
Volume 28 Number 3 November 2004

Special Issue:
Theoretical Computer Science

Guest Editors:
Boštjan Vilfan
Roberto Grossi

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Executive Associate Editor (Technical Editor)
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
drago.torkar@ijs.si

Rudi Murn, Jožef Stefan Institute

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič

Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Editorial Board
Suad Alagić (Bosnia and Herzegovina)
Vladimir Bajić (Republic of South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Se Woo Cheon (Korea)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Georg Gottlob (Austria)
Janez Grad (Slovenia)
Francis Heylighen (Belgium)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (Singapore)
Ramon L. de Mantaras (Spain)
Magoroh Maruyama (Japan)
Nikos Mastorakis (Greece)
Angelo Montanari (Italy)
Igor Mozetič (Austria)
Stephen Muggleton (UK)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Roumen Nikolov (Bulgaria)
Franc Novak (Slovenia)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Raković (Yugoslavia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (USA)
Ivan Rozman (Slovenia)
Claude Sammut (Australia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Branko Souček (Italy)
Oliviero Stock (Italy)
Petra Stoerig (Germany)
Jiří Šlechta (UK)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (Australia)

Informatica 28 (2004) 225–225 225

From the editors
This special issue of Informatica is devoted to Theoreti-
cal Computer Science, and contains a selection of papers
derived from presentations at the conference Theoretical
Computer Science 2003, which took place on October 16,
2003 within the framework of the multiconference Infor-
mation Society 2003 (October 12-17, 2003 at the Jozef Ste-
fan Institute, Ljubljana, Slovenia).

The conference was an inaugural conference on its sub-
ject in Slovenia, and is expected to continue in the future on
an annual or biannual schedule. The 2003 event attracted
several interesting contributions from diverse areas of The-
oretical Computer Science, and some were selected for in-
clusion in this issue.

The area of the Analysis of Algorithms is represented by
the paper by Suzuki and Ibaraki, An Average Runing Time
Analysis of a Backtracking Algorithm to Calculate the Size
of the Union of Cartesian Products. The paper provides
an analysis of a backtracking algorithm for the problem of
calculating the size of the set ∪n

i=1Si1 × . . . × Sim
where

Sij are finite sets of integers and m denotes the dimension
of the space. The paper complements earlier work by the
same authors, and thus provides more detailed information
on the problem.

The area of Graphs and Visualization is represented
by the papers, Bokal, Juvan, and Mohar: A Spectral Ap-
proach to Graphical Representation of Data, and Orbanić,
Boben, Jaklič, and Pisanski: Algorithms for Drawing Poly-
hedra from 3-Connected Planar Graphs. The first consid-
ers a heuristic algorithm for the problem, given a weighted
graph, find positions (xi, yi) of the nodes such that the rel-
ative differences between the internode distances and the
edgeweights are minimised. The second represents an anal-
ysis of Tutte’s method of drawing a planar graph, viewed
in terms of matrix iteration and Markov chains.

Finally, the area of Formal Languages and Compiler
Construction is represented by Mernik, Črepinšek, Kosar,
Rebernak, and Žumer: Grammar-Based Systems: Defini-
tion and Examples, and Slivnik, and Vilfan: Improved Er-
ror Recovery in Generated LR Parsers. The first represents
a guided tour of different applications of context-free gram-
mars and attribute grammars. The paper does not report on
novel research results; but it was felt that it does give an
interesting and timely introduction to the area. The second
discusses an application of a new parsing method (more
precisely: an improvement of a recently reported parsing
method) which generates the left parse of an input string
on the basis of an LR grammar. It is described how this
approach can be used to improve error reporting in parsers
that are constructed with tools such as Bison, Yacc, etc.

