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Abstract. We present a detailed four-body calculation in a basis which is also adequate for
a weakly bound state of two mesons. The Tcc = ccūd̄ state with quantum numbers IS = 01

and positive parity is analyzed. The influence of a weak three-body force is studied.

The bound state of two mesons is now a very hot topic due to new experi-
mental discoveries. The cc̄ resonance [1] and the Ds(2430) state [2] detected this
year can be explained in the constituent quark model as two-quark two-antiquark
bound states. Here we present some numerical results on the ccūd̄ system. We use
a basis which also contains asymptotic channels of two free mesons so that we are
able to treat also weakly bound states. The aim of this talk is to explain numerics
involved in the calculations, while the motivation for this subject was presented
by Mitja Rosina (these Proceedings).

1 Basis

We are interested only in L=0 states, so we expand the orbital part of the tetra-
quark wave function in terms of gaussians with different widths. We do not use
Jacobi coordinates but we rather choose coordinates which are more natural for
the two-quark two-antiquark system. This coordinate systems (Fig. 1) were al-
ready introduced in [3] but were not fully applied. The use of all systems is im-
portant since although the total angular momentum is zero, one can by using e.g.
system b) in Fig. 1 have a nonzero relative angular momenta between two quarks
l12 or between two antiquarks l34 resulting in a more complete Hilbert space.

When we have a strong quark mass asymmetry we expect diquark-antidi-
quark clustering [3] so that the first coordinate system on Fig 1 is more suitable
and the dominant color configuration has the diquark in antitriplet and the an-
tidiquark in triplet color state. On the other hand, if the binding is weak, the
direct and exchange meson-meson channels are more adequate. For these chan-
nels we need also the sextet-antisextet color configuration as can be seen by the
recoupling
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Fig. 1. Two quarks (dashed circles) and two antiquarks (empty circles) in three different rel-
ative coordinate systems: a) diquark-antidiquark, b) direct and c) exchange meson-meson
channels. The orbital part of the wave function is expanded in Gaussians of relative coor-
dinates  =

P
dnR

n using all three systems.

The important configuration is singlet-singlet while the octet-octet configuration
does not make a significant contribution. Similarly one can use different coupling
schemes for the spin part of the wave function. To solve the problem as accurately
as possible we use all color and spin types of configuration.

2 Binding energy of tetraquarks

We search for solutions of our Hamiltonian with the variational method, where
we use a general diagonalization of the Hamiltonian spanned by the nonorthog-
onal basis functions Rn = e-
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built the basis functions step by step by adding the beat configurations from Fig. 1
with the best color-spin configurations allowed for our quantum numbers (IS=01,
positive parity and color singlet) after optimizing the corresponding widths. To
obtain 1 MeV accuracy we constructed in this way basis with up to Nmax = 40

functions. This basis states can also accommodate two asymptoticly free mesons
if the four-body problem have no bound state.

In our calculations we use nonrelativistic potential model with the Bhaduri
potential [4] which is very successful in reproducing the ground state of almost
all mesons. The calculation in harmonic oscillator basis [5] has shown that the
Tcc tetraquark in this model is not bound. Similarly a phenomenological estimate
of the mass [6] also suggest that the system is not bound. This estimate is built
on the assumption that one can neglect contributions from the sextet-sextet con-
figuration and from direct and exchange meson-meson channels in Fig. 1. In our
approach our ground state is a state of two free color singlet mesons so that the
mass of the tetraquark is equal to the sum of masses of the D and D � mesons. For
this it is crucial to use in the expansion also states b) and c) from Fig. 1. Since we
are interested how the results are changed if we slightly modify the parameters
in the Bhaduri potential or add some new weak three-body interaction which
would not spoil the meson spectroscopy and will have only minor effects also
for baryons. We investigate the possibility of weak binding of Tcc and we need a
good description also of asymptotic states with respect to which we are calculat-
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ing the binding energy. This is why we find our basis more suitable than the basis
used in [5].

To get some deeper understanding of our four-quark system we calculate
the masses of the tetraquarks in a basis where we do not optimize all widths of
Gaussian functions, but keep one of them fixed. The most natural choice is to keep
the width which define the wave functions between two two-body cluster fixed
(1/d2=a3, b3, or c3). If this width are very large the mass of the system should
be equal to the sum of the masses of the two mesons. since our basis states do
include this asympthotical configurations. On the other hand if the plot of the
mass of the tetraquark as a function of this parameter has a local minimum with
the mass lower than the asymptotic value, we have a four-body bound state. In
this way we can get some information about interaction between two two-body
clusters in tetraquark although this mass at fixed d should not be confused with
effective potential in Born–Oppenheimer approximation.
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Fig. 2. The mass of Tbb as a function of the width between two clusters. Different curves
present results of the calculations where only some type of color wave function were
used in expansion of the tetraquark wave function (e.g. dotted curve for results with only
j3̄12334 � configurations.)

