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INTRODUCTION
Anaerobic digestion (AD) also known as the biogas 

process has been widely utilised by the modern society 
for stabilising primary and secondary sludges in municipal 
wastewater treatment plants. The biogas process has also 
been applied as an alternative method for the treatment 
of animal manure, organic waste from households, urban 
areas and industries, often associated with energy recovery 
and the recycling of the nutrients from digested biomass to 
the agricultural sector. The proces is indigenous to natural 
anaerobic ecosystems and represents the microbiological 
conversion of organic matter to methane in the absence 
of oxygen. The digested organic matter resulting from the 
anaerobic digestion process is usually called digestate (Al 
Seadi et al. 2008).

Biogas is produced in different environments, e.g., 
in landfills, sewage sludge and biowaste digesters during 
anaerobic degradation of organic material. Methane, which 
is the main component of biogas, is a valuable renewable 
energy source, but also a harmful greenhouse gas if emitted 
into the atmosphere. Methane, upgraded from biogas, can 
be used for heat and electricity production or as biofuel for 
vehicles (Wellinger and Linberg 2000).

Biogas contains from 55% to 70% methane, 30% 
to 45% carbon dioxide and <1% nitrogen (Jönsson et  al. 
2003). Typically biogas also contains hydrogen sulphide 
and other sulphur compounds, ammonium, compounds 
such as siloxanes, aromatic and halogenated compounds, 
heterocyclic compounds, ketones, terpenes, alcohols and 
halogenated aliphatics (Allen et al. 1997; Spiegel et al. 1997; 

Eklund et  al. 1998; Shin et  al. 2002; Jaffrin et  al. 2003). 
The presence of these compounds and their concentration 
during the reaction has a strong influence on the reaction 
path itself, and even more on the further use of biogas. Most 
of the produced biogas is used today to produce electricity 
and heat in internal combustion engines, microturbins or 
fuel cells. All these procedures require a relatively clean 
methane, whereas the majority of devices is very sensitive to 
the matter in the biogas. Therefore, detection and removal of 
these materials on time is important from both an economic 
and ecological point of view since the combustion of 
pure methane is relatively “clean”. ANN according to the 
dynamics of the process and a number of unpredictable 
factors offer themselves as an effective tool for that. There 
are many different uses of ANN in AD but first of all we 
can summarize four important segments, which are closely 
linked: process control and diagnosis, fault detection on time 
to support decision-making system, process and its products 
prediction to support decision-making system, process 
modeling and simulation for optimization and indentification 
of process level. All these segments have a significant impact 
on the rapid development of new, high-speed measurement 
techniques and measurement tools that only provide up to 
date and accurate information that are necessary for further 
processing by the ANN in all process stages of AD.

When we talk about areas of use of ANN predictions 
in the AD process it is clear that an industrial use (waste) is 
in advantage compared to agriculture. This is reflected by a 
small amount of researches in agriculture and it is clearly 
from the perspective of modern society and the Western 
way of life because we produce huge quantities of various 
wastes, which represent a major ecological problem. It is 
very useful to turn waste into biogas and also environment 
friendly. ANN can play an important role in this process 
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because of different starting substrates that contain unknown 
ingredients with significant influence on the course of the 
process and composition of biogas. They may also contain 
toxic substances, antibiotics, pesticides, etc., which are very 
dangerous for the conduct of the process (inhibition) and of 
course for the environment. In all such cases the prediction 
with the ANN is a powerful tool that has enormous economic 
and ecological benefits.

Because of the small amount of researches, the 
development of this area is at the beginning and therefore 
offers a wide range of new applications. ANN are becoming 
very important in many areas of human activity and agriculture 
is no exception. Even more, with its many biodynamic 
processes, which are not even fully known, it is an ideal field 
for new applications of ANN. Agriculture offers a huge stock 
of organic matter from various crops to different manure and 
organic waste. There is no problem with the unknown input 
substrates in agriculture biogas plants, so therefore the use 
of ANN prediction can be focused mainly on the detailed 
knowledge of the process in order to increase the yield of 
biogas and the search for optimal mixes of different starting 
substrates.

