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0  INTRODUCTION

Electrical discharge machining (EDM) is the most 
widely used and most successfully applied method 
to machine conductive hard materials. It is a non-
traditional machining process in which metal is 
removed by producing powerful electric spark 
discharge between the tool electrode and the work 
material. Both the work piece and the tool are 
submerged in a dielectric fluid and a servo-mechanism 
is employed to maintain the spark gap. 

Fig. 1.  Schematic layout of microEDM

A high-power spark is produced when the voltage 
across the gap becomes sufficiently large. Hence, the 
dielectric fluid breaks down and the gap is ionized. 
Thousands of sparks occur per second at the spark gap 

and make the work-piece metal melt and erode. The 
removed metal is carried away by the dielectric fluid 
circulated around it, as shown in Fig. 1 [1] and [2].

In EDM, the problem of cutting force and 
vibration is avoided since the tool does not contact 
the work piece directly. In spite of many advantages, 
it has some limitations, such as longer lead time, 
lower productivity and higher energy consumption. 
Therefore, recent research focuses on optimizing the 
process parameter to increase the productivity and the 
capability of the process. The experimental methods 
increase the cost of investigation, and performing 
all the experiments is not feasible, particularly when 
the number of parameters and their levels are high. 
The Taguchi method has evolved to become the most 
powerful way to improve the productivity of EDM [3] 
and [4]. It was used for experimental design to optimize 
the cutting parameters of the turning of E0300 alloy 
steel [5]. Natarajan and Arunachalam [6] applied this 
method and the grey relational analysis to optimize the 
process parameters of stainless steel grade 304 with 
brass electrodes 500 µm in diameter. Dhanabalan et 
al. [7] optimized the process parameters of titanium 
grades in EDM. Mukherjee and Ray [8] presented a 
generic framework for parameter optimization in metal 
cutting processes for the selection of an appropriate 
approach. The response-surface methodology (RSM) 
explores the relationships between several explanatory 
variables and one or more response variables. It will 
successfully relate the input process parameters and 
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output response variables [9] and [10]. It is a statistical 
method that uses quantitative data from experiments 
to determine and simultaneously solve multi-variant 
equations. Karthikeyan et al. [11] conducted general 
factorial experiments for microEDM in order to present 
an exhaustive study of parameters on the material 
removal rate (MRR) and the tool wear rate (TWR). 
Kung et al. [12] introduced powder-mixed EDM 
when machining cobalt-bonded tungsten carbide. The 
RSM was used to plan and analyse the experiments in 
terms of MRR and electrode wear ratio (EWR). They 
concluded that the aluminium powder mixed with 
dielectric fluid increases the MRR and reduces the 
EWR. Genetic algorithms (GA) and artificial neural 
networks (ANN) are popular software technologies 
used for the optimization of machining parameters. 
Samtas et al. [13] investigated the effects of cutting 
parameters and deep cryogenic treatment on the 
thrust force in the drilling of AISI 316 stainless steel. 
Saric et al. [14] used neural networks to predict and 
simulate the surface roughness of the steel, by using 
back-propagation neural networks, modular neural 
networks, and radial basis function neural networks 
in the process of modelling. Kao and Hocheng [15] 
applied grey relational analysis for optimizing the 
electro-polishing of 316L stainless steel with multiple 
performance characteristics. Lee et al. [16] studied 
the process of ball burnishing AISI 316L stainless 
steel, in which they used Taguchi techniques for the 
statistical design of experiments for achieving good 
surface finish on flat specimens. Pushpendra et al. [17] 
developed an artificial neural network model for the 
experimental values and then applied a non-dominated 
sorting genetic algorithm (NSGA II) to predict the 
MRR and surface roughness (SR) for Inconol 718. 
They concluded experimental results with a set of 
pareto-optimal solutions. Baraskar et al. [18] developed 
empirical models relating the surface roughness 
and MRR of EN8 steel with the process parameters 
such as pulse-on time, pulse-off time, and discharge 
current. They used a multi-objective optimization tool, 
NSGA II, to obtain the pareto-optimal set of solutions. 
Though much research has been done in the field of 
the machining of stainless steel, the optimization of 
machining parameters of microEDM of SS316L has 
not been addressed. 

