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Abstract. It is easy to check that both algebraic equation det(p̂−m) = 0 and det(p̂+m) = 0

for 4-spinors u− and v− have solutions with p0 = ±Ep = ±
√

p2 +m2. The same is true
for higher-spin equations. Meanwhile, every book considers the p0 = Ep only for both u−
and v− spinors of the (1/2, 0)⊕ (0, 1/2)) representation, thus applying the Dirac-Feynman-
Stueckelberg procedure for elimination of negative-energy solutions. Recent works of Ziino
(and, independently, of several others) show that the Fock space can be doubled. We re-
consider this possibility on the quantum field level for both s = 1/2 and higher spins
particles.

Povzetek. Zlahka preverimo, da imata algebrajski enačbi det(p̂−m) = 0 in det(p̂+m) = 0

za 4-spinorja u− in v− rešitvi za p0 = ±Ep = ±
√

p2 +m2. Enako velja za enačbe za
spinorje z višjimi spini. Vseeno učbeniki obravnavajo samo p0 = Ep za oba spinorja u− in
v− upodobitve (1/2, 0)⊕ (0, 1/2)), torej uporabijo postopek Diraca, Feynmana in Stueckel-
berga za izločitev rešitev z negativnimi energijami. Nedavni članki Ziina (in, neodvisno,
nekaterih drugih) kažejo, da lahko Fockov prostor podvojimo. Ponovno obravnavamo to
možnost na nivoju kvantnih polj, tako za delce s spinom s = 1/2 kot za tiste z višjimi spini.

The Dirac equation is:

[iγµ∂µ −m]Ψ(x) = 0 . (13.1)

At least, 3 methods of its derivation exist [1–3]:

• the Dirac one (the Hamiltonian should be linear in ∂/∂xi, and be compatible
with E2p − p2c2 = m2c4);
• the Sakurai one (based on the equation (Ep − σ · p)(Ep + σ · p)φ = m2φ);
• the Ryder one (the relation between 2-spinors at rest is φR(0) = ±φL(0)).

The γµ are the Clifford algebra matrices

γµγν + γνγµ = 2gµν . (13.2)

Usually, everybody uses the following definition of the field operator [4]:

Ψ(x) =
1

(2π)3

∑
h

∫
d3p
2Ep

[uh(p)ah(p)e−ip·x + vh(p)b
†
h(p)e

+ip·x] , (13.3)
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200 V.V. Dvoeglazov

as given ab initio. After introducing exp(∓ipµxµ) the 4-spinors ( u− and v− )
satisfy the momentum-space equations: (p̂−m)uh(p) = 0 and (p̂+m)vh(p) = 0,
respectively; the h is the polarization index. It is easy to prove from the character-
istic equations det(p̂∓m) = (p20 − p2 −m2)2 = 0 that the solutions should satisfy
the energy-momentum relation p0 = ±Ep = ±

√
p2 +m2.

The general scheme of construction of the field operator has been presented
in [5]. In the case of the (1/2, 0)⊕ (0, 1/2) representation we have:

Ψ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xΨ(p) =

=
1

(2π)3

∑
h

∫
d4p δ(p20 − E

2
p)e

−ip·xuh(p0,p)ah(p0,p) = (13.4)

=
1

(2π)3

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)][θ(p0) + θ(−p0)]e

−ip·x
∑
h

uh(p)ah(p)

=
1

(2π)3

∑
h

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)]

[
θ(p0)uh(p)ah(p)e

−ip·x

+ θ(p0)uh(−p)ah(−p)e
+ip·x

]
=

1

(2π)3

∑
h

∫
d3p
2Ep

θ(p0)

[
uh(p)ah(p)|p0=Epe

−i(Ept−p·x)

+ uh(−p)ah(−p)|p0=Epe
+i(Ept−p·x)

]
During the calculations above we had to represent 1 = θ(p0) + θ(−p0) in order to
get positive- and negative-frequency parts.1 Moreover, during these calculations
we did not yet assumed, which equation this field operator (namely, the u(p)
spinor) satisfies, with negative- or positive- mass?

In general we should transform uh(−p) to the v(p). The procedure is the
following one [7]. In the Dirac case we should assume the following relation in the
field operator: ∑

h

vh(p)b
†
h(p) =

∑
h

uh(−p)ah(−p) . (13.5)

We know that [3]

ūµ(p)uλ(p) = +mδµλ , (13.6)

ūµ(p)uλ(−p) = 0 , (13.7)

v̄µ(p)vλ(p) = −mδµλ , (13.8)

v̄µ(p)uλ(p) = 0 , (13.9)

but we need Λµλ(p) = v̄µ(p)uλ(−p). By direct calculations, we find

−mb†µ(p) =
∑
λ

Λµλ(p)aλ(−p) . (13.10)