Artificial neural networks 
background and modelling

An artificial neural network is a computational structure 
where many simple computational elements, called artificial 
neurons, perform a nonlinear function of their inputs. Such 
computational units are massively interconnected and are 
able to model a system by means of a training algorithm. 
This algorithm attempts to minimize an error measure that 
is computed in different ways depending on the specific 
technique used to adjust the connections (i.e., the learning 
algorithm). There are two major approaches to train an artificial 
neural network (i.e., to adapt its parameters): supervised and 
unsupervised learning. In the supervised learning approach, 
specific examples of a target concept are given, and the goal 
is to learn how to recognize members of the class or to build a 
regression model using the description attributes. In this case, 
the synaptic weights among neurons are adjusted in order to 
minimize the error between the known desired outputs and the 
actual output given by the neural network during the learning 
process. In the unsupervised learning approach, the set of 
examples is provided without any prior classification, and the 
goal is to discover underlying regularities and patterns, most 
often by identifying clusters or subsets of similar examples. 
Training in this case consists on looking for a compressed 
representation of the collected examples (original data) 
and the error is the difference between this representation 
of our original data and the original data (Bishop 1995). 
The attractiveness of ANNs comes from their remarkable 
information processing characteristics pertinent mainly to 
nonlinearity, high parallelism, fault and noise tolerance, 
and learning and generalization capabilities. Compared 
with conventional data processing methods, ANNs provide 
a model-free, adaptive, parallel-processing, and robust 
solution with fault and failure tolerance, learning, ability to 
handle imprecise and fuzzy information, and capability to 
generalize. An ANN is able to map process input and output 

without underlying assumption about the distribution of data. 
They are powerful in data processing and analysis and can 
handle engineering problems, which are highly complex and 
nonlinear. They provide a powerful method for practically 
accurate solutions of precisely or imprecisely formulated 
problems and for phenomena that are only understood 
through experimental data and field observations. ANNs have 
become the most popular soft computing methods for solving 
problems in engineering (Basheer and Hajmeerb 2002). 
They have been successfully used for a number of chemical 
engineering applications such as sensor data analysis, fault 
detection and process identification. Many cases show high 
utility value of various forms of ANN for different chemical 
processes (Hussain 1999).

Classification of ANNs
ANNs may be classified in many different ways 

according to one or more of their relevant features. Generally, 
classification of ANNs may be based on the function that 
the ANN is designed to serve (e.g., pattern association, 
clustering), the degree (partial/full) of connectivity of the 
neurons in the network, the direction of flow of information 
within the network (recurrent and nonrecurrent), with 
recurrent networks being dynamic systems in which the state 
at any given time is dependent on previous states, the type 
of learning algorithm, which represents a set of systematic 
equations that utilize the outputs obtained from the network 
along with an arbitrary performance measure to update the 
internal structure of the ANN, the learning rule (the driving 
engine of the learning algorithm), and the degree of learning 
supervision needed for ANN training.

A vast number of networks, new or modifications 
of existing ones, are being constantly developed. A brief 
discussion of the most frequently used ANNs, presented in 
the order of their discovery, is given below.

Hopfield networks
This network is a symmetric fully connected two-layer 

recurrent network that acts as a nonlinear associative memory 
and is especially efficient in solving optimization problems. 
The network is suited to only bipolar or binary inputs and it 
implements an energy function. Learning is done by setting 
each weight connecting two neurons to the product of the 
inputs of these two neurons (van Rooij et al. 1996). When 
presented with an incomplete or noisy pattern, the network 
responds by retrieving an internally stored pattern that most 
closely resembles the presented pattern.

Kohonen networks
These networks, also called self-organizing feature 

maps, are two-layer networks that transform n-dimensional 
input patterns into lower-ordered data where similar patterns 
project onto points in close proximity to one another. 
Kohonen networks are trained in an unsupervised manner to 
form clusters within the data (i.e., data grouping). In addition 
to pattern recognition and classification, Kohonen maps are 
used for data compression, in which high-dimensional data 
are mapped into a fewer dimensions space while preserving 
their content (Zupan and Gasteiger 1999).
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Backpropagation network (BP)
These networks are the most widely used type of 

