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ABSTRACT. An approach Is presented for automatic formal 
verlfication of dlgltal harduare deslgns using Prolog. Prolog is 
used both as a representatlonal language for specifying the 
structure and the behavlour of a design and also as an Inference 
nechanlsin for proving its functional correctness. A design in this 
model is composed of hierarchicaly organlzed modules. Each 
module is represented as a flnite state nachine. Validation 
of design correctness is made by formal proof as an alternative 
to the traditional approach which utilises simulatlon. The verlfi­
cation proceeds as follows: a) vriting a design specifIcatlon 
and a description of Its realizatlon in Prolog, b) derivlng a 
design behavlour from the Interconnectlons of its components and 
their behavlours, c) shovrlng eguivalence betveen the specifled and 
the derived behavlour. The syBtem has enough domaln speclfic and 
general mathenatical knowledge to perform the proofs largely 
automatically. Designa can be handled from the lovest translstor 
level up to the architectual levels. Some large deslgns includlng 
a simple computer haVe already been verlfied. 

1. INTRODUCTION 
A hardvare or softvare deslgner must be able to 
decide vihether the design meets its functional 
specificatlon. Currently three different 
approaches exlst for answering this guestion. 
The first approach to enshure functional 
correctness is to develop the design from the 
specifIcatlon by such a methodology that ensures 
it can't be incorrect. In softtrare design It is 
exempllfled in research of automatic 
programming. In hardvare design automated 
technlgues eKlst for dealing with elements of 
deslgns that are most tedious and prone to human 
error (such as wire routlng or PAL generatlon). 
Silicon compllation technlgues for automatic 
generatlon of complete deslgns from 
specifIcatlons are under development. This 
approach is perhaps the most attractive, but it 
is also the most difficult to achleve, because 
It faces an eventual astronomically large 
search space of design alternatives. A problem 
of automatic synthesiB is so difficult, that 
useful general purpose systems for automatic 
Bynthesis are not expected in the near future. 
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Wagner vas a pioneer vith his research in this 
field. He has used a nonprocedural functional 
language for dlgltal design description and a 
theorem prover in a first order predlcate logic. 
The proof must be guided manually. Because of 
the description language the use is llmited to 
lov levels of a design. After that, Gordon has 
developed his methods for hardvare modellng and 
verlfication based on different hierarchical 
levels vith an Interactive theorem prover (1). 
Inltially., proofs vere made manually, but more 
recently vith an Interactive theorem prover. 

In this paper ve present our verlfication 
system, named VERDIS (2) for formal verlfication 
of dlgltal hardvare deslgns using Prolog. 
VERDIS represents an automatlzed version of a 
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variant of Gordon's approach. In Falrchlld 
Laboratory for Artificial Intelligence the 
VERIFV svstem was developed based on the slnllar 
prlnclples (3). VERDIS has successfully verlfled 
some experlmental deslgns wlth . an Interestlng 
degree of complexity. 

some; predefined modules fron the sjrsten llbrary. 
Let's illustrate some constructs mentioned so 
far ' by consldering an example of a one-bit 
multlpller. It's constructed from a collectlon 
of 2rto-l multlplexors, each of whlch has Inputs 
inx,\ iny, control Input ctrl and output out. 

2. DESIGN REPRESENTATION IN VERDIS 
% Definition of a one-bit multiplier 
% terms of 2-to-l auItiplexsors 

A dlgltal system In VERDIS is represented as a 
collectlon of hierarchlcally organized modules 
and thelr Interconnectlons. A module Is 
consldered as a finite state machlne (FSM) 

A =1X,Y,Z,5,;»} (1) 

nodule(bitauIt(N)) . 
I 

port(bitmult<N), in(Bitmult),input,integer(H)) . 
port(bitnult(N>, ctrl(Bitmult),input, boole). 
port(bitmult(H),out(BitMult),output, 

i integer(H)}. 
It has a finite set of input (X) and output (Z) 
ports and a finite set of internal state 
variables (V). VERDIS supports FSM of types 
Mealy and Moore and also ordinary decision 
circuits, if y={}-

constant(Bitiiiult(H) , 
i nulKBitmult) ,0,integer(N)) . 
j 

part'(bitBult(H), »plx(Bitmult, I), mux2) s-
Iindex(0,I,H). 

A module is either a primitive with no internal 
structure (basic building block of the design) 
or composition of the form 
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Signals in VERDIS may have 

-booole (Boolean truth values true or false) 
-bit (binary dlgits 0 and 1 ), 
-integer(N) (integers in the range 0-2 •̂ •*»-l ), 
-integer ( natural numbers), 
-booleZ, bitZ, integerZfN) and integerZ 
(high impedance signal types). 

