ON CHOOSING A PLAN FOR THE EXECUTION OF
DATA FLOW PROGRAM GRAPH

UDK: 681.519.7

INFORMATICA 3/86

~ Borut Robié, Jurij Silc
Joief‘Stefan~Ir)stitute; Ljubljana

ABSTRACT - In the paper we present a generalized analisys of static data
flow prograa graphs. These graphs are allowed to have nodes that use more
than one unit of time for their execution. Such graphs are maore realistic
then graphs with nodes that execute in one unit of time. We restrict our

INTROOUCTION

consideration to graphs with integer execution times of their nodes. In the
paper we first briefly describe the data flow concept of computation. Next
wve describe the basic data flow architecture and a common way of the
execution of a graph on it. We show that this way of the execution has a
drawback. In the next sections we introduce the notion of a static data
flow prograa graph and describe the state of the execution af such graph.
The state consiste of a few time depending sets of nodes. We define a plan
for the execution of a program graph which is the result of the anslysis
of the graph made before its execution. There are two special plans for the
execution. Information, ‘obtained by these two plans is used for defining
the third special plan, which we call the heuristic plan for the graph
exacution. The execution of a graph according to this plan may minimize
the nuaber of processors needed, without lengthening the total executian
tine of the graph. Finally, we informally describe the algorithm for
obtaining plans for the execution.

0 IZBIRANJU NAURTA ZA IIVRSEVANJE PODATKOVNO PRETOKOVNIH GRAFOV - V delu je
podana posplogena analiza statidnih podatkovno pretokovnih grafov. Totke
takgnih programskih grafov se lahko izvr8ujejo poljubna celo Stevilo
tasovnih enot. Uvodoma je opisan koncept podatkovno pretokavnega radunanja.
Sledi opis 2znatilne podatkovno pretokovne arhitekture ter enega i:zmed
ao¥nih izvréevanj podatkovno pretokovnega. grafa na njej. Prikazana je
slabost tak8nega natina izvrdevanja. Po opisu stati¢nega programskegs grafa
sledijo definicije wanoZic tot#k, ki sestavljajo stanje izvrdevanja grafa.
Definiran je natirt izvréevanja programskega grafa, ki je rezultat njegove
predhodne analize. V splodnem obstaja ved nadértov za izvrsevanje. lzvrétve,
ki ustrezajo posaseznia natrtom, se razlikujejo po uporabljenem <tevilu
procesnih elementov in ne podaljdujejo minimalnega 8asa, potrebnega za
izvréitev programskega grafa, v kolikor je na valjo daoveolj procesnih
elementov. Obstajata dva posebna natrta za t.i. takojdnje in leno
izvr8evanje, ki v splognem ne wminimizirata ¢tevila potrebnih procesnih
elementov. Ker sistematino pregledovanje vseh aoZnih natctov vodi v
koebinantori¢no eksplozijo, je v delu predlagan hevristi&ni postopek za
izbire nadrta izvrdevanja, ki teZi &k wminimizaciji &tevila procesnih
elementov.

A.data ilqv systea comprises a user-oriented
high-level language, a low-level base langua-
ge, and a highly-parallel computer architec-
ture. User pragrams are written in the high-
level language and are translated into
carresponding programs in the base language.
A base language program is a graph composed
of nodes interconnected via directed arcs.
Each internal node is an operation and re-
presents a separate processing elemet Capable
of accepting, processing and emitting value
tokens travelling along the graph arcs. Each
opgration executes only when all tokens, car-
rying operands required by that aperation
have arrived. At that point the operands are
gonsumed by the node and new tokens, carry-
ing results, are placed on the output arcs
CCOM82]1. This fundamental principle permits

the graph to be mapped onto a computer archi-
tecture consisting of a very large number of
independent processing elements and switches,
able to connect any two processing elements,
making a8 data path between them. Separate
data pathe can cross the svitch simultaneous-
ly LKF&S841. For example see Fig.1.