networks and are considered the workhorse of ANNs 
(Rumelhart et  al. 1986). A BP network is an multilayer 
perceptron consisting of an input layer with nodes 
representing input variables to the problem, an output layer 
with nodes representing the dependent variables (i.e., what 
is being modeled), and one or more hidden layers containing 
nodes to help capture the nonlinearity in the data. Using 
supervised learning, these networks can learn the mapping 
from one data space to another using examples. The term 
backpropagation refers to the way the error computed at the 
output side is propagated backward from the output layer, to 
the hidden layer, and finally to the input layer. In BP-ANNs, 
the data are fed forward into the network without feedback 
(i.e., all links are unidirectional and there are no same layer 
neuron-to-neuron connections). The neurons in BP-ANNs 
can be fully or partially interconnected. These networks are 
so versatile and can be used for data modeling, classification, 
forecasting, control, data and image compression, and pattern 
recognition (Hassoun 1995).

Recurrent networks
In a recurrent network, the outputs of some neurons 

are fed back to the same neurons or to neurons in preceding 
layers. This enables a flow of information in both forward 
and backward directions, thus providing the ANN with a 
dynamic memory (Pham 1994). The BP recurrent ANNs are 
a simple variant of recurrent networks in which the ‘memory’ 
is introduced into static feedforward ANNs by a special data 
representation (e.g., time delay) followed by training using 
classic BP (Basheer and Hajmeer 2000).

Counterpropagation networks
These networks are trained by hybrid learning to 

create a self-organizing look-up table useful for function 
approximation and classification (Zupan and Gasteiger 1999). 
As input features are presented to the network, unsupervised 
learning is carried out to create a Kohonen map of the input 
data. Meanwhile, supervised learning is used to associate an 
appropriate output vector with each point on the map. Once 
the network has been trained, each newly presented feature 
vector will trigger a response which is the average for those 
feature vectors closest to it in the input data space, thus 
simulating a look-up table.

Radial basis function (RBF) networks
These networks are a special case of a multilayer 

feedforward error-backpropagation network with three 
layers (Schalkoff 1997). They can be trained by a variety 
of learning algorithms including a two-step hybrid learning. 
The hidden layer is used to cluster the inputs of the network 
(the nodes in this layer are called cluster centers). Unlike 
the sigmoid transfer function in BP-ANNs, these networks 
employ a radial basis function such as a Gaussian kernel 
(Haykin 1994). The RBF is centered at the point specified by 
the weight vector associated with the unit. Both the positions 
and widths of these Gaussian functions must be learnt from 
the training patterns. Each output unit implements a linear 
combination of these RBFs. The choice between the RBF 

networks and the BP-ANNs is problem dependent (Pal and 
Srimani 1996). RBF networks train faster than BP but are 
not as versatile and are comparatively slower for use (Attoh-
Okine et al. 1999).

Biogas and its compounds
AD process is going on in a few stages. Each stage 

is characterised by the main activity of a certain group of 
bacteria. During the AD process, the bacteria decompose 
the organic matter in order to produce the energy necessary 
to their metabolism. Besides methan and carbon dioxide 
typically biogas also contains hydrogen sulphide and other 
sulphur compounds, ammonia, compounds such as siloxanes 
and aromatic and halogenated compounds. Although amounts 
of trace compounds are low compared to methane, they can 
have environmental impacts such as stratospheric ozone 
depletion, the greenhouse effect and/or reduce the quality of 
local air. Many volatile organic compounds (VOCs) harmful 
to the environment or to humans can occur in biogases as they 
have high vapour pressure and low solubility. Many toxic 
VOCs are emitted from or formed in household waste which 
includes cleaning compounds, pesticides, pharmaceuticals, 
plastics, synthetic textiles and coatings (Reinhart 1993). 
Aromatic and chlorinated hydrocarbons are widely used in 
industry as solvents and fluorinated hydrocarbons have been 
used as refrigerating aggregates, foaming agents, solvents 
and propellants (Scheutz et al. 2004). If biogas is used for 
energy production, compounds containing organosulphur 
or organochloride contribute to corrosion in vehicle or 
combustion engines (Allen et  al. 1997). Biogas containing 
organic silicon compounds is harmful to engines because 
the silicon compounds are oxidised to silicon oxides during 
combustion, causing scuffing to engine parts (Wellinger and 
Linberg 2000). Biogas from sewage treatment and biogas 
plants is commonly used for heat and electricity production 
but also increasingly for vehicle fuel production. Landfill gas 
is used for heat and electricity production in many countries, 
but its use for vehicle fuel production is considered in many 
cases to be too complicated and thus expensive because it 
contains trace compounds, such as sulphur, chloride and 
silicon compounds (Shin et al. 2002).