Structural and signal hierarchy allow more 
succint description. Signals on a higher 
hierarchical level don't show unneces&ary 
details of lover-level signals, but cary the 
same Information. 
Por conciseness the behaviour of 
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D^y = 5(x,y) 
z = A(x,y) 
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Module definition consists of Prolog facts and 
rules. In addition to constructs for specifying 
type of the module, ports, states, components, 
Internal connectlons and behavioural eguations 
the description language supports seversl useful 
constructs: constants, parameters, arrays, bit-
wise connectlons and egu operator for calling 

linked(bitBult(H),bit(I,in<Bitmult>), 
• inx(aplx(Bit»ult,l)))s- index(0,I,H>. 

linkedCbitmult(N), ctrKBimuIt, I), 
ctrl(mplx(Bitault, I))) t-index(0,I,H). 

linked(bitvtult(H), out (mplx(BitmuIt, D), 
bita,out (Bitmult))) s- index(0,I ,H) . 

output_eguation(bit»ult(N), out(Bit»ult) t" 
if(ctrl(Bitault), in(BitmuIt), nulKBitmult))) . 

In this example, N is a parameter speclfying 
the |bit vide of the multiplicand (i.*., the 
most I significant bit represents 2*^). Due to 
declarative pover of Prolog a suitable indexing 
of part and connectlons can be usad. The 
construct index(0,I,N) means simply that I can 
take |any value from O to A/ . 

givan the 
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3. THE VERIFICATION PROCESS 
The jkey princlple of VERDIS is that 
behaviour of components of a system 
lnter;connBctions, it is possible to derlve a 
deEcr|lption of the behaviour of the vhole 
system. The derived behaviour can then be 
compa.red with a specification of the intcnded 
behaviour of the system. If a design contalns an 
error, a discrepancy betveen both behaviours can 
be detected and the design corrected. 

i 
Before of the verification some basic checks are 
made to enshure that nontristate outputs ara not 
Hired, that connected signals have eguivalent 
types, that every output and state variable has 
an eguation ... . These checks have proved to be 
very | useful in finding typing and logical 
mistakes in design specification. 
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behaviour equations of conponent inodules ali 
internal variables are eliminated. If any 
frequently used Internal variable has a very 
compllcated eguatlon it niay be better not to 
eliinlnate it to avoid even larger eguatlons. In 
such cases VERDIS first derives and evaluates 
the expression for the imnediate variable and 
refers to it In behaviour eguatlons of the 
module where needed. The final result of this 
step is a set of derived output equations and a 
set of state eguatlons. 

At this point we can' try to prove that the 
derived behaviour description of the module is 
eguivalent to the behavioural specification. In 
most cases a mapping betveen them is an exact 
eguivalence - isomorphism. We have to show that 
corresponding eguatlons in both automata are 
Identical. The proof of identity is generally a 
hard problem. It regulres much mathematlcal 
knowledge about functlons, which can be used in 
eguatlons. In more complex cases the 
correspondence betveen automata is a 
homomorphism rather than exact eguivalence. A 

may have a structural or a 
form or both. Structural 
occurs, when automata are 
identical but different in 

structural description. Behavioural or temporal 
homomorphism occurs, vhen the same automata is 
vieued with different time-scales. VERDIS 
currently vorks only for isomorphic machines. 

The derived and the specifled behaviour are 
compared for each output and each state. Proof 
of design correctness regulres the ability to 
prove that a given . eguatlon (specified 
behaviour as a left side and derived behaviour 
as a right side )is an identlty. The eguatlon is 
first checked to see vhether it is recognized as 
a trivial ldentity or vrhether it is a'' trivial 
non-ldentlty. If the eguatlon is not trivial, 
VERDIS trles to choose the best strategy for 
proving the lndentlty. A strategy selectlon 
depends on a form of left and right side of the 
eguatlon and on function, operators and types of 
the variables involved. The repertoire of 
strategies contalns: algebraic simplification, 
Boolean canonlcalization and enumeration. 
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If only Boolean variables occur in the eguatlon 
a more straightforuard strategy of Boolean 
canonicallzation Is chosen. During six 
subseguent steps the left and the right side of 
eguatlon are transformed to a lexically ordered 
complete dlsjunctive normal forms and then 
compared. It's faster than algebraic 
simplificatlon. 

Sometimes no other strategy but enumeration may 
be applied. An enumeration is made over a 
minimal necessary number of variables. For a 
selected set of variables each possible 
combination of thelr values is generated and 
substituted into the eguatlon, whlch is then 
slmplified to 'true' or 'false'. In some special 
cases it's not necessary to generate ali 

possible combinatlons but.only some of then. 
Partial enumeration may save much computatlon. 
VERDIS avoids the use of enumeration, because 
it's usually very space and tirne consuning. 

