Sprejeto (accepted): 2003-10-30

Growth and root respiration of C4 plants under CO, enrichment

Rast in dihanje korenin C4 rastlin pri povečani koncentraciji CO,

Irena MAČEK,1 Hardy PFANZ,2 Dominik VODNIK1

¹University of Ljubljana, BF, Agronomy Dep., Jamnikarjeva 101, SI-1001 Ljubljana, Slovenia; E-mail: irena.macek@bf.uni-lj.si

²Institut für Angewandte Botanik, Universität Essen, D-45117 Essen, FRG

Abstract. Respiratory measurements of apical root parts of several C4 plant species (*Echinochloa crus-galli* var. *crus-galli*, *Setaria pumila* and *Zea mays* DK 312 (Dekalb, USA) subjected to an elevated CO₂ regime during growth in climatic chambers or at natural CO₂ springs were performed.

Biomass production, root respiratory potential and root respiration of *Echinochloa* was not significantly changed by high atmospheric CO₂ treatment in the climatic chambers, compared to ambient CO₂ treatment.

Root respiratory potential of C4 weeds (*Echinochloa crus-galli* and *Setaria pumila*) growing in natural CO_2 spring area was not significantly affected by extremely high CO_2 in the rhizosphere. Yet, respiratory potential of one and a half month old sown maize seedlings was significantly lower in the roots exposed to naturally elevated CO_2 concentrations.

Key words: root respiration, ETS activity, respiratory potential, C4 plants, *Echinochloa crus-galli*, *Zea mays*, *Setaria pumila*, elevated CO₂, natural CO₂ springs, CO₂ mofette

Izvleček. V pričujoči raziskavi smo merili dihalno aktivnost apikalnih delov korenin nekaterih C4 vrst (navadne kostrebe *Echinochloa crus-galli* var. *crus-galli*, sivozelenega muhviča *Setaria pumila* in koruze *Zea mays* DK 312 (Dekalb, ZDA), izpostavljenih povečani koncentraciji CO₂ med rastjo v klimatskih komorah ali ob naravnih izvirih CO₂.

Pri navadni kostrebi povečana koncentracija CO₂ v klimatskih komorah ni značilno vplivala na produkcijo biomase, dihalni potencial in dihanje korenin.

Ekstremno povečana koncentracija CO₂ v rizosferi rastlin (navadne kostrebe in sivozelenega muhviča) ob naravnih izvirih CO₂ ni značilno vplivala na dihalni potencial v koreninah. Ta je bil značilno manjši le pri mesec in pol stari sejani koruzi rastoči na področju naravnih izvirov CO₂.

Ključne besede: dihanje korenin, aktivnost ETS, dihalni potencial, C4 rastline, Echinochloa crus-galli, Zea mays, Setaria pumila, povečana koncentracija CO₂, naravni izviri CO₂, CO₂ mofeta

Introduction

An elevated atmospheric CO_2 concentration can have a significant effect on growth and carbon metabolism of many plant species. On a daily basis, more than 50% of the photosynthates produced, may be simultaneously respired by roots (LAMBERS et al. 2002). Compared to the number of papers on inhibition of aboveground shoot respiration by elevated CO_2 (e.g. AMTHOR 1991, DRAKE et al. 1997, TJOELKER et al. 2001), very little information on the effects of elevated CO_2 on root respiration has been published so far. Furthermore, the reported CO_2 effects on root respiration are rather heterogeneous, limited to only few plant species and differently discussed among authors (e.g. BURTON et al. 1997, YODER et al. 2000, LAMBERS et al. 2002). LAMBERS et. al. (1996) report that there is insufficient evidence to state that root respiration is inhibited by the $[\mathrm{CO}_2]$ around roots in a similar manner as leaf respiration is inhibited by elevated CO_2 in the atmosphere. Moreover, there is no convincing evidence for a direct effect of elevated atmospheric CO_2 on the specific rate of root respiration or the fraction of carbon required for root respiration. However, there are probable indirect effects of elevated CO_2 on the carbon requirement of plants in natural systems.

