
PROVING THE CORRECTNESS OF DIGITAL HARDWARE
DESIGNS USING PROLOG

INFORMATICA i / 8 8

UDK 681.3:325.6.08

Z. Brezočnik
B. Horvat

University of Maribor

ABSTRACT. An approach Is presented for automatic formal
verlfication of dlgltal harduare deslgns using Prolog. Prolog is
used both as a representatlonal language for specifying the
structure and the behavlour of a design and also as an Inference
nechanlsin for proving its functional correctness. A design in this
model is composed of hierarchicaly organlzed modules. Each
module is represented as a flnite state nachine. Validation
of design correctness is made by formal proof as an alternative
to the traditional approach which utilises simulatlon. The verlfi­
cation proceeds as follows: a) vriting a design specifIcatlon
and a description of Its realizatlon in Prolog, b) derivlng a
design behavlour from the Interconnectlons of its components and
their behavlours, c) shovrlng eguivalence betveen the specifled and
the derived behavlour. The syBtem has enough domaln speclfic and
general mathenatical knowledge to perform the proofs largely
automatically. Designa can be handled from the lovest translstor
level up to the architectual levels. Some large deslgns includlng
a simple computer haVe already been verlfied.

1. INTRODUCTION
A hardvare or softvare deslgner must be able to
decide vihether the design meets its functional
specificatlon. Currently three different
approaches exlst for answering this guestion.
The first approach to enshure functional
correctness is to develop the design from the
specifIcatlon by such a methodology that ensures
it can't be incorrect. In softtrare design It is
exempllfled in research of automatic
programming. In hardvare design automated
technlgues eKlst for dealing with elements of
deslgns that are most tedious and prone to human
error (such as wire routlng or PAL generatlon).
Silicon compllation technlgues for automatic
generatlon of complete deslgns from
specifIcatlons are under development. This
approach is perhaps the most attractive, but it
is also the most difficult to achleve, because
It faces an eventual astronomically large
search space of design alternatives. A problem
of automatic synthesiB is so difficult, that
useful general purpose systems for automatic
Bynthesis are not expected in the near future.

The second and the most common
validate a design is an accurate
it and trying it' on test cases.
simulatlon every posslble comblnat
should be trled for every poss
State. The number of ali posslble
can be extremely large even for si
Amultiplier for two 16-blt intege
four bllllon different inputs. It
exhaustlve simulatlon is no longer
can only select a subset of input
hope to extrapolate from them to
correctness or fallure of the

approach to
simulatlon of
In exhaustive
ion of inputs
Ible internal
input patterns
mple devices.
rs faces over
s clear that
feaslble. We
patterns and
determine the
design. The

selectlon of an adeguate subset of test cases is
very difficult. Such partial simulatlon can
detect the existence of an error, but can never
guarantee that there are no nore errors in the
design.
There is an a
formal verlfi
mathenatical pro
succeds, the des
for ali input
verlfication in
technlgues. It
representing the
dlgltal systems
whlch wlll exper
search spaces.
depends much on
knovledge base.
simulatlon and
automatic synth
the nost promlsi

iternative thlrd approach - a
catlon of a design with
of. If the fornal verlfication
ign vili natch its specificatlon
patterns. Research in formal
volves artificial intelllgence

reguires a fornalisn for
structure and the behavlour of

and also an inference nechanism,
tly manage astronomlcally large
A success of the verlfication
a bullt-ln general mathematical
Because of uncompleteness of the
a bad prognosis for the soon
esls this approach seens to be
ng in the nearer tern.

Wagner vas a pioneer vith his research in this
field. He has used a nonprocedural functional
language for dlgltal design description and a
theorem prover in a first order predlcate logic.
The proof must be guided manually. Because of
the description language the use is llmited to
lov levels of a design. After that, Gordon has
developed his methods for hardvare modellng and
verlfication based on different hierarchical
levels vith an Interactive theorem prover (1).
Inltially., proofs vere made manually, but more
recently vith an Interactive theorem prover.

