t)〉|2 =

(∑
i

Ri

)2

=

(∑
i

|ai(TA)||bi(TB)|

)2

≤

{∑
i

(
|ai(TA)|+ |bi(TB)|

2

)2}2
= 1, (9.43)

where the third equality is realized for

|ai(TA)| = |bi(TB)| for ∀i. (9.44)
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In the last equality we have used this relation and Eq.(9.20). The condition for
maximizing |〈B(t)|A(t)〉| is represented by Eqs.(9.42) and (9.44). In the case of
non-Hermitian Hamiltonians, the condition for maximizing |〈B(t)|QA(t)〉| is rep-
resented by Eqs.(9.21)-(9.23) and (9.25), and essentially only the subset having the
largest imaginary parts of the eigenvalues of Ĥ contributes most to the absolute
value of the transition amplitude |〈B(t)|QA(t)〉|, as we saw in Subsection 9.4.1.
This is quite in contrast to the present study in the case of Hermitian Hamiltonians,
where the full set of the eigenstates of Ĥ can contribute to |〈B(t)|A(t)〉|. Thus the
final state to maximize |〈B(t)|A(t)〉|, |B(TB)〉max, is expressed as

|B(TB)〉max =
∑
i

bmax
i (TB)|λi〉, (9.45)

where

bmax
i (TB) ≡ |ai(TA)|e

i(θai−
1
~Tλi−Θc) (9.46)

obeys ∑
i

|bmax
i (TB)|

2 = 1. (9.47)

Hence |B(t)〉max is expressed as

|B(t)〉max = e−
i
~ Ĥ(t−TB)|B(TB)〉max =

∑
i

bmax
i (t)|λi〉, (9.48)

where bmax
i (t) is given by

bmax
i (t) = bmax

i (TB)e
− i

~λi(t−TB) = ai(t)e
−iΘc . (9.49)

In the second equality we have used Eq.(9.46). Consequently, |B(t)〉max is found to
be the same as |A(t)〉 up to the constant phase factor, as we saw in Eq.(9.36).

9.5 Discussion

In this paper, after briefly explaining the proper inner product IQ, which makes
a given non-normal Hamiltonian normal, and also the future-included CAT, we
have reviewed the theorem on the normalized matrix element of Ô, 〈Ô〉BAQ , which
seems to have a role of an expectation value in the future-included CAT and
RAT. Assuming that a given Hamiltonian Ĥ is non-normal but diagonalizable,
and that the imaginary parts of the eigenvalues of Ĥ are bounded from above,
we presented a theorem that states that, provided that Ô is Q-Hermitian, i.e.,
Ô†Q = Ô, and that |A(t)〉 and |B(t)〉 time-develop according to the Schrödinger
equations with Ĥ and Ĥ†

Q

and are Q-normalized at the initial time TA and at
the final time TB, respectively, 〈Ô〉BAQ becomes real and time-develops under a
Q-Hermitian Hamiltonian for |A(t)〉 and |B(t)〉 such that the absolute value of the
transition amplitude |〈B(t)|QA(t)〉| is maximized. First we proved the theorem in
the case of non-Hermitian Hamiltonians based on Refs. [27,29]. Next we provided
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another theorem particular to the case of Hermitian Hamiltonians, and proved it,
based on Refs. [28,29]. It is noteworthy that, both in the future-included CAT and
RAT, we have obtained a real average for Ô at any time t by means of the simple
expression 〈Ô〉BAQ , though it is generically complex by definition. In addition, we
emphasize that, in the case of non-Hermitian Hamiltonians, we have obtained a
Q-Hermitian Hamiltonian.

In the usual theory, i.e., the future-not-included RAT, the expectation value
of Ô, 〈Ô〉AA, is constructed to be real for a Hermitian operator Ô by definition.
Similarly, even in the future-not-included CAT, 〈Ô〉AAQ is real for a Q-Hermitian
operator Ô. On the other hand, in the future-included CAT and RAT, 〈Ô〉BAQ is not
adjusted so, but it becomes real by our natural way of thinking, the maximiza-
tion principle. In addition, 〈Ô〉BAQ is expressed more elegantly than 〈Ô〉AAQ in the
functional integral form:

〈Ô〉BAQ =

∫
Dpath ψ∗BψAQOe

i
~S[path]∫

Dpath ψ∗BψAQe
i
~S[path]

. (9.50)

In the future-not-included theories 〈Ô〉AAQ does not have such a full functional
integral expression for all time. Therefore, 〈Ô〉BAQ seems to be more natural than
〈Ô〉AAQ , and we can speculate that the fundamental physics is given by 〈Ô〉BAQ in the
future-included theories rather than by 〈Ô〉AAQ in the future-not-included theories.
This interpretation provides a more direct connection of functional integrals to
measurable physics.

In such future-included theories we are naturally motivated to consider the
maximization principle. If we do not use it, 〈Ô〉BAQ , which is expected to have a role
of an expectation value in the future-included theories, is generically complex by
definition not only in the CAT but also in the RAT. This situation is analogous to the
usual classical physics, where classical solutions are generically complex, unless
we impose an initial condition giving the reality. Therefore, the maximization
principle could be regarded as a special type of initial (or final) condition. Indeed,
in the case of the future-included CAT, it specifies a unique class of combinations
of |A(TA)〉 and |B(TB)〉. On the other hand, in the case of the future-included RAT,
the maximization principle does not specify such a unique class, but only gives
the proportionality relation: Eq.(9.36), and thus leaves the initial condition to be
chosen arbitrarily. This is in contrast to the case of the future-included CAT. Thus
the specification of the future and past states by the maximization principle is
more ambiguous in the RAT than in the CAT. In this sense, the future-included
CAT seems to be nicer than the future-included RAT, though it still requires a
bit of phenomenological adjustment of the imaginary part of the action to get
a cosmologically or experimentally good initial condition, and also suggests a
periodic universe.

Therefore, we speculate that the functional integral formalism of quantum
theory would be most elegant in the future-included CAT. Though the future-
included CAT looks very exotic, it cannot be excluded from a phenomenological
point of view[23,24]. Only the maximization principle would be needed in addition
to the imaginary part of the action. The future-included CAT supplemented with
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the maximization principle could provide a unification of an initial condition
prediction and an equation of motion.
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