The partial pressure of CO_2 in soil may differ from the CO_2 partial pressure above ground and it seems to be more variable. The concentration of CO_2 in soil rapidly increases after rainfall because its diffusion through the gas phase is restricted by the water saturation of the soil. Thus, plant roots are frequently exposed to relatively high CO_2 concentrations. Water flooding can also present a longer exposure of roots to elevated CO_2 and consequently hypoxic environment. Plants growing near CO_2 springs are exposed to extreme CO_2 regimes that can also lead to hypoxic conditions in the rhizosphere. Vegetation at CO_2 springs has been exposed to such conditions for long periods, giving time for acclimation, and perhaps also genetic adaptation of plants (VODNIK et al. 2002). Thus, natural CO_2 springs may represent a good model ecosystem to study effects of elevated CO_2 on plants (RASCHI et al. 1997, BADIANI et al. 1999).

Our work was performed on three C4 plant species *Echinochloa crus-galli* var. *crus-galli*, *Setaria pumila* and *Zea mays* DK 312 (Dekalb, USA) subjected to an elevated CO₂ regime during growth in climatic chambers as well as in a CO₂ spring-area Stavešinci in NE Slovenia.

Material and methods

Seedlings of *Echinochloa*, the offsprings of plants growing near the CO_2 springs, were grown in climatic chambers under ambient (368.4 ± 15.6 μ mol CO_2 mol⁻¹) and elevated (1906.2 ± 195.0 μ mol CO_2 mol⁻¹) CO_2 for seven weeks at the temperature 25 °C during the light (14 h) and 16 °C during the dark period (10 h) of the day. The fumigation started two weeks after seed germination. After the growth period plant roots were sampled for respiratory measurements.

In the July 2002, root samples were also collected for natural growing *Echinochloa*, *Setaria* and one and a half month old plants of sown maize (*Zea mays* DK 312, Dekalb, USA) growing in the natural CO₂ spring area Stavešinci in NE Slovenia (for detailed information on the site characteristics and other details see VODNIK et al. in press). The plants were chosen according to their height and the preliminary measured soil CO₂ concentration in the rooting zone by a gas analyzer GA 2000 (Ansyco, FRG). A significant correlation between plant height and plant exposition to elevated CO₂ from CO₂ springs is known from our previous studies (VODNIK et al. 2002^{a,b}, TURK et al. 2002).

Root respiration rates were measured as oxygen consumption on root tip segments (1 cm length) using Clark-type oxygen electrodes (Hansatech, Norfolk, UK). Measurements were performed in 50 mM MES (morpholinoethanesulfonic acid) buffer solution pH 6 at 20 °C.

The root respiratory potential - electron transport system (ETS) activity was determined on root tip segments (1 cm length) using the iodonitrotetrazolium salt (INT) method described by KENNER & AHMED (1975).

Statistical analyses were performed by Statgraphic Plus 4.0 (Statistical Graphics Corp.).

Results and discussion

In the fumigation experiment no significant impact of high atmospheric CO₂ concentration on biomass production of *Echinochloa* was found (Tab. 1). In general, the growth response of C4 plants to elevated [CO₂] is inconsistent and depends on various environmental factors (GHANNOUM et al. 2000). For *Echinochloa* the increase of plant biomass under elevated CO₂ concentration (690 µmol mol⁻¹) was documented by ZISKA et al. (1997).

Measurements of root oxygen consumption revealed no significant differences in root respiration of elevated ${\rm CO_2}$ chamber-grown *Echinochloa* plants. There was also no significant difference in root respiratory potential (Tab. 1).

Table 1: Biomass production, root respiration and root respiratory potential of *E. crus-galli* var. *crus-galli* subjected to elevated atmospheric CO₂ in climatic chambers, (avg ±SD).