Boštjan Vilfan, University of Ljubljana
Roberto Grossi, University of Pisa

226 Informatica 28 (2004) 225–225

Informatica 28 (2004) 227–232 227

An Average Running Time Analysis of a Backtracking Algorithm to Calculate
the Size of the Union of Cartesian Products

Susumu Suzuki
Information Network Engineering, Aichi Institute of Technology,
Toyota, 470-0392 Japan
susumu-suzuki@aitech.ac.jp

Toshihide Ibaraki
Graduate School of Informatics, Kyoto University,
Kyoto, 606-8501 Japan
ibaraki@i.kyoto-u.ac.jp

Keywords: average running time, backtracking algorithm, Cartesian product

Received: February 7, 2004

Problem SUCP is the problem to calculate the size of the union of n Cartesian products, | ∪i=1,...,n Si1×
· · ·×Sim|, where Sij are finite sets of integers and m denotes the dimension of the space. SUCP contains
as a special case the problem of counting the number of unsatisfying assignments of the satisfiability
problem (SAT). Therefore, SUCP is NP-hard and, in further detail, #P-complete. We presented in [7]
an exact algorithm to solve SUCP, called the grouping method, and analyzed its average running time.
Except for this, SUCP has been hardly studied so far. In this paper, we analyze the average running time
of a backtracking algorithm to solve SUCP. For the analysis, Sij are constructed by randomly selecting
each element from set D = {1, 2, . . . , d} with probability p. We show that its average running time is
O(mnd((4m(− ln p)d

ln(n/(m−1)))
m−1 lg d + 1)) for n ≥ m, where lg and ln denote log2 and loge respectively. For

the same instances, the average running time of the grouping method is O(mnd(nd(1 − p) + 1)m−1)
and that of the naive method is O(mndm). These results indicate that the backtracking algorithm is most
efficient if p and n (≥ m) are large enough such that 4m(− ln p)

ln(n/(m−1)) ¿ min{1, n(1− p)} holds.

Povzetek: članek opisuje časovno analizo algoritma za izračun velikosti unije kartezičnih produktov.

1 Introduction

Problem SUCP is defined as follows [7]:

SUCP Given finite sets of integers Dj = {1, 2, . . . , dj}
and their subsets Sij (⊆ Dj), where i = 1, . . . , n and j =
1, . . . , m, calculate the size of the union of m-dimensional
Cartesian products Ci = Si1×· · ·×Sim; i.e.,

|C1 ∪ · · · ∪ Cn| =
| { (x1, . . . , xm) | (x1 ∈ S11 ∧ · · · ∧ xm ∈ S1m)
∨ · · · ∨ (x1 ∈ Sn1 ∧ · · · ∧ xm ∈ Snm) } |.

2

Example 1 When a problem instance is given by

D1 = D2 = {1, 2, 3},
S11 = {1, 2}, S12 = {1, 2, 3},
S21 = {2, 3}, S22 = {1},
S31 = {1, 3}, S32 = {1, 3},

the answer is

|C1 ∪ C2 ∪ C3|
= |S11×S12 ∪ S21×S22 ∪ S31×S32|
= |{1, 2}×{1, 2, 3} ∪ {2, 3}×{1}

∪ {1, 3}×{1, 3}|
= |{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}

∪ {(2, 1), (3, 1)}
∪ {(1, 1), (1, 3), (3, 1), (3, 3)}|

= |{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3),
(3, 1), (3, 3)}|

= 8.

2

Applications A shop sells three kinds of T-shirts (T-
shirt#1, T-shirt#2, T-shirt#3). The sizes of T-shirt#1 are
small and medium, and its colors blue, green and red.
Similarly, the sizes of T-shirt#2 are medium and large,
and its color blue. The sizes of T-shirt#3 are small and
large, and its colors blue and red. The measure of the

228 Informatica 28 (2004) 227–232 S. Suzuki et al.

variety of T-shirts sold at the shop can be represented as
|{small, medium}×{blue, green, red}∪{medium, large}×
{blue} ∪ {small, large}×{blue, red}|. That is, the problem
of measuring the variety of T-shirts can be represented as
SUCP. 2

Problem SUCP contains as a special case the problem
of counting the number of unsatisfying assignments of the
satisfiability problem (SAT). For example, the problem of
counting the number of unsatisfying assignments for DNF
equation (x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3) = false
is expressed as the problem SUCP for d1 = d2 = d3 =
2, C1 = {2}×{1}×{2}, C2 = {1, 2}×{2}×{1} and
C3 = {1}×{1, 2}×{2}, as understood by regarding “false”
as 1 and “true” as 2. Therefore, SUCP is NP-hard and, in
further detail, #P-complete [2].