In this paper ve present our verlfication
system, named VERDIS (2) for formal verlfication
of dlgltal hardvare deslgns using Prolog.
VERDIS represents an automatlzed version of a

14
variant of Gordon's approach. In Falrchlld
Laboratory for Artificial Intelligence the
VERIFV svstem was developed based on the slnllar
prlnclples (3). VERDIS has successfully verlfled
some experlmental deslgns wlth . an Interestlng
degree of complexity.

some; predefined modules fron the sjrsten llbrary.
Let's illustrate some constructs mentioned so
far ' by consldering an example of a one-bit
multlpller. It's constructed from a collectlon
of 2rto-l multlplexors, each of whlch has Inputs
inx,\ iny, control Input ctrl and output out.

2. DESIGN REPRESENTATION IN VERDIS
% Definition of a one-bit multiplier
% terms of 2-to-l auItiplexsors

A dlgltal system In VERDIS is represented as a
collectlon of hierarchlcally organized modules
and thelr Interconnectlons. A module Is
consldered as a finite state machlne (FSM)

A =1X,Y,Z,5,;»} (1)

nodule(bitauIt(N)) .
I

port(bitmult<N), in(Bitmult),input,integer(H)) .
port(bitnult(N>, ctrl(Bitmult),input, boole).
port(bitmult(H),out(BitMult),output,

i integer(H)}.
It has a finite set of input (X) and output (Z)
ports and a finite set of internal state
variables (V). VERDIS supports FSM of types
Mealy and Moore and also ordinary decision
circuits, if y={}-

constant(Bitiiiult(H) ,
i nulKBitmult) ,0,integer(N)) .
j

part'(bitBult(H), »plx(Bitmult, I), mux2) s-
Iindex(0,I,H).

A module is either a primitive with no internal
structure (basic building block of the design)
or composition of the form

I I(Ni,..,Nu),
where the components N
The input (output) po
are the input (output)
Compound modules are
output ports of some
ports of other compone
module are those ports
port has an associ
specifies the domain f
it. Signals in dl
differently according
which they are conside
logic values ,as bit
higher-level objects.
folloving types:

are themselves modules.
rts of a compound module
ports of its components.
formed t3y linking some

components to some input
nts. External ports of the
that are not linked. Each
ated signal type which
or signals passing through
gital By8tem are vieved
to the conceptual level in
red: as voltage levels, as
, as numbers or even as

Signals in VERDIS may have

-booole (Boolean truth values true or false)
-bit (binary dlgits 0 and 1),
-integer(N) (integers in the range 0-2 •̂ •*»-l),
-integer (natural numbers),
-booleZ, bitZ, integerZfN) and integerZ
(high impedance signal types).

Structural and signal hierarchy allow more
succint description. Signals on a higher
hierarchical level don't show unneces&ary
details of lover-level signals, but cary the
same Information.
Por conciseness the behaviour of
described by two sets of eguations
an exhaustive table:

D^y = 5(x,y)
z = A(x,y)

xex, yeY
xsX, ysY, zsz

Eguation (2) gives Internal states a
of inputs and current state. Eguati
output signals as functlons of
current state. A dictionary of
functlons that can be used in expr
describlng module behaviour current
of arithmetlc {*,-,*,"> , logic (not
and branchlng functlons (if,case) an
special functlons for such operation
signals on a bus and work wlth memor
bushfn, rfetch, fetch,store,...).

the FSM is
, rather than

(2)
(3)

s functlons
on (3) gives
inputs and

available
essions for
ly consists
,and,or,xor)
d also some
s as wlring
les (joinfn,

Module definition consists of Prolog facts and
rules. In addition to constructs for specifying
type of the module, ports, states, components,
Internal connectlons and behavioural eguations
the description language supports seversl useful
constructs: constants, parameters, arrays, bit-
wise connectlons and egu operator for calling

linked(bitBult(H),bit(I,in<Bitmult>),
• inx(aplx(Bit»ult,l)))s- index(0,I,H>.

linkedCbitmult(N), ctrKBimuIt, I),
ctrl(mplx(Bitault, I))) t-index(0,I,H).

linked(bitvtult(H), out (mplx(BitmuIt, D),
bita,out (Bitmult))) s- index(0,I ,H) .

output_eguation(bit»ult(N), out(Bit»ult) t"
if(ctrl(Bitault), in(BitmuIt), nulKBitmult))) .