	Ambient CO ₂	Elevated CO ₂
	$(368.4 \pm 15.6 \mu \text{mol CO}_{2} \text{mol}^{-1})$	(1906.2 ± 195.0 μmol CO ₂ mol ⁻¹)
Dry weight of shoot (g) (1)	0.95 ± 0.26	1.15 ± 0.26
Dry weight of root (g) (1)	0.83 ± 0.16	0.89 ± 0.33
Root respiration(2)	1.5 ± 0.6	1.8 ± 0.5
ETS roots(3)	1.0 ± 0.2	1.0 ± 0.2

⁽¹⁾By ANOVA, n = 24. ⁽²⁾Given as nmol O_2 g⁻¹ fresh wt s⁻¹, by ANOVA, n = 15. ⁽³⁾Given as μ g O_2 g⁻¹ fresh wt h⁻¹, by ANOVA, n = 15

In addition to these findings, measurements of *Echinochloa* exposed to different CO₂ regimes at the natural CO₂ spring Stavešinci showed no significant effects of high rhizospheric CO₂ concentration on root respiratory potential of the root-tip segments. The same was true for another C4 plant *Setaria pumila* (Tab. 2). It is to conclude that both species are relatively insensitive to high CO₂. A high tolerance of *E. crus-galli* to hypoxia is known from different studies and is especially well documented for its variety *E. crus-galli* var. *oryzicola* (BUCHANAN & al. 2000). Germination of *E. crus-galli* could be stimulated by elevated CO₂ as it was shown by YOSHIOKA & al. (1998). In this study germination was stimulated by exposure to 30 mmol mol⁻¹ CO₂ and it was concluded that soil CO₂ is responsible for causing intermittent flushes of seed germination of this species after heavy rainfall. This could also explain the presence of germinating and growing *Echinochloa* plants at the sites

with extreme CO₂ concentrations in the natural CO₂ spring Stavešinci as reported by KALIGARIČ (2001). No similar reports have been published on *Setaria pumila*.

Table 2: Shoot height and root respiratory potential of *E. crus-galli* var. *crus-galli*, *S. pumila* and *Z. mays* subjected to elevated soil and atmospheric CO₂ at a natural CO₂ spring (avg \pm SD).

Plant species	CO, exposure(1)	Mean height (cm) ⁽²⁾	ETS(3)
Echinochloa crus-galli	Low (0.4%)	62.3 ± 11.7	1.52 ± 0.19
	High (26%)	15.9 ± 1.8	1.55 ± 0.18
Setaria pumila	Low (0.4%)	51.0 ± 6.8	0.34 ± 0.05
	High (26%)	28.0 ± 5.6	0.32 ± 0.06
Zea mays	Low (0.1–0.4%)	239.0 ± 21.0	1.12 ± 0.13
	High (over 10%)	114.2 ± 7.9	0.95 ± 0.13

⁽¹⁾Measured as soil CO₂ concentration (25 cm depth) by a gas analyzer GA 2000 (Ansyco, FRG). ⁽²⁾By ANOVA, n = 10. ⁽³⁾Given as $\mu g O_2 g^{-1}$ fresh wt h^{-1} , by ANOVA, n = 12.

Results on *Echinochloa* and *Setaria*, could indicate a general low sensitivity of root respiration to a high CO_2 concentration, which is suggested by LAMBERS et al. (1996, 2002). Yet, root respiratory potential in root tips of *Zea mays* measured in our study was significantly lower in the roots exposed to high soil CO_2 than in those growing in the low CO_2 environment (Tab. 2). Different results obtained for native species (*Echinochloa*, *Setaria*) and sown maize suggest that plants growing as a part of natural vegetation could be adapted to extreme conditions. This however, has to be confirmed in the future work.

Conclusions

At natural CO₂ springs, the growth of *Echinochloa* and *Setaria* can be decreased by high CO₂ concentrations and physiological processes in shoots can be severely affected. Despite this, no significant impact of CO₂ exposure on root respiratory potential of the root-tip segments was found for the same species. More detailed physiological studies on root respiration are needed, regarding to the different parts of the root system, different ontogenetic development and measurements on different plant species. Further research is also needed in connection to different environmental factors affecting root respiration.

Acknowledgements

Research was granted and performed in the frame of COST 627 program, granted by Forschungs-Pool 2001 (09112000) of the University of Essen and by grants J4-2186 and Z4-3196 from Ministry of Science, Education and Sport of Slovenia.