The problem of counting the number of (un)satisfying
assignments of SAT has been intensively studied, and the
average running times of several algorithms (including
backtracking algorithms) have been analyzed [1, 2, 3, 4,
5, 6]. On the other hand, SUCP for general dj(≥ 2) has
not been studied much so far except for [7], in which we
proposed an algorithm called the grouping method and an-
alyzed an upper bound of its average running time. We are
interested in algorithms that can solve SUCP with large dj

efficiently.
We explain the grouping method [7] briefly by using an

example. Let C1 and C2 be C1 = S11×S12 = {1, 2, 3}×
{1, 2} and C2 = S21×S22 = {2, 3}×{1, 2, 3}. Since the
decomposition of |C1 ∪ C2| over the first coordinate axis,

|C1 ∪ C2| = |{1}| · |S12|+ |{2}| · |S12 ∪ S22|
+ |{3}| · |S12 ∪ S22|, (1)

contains common terms S12 ∪ S22 in two positions in its
right hand side, it can be aggregated as follows:

|C1 ∪ C2| = |{1}| · |S12|+ |{2, 3}| · |S12 ∪ S22|. (2)

The grouping method calculates |C1∪C2| efficiently by us-
ing this aggregated formula (2) instead of (1). To analyze
the average running time, Sij are constructed by randomly
selecting each element from set Dj = D = {1, 2, . . . , d}
with probability p. The average running time of the group-
ing method is O(mnd(nd(1− p) + 1)m−1) [7].

In addition to the grouping method, if we consider the
naive method, which calculates |C1 ∪ · · · ∪ Cn| by check-
ing whether each cell (x1, . . . , xm) ∈ D1 × · · · × Dm is
contained in C1 ∪ · · · ∪Cn or not, its average running time
is O(mndm).

In this paper, we propose a backtracking algorithm for
the case of general dj ≥ 2 (denoted by SUCP-BT), which
is a generalization of the basic backtracking algorithm for
SAT in [6] (denoted by SAT-BT), and analyze its aver-
age running time(denoted by T), where problem instances
are generated in the same manner as the above. We fol-
low the analysis procedure in [6]. That is, we first ob-
tain an formula (7) (using (5) and (6)) including sum (

∑
)

operations that expresses an upper bound of the average
running time T , which is an generalization of the corre-
sponding formula for SAT-BT in [6], and then transform
its formula (7) into a simpler formula (23) approximately.
However, the formula (7) for SUCP-BT is more compli-
cated than the formula for SAT-BT in [6], and our transfor-
mation to obtain a simpler formula (23) is different from
that in [6]. As a result of the analysis, we show that
the average running time T of SUCP-BT is estimated as
O(mnd((4m(− ln p)d

ln(n/(m−1)))
m−1 lg d + 1)) for n ≥ m ((23)),

where lg and ln denote log2 and loge respectively. The
result indicates that SUCP-BT is more efficient than the
former algorithms (that is, the grouping method and the
naive method), if p and n(≥ m) are large enough such that

4m(− ln p)
ln(n/(m−1)) ¿ min{1, n(1− p)} holds.

The rest of this paper is organized as follows. We present
SUCP-BT in Section 2, analyze its average running time in
Section 3, and give its worst-case running time in Section
4. Finally, we summarize the paper in Section 5.