1  EXPERIMENTAL DETAIL

The stainless steel (316L) considered in this 
research is a metal used in pharmaceuticals, marine 
and medical applications. It has a significant role 
in medical implants, including pins, screws and 

orthopaedic implants, such as total hip and knee 
replacements, due to various mechanical properties, 
such as high oxidation resistance, corrosive resistance 
and hardness. Though there are many process 
parameters that influence the machinability criteria of 
microEDM, this research dealt with three important 
processes: parameter-discharge current, pulse-on time 
Ton, and pulse-off time Toff. The Taguchi method was 
initially applied to determine the optimum process 
parameters and the number of experiments required to 
model response functions. RSM was then successfully 
applied to relate the input process parameters and 
the output responses of the selected material. The 
mathematical model obtained from RSM was then 
used as a fitness function for GA multi objective 
optimization.

A schematic of the experiment was performed 
in a SPARKONIX microEDM machine as shown in 
Fig. 2 with a brass electrode (diameter: 400 µm) and 
deionized water as a dielectric fluid for machining the 
selected 316L stainless steel work piece.

Fig. 2.  Sparkonix microEDM machine

1.1  Design of Experiment (DOE)

The Taguchi method is a powerful approach that 
provides a simple, efficient and systematic approach 
to determine the optimum process parameters, which 
drastically reduces the number of experiments that are 
required to model response functions [7] and [8]. It is a 
method based on orthogonal array (OA) experiments, 
which provide the much-reduced variance for the 
experiment resulting in the optimum setting of process 
control parameters.

The major influencing parameters and their levels 
considered are listed in Table 1. The selection of the 
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orthogonal array is based on the number of process 
parameters and their levels. In the current research, 
the L9 orthogonal array with three rows and nine 
columns is selected as given in Table 2. 

The tool wear rate for each experiment are 
calculated as:

TWR Initial weight of tool Final weight of tool
Machining time

=
− . 	 (1)

The material removal rate for each experiment is 
calculated as:

MRR Weight before machining Weight after machining
Machining tim

=
−

ee
. 	(2)

Indentify the response functions  
and the process parameters

↓
Determine the number of levels for the process 

parameters and possible interactions between them

↓
Select the appropriate orthogonal array  
and conduct the experiment accordingly

↓
Analyse the experimental results and select  
the optimum level of process parameters

↓
Verify optimal process parameters  
through confirmation experiment

Fig. 3.  Steps involved in the Taguchi method

Table 1.  Machining parameters and their levels

Parameters Level 1 Level 2 Level 3
Discharge current [A] 6 9 12
Pulse-on time [µs] 3 6 9
Pulse-off time [µs] 3 6 9

1.2  Response-Surface Methodology (RSM)

In most RSM problems, the form of the relationship 
between the response and the independent variables 
is unknown. Thus, the first step in RSM is to find a 
suitable approximation for the actual relationship 
between the response and the process parameters. The 
quantitative form of relationship between the desired 
response and independent input variables can be 
represented as:

	 y f x x x xn= ( ) +1 2 3, , ,..., ,ε 	 (3)

where, y is the desired response, f is the response 
function (or response-surface), x1, x2, x3, …, xn are the 
independent input variables, and  is the fitting error.

The appearance of the response function looks like 
a surface curve while plotting the expected response 
of f. The identification of suitable approximation for 
f will determine whether or not the application of 
RSM is successful. The necessary data for building 
the response model are generally collected from the 
design of experiments. 

In the current research, the experimental data 
were fitted into a two-factor interaction (2FI) 
regression model. The general form of 2FI model is:

	 f x x x
i

n

i i
i j

n

ij i j= + + +
= <
∑ ∑β β β ε0
1

, 	 (4)

where, f is the desired response, βi represents the 
linear effect of xi , βij, represents the quadratic effect 
of xi. They are cross-product terms that reveal a linear-
by-linear interaction between xi and yi. ε is a statistical 
error term. 