References

AMTHOR J. S. 1991: Respiration in a future, higher-CO₂ world. Plant, Cell and Environment 14: 13–20. Badiani M., Raschi A., Paolacci, A. R. & Miglietta F. 1999: Plants responses to elevated CO₂; a perspective from natural CO₂ springs. In: AGRAWAL S. B. & AGRAWAL M. (ed.): Environmental Pollution And Plant Response, Lewis Pub., Boca Raton, pp. 45–81.

Buchanan B. B., Gruissem W. & Jones, R. L. (ed.) 2000: Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, pp. 1177–1189.

- Burton A. J., Zogg G. P., Pregitzer K. S. & Zak D. R 1997: Effect of measurement CO₂ concentration on sugar maple root respiration. Tree Physiol. 17: 421–427.
- DRAKE B.G., GONZÀLEZ-MELER M.A. & LONG S.P. 1997: More efficient plants: a consequence of rising atmospheric CO₂: Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 609–639.
- Ghannoum O., Von Caemmerer S., Ziska L. H. & Conroy J. P. 2000: The growth response of C4 plants to rising atmospheric CO₂ partial pressure: a reassessment. Plant, Cell and Environ 23: 931–942.
- KALIGARIČ M. 2001: Vegetation patterns and responses to elevated CO₂ from natural CO₂ springs at Strmec (Radenci, Slovenia). Acta Biologica Slovenica 44, 1-2: 31–38.
- Kenner A. A. & Ahmed S. I. 1975: Measurements of electron transport activities in marine phytoplankton. Mar. Biol. 33: 117-120.
- LAMBERS H., ATKIN O. K. & MILLENAAR F. F. 2002: Respiratory patterns in roots in relation to their functioning. In: Waisel Y., ESHEL A. & KAFKAFI U. (ed.): Plant Roots The Hidden Half, 3rd ed. Marcel Dekker, Inc., New York, pp. 521–552.
- Lambers H., Stulen I. & Van Der Werf, A. 1996: Carbon use in root respiration as affected by elevated atmospheric CO₂. Plant and Soil, 187: 251–263.
- RASCHIA., MIGLIETTA F., TOGNETTI R. & VAN GARDINGEN P. R. (Ed.) 1997: Plant Responses to Elevated CO₂. Cambridge University Press, Cambridge UK.
- TJOELKER M.G., OLEKSYN J., LEE, T.D. & REICH, P. B. 2001: Direct inhibition of leaf dark respiration by elevated CO₂ is minor in 12 grassland species. New Phytol. 150: 419–424.
- Turk B., Pfanz H., Vodnih D., Bernik R., Wittmann C., Sinkovič T. & Batič F. 2002: The effects of elevated CO₂ on bog rush (*Juncus effusus* L.) growing near natural CO₂ springs I. Effects on shoot anatomy. Phyton (Horn Austria) 42: 13–23.
- Vodnik D., Pfanz H., Maček I., Kastelec D., Lojen S. & Batič F. 2002: Photosynthetic performance of cockspur (*Echinochloa crus-galli* (L.) Beauv.) at sites of naturally elevated CO₂. Photosynthetica 40(4): 575–579.
- Vodnik D., Pfanz H., Wittmann C., Maček I., Kastelec D., Turk B. & Batič F. 2002: Photosynthetic acclimation in plants growing near a carbon dioxide spring. Phyton (Horn Austria), 42: 239–244.
- VODNIK D., ŠIRCELJ H., KASTELEC D., MAČEK I., PFANZ H. & BATIČ F.: The effects of natural CO₂ enrichment on the growth of maize. Journal of Crop Production, in press.
- Yoder C. K., Vivib P., Defalco L. A., Seemann J. R. & Nowak R. S. 2000: Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO₂ concentration. New Phytol. 145: 245–256.
- Yoshioka T., Satoh S. & Yamasue Y. 1998: Effect of increased concentration of soil CO₂ on intermittent flushes of seed germination in *Echinochloa crus-galli* var. *crus-galli*. Plant, Cell and Environment 21: 1301–1306.
- ZISKA L. H. & BUNCE J. A. 1997: Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth. Res. 54: 199–208.