If VERDIS doesn't have enough knotiledge to 
select a strategy, an Interactive mode is 
entered. Currently a user can Inslst in the 
algebraic simplificatlon, in the enumeration on 
ali or just some of the variables and can also 
slroply asBume the eguatlon to be true or false. 
It's always possible to enlarge VERDIS's 
knovledge base and automatlze the 'strategy 
selectlon for such cases. 

Proving ldentlty of an eguatlon is the maln and 
the most difficult problem in the verificatlon 
process. The use of any procedural programming 
language with deterministic organlzatlon vould 
not be a natural way for solvlng this problem. 
This fact is one of the most signlflcant 
arguments for realizatlon of VERDIS wlth the 
nonprocedural language Prolog. A Prolog program 
is a pattern dlrected system. The proof proceeds 
wlth an activatlon of that verificatlon rule 
which is currently appliable to the left and to 
the right side of the eguatlon. Such realizatlon 
has a high degree of modularity. The knowledge 
base can simply be enlarged by adding new rules 
uithout any other changes. 

4. TUO COnPLEX EKAMPLES 

VERDIS has tackled some complex designs 
includlng modules d74 and hosi. d74 Is an 
arithmetlc unit( inputs inA, inB, ii>C and 
outputs outl and out2), vhich is intendend to 
compute sums of products. 

outl = inA»inB •*• inA»inC 
out2 = inA*inC -^ inB«inC 
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The next example is a reglster-transfer level 
description of a simple computer host ulth eight 
operations: HALT, JMP, JZRO, ADD, SUB, LD, ST 
and NOP. The computer is divided into a control 
sectlon and a data section. The data section is 
built upon a single 16 bit data bus. Slx 
register ( the program counter, the accumulator, 
the instruction register, the argument register, 
the buffer register and the memory register) and 
also an arlthmetic-logic unit and RAM are 
connected to the bus. The control section 
contalns a mlcroprogram ROM, a microprogram 
counter and a microinstruction decoder. VERDIS 
has proved the correctness of this computer at 
the microinstruction level. 

S. DISCUSSION OF THE RESULTS 

VERDIS is a large Prolog program that occuples 
about 61 kbytes of code for interpretation. It 
currently runs on a VAX 8800 under ISJ Prolog 
interpreter (4). 
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The maln restriction on the coinplexlty of 
esanples which currently can be tackled is the (3^ 
amount of vorkspace reguired by Prolog. To deal 
with large systems, it is nece5sary to verify 
them a pleče at a tlme or to restart 
verlfication uhen it aborts due to lack of (4) 
space. Slnce VERDIS promptly records the 
progress of verlfication in the database, 
restartlng does not result In dupllcatlon of (5) 
work. 

Due to the hlerarchlcal decompositlon of design 
description the work done in provlng the 
correctness of a complete systein Is llnear in 
terms of the number of types of module in Its 
design, rather than llnear In terms of the 
number of prlmltive components. For complex 
designs wlth Dany thousands of prlmltive 
coaponents, the computatlonal savlng can be very 
great. 
At present, the program performs only functional 
verlfication, wlth no consideratlon of tlmlng. 
It appears relatively straightforvard to 
introduce the notatlon of tlme in our 
description, but addlng the approprlate 
inferentlal machlnery wlll probably regulre 
more effort. Hovever, dealing with truly 
asynchronous systems regulres a rather different 
approach with revision of the representatlon and 
proof mechanism, perhaps In dlrectlon of a 
temporal loglc (5). 

The verlfication in VERDIS runs largely 
automatically, what Is an advantage in 
comparison with the Gordon's approach, where the 
proof has to be guided by a user. VERDIS can be 
compared with a sinilar syBtem VERIFV which has 
been developed In the Falrchild Laboratory for 
Artificial Intelllgence. VERDIS Introduces some 
useful new elemente; posslbility of macro calls 
for predefined modules in the system library; 
retaining of Internal variables with over-
complex expresslons (l.e. bus output ), new 
verlfication strategies of Boolean 
canonlcallzation and partly enumeration, more 
heuristics in varlable selection for the 
enumeration etc. 

6.C0NCLUSI0N 
VERDIS is our first attempt of formal 
verlfication uhlch has already shovn that 
dlgital designs with an Interesting degree of 
complexity can be handied. It should be trled on 
many other real designs and it's knowledge base 
should be enlarged to become a real design tool, 
but ablllties of this approach are yet evldent. 
The decislon for Prolog as a description and an 
Implementatlon language seems to be correct. 
Pattern matchlng and backtracklng in Prolog are 
very poverful tools in the verlfication process. 
VERDIS is currently Interpreted on a VAX 8800 
under IJS Prolog Interpreter(4). If we have any 
Prolog compller, the speed of execution of the 
compiled code wlll increase ten tlmes at least. 
VERDIS should be only one component of larger 
system supportlng hardware designs. This would 
integrate programs for design entry, slmulation, 
verlfication, dlagnostlcs etc. 
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