Design Expert R7.0 software was used to obtain 
regression models for two responses separately. 

Table 2.  Experimental design using L9 orthogonal array

Experiment
Machining Parameter Level

Total machining 
time [s]

TWR
[mg/s]

MRR
[mg/s]Discharge current

[A]
Pulse-on time

[µs]
Pulse-off time

[µs]
1 6 3 3 306.45 0.02576 0.64545
2 6 6 6 140.30 0.07466 0.94500
3 6 9 9 108.09 0.08077 1.35233
4 9 3 6 109.84 0.09538 1.36724
5 9 6 9 76.30 0.17163 1.86400
6 9 9 3 74.20 0.25884 1.37924
7 12 3 9 51.34 0.25506 2.58245
8 12 6 3 67.81 0.32185 2.06539
9 12 9 6 42.54 0.26678 3.20636
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The mathematical model correlating MRR with 
the process control parameters is obtained as:

     MRR = 0.66885 + 0.076855 x1 – 0.15883 x3 –
		  – 0.31122 x1 + (0.011663 x1 x2) +	           (5)
		  + (0.028113 x1 x3) + (0.028438 x2 x3).

The mathematical model correlating TWR with 
the process control parameters is obtained as:

   TWR= – 0.384951429 + 0.053079841 x1 + 
		  + 0.05632381 x1 – 0.003937302 x3 –
		  – (0.003577937 x1 x2) + (0.000419524 x1 x3) –
		  – (0.001784127 x2 x3) ,		              (6)

where x1 is discharge current, x2 pulse-on time, and x3 
pulse-off time.

Figs. 4 and 5 show the linear correlation between 
the predicted values and the actual values of MRR 
and TWR. In the ANOVA test, if p value is less than 
0.05, the developed model is significant; otherwise, 
it is insignificant. The coefficient of determination 
(R²) and Adj. R² from the ANOVA test in MRR are 
observed to be 0.9833 and 0.9331, respectively. 
Similarly, from the ANOVA test, in TWR, R² = 0.9656 
and Adj. R² = 0.8622, which proves that the developed 
model is statistically considerable. 

1.3  The Effect of Discharge Current on MRR and TWR with 
Various Pulse-on Time

Experiments were conducted on the chosen stainless 
steel 316L with 400 μm brass electrode. The discharge 
current, pulse-on time and pulse-off time with three 
levels were selected as major influencing parameters. 
The effect on MRR and TWR when Ton =3, 6 and 9 μs 
are presented in Fig. 6a, b and c, respectively. 

From Fig. 6a, it is observed that when Ton = 3 
µs, the MRR increases linearly from 0.645 mg/s to 
2.582 mg/s. The rate of increase in MRR varies on the 
discharge current. The rate of change in MRR is 0.18 
mg/s in the range of 6 to 9 A, and it is 0.61 mg/s in the 
range of 9 to 12 A. In the case of TWR, it is 0.02576 
mg/s at 6 A and 0.2551 mg/s at 12 A, but it is evident 
that there is a drastic linear increase in TWR between 
9 and 12 A.

In the case of Ton = 6 µs, MRR is 0.945 to 2.06539 
mg/s at 6 to 12 A. It increases linearly at the rate of 
0.22975 mg/s from 6 to 9 A, beyond which, there is no 
significant increase in MRR. The TWR is 0.0746 mg/s 
at 6 A, and it increases linearly at the rate of 0.02424 
mg/s until 9 A, beyond which a sudden increase is 
noticed.

When Ton = 9 µs, there is no effect of the change 
in MRR between 6 and 9 A, but it suddenly increases 
to 3.2 mg/s at 12 A. In the case of TWR, the linear 
increase from 0.0807 to 0.2588 mg/s is noticed from 6 
to 9 A, beyond which it is found to be almost constant.

1.4  Effect of Discharge Current on MRR and TWR with 
Various Pulse-off Time

The effect on MRR and TWR with respect to Toff = 3, 
6 and 9 μs is plotted in Fig. 7a, b and c respectively.