2. SIMULATION OF DATA FLOW ARCHITECTURE

In general not all operations (nodes of a
graph) need to be assigned to processing
elements at the same. moment since not all
operations have available all input aperands
at that moment. To make the data flow concept
possible even without a very large nusber of
processing elements data {low computers are

ﬂ\
v
o

o

Ky

e Tr—., -
N

Fig.1: In the switch lattice the squares re-

\' _.
e \.,—10‘
0o 6o 0o o 6 0 © o0 o
U
s 0o o o 0o 0 0 0o o o d
. , 1./

present processing elements, circles repre-
sent switches, lines represent data paths.
: PROCESSING
. - - 2
) . ! UNIT _
PE;..... PEp
- i
; MEMORY H
it | boa
4 3 : !““‘“““"“"“1 i E
: R {1 PRIMARY | -
| : 1
) 8) I 8
; T Pl I H
Lt e . SECONDARY a
. N Vo .--——-—-l "‘,/
o ! e

Fig.2: The model of data flow machine.

usually based an a packet comnunication
machine organization, consisting of a circu-
lar instruction execution pipeline of resour-
ces. The resources are memory, arbitration,
processing and distribution unit. The memory
unit is divided into the primary and secon-
dary part, the former beeing faster. The pro-
cgssing unit consists of a3 number of proces-
sing elements (Fig.2).

Nodes, having nane of their input operands
arcived reside in the secondary memory. These
are noncreated nodes. At the moment when the
first input operand has arrived the node is
created, i.e. moved to the primary memory to
wait for the other input aperands., A created
node becomes executable at the wmoment when
the last input operand has srrived.
Executable node 1is ready for the execution
and may be transferred (fired) to the proces-
sing unit where a processing element =tarts
to execute it. It is the arbitration unit
that decides which of the nodes are executa-
ble and which processing elements are to bhe
allocated to. The place in the memory unit
which was occupied by that node is now set
free. While the node is beeing executed the
distribution unit finds out where the nodes
waiting for the result are. When the result
is produced, the distribution unit sends it
to all nodes waiting for it, cceating some of
them if neccessary. The node that has been
executed is now deleted.

Such execution may need more processing ele-
ments than there are in the procassing unit.
The problem where there are more executable
nodes than processing elements must be salved
during the execution of a graph. All these
nodes are executed in several steps ilmplying
the lengthening the total wminimum execution
time of a graph. Note that aftev each such
step again the same problem may appear.

An anaysis of the graph before its execution
may prevent the problem discussed sbove. The
basic observation is that in general not all
executable nodes have to be fired immedi-
ately, since some of them may wait a4 peciod
of time in the memory without lengthening
the total minimum execution time of s graph.
Analysing the graph we obtain several plans
for its execution, each execution having its
own characteristic. Information oblainded by

the plan is used by the architecture com-
ponents during the actual execution of a
graph in deciding which executable nodes

should be retained. The execution accovding
to a properly chosen plan may result in mini-
mization of some resources needed, such as
the number of processing elements. We point
out three special plans {ar the executian.
Execution according to the {icst of them is
gssentially the immediate execution, dJdes-
cribed above. The execution acccrding to the
second plan is the opposite of the immediate
execution, while the execution according to
the third plan often uses minimum number of
processing elements. Executing graphs accor-
ding to this plan we may avoid the problems
discussed above. .

3. STATIC DATA FLOW PROGRAM GRAFPH

There are two ways of envisaging ¢ data flow
program: as a static or as & dynamic data
flow program graph. We limit our discussion
to static graphs. In short, static data flow
program graphs are acyclic, while the dynamic
are not.

We define a static data flow program graph
G = (V,A), in further discussion progran
graph, to be a directed, acyclic, and- - simple
(no multiple arcs of the same direction bet-
ween two nodes) graph. The sat V of nodes is
partitioned into three disjoint sets Vg V¢
Ve of starting, internal and final nodes,
respectively. The starting nodes have no
input archs vhile the final nodes have no
output archs. Furthermore, there waust always

exist a path to any internal or {final node
{rom some starting node and, similarly, &
path from any starting or internal nede teo

some final node. Starting nodes are used to
carry the input values while the f{inal nodes
store the results. Internal nodes carry ope-
rations [Ro&8461. The time of the execution of
a node n is t,, where t, = 1 for all starting
and final nhodes n. '

n o //
I 'l. ./’
i
N A
‘..*qll(‘:
20+t
——
1
Himm = Plazy = n+1 Uhew = 2

Fig.3: Static data flow program graph.