2 Backtracking Algorithm
We present SUCP-BT, where [l, r] = {x | l ≤ x ≤ r, x is
an integer}.

step1: Put the pair (I0, m) on top of the empty stack
STACK, where I0 = [1, d1]×· · ·×[1, dm], and set V
to 0, which is used to keep the answer |C1∪· · ·∪Cn|.

step2: If STACK = φ, output V (= |C1 ∪ · · · ∪ Cn|)
and halt.

step3: Take the top pair (I, k) = ([l1, r1]×· · ·×[lm, rm], k)
from STACK. If the m-dimensional sub-domain I
is contained in at least one of Cartesian products Ci,
update V by V + |[l1, r1]|×· · ·×|[lm, rm]| and return
to step2.

step4: If |[lj , rj]| = 1 for all j, return to step2. Oth-
erwise, denote the first j in the order of j = k +
1, . . . , m, 1, . . . , k, with |[lj , rj]| ≥ 2 by k′. Di-
vide the m-dimensional sub-domain I into two m-
dimensional sub-domains I ′ = [l1, r1]×· · ·×[lk′ , c−
1]×· · ·× [lm, rm] and I ′′ = [l1, r1]×· · ·× [c, rk′]×
· · ·× [lm, rm] by splitting the k′-th interval [lk′ , rk′]
into two intervals [lk′ , c − 1] and [c, rk′], where c =
lk′ + d(rk′ − lk′ + 1)/2e. Put the pairs (I ′, k′) and
(I ′′, k′) on top of STACK and return to step2. 2

Let us apply SUCP-BT to SUCP of Example 1 in Sec-
tion 1. Figure 1 shows all of the sub-domains generated
by SUCP-BT. Domain I0 is divided into sub-domains I1

and I2 by a split of its first interval [1, 3] (step4), since it
is contained in none of Cartesian products C1, C2 and C3

(step3). Sub-domain I1 is contained in C1. Sub-domain
I2 is divided into sub-domains I3 and I4 by a split of its
second interval [1, 3], and sub-domain I3 divided into sub-
domains I5 and I6 by a split of its second interval [1, 2],

AN AVERAGE RUNNING TIME ANALYSIS. . . Informatica 28 (2004) 227–232 229

I0 = [1,3] ¥ [1,3]

a split of the first
 interval [1,3]

I5 = [3,3] ¥ [1,1] (Õ C2)

I2 = [3,3] ¥ [1,3]

I4 = [3,3] ¥ [3,3] (Õ C3)

I6 = [3,3] ¥ [2,2]

I3 = [3,3] ¥ [1,2]

I1 = [1,2] ¥ [1,3] (Õ C1)

a split of the second
 interval [1,2]

a split of the second
 interval [1,3]

Figure 1: All of the sub-domains that the backtracking al-
gorithm SUCP-BT generates for the problem instance of
Example 1

since I2 and I3 are contained in none of Cartesian prod-
ucts. Sub-domain I5 is contained in C2. Sub-domain I6

is not divided, since its size is one. Sub-domain I4 is con-
tained in C3. As a result, SUCP-BT outputs

|C1 ∪ C2 ∪ C3| = |I1|+ |I4|+ |I5|
= 2× 3 + 1× 1 + 1× 1
= 8

in step2.

3 Average running time analysis

3.1 An intermediate formula for the average
running time

As mentioned in Section 1, Sij (i = 1, . . . , n, j =
1, . . . , m) are constructed by randomly selecting each el-
ement from set Dj = D = {1, 2, . . . , d} with probability
p.

Let us consider the procedure obtained by modifying
step3 of SUCP-BT so that the processing goes from step3
to step4 even when a sub-domain I is contained in at least
one of Cartesian products (that is, the procedure obtained
by modifying SUCP-BT so that a sub-domain I with
|I| ≥ 2 is always divided), and denote the tree that shows
how the procedure generates sub-domains by T1. Nodes of
T1 are sub-domains generated by the procedure, the root is
domain [1, d]×· · ·× [1, d], and leaves are sub-domains of
which the size is one. A node I of T1 has its children I ′

and I ′′ when the procedure divides the sub-domain I into
the sub-domains I ′ and I ′′. T1 has the following property:

property 1 Nodes of T1 that are contained in none of
Cartesian products and of which the size is more than

one are sub-domains that are generated and divided by
SUCP-BT.

