PROVING THE CORRECTNESS OF DIGITAL HARDWARE
DESIGNS USING PROLOG

UDK 681.3:325.6.08

ABSTRACT. An

approach is presented for

INFORMATICA 1/88

Z. Brezotnik
B. Horvat
' University of Maribor

automatic formal

verification of digital hardware designs using Prolog. Prolog 1is

used both as a representational
structure and the’

mechanism for proving
model is caomposed of
module

to the traditional
cation proceeds as follows: a)
and a description of

language for
behaviour of a design and also as an inference
its functional correctnese. A design in this
hierarchicaly
is represented as a finite
of degign correctnesse is made by
approach which utilises gimulation. The verifi-

specifying the

organized modules. Each
state machine. Validation
formal proof as an alternative

writing a design specification

its realization in Prolog, b) ‘deriving a

design behaviour from the interconnections of its components and

their behaviours, c¢)
the derived behaviour. The
general mathematical knowledge

level up to the

to perform the proofs
automatically. Designs can be handled from the
architectual levels.

showing equivalence between the specified and
system

has enough domain specific and
largely
lowest transistor
Some large designs including

a simple computer have already been verified.

1. INTRODUCTION

A hardware or software designer must be able to
decide whether the design meets its functional
specification. Currently three different
approaches exist for answering this gquestion.

The first "approach to enshure functional
correctness 1s to develop the design from the
specification by such a methodology that ensures

it can't be incorrect. 'In software design 1t is
exemplified in research of automatic
programming. In hardware design automated

technigues exist for dealing with elements of
designs that are most tedious and prone to human
error (such as wire routing or PAL generation).
Silicon compilation techniques for automatic
generation of complete - designs from
specifications are under development. This
approach is perhaps the most attractive, but it
is also the most difficult to achieve, because
it facer an eventual astronomically large
search space of design alternatives. A problem
of automatic synthesis is so difficult, that
useful general purpose systems for automatic
synthesis are not expected in the near future.

The second and the most common approach to
validate a design is an accurate simulation of
it and trying it on test cases. In exhaustive
simulation every possible combination of inputs
should be +tried for every possible internal
state. The number of all possible input patterns
can be extremely large even for simple devices.
A multiplier for two 16-bit integers faces over
four billion different inputs. It's clear that
exhaustive simulation is no longer feasible. We
can only select a subset of input patterns and
hope to extrapolate from them to determine the
correctness or failure of the design. The

selection of an adequate subset of test cases is
very difficult. Such partial simulation can
detect the existence of an error, but can never
guarantee that there are no more errors in the
design. :

There 1s an alternative third approach - a
formal verification of a design with
mathematical proof. If the formal verification
succeds, the design will match its specification
for all 1input patterns. - Research 1in formal
verification involves artificial intelligence
techniques. It reqgquires a formalism for
representing the structure and the behaviour of
digital systems and also an infefenqe mechaniem,
which will expertly manage astronomically ' large
search spaces. A succass of the verification
depends much on a built-in general mathematical
knowledge base. Because of uncompleteness of the
simulation and a bad prognosis for the soon
automatic synthesis this approach seems to be
the most promising in the nearer term.

Wagner was a pioneer with his research in this
field. He has used a nonprocedural functional
language for digital design description and a
theorem prover in a first order predicate logic.
The proof must be guided manually. Because of
the description language the use is limited to
low levels of a design. After that, Gordon has
developed his methods for hardware modeling and
verification based on different hierarchical
levels with an interactive theorem prover (1).
Initially., proofs were made manually, but more
recently with an interactive theorem prover.

In this paper we present our verification
system, named VERDIS (2) for formal verification
of digital hardware designs using Prolog.
VERDIS represents an automatized version of a

variant of Gordon's approach. In Fairchild
Laboratory for Artificial Intelligence the
VERIFY system was developed based on the similar
principles (3). VERDIS has successfully verified
some experimental designs with . an interesting
degree of complexity.

2. DESIGN REPRESENTATION IN VERDIS

A digital system in VERDIS is represented as a

14

collection of hierarchically organized modules
and their interconnections. A module is .
.considered as a finite state machine (FSM)

A'={X,Y,Z,5,a} (1)
It has a finite set of input (X) and ocutput
ports and a finite set of internal state
variables (Y). VERDIS supports FSM of types
Mealy and Moore and also ordinary decision
circuits, 1If Y={}.