In this example, N is a parameter speclfying
the |bit vide of the multiplicand (i.*., the
most I significant bit represents 2*^). Due to
declarative pover of Prolog a suitable indexing
of part and connectlons can be usad. The
construct index(0,I,N) means simply that I can
take |any value from O to A/ .

givan the
and thelr

3. THE VERIFICATION PROCESS
The jkey princlple of VERDIS is that
behaviour of components of a system
lnter;connBctions, it is possible to derlve a
deEcr|lption of the behaviour of the vhole
system. The derived behaviour can then be
compa.red with a specification of the intcnded
behaviour of the system. If a design contalns an
error, a discrepancy betveen both behaviours can
be detected and the design corrected.

i
Before of the verification some basic checks are
made to enshure that nontristate outputs ara not
Hired, that connected signals have eguivalent
types, that every output and state variable has
an eguation These checks have proved to be
very | useful in finding typing and logical
mistakes in design specification.
On reguest for
checks, if the
has been already
proofj is not n
succeeds immed
primitive, its
the correctness
ušes a depth flr
each pt its part

verification
correctness
proved, in

ecessary an
iately. If
correctness
of a module
st search to
and then

The next
derlve a
module fr
with thei
module ha
eguations.
in fact an
module. I
at parts
of compone
informatio
substituti

step in verifyin
behavioural descrl
om the behaviours
r interconnectlon
s a set of output
The unlon of ali
impllcitly speci

t contalns interna
inside the module
nt modules). The
n should be hidden
ons of interna

of a module VERDIS
of this module type
vhich časa anothar
d the verification
a modula la a

can be assumad. If
is unknown, VERDIS
racurBivaly varify

module as a uhole.
g a module is to
ptlon of a coapoBlte
of its components
s. Each component
and a set of state
these eguations is
fied behaviour of a
1 variables (algnals
and state variables
unnecessary internal

With subseguent
1 variables with

15

behaviour equations of conponent inodules ali
internal variables are eliminated. If any
frequently used Internal variable has a very
compllcated eguatlon it niay be better not to
eliinlnate it to avoid even larger eguatlons. In
such cases VERDIS first derives and evaluates
the expression for the imnediate variable and
refers to it In behaviour eguatlons of the
module where needed. The final result of this
step is a set of derived output equations and a
set of state eguatlons.

At this point we can' try to prove that the
derived behaviour description of the module is
eguivalent to the behavioural specification. In
most cases a mapping betveen them is an exact
eguivalence - isomorphism. We have to show that
corresponding eguatlons in both automata are
Identical. The proof of identity is generally a
hard problem. It regulres much mathematlcal
knowledge about functlons, which can be used in
eguatlons. In more complex cases the
correspondence betveen automata is a
homomorphism rather than exact eguivalence. A

may have a structural or a
form or both. Structural
occurs, when automata are
identical but different in

structural description. Behavioural or temporal
homomorphism occurs, vhen the same automata is
vieued with different time-scales. VERDIS
currently vorks only for isomorphic machines.

The derived and the specifled behaviour are
compared for each output and each state. Proof
of design correctness regulres the ability to
prove that a given . eguatlon (specified
behaviour as a left side and derived behaviour
as a right side)is an identlty. The eguatlon is
first checked to see vhether it is recognized as
a trivial ldentity or vrhether it is a'' trivial
non-ldentlty. If the eguatlon is not trivial,
VERDIS trles to choose the best strategy for
proving the lndentlty. A strategy selectlon
depends on a form of left and right side of the
eguatlon and on function, operators and types of
the variables involved. The repertoire of
strategies contalns: algebraic simplification,
Boolean canonlcalization and enumeration.