We denote the average running time of SUCP-BT by T ,
and also denote it by T (d) when it is necessary to specify
the value of d. First, we consider the case of d = 2h (h =
1, 2, . . .). Then T (2h) is expressed as follows:

T (2h) = T1(2h)
(
1−

(
1− p2hm

)n)

+
h−1∑

i=0

m−1∑

j=0

T2(2h, i, j)2mi+j

×
(
1− p2h−i−1j+2h−i(m−j)

)n

. (3)

In (3), the formula (1 − (1 − p2hm)n) in the first term is
the probability that the domain I0 is contained in at least
one of Cartesian products, and T1(2h) is the average of
time for SUCP-BT to process I0 in such a case (that is,
the average of time for SUCP-BT to find that I0 is con-
tained in at least one of Cartesian products). The formula
(1− p2h−i−1j+2h−i(m−j))n in the second term is the prob-
ability that a sub-domain I at the depth of mi + j in T1

is contained in none of Cartesian products, and therefore,
from property 1 mentioned above, it is the probability that a
sub-domain I at the depth of mi + j in T1 is generated and
divided by SUCP-BT. T2(2h, i, j) is the average of time
for SUCP-BT to process a sub-domain I in such a case.
T2(2h, i, j) includes time to find that I is contained in none
of Cartesian products and time to divide I into two sub-
domains I ′ and I ′′. Furthermore, if I ′(I ′′) is a sub-domain
that is not divided by SUCP-BT, T2(2h, i, j) also includes
time to check whether I ′(I ′′) is contained in at least one
of Cartesian products or not. T2(2h, i, j) consists of these
time.

Since T1(2h) and T2(2h, i, j) have the following upper
bounds:

T1(2h) = O
(
2hmn

)
,

T2(2h, i, j) = O
((

2h−i−1j + 2h−i(m− j)
)
n
)
,

by substituting these into (3) and replacing 1−(1−p2hm)n

with 1, T (2h) is

T (2h) = O(F (h)), (4)

where

F (h) =

mn2h +
h−1∑

i=0

m−1∑

j=0

(
2h−i−1j + 2h−i(m− j)

)

× n2mi+j
(
1− p2h−i−1j+2h−i(m−j)

)n

. (5)

Next, we consider the case of any integer d. Let dlg de
be denoted by a:

a = dlg de. (6)

230 Informatica 28 (2004) 227–232 S. Suzuki et al.

Since it holds

T (= T (d)) ≤ T (2a),

by changing h in (4) into a, the following upper bound of
T is obtained:

T = O (F (a)) , (7)

where a and F (h) are (6) and (5) respectively. We use the
formula (7) as an intermediate formula of an upper bound
of the average running time T of SUCP-BT for any integer
d.

3.2 An end formula for the average running
time

We transform an upper bound O(F (a)) ((7)) of T into a
simpler formula approximately. F (a) is estimated as fol-
lows:

F (a) = mn2a

+
a−1∑

i=0

m−1∑

j=0

(
2a−i−1j + 2a−i(m− j)

)

× n2mi+j
(
1− p2a−i−1j+2a−i(m−j)

)n

≤ mn2a

+
a−1∑

i=0

m−1∑

j=0

(
2a−ij + 2a−i(m− j)

)

× n2mi+j
(
1− p2a−ij+2a−i(m−j)

)n

= mn2a

+ mn

m−1∑

j=0

2j
a−1∑

i=0

2a−i2mi
(
1− p2a−im

)n

≤ mn2a

+ mn2m
a−1∑

i=0

2a−i2mi
(
1− p2a−im

)n

. (8)

By regarding 2a−i in (8) as the real number x(= 2a−i),

F (a) ≤ mn2a + mn2m
a−1∑

i=0

x

(
2a

x

)m

(1− pmx)n

≤ mn2a + mna2(1+a)m

×max
{

(1− pmx)n

xm−1
| 2 ≤ x ≤ 2a, x is real

}
.