Hydrogen sulfide (H2S) is a very undesirable component 
of biogas because of its corrosivity. In boilers and in internal 
combustion engines it oxidises to sulphuric acid which can 
dissolve the metal and destroy the engine parts. It is also very 
toxic for all common fuel cells (NETL 2000). Removal of 
H2S is therefore a prerequisite for safe biogas utilisation. 
H2S is the end product of the reduction of sulfate and other 
sulphur containing compounds in anaerobic digestion. 
Concentrations in biogas up to 5.7 vol.% H2S were reported 
(Braun 1982). At this moment no effective tool exists to 
prevent H2S production during the anaerobic treatment of 
sulfaterich wastewater (Hulshoff Pol et  al. 2001). Even in 
the practice applied measures of sulfide precipitation with 
iron salts (Stachowske 1991) or air injection (Chambers 
and Potter 2002) are not effective enough to reach the fuel 
cells tolerances of a few ppm H2S (NETL 2000). From this 
point of view a pre-treatment technology, like a bio-scrubber 
combined with a chemical cleaning, is a good possibility to 
upgrade the biogas quality to fuel cells tolerances. Therefore, 
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predictive model based control will be necessary so H2S in 
biogas production is regulated and pre-treatment functioning 
is assured (Strik et al. 2005).

Ammonium occurs primarily in biogas from thermophilic 
digestion and/or if the feed contains considerable amounts 
of nitrogen (e.g. protein-containing waste). It is the end 
product of ammonification processes in anaerobic digestion. 
As a component in biogas it has not been researched until 
now. Still there is no literature available which constitutively 
demonstrates the presence of ammonia in biogas. Only 
Schomaker (2000) noted that 450 ppm ammonia was 
measured at a biogas plant. Nevertheless, from the Henry 
constant of ammonia (Stumm and Morgan 1996) and possible 
reactor conditions it was easily calculated that, when gas 
transfer limitation is excluded, ammonia should be present in 
the biogas phase. Some fuel cells tolerate ammonia as a fuel, 
but other fuel cells like the Proton Exchange Membrane Fuel 
Cell (PEMFC) or the Phosphoric Acid Fuel Cell (PAFC) are 
certainly not resistant to ammonia (NETL 2000). For these 
type of fuel cells research of the ammonia production and 
prediction in biogas is required. In the combustion process, 
nitric oxide (NO) is formed from ammonium, which further 
reacts forming other nitric oxides in the atmosphere. The 
ammonium concentration in landfill gas is often not more 
than a few ppm. Also the ammonium concentration in the 
gas produced in bioreactors is normally quite small. The 
following factors may cause the ammonium concentration 
to rise in sludge digestion: the pH value of the process 
is > 8.3 (e.g. using chicken manure as feed raises the pH 
value), periodic pumping into the gas space of the fermenter, 
or turbulent manure inlet (ammonium is stripped from the 
sludge into the gas) or too fast mixing. An increased pH is 
more common in high temperature, and high concentrations 
of ammonium appear mostly in thermophilic processes. Fast 
mixing or agitation of the sludge contributes to separating 
the ammonium from the liquid into the gas phase, where the 
ammonium concentration of the gas rises (Strik et al. 2005; 
Arnold 2009).