homomorphism
behavioural
homomorphism
functionally

Algebraic simplif
strategy, which t
left and right
simplificatlon,
Simplification is
recursive Prolog
simplifies a
simplificatlon ru
and functlons. Exp
is observed on on
The definitlon
substituted for
expreBsion is simp
to deal with comb
commutatlvity an
functlons (*,*,and

ication is the mo
ries to prove the
side of the egua
xpansion and canoni

Implemented ulth
procedure that
given expreBsi

les for the involve
ansion is used when
ly one side of the
of the function
its call and the
lified. Canonicallz
Inatorial problems
d associativity

or...) .

st general
identity of
tion with
calIzation.
a general
recursively
on using
d operators
a function
eguatlon.
is then
resulting

ation trles
because of
of some

If only Boolean variables occur in the eguatlon
a more straightforuard strategy of Boolean
canonicallzation Is chosen. During six
subseguent steps the left and the right side of
eguatlon are transformed to a lexically ordered
complete dlsjunctive normal forms and then
compared. It's faster than algebraic
simplificatlon.

Sometimes no other strategy but enumeration may
be applied. An enumeration is made over a
minimal necessary number of variables. For a
selected set of variables each possible
combination of thelr values is generated and
substituted into the eguatlon, whlch is then
slmplified to 'true' or 'false'. In some special
cases it's not necessary to generate ali

possible combinatlons but.only some of then.
Partial enumeration may save much computatlon.
VERDIS avoids the use of enumeration, because
it's usually very space and tirne consuning.

If VERDIS doesn't have enough knotiledge to
select a strategy, an Interactive mode is
entered. Currently a user can Inslst in the
algebraic simplificatlon, in the enumeration on
ali or just some of the variables and can also
slroply asBume the eguatlon to be true or false.
It's always possible to enlarge VERDIS's
knovledge base and automatlze the 'strategy
selectlon for such cases.

Proving ldentlty of an eguatlon is the maln and
the most difficult problem in the verificatlon
process. The use of any procedural programming
language with deterministic organlzatlon vould
not be a natural way for solvlng this problem.
This fact is one of the most signlflcant
arguments for realizatlon of VERDIS wlth the
nonprocedural language Prolog. A Prolog program
is a pattern dlrected system. The proof proceeds
wlth an activatlon of that verificatlon rule
which is currently appliable to the left and to
the right side of the eguatlon. Such realizatlon
has a high degree of modularity. The knowledge
base can simply be enlarged by adding new rules
uithout any other changes.

4. TUO COnPLEX EKAMPLES

VERDIS has tackled some complex designs
includlng modules d74 and hosi. d74 Is an
arithmetlc unit(inputs inA, inB, ii>C and
outputs outl and out2), vhich is intendend to
compute sums of products.

outl = inA»inB •*• inA»inC
out2 = inA*inC -^ inB«inC

At the top level
and two adders.
slices, each of
multiplier, a shi
are bulIt from ful
invertors and 2-to
are bullt from log
themselves describ
algebra level and
tristate signala
parameterlzed in b
that has â -bit i
types of module w
hierarchy. The d
parts, includlng
llstlng of the pr
lines.

it contalns thre
The multiplier
which contaln

fter and an adde
ladders, vhlch
-1 multiplexors.
ic gates. The 1
ed at two levels
at loHer transis
and stored cha
lt-wide of input
nputs involves
Ith nine levels
esign contalns 1
1016 translstors
oof trace occupl

e multlpliers
consist of
a one-bit

r. The adders
are built from
Multiplexors

ogle gates are
at Boolean

tor level vith
rge. d74 is
s. An instance
21 different

of structural
902 primltive

The entire
es about 1300

The next example is a reglster-transfer level
description of a simple computer host ulth eight
operations: HALT, JMP, JZRO, ADD, SUB, LD, ST
and NOP. The computer is divided into a control
sectlon and a data section. The data section is
built upon a single 16 bit data bus. Slx
register (the program counter, the accumulator,
the instruction register, the argument register,
the buffer register and the memory register) and
also an arlthmetic-logic unit and RAM are
connected to the bus. The control section
contalns a mlcroprogram ROM, a microprogram
counter and a microinstruction decoder. VERDIS
has proved the correctness of this computer at
the microinstruction level.