(2)

internal
design)

A module is either a primitive with no
sgstructure (basic building block of the
or composition of the form

1E(Ns,ee,Nu), B

where the components N, are themselves modules.
The 1input (ocutput) ports of a conpound module
are the input (output) ports of‘its components.
Compound modules are formed by 1linking some
output ports of some components to some 1input
ports of other components. External ports of the
module are those ports that are not linked. Each

port has an associated signal type which
specifies the domain for signals paseing through
it. Signals in digital system are viewed

differently according to the conceptual.level in
which they are considered: as voltage levels, as
logic values ,as bits , as numbers or even as
higher-level objects. Signals in VERDIS may have
following types:

-booole (Boolean truth values true or false)
-bit (binary digits @ and 1),

-integer(N) {(integers in the range @-2 N**-
~integer (natural numbers),

1),

-booleZ, bitZ, integerZ(N) and Integerl
(high impedance siqnal types).

Structural and signal hierarchy allow more
succint description. Signals on a higher
hierarchical level don't show unnecessary
details of lower-level signals, but cary the
same information. -

‘For conciseness the behaviour of the FSM |is

described by two sets of equations , rather than

an exhaustive table:

x€X,

Dy = 5(x,y) ;
; x=X,

yeY (2)
z = Alx,y))

veY, 2€% (3

Equation (2) gives internal states as functions
of inputs and current state. Equation (3) gives
output signals as functions of inputs and
current - state. A dictionary of available
functions that can be used in expressions for
describing module behaviour currently consists
of arithmetic (»,-,%,”) , logic (not,and,or,xor)
and branching functions (if,case) and also some
special functions for such operations as wiring
signals on a bus and work with memories (joinfn,
bushfn, rfetch, fetch,store,...).

definition consists of Prolog facts and
In addition to constructs for specifying
type of the module, ports, states, components,
internal connections and behaviocural equatione
the description language supports several useful
constructs: constants, parameters, arrays, bit-
wise connections and equ operator for <calling

Module
rules.

some predefined modiles from the system library.

Let's illustrate some constructs menticoned so
far ' by considering an example of a one-bit
multiplier. It's constructed from a collection

of 2 to-1 multiplexors, each of which has inputs
|

inx,) iny, control input ctrl and output out.

l .
z D?finition of a ope-bit aultiplier in
% terms of 2-to-1 pultiplexsors

|
nodu%e(bitnult(N)).

port(bzt»ult(N), In(Bitmult),input,integer(N)).
port(bzt»ult(ﬂ), ctrl(Bitpult),input, boole).
port(bzt.ult(N),out(thnult),output,

linteger(NJ).

|
constant (Bitmult(N),

{ null(Bitsult),B,integer(N)).

|
part(bitault(N), pux2) -

»plx(Bitmult,
lindex(0,1,N).

1,

Iinkéd(bitnult(N) bit(I,in(Bitmult)),

; xnx(»plx(th»ult 1))):~ index(0,I,N).
Ixnked(bxtlult(N), ctrl(Bimult, 1),
ctrl(mplx(Bitmult, 1))) z-ipgex(0,1,N).
linked(bitmult(N), out(mplx(Bitmult, 1)),
bit(l,out(Bitmult))):~ index(0,I,N).

output_equation(bitoult(N), out(Bitmult) ;=
if(ctrl(Bitpult), in(Bitmult), null(Bitmult))).

In this example, N
the ‘bit wide of the multiplicand (i.8., the
mosti significant bit represents 2™). Due to
declarative power of Prolog a suitable indexing
of part and connections can be used. The
construct index(0,1,N) means simply that I can
take |any value from 8 to N .

| .
Tﬁs VERIFICATION PROCESS

is a parameter =specifying

3.

The |key ptinciple of VERDIS is that given the
beha%iour of components of a system and thelir
interconnections, it is possible to derive a
description of the behaviour of the whole
syst%m. The derived behaviour can then bhe
compared with a specification of the intended
behaviour of the system. If a design contains an
errod, a discrepancy between both behaviours can
be d@tected and the design corrected.

I
Before of the verification some basic checks are
made to enshure that nontristate outputs are not
wired, that connected gignals have equivalent
types, that every output and state variable has
an equation These checks have proved to be
very 1usefu1 in finding typing and logical
mista#es in design specification.

VERDIS
type
another

On quuest for verification of a module

checkF, if the correctness of this module
has been already proved, in which case
proof, is not necessary and the verification
succeeds immediately. If a module is a
ptimitive, its correctness can be asgumed. 1If
the cprractness of a module i8 unknown, VERDIS
uses a depth first search to recursively verify
each of its part and then a module as a whola.