Fig. 4.  Linear correlation between actual values and predicted 
values of MRR

Fig. 5.  Linear correlation between actual values and predicted 
values of TWR
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In the case of 3 μs, the MRR at 6 A is 0.6455 
mg/s and it increases very linearly to 2.0654 mg/s at 
12 A. The TWR is 0.02576 mg/s at 6 A and increases 
to 0.2588 mg/s at 9 A and then increases to 0.32185 
mg/s at 12 A.

In the case of 6 μs, the MRR and TWR at 6 A are 
0.945 mg/s and 0.07466 mg/s respectively. The trend 
of increase in both MRR and TWR are almost same. A 
sudden increase is observed from 9 to 12 A.

a) 

b) 

c) 
Fig. 6.  Effect of discharge on MRR and TWR when;  

a) Ton=3 µs, b) Ton= 6 µs, and c) Ton=9 µs

a) 

b) 

c) 
Fig. 7.  Effect of discharge on MRR and TWR when;  

a) Toff=3 µs, b) Toff=6 µs, and c) Toff = 9 µs
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In the case of 9 μs, the MRR is 1.352 mg/s at 6 
A, 1.864 mg/s at 9 A and 2.5824 mg/s at 12 A. The 
TWR is 0.08077 mg/s at 6 A, 0.1716 mg/s at 9 A and 
0.25506 mg/s at 12 A.

2  MULTI-OBJECTIVE OPTIMIZATION USING  
A GENETIC ALGORITHM

The optimization seeks to minimize or maximize 
the value of a function in a given search space. 
Evolutionary algorithms are popular as robust and 
effective methods for solving optimization problems. 
These algorithms apply the principle of survival of 
the fittest to find the best approximations. A new set 
of approximations is created at each generation by 
the process of selecting individual potential solutions 
(individuals) according to their level of fitness in 
the problem domain and breeding them together 
using operators borrowed from natural genetics. 
This process leads to the evolution of populations of 
individuals that are better suited to their environment.

A wide range of evolutionary algorithms for 
multi-objective optimization is available. An NSGA is 
one of the second generation evolutionary algorithms 
proposed by Deb et al. [19] and [20]. Many authors 
have discussed evolutionary algorithms in their 
research [21] to [23]; the multi-objective problem 
[24] to [26] is comprehensively dealt with. In recent 
years, several other algorithms, such as ant colony 
optimization (MOACO) [27], artificial immune 
systems [28], and particle swarm optimization 
(MOPSO) [29] have also been used in multi-objective 

optimization. These kinds of algorithms have also 
been applied in manufacturing processes [30] to [32]. 
These heuristic algorithms [33] to [35] are mainly 
applied for optimal search. Optimization based 
on using meta-heuristic algorithms starts with an 
initial set of independent variables and then evolves 
to obtain the global minimum/maximum of the 
objective (fitness) function. The objective function 
is a mathematical model (function) that assigns a 
value to each solution in the search space. Starting 
from an initial solution built with some heuristics, 
meta-heuristics improve it iteratively until a stopping 
criterion is met. The NSGA-II considered in this 
paper is a fast non-dominated sorting approach with  
computational complexity is introduced, where  is the 
number of objectives and  is the population size. It is a 
steady-state genetic algorithm, which is more suitable 
for machining applications.

The MATLAB GA multi objective tool box was 
applied to predict the optimum process parameters. 
The mathematical models developed using RSM were 
used in tool box as fitness functions. The objectives 
are to maximize the MRR minimize the TWR. In order 
to convert objective for minimization, it is suitably 
modified. The objective functions are framed as;

	 Objective 1 = 1 / MRR,

	 Objective 2 = TWR,

subject to:

	 6 ≤ x1 ≥ 12,    3≤ x2 ≥9,    3≤ x3 ≥9.

Fig. 8.  Obtained optimal solutions from GA
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The GA generally includes three fundamental 
genetic operations of selection, crossover and 
mutation. These operations are used to modify the 
chosen solutions and select the most appropriate 
offspring to pass on to the succeeding generations. 
A population size of 45, a cross-over fraction of 0.8 
and a scattered cross-over function were selected from 
the tool. The tool considered a two-point cross-over 
function by default. The mutation rate was observed 
to be 0.01.