The length of & path is defined to be the sum
of the execution times of the nodes along the
path. The path from o set of nodes A to a set
of nodes B is defined Lo be any path that
starts at some node of the set A and ends at
some node 0! the set B, The longest path from
the set A to the set B is a path that his
among all the paths (rom the set A to the sut
B maximal length. The length I the longest
path from the set A to the set B is described
by 1(A,B). When the set consists of anly
one element we substitute the-set by its
element.” Foc example, l(n,¥%:) is the length
of the longest path {rom the node n to the
set of the final nodas. Note that since the
program graph is acyclic by assumption, the
lengths 1(m,n)} for a&ny pair of nodes can
easily be computed using one of well known
algorithms TLaw76). The evaluation of 1(4,R)
is then trivial for any two disjoint sets of
nodes A and B,

If a node n is beeiny execubted at the
moment j we - define 1°(n,Vy) to be the
sum of the length of the longest path ironx
the set of its sons to the set of the final
naodes and, the time neccessary for the node n

ta finish its execution.

4. THE STATE OF THE GRAPH EXECUTION

The state of the execution of & graeph at the
moment j is the quintuple o; =(N; ,C ,E ,F ,D;)
vhere N; ,C; ,E; ,F; and D; are the sets of non-
created, created, executable, executing and
deleted nodes at the moment j, respectively.
There are also few other sets wused for com-
puting the sets mentioned. The sets are des-
cribed bellowu:

Ff .. t{executed nodes) is the set of all the
nodes fired before the moment j that
have finished their:execution at the
moment j ‘and- put their results on all
output arcs, -

cpev. (new created nodes) is the set” of all

-those nodes that received at ' the
moment j the ficst input operand,)
¢’®... (old created nodes) is the set of all

those nodes that had been crested at
any of the moments before the moment j
yet did not fire until the maoment j-1
including,

Ci ... (created nodes) is the
and new created nodes,

i ++. (nev executable nodes) is the set of
all those nodes that have received the
last input aperand at the mament j,
E... (old executable nodes) is the set of
. all those nodes that had become execu-
table before the mament j but have not
fired until the moment j-1 including,

E, ... (executsble nodes) is the union of the

. old and new executable nodes,

Ef ... (unconditionally executabie nodes) s
the set of all those executable rodex
that must be fired at the mament j so
as not to lengthen the total executic-
time,

E' ... (conditionally executable nodes) is
the set of 3ll those executable naodes
that are fired at the moment j
although they could be fired later
withot lengthening the total execution
time of 3 graph,

(new executing nodes) is the set of

all the nodes that started executing

at the moment j,

F'¥... (old executing nodes) is the set of
all those nodes that had been fired
before the moment j yet have not fini-
-shed their excution till the moment j

. including,

Fi «.. (executing nodes) is the union
o0ld and new executing nodes,

Ni ... (noncreated nodes) is the set of all
those nodes that have not créated till

. the moment j including,

D ... (deleted nodes) 1is the set of all

those nodes. that executed till the mo-

ment j including,

(critical nodes) is the set of all

those nodes_that allways become uncon-

ditionally executable at the Sane
mogent j regardless of the plan of the
executian,

union of old

n
Frev,

of the

5. THE PLAN FOR THE EXECUTION

The plan of the

execution is a supervisnb
that -controls the

execution of & program

graph. Consequently, the plan lamplyes a
certain degree of control flow in data flow
architecture and is realized by a time
control vector associated to each node of &
pragram graph.

The plan for the execution of a graph is de-
terained by the rule which selects the sets

E}. There are two trivial plans for the exe-
cution of a graph. These are a plan for imme-
diate and a plan for lazy execution. The plan
for immediate execution is detecmined by

choosing Ef to consists of all those executa-
ble nodes at the moment j that could be fi-
red even later. The plan for the lazy execu-

tion is determined by farcing E; to be empty
at all moments j. Consequently, the immediate

execution fires the nodes as soon as possible
while the lazy execution defers firing to
the last possible moment. ln genecal, none of
these two executions ainimizes the number of
processing elements needed. The plan faor the
execution that uses minimum number of proces-
sing elements could be found by sistematic
examination of all possible rules for the
choosing wne sets E; . Since we want to avoid
the cosmbinateor:3! explosion we try to find a
heuristic rule such that the execution accor-
ding to the associlated heuristic plan would
use the number of processing elements as
close as possible to the theoreticsl lawer
bound. For example, execution of the graph on
Fig.3 according to the immediate plan needs
n+1 processing elements, since at the moment
J = 1 the naode 1 is fired simultaneously with
the nodes n + i, 1£ié¢n., Similarly, the lazy
plan iaplies the executian that involves n+1
processing elements, too. Namely, at the last
step the node n is fired together with the
nodes n + 1, 1£i£n. On the other hand, the
heuristic plan offers an execution with only
tvo processing elements for at each step only
the pair of nodes k, and n+k are beeing exe-
cuted.