The anaerobic digestion of biomass is a multi stage 
process involving different types of microorganisms. 
In addition to macronutrients such as carbon, nitrogen, 
phosphorus and sulphur, trace elements play a crucial role 
in the growth and metabolism of anaerobic microorganisms 
(Takashima and Speece 1989; Goodwin et al. 1990) where 
they are essential for many physiological and biochemical 
processes. Many trace elements are metals (Zandvoort et al. 
2003). The effect was already investigated by using diverse 
synthetic media such as acetate in combination with nickel 
and cobalt (Kida et al. 2001). Several nickel or cobalt ion-
containing enzymes involved in methanogenesis have been 
identified. The nickel tetrapyrrole, coenzyme F430, is known 
to bind to methyl-S-CoM reductase which catalyzes methane 
formation from methyl-S-CoM in both aceticlastic and 
hydrogenotrophic methanogens (Ferry et  al. 1993, Ermler 
et  al. 1997). A corrinoid, such as vitamin B12, containing 
a cobalt ion is known to bind to coenzyme M [CoM] 
methylase, such as N5-methyl tetrahydromethanopterin: 
coenzyme M methyltransferase, which catalyzes a methyl-
transferring reaction forming methyl-S-CoM in both 

aceticlastic methanogens and hydrogenotrophic methanogens 
(Kenenly 1981; Becher et  al. 1992). Adequate availability 
of essential trace elements for the bacterial community is 
still a problem when single substrates rather than complex 
mixtures of materials are used for biogas production. The 
bioavailability of trace elements for metabolic pathways 
of the anaerobic bacteria is in most cases not related to the 
total amount measured in the medium since only a fraction 
is present in solution (Oleszkiewicz and Sharma 1990). 
Many parameters such as shifts in pH-value or temperature 
may lead to precipitation and/or chelation of trace elements 
thus reducing bioavailability (Mosey et al. 1971; Zandvoort 
et al. 2003). Especially biogas plants operating with maize 
silage as single substrate show consistently a lack of trace 
elements and consequently a decrease of biogas production. 
This limitation leads to reduced methane yields and to 
considerable problems due to increasing process instability.

Because critical nickel and cobalt ions in the process 
of methanogenesis, the determination of two elements in the 
substrate can be an important point that describes the quality 
and quantity of microorganisms in the latest, most important 
stage of the formation of methane. There are many different 
techniques for their determination in different samples such as 
atomic absorption, atomic fluorescence, X-ray fluorescence, 
voltammetric and spectrophotometric methods. Quantitative 
spectrophotometry has been greatly improved by the use 
of multivariate statistical methods, particularly principal 
component regression, partial least square regression and 
ANNs (Rezaei et al. 2001).

Because of comprehensive topic we focused in the 
survey on prediction of some most important compounds 
of biogas. Although the amount of research in this direction 
is currently small, but their number has become increasing 
in recent years. We summarized several major cases for the 
yield predict of methane and some other compounds by 
means of ANN.

UTILIZATION AND APPLICATION
Elias et al. (2006) used artificial neural network to model 

the removal efficiency of a biofilter for treating H2S. They 
used an experimental database consisting of 194 daily cases. 
The experimental lab-scale biofilter used for obtaining the 
data consisted of a PVC column divided into three modules 
with an inner diameter of 0.10 m and a total height of 1 m. 
The biofilter was filled with a previously selected material 
consisting of pig manure and sawdust. This organic packing 
material itself (specially the pig manure residues) provided the 
active biomass for H2S biodegradation and, consequently, no 
inoculation was necessary. Furthermore, no nutrient supply 
was carried out during operation. The removal efficiency of 
the reactor was considered as a function of the changes in 
the air flow and concentration of H2S entering the biofilter. 
In order to obtain true representative values, the removal 
efficiencies (outputs) were measured 24 h after each input 
was changed. A MLP (multilayer perceptron 2-2-1) model 
with two input variables (unit flow and concentration of the 
contaminant fed into the biofilter) rendered good prediction 
values with a determination coefficient of 0.92 for the 
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removal efficiency within the range studied. This means that 
the MLP model can explain 92% of the overall variability 
detected in the biofilter corresponding to a wide range of 
operating conditions.

Strik et  al. (2005) developed ANNs to predict H2S 
and NH3 (ammonia) in biogas. The experiments concluded 
that NH3 in biogas can indeed be present up to 93 ppm. To 
gain data for model training and validation, two 20 l lab-
scale anaerobic completely stirred tank reactors (CSTRs) 
were operated at 60 °C  with a hydraulic retention time of 
40 days. One reactor for H2S production and one reactor for 
NH3 production. H2S and NH3 concentrations in biogas were 
modelled successfully using the MATLAB Neural Network 
Toolbox. A script was developed which made it easy to search 
for the best neural network models’ input/output-parameters, 
settings and architectures.