(9)

We denote the formula in the brace { } of (9) by f :

f(x) =
(1− pmx)n

xm−1
, (10)

and evaluate the following term in (9):

max{f(x) | 2 ≤ x ≤ 2a, x is real}. (11)

We extend the domain of x from 2 ≤ x ≤ 2a to 0 < x.
Differentiating f(x) gives

f ′(x) =

f · mn(− ln p)
x(p−mx − 1)

{
x− (m− 1)(p−mx − 1)

mn(− ln p)

}
.

(12)

Let the formula in the brace { } on the right hand side of
(12) be denoted by g(x):

g(x) = x− (m− 1)(p−mx − 1)
mn(− ln p)

. (13)

g(x) and its first and second derivatives g′(x) and g′′(x),
respectively, have the following properties:

g(0) = 0, (14)
lim

x→∞
g(x) = −∞ < 0, (15)

g′(x) = 1− m− 1
n

p−mx,

g′(0) = 1− m− 1
n

,

lim
x→∞

g′(x) = −∞ < 0, (16)

g′′(x) = −m(m− 1)(− ln p)p−mx

n
< 0.

(17)

We assume that n ≥ m, i.e., g′(0) > 0. From g′(0) > 0,
(16) and (17), the equation g′(x) = 0 has one solution

α =
ln n

m−1

m(− ln p)
(18)

for 0 < x, and the value of the function g′(x) varies as
follows: (i) g′(x) > 0 for 0 < x < α, g′(x) = 0 for x = α,
and g′(x) < 0 for α < x. From property (i), (14) and (15),
the equation g(x) = 0 has one solution β for 0 < x, and
the value of the function g(x) varies as follows: g(x) > 0
for 0 < x < β, g(x) = 0 for x = β, and g(x) < 0 for
β < x. Since f ′(x) ((12)) and g(x) ((13)) have the same
sign, f(x) has the maximum value for 0 < x when x = β:

max{f(x) | 0 < x, x is real} = f(β). (19)

Although β cannot be represented as a brief formula, it
holds

α < β. (20)

From (10), (18), (19) and (20), when n ≥ m, (11) can be
evaluated as follows:

max{f(x) | 2 ≤ x ≤ 2a, x is real}

≤ f(β) =
(1− pmβ)n

βm−1
<

1
βm−1

<
1

αm−1
. (21)

AN AVERAGE RUNNING TIME ANALYSIS. . . Informatica 28 (2004) 227–232 231

By substituting (21) into (9),

F (a) < mn2a + mna2(a+1)m 1
αm−1

= mn2a + mna2a+1

(
2a+1

α

)m−1

.

(22)

By substituting (22), (6) and (18) into T = O(F (a)) ((7)),
an upper bound of the average running time T of SUCP-BT
for n ≥ m is finally obtained as follows:

T = O

(
mn2dlg de + mndlg de2dlg de+1

×
(

2dlg de+1m(− ln p)
ln(n/(m− 1))

)m−1
)

= O

(
mnd

×
((

4m(− ln p)d
ln(n/(m− 1))

)m−1

lg d + 1

))
.

(23)

4 Worst-case running time analysis

Let the tree that shows how SUCP-BT generates sub-
domains be denoted by T2, where an example of such
a tree is Figure 1, and the depth of a sub-domain I =
[l1, r1]×· · ·× [lm, rm] in T2 and the sum of the sizes of
all intervals [lj , rj] of I be denoted by dp(I) and len(I)
(=

∑m
j=1 |[lj , rj]|) respectively. Since

m∑

j=1

xj ≤ m

m∏

j=1

xj

for any numbers x1, x2, . . . , xm that are no less than 1
(xj ≥ 1), it holds

len(I) ≤ m|I|. (24)

And the sum of the sizes of all sub-domains I at the same
depth in T2 is no more than |I0| = dm, that is, it also holds

∑

I in T2 such that dp(I)=i

|I| ≤ dm for any i.