1 See [6] for some discussion.



i
i

“proc13” — 2013/12/11 — 20:10 — page 201 — #213 i
i

i
i

i
i

13 Dirac and Higher-Spin Equations of Negative Energies 201

Hence, Λµλ = −im(σ · n)µλ and

b†µ(p) = i
∑
λ

(σ · n)µλaλ(−p) . (13.11)

Multiplying (13.5) by ūµ(−p) we obtain

aµ(−p) = −i
∑
λ

(σ · n)µλb†λ(p) . (13.12)

The equations are self-consistent.2

However, other ways of thinking are possible. First of all to mention, we have,
in fact, uh(Ep,p) and uh(−Ep,p) originally, which satisfy the equations:3[

Ep(±γ0) − γ · p −m
]
uh(±Ep,p) = 0 . (13.14)

Due to the properties U†γ0U = −γ0, U†γiU = +γi with the unitary matrix

U =

(
0 −1

1 0

)
= γ0γ5 in the Weyl basis,4 we have

[
Epγ

0 − γ · p −m
]
U†uh(−Ep,p) = 0 . (13.15)

Thus, unless the unitary transformations do not change the physical content, we
have that the negative-energy spinors γ5γ0u− (see (13.15)) satisfy the accustomed
“positive-energy” Dirac equation. Their explicite forms γ5γ0u− are different from
the textbook “positive-energy” Dirac spinors. They are the following ones:5

ũ(p) =
N√

2m(−Ep +m)


−p+ +m

−pr
p− −m

−pr

 , (13.16)

˜̃u(p) =
N√

2m(−Ep +m)


−pl

−p− +m

−pl
p+ −m

 . (13.17)

2 In the (1, 0) ⊕ (0, 1) representation the similar procedure leads to somewhat different
situation:

aµ(p) = [1 − 2(S · n)2]µλaλ(−p) . (13.13)

This signifies that in order to construct the Sankaranarayanan-Good field operator
(which was used by Ahluwalia, Johnson and Goldman [Phys. Lett. B (1993)], it sat-
isfies [γµν∂µ∂ν − (i∂/∂t)

E
m2]Ψ(x) = 0, we need additional postulates. For instance, one

can try to construct the left- and the right-hand side of the field operator separately each
other [6].

3 Remember that, as before, we can always make the substitution p → −p in any of the
integrands of (13.4).

4 The properties of theU− matrix are opposite to those of P†γ0P = +γ0, P†γiP = −γi with
the usual P = γ0, thus giving

[
−Epγ

0 + γ · p −m
]
Puh(−Ep,p) = − [p̂ +m] ṽ?(Ep,p) =

0. While, the relations of the spinors vh(Ep,p) = γ5uh(Ep,p) are well-known, it seems
that the relations of the v− spinors of the positive energy to u− spinors of the negative
energy are frequently forgotten, ṽ?(Ep,p) = γ0uh(−Ep,p).

5 We use tildes because we do not yet know their polarization properties.
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Ep =
√

p2 +m2 > 0, p0 = ±Ep, p± = E±pz, pr,l = px±ipy. Their normalization
is to −2N2.

What about the ṽ(p) = γ0u− transformed with the γ0 matrix? Are they equal
to vh(p) = γ5uh(p)? The answer is NO. Obviously, they also do not have well-
known forms of the usual v− spinors in the Weyl basis differing by phase factor
and in the sign at the mass term (!)

Next, one can prove that the matrix

P = eiθγ0 = eiθ
(
0 1

1 0

)
(13.18)

can be used in the parity operator as well as in the original Weyl basis. The
parity-transformed function Ψ′(t,−x) = PΨ(t, x) must satisfy

[iγµ∂ ′µ −m]Ψ′(t,−x) = 0 , (13.19)

with ∂ ′µ = (∂/∂t,−∇i). This is possible when P−1γ0P = γ0 and P−1γiP = −γi.
The matrix (13.18) satisfies these requirements, as in the textbook case. However,
if we would take the phase factor to be zero we obtain that while uh(p) have the
eigenvalue +1, but

PRũ(p) = PRγ5γ0u(−Ep,p) = −ũ(p) , PR ˜̃u(p) = PRγ5γ0u(−Ep,p) = − ˜̃u(p) .
(13.20)

Perhaps, one should choose the phase factor θ = π. Thus, we again confirmed that
the relative (particle-antiparticle) intrinsic parity has physical significance only.

Similar formulations have been presented by [8], and [9]. The group-theoretical
basis for such doubling has been given in the papers by Gelfand, Tsetlin and Soko-
lik [10], who first presented the theory in the 2-dimensional representation of the
inversion group in 1956 (later called as “the Bargmann-Wightman-Wigner-type
quantum field theory” in 1993).