S. DISCUSSION OF THE RESULTS

VERDIS is a large Prolog program that occuples
about 61 kbytes of code for interpretation. It
currently runs on a VAX 8800 under ISJ Prolog
interpreter (4).

16
The maln restriction on the coinplexlty of
esanples which currently can be tackled is the (3^
amount of vorkspace reguired by Prolog. To deal
with large systems, it is nece5sary to verify
them a pleče at a tlme or to restart
verlfication uhen it aborts due to lack of (4)
space. Slnce VERDIS promptly records the
progress of verlfication in the database,
restartlng does not result In dupllcatlon of (5)
work.

Due to the hlerarchlcal decompositlon of design
description the work done in provlng the
correctness of a complete systein Is llnear in
terms of the number of types of module in Its
design, rather than llnear In terms of the
number of prlmltive components. For complex
designs wlth Dany thousands of prlmltive
coaponents, the computatlonal savlng can be very
great.
At present, the program performs only functional
verlfication, wlth no consideratlon of tlmlng.
It appears relatively straightforvard to
introduce the notatlon of tlme in our
description, but addlng the approprlate
inferentlal machlnery wlll probably regulre
more effort. Hovever, dealing with truly
asynchronous systems regulres a rather different
approach with revision of the representatlon and
proof mechanism, perhaps In dlrectlon of a
temporal loglc (5).

The verlfication in VERDIS runs largely
automatically, what Is an advantage in
comparison with the Gordon's approach, where the
proof has to be guided by a user. VERDIS can be
compared with a sinilar syBtem VERIFV which has
been developed In the Falrchild Laboratory for
Artificial Intelllgence. VERDIS Introduces some
useful new elemente; posslbility of macro calls
for predefined modules in the system library;
retaining of Internal variables with over-
complex expresslons (l.e. bus output), new
verlfication strategies of Boolean
canonlcallzation and partly enumeration, more
heuristics in varlable selection for the
enumeration etc.

6.C0NCLUSI0N
VERDIS is our first attempt of formal
verlfication uhlch has already shovn that
dlgital designs with an Interesting degree of
complexity can be handied. It should be trled on
many other real designs and it's knowledge base
should be enlarged to become a real design tool,
but ablllties of this approach are yet evldent.
The decislon for Prolog as a description and an
Implementatlon language seems to be correct.
Pattern matchlng and backtracklng in Prolog are
very poverful tools in the verlfication process.
VERDIS is currently Interpreted on a VAX 8800
under IJS Prolog Interpreter(4). If we have any
Prolog compller, the speed of execution of the
compiled code wlll increase ten tlmes at least.
VERDIS should be only one component of larger
system supportlng hardware designs. This would
integrate programs for design entry, slmulation,
verlfication, dlagnostlcs etc.

Maribor, November 1986
H. G. Barrow, VERIFV: A Program for
Provlng Correctness of Digital Hardvare
Designs, Artificial Intelllgence, Vol. 24,
No. 1-3, December 1984, 437-491
jj. Stojanovskl, IJS Prolog Reference
Manual, Institut Jožef Štefan, LJubljana,
1986
i3.C.MoszkowGkl, A temporal loglc for
reasonlng about hardware, Procedlngs
isixth International Symposium on Computer
Hardvare Description Languages, Carnegle-
Mellon Unlverslty, Plttsburgh, 1983, 79-90

REFERENCES
(1) H. Gordon , J. Herbert, Formal hardvare

verlfication methodology and its
application to a netvork interface chip,
lEE Proceedlngs, Vol. 133, Pt. E,
No. 5, September 1986, 255-270

(2) Z. Brezocnlk , Hardvare verlfication,
Master thesis. Tehniška fakulteta.