1

The next step 1in verifying a module is to
derive a behavioural description of a composite
module f£from +the behaviours of 1its components
with their interconnections. Each component
module has a set of output and a set of state
equations. The union of all thesa egquations is
in fact an implicitly specified behaviour of a
modul?. It contains internal variables (signals
at parts inside the module and state wvariables
of component modules). The unnecessary internal
1nformation should be hidden., With gsubsegquent
substitutions of internal variables with

|
I
\

i

behaviour equations of component modules all
internal wvariables are eliminated. If any
frequently used internal variable has a very
complicated equation it may be better not to
eliminate it to avoid even larger equations. In
such cases VERDIS first derives and evaluates
the expression for the immediate variable and
refers to it 1in behaviour equations of. the
module where needed. The final result of this

step is a set of derived output equations and s
set of state equations.

At this point we can try to prove that the
derived behaviour description of the module is
equivalent to the behavioural specification. In
most cases a mapping between them is an exact
equivalence - isomorphism. We have to show that
corresponding equations in both automata ‘are
identical. The proof of identity is generally a
hard ' problem. It requires much mathematical
knowledge about functione, which can be used in
equations.’ In more complex cases the
correspondence between automata
homomorphism rather than exact
homomorphism may have a
behavioural form or
homomorphism occurs,
functionally identical
structural description. Behavioural or temporal
homomorphism occurs, when the same automata 1is
viewed with different time-scales. VERDIS
currently works only for isomorphic machines.

equivalence. A
structural or a
both. Structural
when automata are
but different in

The derived and the specified

compared for each output and each
of design correctness requires the
prove that a glven . equation

behaviour as a left side and derived behaviour
.as a right side)is an identity. The equation is
first checked to see whether it is recognized as
a trivial identity or whether it is a” trivial
non-identity. If the equation is not trivial,
VERDIS +tries to choose the best strategy for
proving the indentity. A strategy selection
depends on a form of left and right side of the
egquation and on function, operators and types of
the variables 1involved. The repertoire of
strategies contains: algebraic =simplification,
Boolean canonicalization and enumeration.

behaviour are
state. Proof
ability to
(specified

Algebraic simplification 1is the most general
strategy, which tries to prove the identity of
left and right side of the egquation with
simplification, expansion and canonicalization.
Simplification is implemented with a general
recursive Prolog procedure that recursively
simplifies a given expression using
simplification. rules for the involved operators
and functions. Expansion is used when a function
is observed on only one side of the ‘'equation.
The definition of the function is
substituted for its call and the resulting
expression is simplified. Canonicalization tries
to deal with combinatorial problems because of
commutativity and associativity of some
functions (+,%,arnd,or...J). :

If only Boolean var}ables occur in the equation
a more straightforward strategy of Boolean
canonicalization is chosen. During six
subsegquent steps the left and the right side of
equation are transformed to a lexically ordered
complete ' disjunctive normal forms and then
compared. It's faster than algebraic
simplification.

Sometimes no other strategy but enumeration
be applied. An enumeration 1is made
minimal necessary number of variables. For a
selected set of variables each possible
combination of their values is generated and
substituted 1into the egquation, which 1is then
simplified to ‘'true' or 'false'. In some special
cases it's not necessary to generate all

may
over a

is a

then-

15

combinations but.only some of them.
Partial enumeration may save much computation.
VERDIS avoids the use of enumeration, because
it's usually very space and time consuming.

possible

If VERDIS doesn't have enough knowledge to
select a strategy, an interactive mode 1is
entered. Currently a user can insist in the

algebraic simplification, 1in the enumeration on

all or just some of the variables and can also
simply assume the equation to be true or false.
It's always possible to enlarge VERDIS's
knowledge base ‘and .automatize

the ‘strategy
selection for such cases. -

Proving identity of an equation is the main and
the most difficult problem in the verification
process. The use of any procedural programming
language with deterministic organization would
not be a natural way for solving this problem.
This fact 1is one of the most significant
arguments for realization of VERDIS with the
nonprocedural language Prolog. A Prolog program
is a pattern directed system. The proof proceeds
with an activation of that verification rule
which is currently appliable to the left and to
the right side of the equation. Such realization
has a high degree of modularity. The knowledge

base can simply be enlarged by adding new rules
without any other changes.
4. TWO COMPLEX EXAMPLES
VERDIS has tackled some complex designs
including modules d74 and host. d74 1is an
arithmetic wunit(1inputs inA4, inB, iInC and
outputs outl and out2), which is intendend to
compute sums of products. '

outl = inAs%ipB + InA%inC

out?2 = IinA®inC + IinB*inC
At the top level it contains three multipliers
and two adders. The multipliers: consist of
slices, each of which contains a one-bit
multiplier, a shifter and an adder. The adders
are built from fulladders, which are built from
invertors and 2-to-1 multiplexors. Multiplexors

are built from logic gates. The logic gates are
themselves described at two levels: at Boolean
algebra level and at lower transistor level with
tristate =®signals and stored charge. d74 is
parameterized in bit-wide of inputs. An instance
that has 2-bit inputs involves 21 different
types of module with nine levels of structural
hierarchy. The design contains 1982 primitive
parts, including 1016 transistors. The entire
listing of the proof trace occupies about 1300
lines.