2.1 Results from the Multi objective GA

The observed responses corresponding to control 
parameters are listed in Table 3. The multi-objective 
GA predicts low MRR of 0.4352 mg/s and TWR 
of 0.0122 mg/s corresponding to Ton = 3.3608 μs,  
Toff = 8.6356 μs and discharge current is 6.0263 A. The 
high MRR is observed with TWR = 0.2391 mg/s at 
the condition Ton = 8.9999 μs, Toff = 8.9185 μs, and the 
discharge current is 11.9991 A. 

Table 3.  Process decision variables corresponding to each of 
optimal solution point and the predicted responses using GA 

Control Parameters Responses
Pulse-on 
time (Ton)

Pulse-off 
time (Toff)

Discharge 
[A]

MRR 
[mg/s]

TWR [mg/s]

3.3608 8.6356 6.0263 0.4352 0.0122
8.9999 8.9185 11.9991 3.9366 0.2391
8.8931 8.9147 10.3863 3.2150 0.1991
7.2814 8.8935 8.3505 2.0248 0.1315
8.6525 8.8813 10.8190 3.3404 0.2100
8.7242 8.8797 9.8730 2.9507 0.1859
7.8617 8.8742 8.6471 2.2571 0.1464
8.3824 8.6987 7.2569 1.7457 0.1169
8.1827 8.8591 9.8165 2.8097 0.1819
4.0178 8.6923 6.4205 0.6819 0.0167
8.2307 8.8723 9.3832 2.6393 0.1701
5.4919 8.8640 7.0884 1.1875 0.0659
8.1926 8.8996 8.9381 2.4486 0.1572
3.4702 8.7186 7.1761 0.8655 0.0403
8.9546 8.9166 11.0506 3.5157 0.2157
4.9293 8.8463 6.9434 1.0325 0.0519

It is observed that Ton and discharge are to be 
set low for low MRR and must be set high for high 
MRR. It is also observed that when MRR increases, 
TWR also increases correspondingly. However, the 
objective of this research is to maximize MRR and 
minimize TWR. Hence, the obtained optimal solutions 
from GA is presented in Fig. 8.

2.2  Confirmation Test

The confirmatory experiments were further conducted 
for the optimal parameters obtained from the 
MATLAB multi-objective GA. The error between 
optimum values from GA and the confirmation test 
was derived by considering Serial No. 6 from the 
Table 3, at the condition Ton = 8.7 μs, Toff = 8.9 μs and 
discharge 9.87 A, and is shown in Table 4.

Table 4.  Error between optimum values from GA and confirmation 
test value

Obtained from GA 
[mg/s]

Confirmation test 
value [mg/s]

Error [%]

MRR TWR MRR TWR MRR TWR
2.9506 0.1859 2.831 0.1954 4.06 5

The average prediction error for MRR is 4.06%, 
and TWR is 5%. Thus, the GA predicted results are 
within the acceptable limits, thereby establishing the 
validity of the method proposed. 

3  CONCLUSION

A new attempt to optimize the intervening parameters 
in microEDM of Stainless Steel 316L using a 400 
μm brass electrode was done. It was intended to 
obtain better MRR and TWR simultaneously. The 
discharge current, pulse-on time and pulse-off time 
with three levels were considered to be the major 
intervening parameters in microEDM of SS316L. The 
mathematical model was derived from RSM, and the 
result of it was used as a fitness function for multi-
objective optimization using GA. The results reveal 
that the developed mathematical models significantly 
improve the chosen objectives of obtaining the 
better MRR and TWR. The multi-objective 
optimization processes have categorically revealed 
the interaction effects among the chosen intervening 
parameters. The optimization model was developed 
by simultaneously considering the maximization of 
MRR and minimization of TWR, which is highly 
useful for real life applications. It is evident from the 
confirmation results that the developed mathematical 
model yields the results with a deviation of 5% from 
the experimentation.
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