The models were predicting the trace compounds, even 
under dynamical conditions. The resulted determination 
coefficients were for H2S 0.91 and for NH3 0.83. Several 
model predictive control tool strategies were introduced 
which showed the potential to foresee, control, reduce or 
even avoid the presence of the trace compounds.

Mu and Yua (2007) have made a simulating model for 
the performance of a granule-based H2-producing upflow 
anaerobic sludge blanket (UASB) reactor using neural 
network and genetic algorithm. A model was designed, 
trained and validated to predict the steady-state performance 
of the reactor. Organic loading rate, hydraulic retention time 
(HRT), and influent bicarbonate alkalinity were the inputs 
of the model, whereas the output variables were one of the 
following: H2 concentration, H2 production rate, H2 yield, 

effluent total organic carbon, and effluent aqueous products 
including acetate, propionate, butyrate, valerate, and 
caporate. Predictions were performed using the validated 
model to determine the effects of substrate concentration 
and HRT on the reactor performance. The simulation results 
demonstrate that the model was able to effectively describe 
the daily variations of the UASB reactor performance, and 
to predict the steady-state reactor performance at various 
substrate concentrations and HRTs. The values of training 
determination coefficients for H2 concentration in the biogas 
(0.966), H2 production rate (0.810), H2 yield (0.882), effluent 
total organic carbon (0.920) and effluent aqueous products 
including acetate, propionate, butyrate, valerate, and 
caporate demonstrate that the ANN learned the relationship 
between input and output well. The validating coefficients 
of determination for H2 concentration in biogas (0.719), H2 
production rate (0.806), H2 yield (0.843), and effluent total 
organic carbon (0.854) suggest that the trained GA–NN 
(genetic algorithm-GA and neural network-NN) model 
showed no systematic over- or under-prediction with regard 
to output variables. GA is a class of parallel iterative and 
global search algorithm with certain learning ability, which 
repeats evaluation, selection, crossover, and mutation after 
initialization until the stopping condition is satisfied (Gen 
and Cheng 1997). Therefore, the model was appropriate to 
predict the output of the H2-producing UASB reactor.

Abu Qdais et al. (2009) used the ANN and GA as tools 
for simulating and optimizing of biogas production process 
from the digester. The study considered the effect of digester 
operational parameters, such as temperature (T), total solids 
(TS), total volatile solids (TVS), and pH on the biogas 
yield. A multi-layer ANN model with two hidden layers was 

Table 1: �Structure, architecture and settings of the best found models predicting, respectively, H2S and NH3 
(Strik et al. 2005) 

  H2S model NH3 model
Inputs Sulfate loading rate (g SO4-S m-3d-1) Total nitrogen loading rate (g N m-3d-1)
  Organic loading rate (kg COD m-3d-1) Organic loading rate (kg COD m-3d-1)
  H2S in biogas (ppm) NH3 in biogas (ppm)
    Biogas productivity (m3 biogas m-3d-1)
    Ammonia in reactor (mg N-NH3L-1)
Output Hydrogen sulfide in biogas (ppm) Ammonia in biogas (ppm)
Layers 2 2
Hidden neurons 5 7
Transfer functions Tansig/pureline Tansig/pureline

Train function Batch gradient descent with momentum 
algorithm

Batch gradient descent with 
momentum algorithm

Learning rate 0.001 0.001
Train epochs 5000 5000
Performance goal 0.02 0.02
Minimum performance gradient 1X10-8 1X10-8

Momentum constant 0.9 0.9
Maximum performance inc 1.04  1.04
Number of train data 100 131
Number of validated data 35 27
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trained to simulate the digester operation and to predict the 
methane production. The performance of the ANN model is 
verified and demonstrated the effectiveness of the model to 
predict the methane production accurately with correlation 
coefficient of 0.87. The developed ANN model was used 
with genetic algorithm to optimize the methane size. The 
optimal amount of methane was converged to be 77%, 
which is greater than the maximum value obtained from 
the plant records of 70.1%. The operational conditions that 
resulted in the optimal methane production were determined 
as temperature at 36 °C, TS 6.6%, TVS 52.8% and pH 6.4. 
The study illustrated the importance of model learning with 
history in accurate description of the methane production 
process. Integration of the ANN model with GA model 
resulted in identification of the optimal operational digester 
parameters that lead to increase of methane yield by 6.9%. 
The study demonstrated that ANN and GA are useful tools 
for simulating and optimizing the biogas production from 
biogas digester under various operational conditions.