The plan for the heuristic
discussed below.

execution will be

&. THE TIME CONTROL VECTOR

Every node n is associated with a time con-
trol vector W= (lch 4 T%eq 1%n ?-

Tnt %o and T, are the wmaments when the
node n becomes cresated, executable and fired.
Time control vectors are caomputed for each
node while the plan for the execution is bee-
ing constructed. Since all the sets described
above are af fected by the rule for choosing
the set E;, the time control vectors depend
on a plan constructed. Every plan for the
execution has its ouwn set of time cantrol
vectors. To point out that the time control
vector of a node n is computed accocrding to
the plan for immediate or lazy execution we

write vmgr ¥, respectively.
7. THE PLAN FOR HEURISTIC EXECUTION
7.1. CRIYICAL NODES

imm o imm imm im i
Let xf 1§10 Vi ,1;:‘) pe time
vectors of a node n according to

control
immediate

and tlery = (qley qlhzy gy) time control vec-
tors of a node n according to lazy executi-
on. Then we say that an internal node n is

critical if r;,""n"‘ = r};’j,f' = ¥
THEORENM 1.
n is (ireﬁ at the

Every critical node

moaent Y&’ , regardless of the
the execution.

plan of

PROOF: TE? is the first possible moament when
the node n can be fired, regardless of the
plan ot the execution of a program graph. On
the other hand, 2% is the last soment when
the node can be fired without lengthening the
total execution time, taken over all possible
plans of the execution. Consequentliy, if n is

a critical node, then o¢mm = B = i uhich

F.n
means, that the wsoment 1§, is the only moment
wvhen the naode n can be ficed in all possible
plans of the executions., Q.E.D.

LEMMA 1.

There is at least one critical node in
the program graph.

PROOF: Let be p the longest path from the set
of starting nodes to the set of final nodes.
Then, in any plan of the execution the son of
starting node on the path p must be ficed at
the wmoment j=1 so as not to lengther the
total execution time. Consegquently, the son
of the starting node is critical. &.E.D.

THEOREM 2.

A node is critical if and only if it is
on a longest path from the set of star-
ting nodes to the set of final nodes.

PROOF: Let p be some longest path from the
set Vg to the set V¢ . By Lemma 1 the son of
the gtarting node on the path p is critical.
Now suppose that all first k > 0 internal
nodes Ny, Nz ,..., N an the path p are criti-
cal. Consequently, the first moment at which
the node ny,, can be fired {is the moment

1*[L|tm. Since the node ny,, is on the longest

path- from the set Vg to the set ¥ this is
alsa the last moment, vhen it can be fired,
s0 as not to lengthen the total execution
time of the graph implying that the node n,,,

is critical. Conversely, suppose « node n
is critical. Consider the longest path p of
the all paths fram Vg to Vg, passing the node
n. We define the subpath p’ of the path p tou
be the path consisting of all the nodes fruwn
Vs to the father of the node n., Similarly,
the subpath p" of the path p consists of all
the nodes from the son of the node n to the
set Ve . We define 1(p‘) and 1(p"”) to be the
lengths of the paths p’ and p", respectively.
Note, that since p is the longest path fram
Vs to V¢ through the node n, the path p’ amust
be the longest of the paths from Vg to the
set of fathers of n. Similarly, the path p*
must be the longest path from the set of sons
of the node n to the V.. Suppose the relation
1(p I+ta+1(p") < 1(V5,V%) holds. Then thece
must be some node @ on the path p, that can
be fired at at least two different moments.
The node m must be either an the path p’ or
on the path p", since the node n is ecriti-
cal, by assumption. Were the node m on the
path p’ the node n could be fired at

st least two different moments contradic-—
ting the assumption that it is critical. If
the node ao were on the path p", a similac
argument would result. Consequently, relation
1(p’ Y+tn+1(p”) = 1(Vg,Vg) is true, implying
that the path p is aone of the longest paths
frqm Vg to V¢ Q.E.D. .