The next example is a register-transfer level
description of a simple computer host with eight
operations: HALT, JMP, JZRO, ADD, SUB, LD, ST
and NOP. The computer is divided into a control
section and a data section. The data section is
built wupon a single 16 bit data bus. Six
register (the program counter, the accumulator,
the instruction register, the argument register,
the buffer register and the memory register) and

also an arithmetic-logic unit and RAM are
connectad to the bus. The control ' section
contains a microprogram ROM, a microprogram
counter and a microinstruction decoder. VERDIS
has proved the correctness of this computer at
the microinstruction level. :

S. DISCUSSION OF THE RESULTS

VERDIS is a large Prolog program that occupies
about 61 kbytes of code for interpretation. It

currently runs on a VAX 8800 under ISJ Prolog

interpreter (4).

The main restriction on the complexity of
examples which currently can be tackled is the
amount of workspace required by Prolog. To deal
with large systems, it is necessary to verify
them a plece at a time or to restart
verification when it aborts due to lack of
space. Since VERDIS promptly records the
progress of verification 1in the database,
restarting does not result in duplication of
work.

design
the
in

Due to the hierarchical decomposition of
description the work done in proving
correctness of a complete system is linear
terms of the number of types of module in its
design, rather than linear in terms of the
number of primitive components. For complex
designs with many thousands of primitive
components, the computational saving can be very
great.

At present, the program performs only functional

verification, with no consideration of timing.
It appears relatively straightforward to
introduce the notation of time in our
description, but adding the appropriate
inferential machinery will probably require
more effort. However, dealing with truly

asynchronous systems requires a rather different
approach with revision of the representation and

proof wechaniem, perhaps 1n direction of a
temporal logic (5).

The verification in VERDIS runs largely
automatically, what is an advantage in

comparison with the Gordon's approach, where the
proof has to be guided by a user. VERDIS can be
compared with a similar system VERIFY which has
been developed in the Fairchild Laboratory for
Artificial Intelligence. VERDIS introduces some
useful new elements: possibility of macro calls
for predefined modules in the system library;
retaining of internal variables with over-
complex expressions (i.e. bus output), new
verification strategies of Boolean
canonicalization and partly enumeration, more
heuristics in variable selection for the
enumeration etc. :

&.CONCLUSION
" VERDIS is our first attempt of
verification which has already shown
digital designs with an interesting degree of
complexity can be handled. It should be tried on
many other real designs and it‘'s knowledge base
should be enlarged to become a real design tool,
but abilities of this approach are yet evident.

formal
that

The decision for Prolog as a description and an
implementation language seems to be correct.
Pattern matching and backtracking in Prolog are
very powerful tools in the verification process.
VERDIS 1is currently interpreted on a VAX 8800
under IJ8 Prolog interpreter(d). If we have any
Prolog compiler, the speed of execution of the
compiled code will increase ten times at least.

VERDIS should be only one component of larger
system supporting hardware designs. This would
integrate programs for design entry, simulation,

verification, diagnostics etc.

REFERENCES

(1) M. Gordon , J. Herbert, Formal hardware
verification methodology and its
application to a network interface <chip,
IEE Proceedings, Vol. 133, Pt. E,
No. 5, September 1986, 255-270

(2) 2. Brezocnik ', Hardware verification,
Master thesis, Tehniska fakultets,

16

(3)

(4)

(5)

|
|
|
N
\
1
|

Maribor,

November 1986
H. G. Barrow, VERIFY: A Program for
Proving Correctness of Digital Hardware

Designs, Artificial Intelligence, Vol. 24,
No. 1-3, December 1984, 437-491
?. Stojanoveki, IJS Prolog Reference

Manual, Institut Jozef Stefan, Ljubljana,
1986

P.C.Moszkowski, A temporal logic for
reasoning about hardware, Procedings

Sixth International Symposium on Computer
Hardware Description Languages, Carnegie-
Mellon University, Pittsburgh, 1983, 79-90

'

~