Ozkaya et al. (2007) did a study where they presented a 
neural network model for predicting the methane fraction in 
landfill gas originating from field-scale landfill bioreactors. 
Landfill bioreactors were operated with (C2) and without 
(C1) leachate recirculation. They monitored the leachate 
and landfill gas components for 34 months, after which 
they modeled the methane fraction in landfill gas from the 
bioreactors (C1 and C2) using artificial neural networks; 
leachate components were used as input parameters (Fig.1). 
To predict the methane fraction in landfill gas as a final 
product of anaerobic digestion, they used input parameters 
such as pH, alkalinity, chemical oxygen demand, sulfate, 
conductivity, chloride and waste temperature. They used 
a two-layer neural network with a tan-sigmoid transfer 
function for the hidden layer and a linear transfer function for 
the output layer. Fig. 1 shows the neural network structure of 
methane prediction of landfill gas.

INPUT HIDDEN LAYER OUTPUT LAYER

1. pH

2. Alkalinitiy

3.COD

4. Sulfate

5. Conductivity

6.Chloride

7. Waste temp.

8.Refuse age

1

2

11

12

Methan 
percentage

in biogas (%)

Fig. 1. �Optimal neural network structure for 
methane prediction (Ozkaya et al. 2007)

This ANN has k input and one output parameter that are 
essential for accurate modeling of the methane percentage 
of landfill gas from the C1 and C2 test cells. The input 
parameters and number of neurons within the hidden and 
output layers should be determined according to the current 
data. They performed a regression analysis of network 
response between the network output and the corresponding 
target. Taking into account the non-linear dependence of 
the data, the output appears to track the targets reasonably 
well. Correlation coefficien values are 0.951 and 0.957, 
and the obtained mean square error values are 0.00263 and 
0.00250 for predicted methane percentage of the C1 and C2 
test cells, respectively. This study presents neural network 
methane modeling by considering environmental factors 
such as water addition (recirculation), waste temperature 
and leachate components. The neural network modeling can 
be further developed in terms of predicting hourly methane 
production based on leachate parameters, control strategies 
can be extended with the objective of increasing methane 
production, providing optimization of the conversion to 
energy of methane gas in landfills, determining the optimum 
construction time of a waste energy plant at landfill sites, and 
determining leachate recirculation strategies and strategies 
for reducing of greenhouse gases.

Rezaei et  al. (2001) developed a metod for the 
simultaneous spectrophotometric determination of the cobalt 
(II) and nickel (II) based on formation of their complexes with 
pyrolidine and carbon disulfide. A spectrophotometer was 
used for recording absorbance spectra. They used a BP-ANN 
algorithm to handle such non-linear pectoral data. The results 
showed that the BP-ANN technique is quite satisfactory for 
treating the non-linearity embedded in the data. The network 
learns by calculating an error between desired and actual 
output and propagating this error information back to each 
node in the network. The results show the good regression 
between actual values and prediction values for concentration 
of both elements. Under the optimized conditions, cobalt (II) 
and nickel (II) can be determined in the range of 0.005 to 
0.500 µg/ml. The limits of detection for cobalt (II) and nickel 
(II) were 0.005 and 0.006 µg/ml, respectively. This procedure 
allows the simultaneous determination of the mentioned 
ions in alloy and synthetic samples. Good reliability of the 
determination was proved.

CONCLUSIONS
It is obvious that ANN are also becoming a powerful 

tool in the field of biogas production. In spite of the fact that 
biogas systems are very different, considering tehnological 
differences and differences of input substrates in areas such 
as municipal, agriculture, industry, water treatment plants 
etc., ANNs show a high degree of usability. The results of 
the summarized researches show high prediction accuracy 
and usefulness of the ANN which thereby become strong 
competition to conventional methods of measurement and 
data processing.  Even more, the fusion of both methods and 
the complementary functioning of soft and hard computing 
brings many benefits beyond the capabilities of each 
individual method.
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