M. Markov wrote long ago two Dirac equations with the opposite signs at the
mass term [8].

[iγµ∂µ −m]Ψ1(x) = 0 , (13.21)

[iγµ∂µ +m]Ψ2(x) = 0 . (13.22)

In fact, he studied all properties of this relativistic quantum model (while he did
not know yet the quantum field theory in 1937). Next, he added and subtracted
these equations. What did he obtain?

iγµ∂µϕ(x) −mχ(x) = 0 , (13.23)

iγµ∂µχ(x) −mϕ(x) = 0 , (13.24)

thus, ϕ and χ solutions can be presented as some superpositions of the Dirac 4-
spinors u− and v−. These equations, of course, can be identified with the equations
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for the Majorana-like λ− and ρ− we presented in ref. [11].6

iγµ∂µλ
S(x) −mρA(x) = 0 , (13.25)

iγµ∂µρ
A(x) −mλS(x) = 0 , (13.26)

iγµ∂µλ
A(x) +mρS(x) = 0 , (13.27)

iγµ∂µρ
S(x) +mλA(x) = 0 . (13.28)

Neither of them can be regarded as the Dirac equation. However, they can be
written in the 8-component form as follows:

[iΓµ∂µ −m]Ψ
(+)

(x) = 0 , (13.29)

[iΓµ∂µ +m]Ψ
(−)

(x) = 0 , (13.30)

with

Ψ(+)(x) =

(
ρA(x)

λS(x)

)
, Ψ(−)(x) =

(
ρS(x)

λA(x)

)
, and Γµ =

(
0 γµ

γµ 0

)
(13.31)

You may say that all this is just related to the basis rotation (unitary transfor-
mations). However, in the previous papers I explained: The connection with the
Dirac spinors has been found [11,13].7 For instance,

λS↑ (p)
λS↓ (p)
λA↑ (p)
λA↓ (p)

 =
1

2


i −1 i

−i 1 −i −1

1 −i −1 −i

i 1 i −1



u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)

 . (13.32)

Thus, we can see that the two 4-spinor systems are connected by the unitary
transformations, and this represents itself the rotation of the spin-parity basis.
However, the λ− and ρ− spinors describe the neutral particles, meanwhile u− and
v− spinors describe the charged particles. Kirchbach [13] found the amplitudes
for neutrinoless double beta decay 00νβ in this scheme. It is obvious from (13.32)
that there are some additional terms comparing with the standard formulation.

One can also re-write the above equations into the two-component form. Thus,
one obtains the Feynman-Gell-Mann [12] equations. As Markov wrote himself, he
was expecting “new physics” from these equations.

Barut and Ziino [9] proposed yet another model. They considered γ5 operator
as the operator of the charge conjugation. Thus, the charge-conjugated Dirac
equation has the different sign comparing with the ordinary formulation:

[iγµ∂µ +m]ΨcBZ = 0 , (13.33)

and the so-defined charge conjugation applies to the whole system, fermion+electro-
magnetic field, e→ −e in the covariant derivative. The superpositions of the ΨBZ

6 Of course, the signs at the mass terms depend on, how do we associate the positive- or
negative- frequency solutions with λ and ρ.

7 I also acknowledge personal communications from D. V. Ahluwalia on these matters.
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and ΨcBZ also give us the “doubled Dirac equation”, as the equations for λ− and
ρ− spinors. The concept of the doubling of the Fock space has been developed in
Ziino works (cf. [10,14]) in the framework of the quantum field theory. In their
case the charge conjugate states are simultaneously the eigenstates of the chirality.
Next, it is interesting to note that for the Majorana-like field operators we have[

ν
ML

(xµ) + Cν
ML †

(xµ)
]
/2 =

∫
d3p
(2π)3

1

2Ep

∑
η

[(
iΘφ∗η

L
(pµ)

0

)
aη(p

µ)e−ip·x

+

(
0

φηL(p
µ)

)
a†η(p

µ)eip·x
]
, (13.34)[

ν
ML

(xµ) − Cν
ML †

(xµ)
]
/2 =

∫
d3p
(2π)3

1

2Ep

∑
η

[(
0

φη
L
(pµ)

)
aη(p

µ)e−ip·x

+

(
−iΘφ∗η

L
(pµ)

0

)
a†η(p

µ)eip·x
]
, (13.35)

which, thus, naturally lead to the Ziino-Barut scheme of massive chiral fields,
ref. [9].

Finally, I would like to mention that, in general, in the Weyl basis the γ−
matrices are not Hermitian, γµ

†
= γ0γµγ0. The energy-momentum operator i∂µ is

obviously Hermitian. So, the question, if the eigenvalues of the Dirac operator (the
mass, in fact) would be always real, and the question of the complete system of
the eigenvectors of the non-Hermitian operator deserve careful consideration [15].
Bogoliubov and Shirkov [5, p.55-56] used the scheme to construct the complete set
of solutions of the relativistic equations, fixing the sign of p0 = +Ep.

The conclusion is: the doubling of the Fock space and the corresponding
solutions of the Dirac equation got additional mathematical bases in this talk
presentation. Similar conclusion can be deduced for the higher-spin equations. I
appreciate the discussions with participants of several recent Conferences.
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