Let E' be the set of all critical internal
nodes at the moment j. We call the value

¢ = max VE' |, where 1£j£t% the maximal cfi-
tical poarallelisa of a program graph, where
t¥= (Vg , V-1,

Constructing the longest paths from Vg to V¢
CLaw?6] and considering their nades, the cri-
tical internal nodes are weasily computed.
We could determine the critical nodes also
by computing the time control vectors associ-
ated to the plan for the immediate and lazy
execution and comparing
nents, for each internal node.

7.2. UPPER AND LOWER BOUNDS ON pmin

Let us define gmppto be the minimum numbear of
processing elements needed for the execution
of a program graph, taken over all possible
plans of the execution. We want to bound WHnin
as much as poscsible.

Let y,.., and p,, denote the number of
sing elements needed in the immediate ana
lazy execution of a program graph, respec-
tively. We define the average parallelism of

praces-

a program graph to be 1 = tseq /t% where
teeq = Ltn, neV, , and maximal psaralleliss
to be Tnl*. We also define a = max{lml,{},"

and B = ain{gimm , Mazy }.
theorem illustrates the
bounds on Wi, -

Then the following
upper and lower

THEOREM 3.

Minimal number of proceséing elements
needed is bounded by & £ pg,, £ f.

_PROOF: In case of {2[x1 the proof is evident
since there exists a moment j when at least
{ critical nodes must be fired. Suppose naw
that ¢<Mrl. Let p; ,J = 1,2,...,t* denote the
number of internal executing nodes at the ao-

ment j. Then q; Bj = tseq - Suppose that

u;< x, ftor all j=1,2,...,t% . Then we have

Lseq = tg, B < tg, B = tgq s a contradic-
tion. Consequently, p- 2u, for some j 1£jée.
Since the number ¢; is an integer, we alsg
have ;- 2 fnl , and a foptiori Pin2 THl. The
right side of the nonegquation is also evi-
dent. Q.E.D.

If we get a = § then at least one of the
plans for immediate or lazy execution is also
an optimal one. If a < f, which is much more
possible, we can try to push the upper bound
g down by additional computations where
we chose another plan of the program
graph execution. For example, we may try to
choose the sets Ej on each step in such a
way, that IF - Vi, 1£j5t%, is as close as
possible to a. The details are discussad in
next section,

* rl is the lowest integer, greater or equal
to r.

their third compo-

15

7.3. THE PLAN FOR HEURISTIC EXECUTION

Since the lowver bound on the ainimum number
of processing units needed is given by o, we
choose the sets Ef in such a way, that the
number IF - V. | is on each step j, 1£§2t% as
close as possible to a. To do this we first

consider the number ¢ = IEf - VFI+IF,Old 1 of
the processors that are already needed at the
moment j. If this number is greater than or
equal to «, nothing is put into the set E{ .
On the other hand, if o < @, we consider the
executable nodes, that need not to be fired

at the moment j, i.e. the set E -Ef. If there
are at most m = « - ¢ such nodes we put all
of them into the set E . However, if there
are more than m such nodes n, we choose a of
them, having the highest wvalues 1(n,V), and
put them into the set E| (Fig.4).

m = a - ¢ 3

if 1€;- € 1 < m then Ej = E -Ef
else Choose m nodes n from Ej - Ef having

the longest values 1(n,Vg) and put
them into the set Ej;

ends

Fig.4: Heuristic choosing the sets E;.

8. ALGORITHM FOR OBTAINING EXECUTION PLANS

In this section we describe the algorithm for
obtaining a plan of the execution. Different
plans may be obtaind according to the rule by
which the subsets E; are chosen (see step 15).

At the moment j = 0 the sets C;, €, E

) Eine“;
Fi » and F™ are -initialized ta the set Vg of
starting nodes. The set N; is initialized to
the set v - Vg . All the other sets are eapty.

The plans for immediate and for lazy execution

are computed by choosing Ef 1= Ej - Ef and
E{ := #, respectively, on each step
plan gor the heuris&ic execution is obtaind by
choosing the sets Ej on each step (15) accor-
ding to the sequence described aon Fig.a.

(15). The

The algorithm is implemented on LS1-11/23 com-
puter wunder RT-11 operating system and tested
on several program graphs. The Fig.7 describes

an analysed program graph and the resulting
time control vectors obtained.