We illustrate this on the bbūd̄ tetraquark which was already rigorously solved
with Bhaduri potential in [5] in harmonic oscillator basis. Results are shown in
Fig. 2. The masses of free B and B � mesons obtained with Bhaduri potential are
5301 MeV and 5350 MeV respectively. We see that for large d the energy of the
system approaches this value. But at d‰0.6 fm we have a minimum which indi-
cate that the Tbb is bound in our model. On the same figure are presented the
results of calculations with only some type of color wave function used in expan-
sion of the tetraquark wave function. We see that for the minimum at d‰0.6 fm the
j3̄12334

� configurations are far the most important. Using only this configurations
the mass of the tetraquark is 10531 MeV which is only 6 MeV above the energy
obtained if we use all color configurations and do minimization without fixing
any of the widths. This then means that by ignoring few percents in the bind-
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ing energy that the ground state of the Tbb tetraquark is the antidiquark in color
triplet state and the diquark in color antitriplet between which the relative mo-
tion can be described by e-x2

3=(0:6fm)2

. Thus the Tbb tetraquark can be described
as the harmonic oscillator built out of the heavy diquark and light antidiquark.
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Fig. 3. The mass of Tcc as a function of the smearing of three body potential for two differ-
ent strengths. The asymptotic mass of D plus D

�

is 3906 MeV in our model.

As expected, we have clustering in color singlet states for large d (Fig. 3),
while due to confinement the energy of colored configurations rises sharply. The
rise for small d (d< 0:5 fm) is due to the kinetic energy between two clusters.

3 Three-body interaction

The Tcc tetraquark in the nonrelativistic constituent quark model with the Bhaduri
potential is above the D D � threshold. But as one can see on Fig 3 that the mass
of Tcc as a function of the width between two clusters has a significant minimum
at d‰ 0:7 fm which indicates a diquark-antidiquark clustering. Now we investi-
gate how close to binding this system is in this model. We do this by introduction
a SU(3) color invariant three body interaction. The origin and influence of such
interaction on three and four quark state was studied in [7]. We present the re-
sults of detailed four-body calculations with Bhaduri potential extended with the
tree-body interaction of the form

V3bqqq̄(ri; rj; rk) = -
1

8
dabc–ai –

b
j –
c �k U0exp[-(r2i + r2j + r2k)=a2];

V3bqq̄q̄(ri; rj; rk) =
1

8
dabc–ai –

b �j –c �k U0exp[-(r2i + r2j + r2k)=a2]:

Here ri is the distance of the i-th quark from the center of the triangle formed by
i-th, j-th and k-th quark, and similarly for rj and rk. –a are the Gell-Mann color
matrices and dabc are the SU(3) structure constants (f–a; –bg = 2dabc–c).
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The diagonal matrix elements of the color part of the three body interac-
tion between two quarks and an antiquark are -5/18 and 5/9 for j3̄12334

� and
j6126̄34

� color states, respectively. If the strength of this interaction U0 is negative
it will lower the states with diquark-antidiquark configuration. This can be seen
on Fig. 4. The dependence of the mass of the Tcc tetraquark on the strength of
the potential U0 and on the smearing of this potential is shown in Fig. 3. When
a= 3 fm and U0 = -20 MeV the system is bound with the energy of -15 MeV,
while as it can be seen on Fig. 4 it is unbound if we fix one of the parameters in or-
bital wave function. The system still possesses clustering of quarks into diquark
and antidiquark but the simple picture where the diquark and the antidiquark
form a harmonic oscillator is not accurate anymore. The effective interaction be-
tween clusters has now more complicated form. Since dabc–ai –

b
j –
c
k=8 in color sin-

glet baryons is 10=9 this interaction will lower the masses of the baryons for about
U0 if a>> 1 fm (the size of the baryon) and less for smaller a. Since the Bhaduri
potential gives ‰ 10 MeV too large masses of baryons this interaction would also
improve baryon spectroscopy. But we wish to keep the effect of this new interac-
tion as small as possible, so we prefer weaker three-body force (U0 ‰ -10MeV).

The main result therefore is that while Tcc is not bound with the Bhaduri
potential we can change the situation with a modification of this potential. Just by
changing the parameters (strength of confinement, masses) one can not achieve
this goal since it is not possible just to reduce the mass of the tetraquark without
reducing masses of mesons and thus lowering the threshold. But a weak three-
body force whose color factor is zero in the asymptotic channel can lead to the
binding.
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Fig. 4. The mass of Tcc as a function of the width between two clusters. The results of
the calculations for three different strengths of the tree-body potential are shown. The
smearing of this potential is a = 3 fm.
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