16

(1) Evaluate l(m,n) for all nodes m,n by computing the transitive
clasure of the prograam graph ;

2) initialize sets ;3 j := 0;

(3) while d; = V4

begin
(%) J iz 3+ 1
(5) fo= {n | nfinished executian at the moment j)
(8) ¢ = c - FIY
%)) €™ 1= { n | n received at the mament j its first 1nput operand ¥
@) c, 1= ¢™ u P
) g 1= Ly - FYY
(10) E t= (n | nreceived at the moment j its last input operand }
(11 € = EM® U EPY
“2) FPY o= B - R
(13 1 (F™ ,V) := max 1/(n,V), where neF"™ ;
(143 E} := {nef | 1(nWe) = 166,V & 17GF \ve) 2 U (Ejn Ve)5
(15) Choose a subset E] of the set E, - Ef ;
(18) Frew 1= E;' uE
“Un Fior= B0 R
(18) 0, = Djn U F
19) N; t= vV - ¢ UF UD)
(20) Adjust the components of time control vectors for the nodes

in %, ETY and Fo%

end

F19.5: Algorithm for obtaining execution plans of a progras graph.

9. CONCLUSION I@ is to point out that the algorithm an

Fig.S can be used for minimization of some
What is the time comlexity of the algoritha ather resourges such as the nuaber of primary
on Fig.5? The time complexity of the step (1) memory locatians needed

is 0Civ1®), since this is the time complexity
of the computing the longest paths between
all nodes in a graph (Law76l]. The time com-
plexity of the steps (2) to (20) is 0(|V|2),
since the loop (3) is entered OCIVI) times,
each of the steps (4) to (20) having time
complexity 0Ci1V1). Consequently, the overall
tise complexity of the algorithe on Fig.5 is
15 0CIVIS),

The algorithm was tested an 400 randomly
generated prograem graphs with at most 64
nodes, In only 0.5% of analysed graphs jiheu 8
was obtained. In all other cases ppe was leas
than or equal to B, Heuristic plan improved
botn lmmediate anad lazy execution in 50.25%
of cases. Furthermore, many (55.75%) af heu-
ristic executions were also proved to be
optimal, since the associated numbers of the
processing elements needed equaled the values
«, as% was the case on the Fig.7. Note, that
this number is pesimistic since thecre were
very probably gqraphs that could not be exe-
cuted using only a pcocessing elements. The
results are depicted on Fig.é6.

Bheu = B Bhey < B Hhew * &
(49.25%) (60.25%%) (585.75%)

Fig.46: The behavior of the heuristic plan.

I o 1€ 3,14, 16)!(16 16, 16)I(b,14, 14)I
D e T e it St T T

I p I(1,14, 14)|(1,14, 14)](1y14, 14)!

I q |(16 16, 16)!(16 16, 1b)l(16 16, 16)!

e mm e m e m - ———

I s I(3,21, 21)I(19 21, 21)I(9,21, 21)|
D T R il +
[A 1(22 22, 22)1(22 22, 22)!(22 22, 22)l

Fig.7: Plans for immediate,
of a3 given program graph.

10. LITERATURE

£comMazl

CKFGS84] Kapauan A.,
L.S5nyder: ‘The Pringle
Computer’, Proc. 11th Int’l
Camp. Arch., IEEE Press,
1984, pp.12-20

CLavw763 Lavier E,:
tion:

RinehartiWinston, New York,

Himm =

rml

COMPUTER, Soecial Issue On Dataflow
Systems, Vol.15, No.2, Feb.1982

J.T.Field, D.B.Gannan,
Parallel
Syap.
New York,

Combinatorial Optimiza-
Networhs and Matroids,; Holt,

Bhew = 3

In this case the heuristic
plan is also optiamal!

lazy and heurxstxc execution

CRotas)]

£1J583]

C8iR85)]

Robi& B., J.¥ilc : ‘Analysis of
Static Data Flow Program Graphs’,
to be published in Elektrotehnigki
vestnik, (in Slovene)

Tokoro M., J.R.Jagannathan, H.Suna-
hara: ’'On the Working Set Concept
tor Data-flow Machines’, Proc. 10th
Int’l Symp. Computer Architecture,
1EEE Press, New Yark, 1983, pp.90-
97

gilc J., B.Robit : ’'Basic Princip-
les of Datas Flow Systeams’, Intor-
matica 2/85, pp.10-15 (in Slovene)