(25)

From (24) and (25), the worst-case running time Tw of
SUCP-BT is estimated as follows:

Tw = O




mdlg de∑

i=0

∑

I in T2 such that dp(I)=i

len(I) n




= O




mdlg de∑

i=0

∑

I in T2 such that dp(I)=i

|I|mn




= O




mdlg de∑

i=0

mndm




= O
(
m2ndm lg d

)
. (26)

5 Conclusion

Problem SUCP is the problem to calculate the size of the
union of n Cartesian products, | ∪i=1,...,n Si1× · · ·×Sim|,
where Sij are finite sets of integers and m denotes the di-
mension of the space. We showed that the average run-
ning time of a backtracking algorithm to solve SUCP is
O(mnd((4m(− ln p)d

ln(n/(m−1)))
m−1 lg d+1)) for n ≥ m, where Sij

are constructed by randomly selecting each element from
set D = {1, 2, . . . , d} with probability p. The result indi-
cates that the backtracking algorithm is more efficient than
the former algorithms, i.e., the grouping method and the
naive method, if p and n(≥ m) are large enough such that

4m(− ln p)
ln(n/(m−1)) ¿ min{1, n(1− p)} holds.

References

[1] C. A. Brown and P. W. Purdom (1981) An average
time analysis of backtracking, SIAM J. Computing,
10(3), Society for Industrial and Applied Mathemat-
ics, pp.583–593.

[2] M. R. Garey and D. S. Johnson (1979) Computers
and Intractability – A Guide to the Theory of NP-
Completeness –, W. H. Freeman and Company.

[3] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah (1997)
Algorithms for the satisfiability(SAT) problem: A
survey, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 35, American Mathe-
matical Society, pp.19–151.

[4] K. Iwama (1989) CNF satisfiability test by count-
ing and polynomial time, SIAM J. Computing, 18(2),
Society for Industrial and Applied Mathematics,
pp.385–391.

[5] P. W. Purdom (1990) A survey of average time analy-
ses of satisfiability algorithms, Journal of Information
Processing, 13(4), Information Processing Society of
Japan, pp.449–455.

232 Informatica 28 (2004) 227–232 S. Suzuki et al.

[6] P. W. Purdom and C. A. Brown (1987) Polynomial-
average-time satisfiability problems, Information Sci-
ences, 41, Elsevier, pp.23–42.

[7] S. Suzuki and T. Ibaraki (2003) Average running time
analysis of an algorithm to calculate the size of the
union of cartesian products, Discrete Mathematics,
273, Elsevier, pp.211–220.

Informatica 28 (2004) 233–238 233

A Spectral Approach to Graphical Representation of Data

Drago Bokal
Department of Mathematics,
IMFM, Jadranska 19, Ljubljana, Slovenia
drago.bokal@imfm.uni-lj.si

Martin Juvan
Department of Mathematics,
University of Ljubljana, Jadranska 19, Ljubljana, Slovenia
martin.juvan@fmf.uni-lj.si

Bojan Mohar
Department of Mathematics,
University of Ljubljana, Jadranska 19, Ljubljana, Slovenia
bojan.mohar@uni-lj.si

Keywords: Data presentation, Clustering, Graph drawing, Spectral method, Gradient method

Received: February 6, 2004

Graphical representation of relationship data is useful in several applications. Relationships among objects
are modeled as a graph and the strength of relationship as weights on graph’s edges. In the paper we
demonstrate how the spectral method can be applied to visualize such data. Application of gradient method
is suggested to fine tune the solution obtained by the spectral method.

Povzetek: članek opisuje spektralno metodo za vizualizacijo podatkov.

1 Introduction
Many applications require graphical representation of (non
numerical) data. A general approach for such a task is pre-
sented. Given a data base, pairs of objects from the given
data set are classified as being “close” or “far apart” by
specifying a numerical value S(x, y) for each such pair
x, y. This value measures similarity of objects. This means
that the value S(x, y) is large for closely related objects x
and y and small for very different objects. For the purpose
of this paper we shall assume that S is symmetric, i.e.

S(x, y) = S(y, x).

Similarity measures can be produced in a number of ways,
for example by applying the factor analysis. The goal is
to represent the objects graphically (e.g. on a computer
screen) in such a way that objects which are similar with
respect to the similarity measure S are represented close to
each other, i.e., the distance between their graphical rep-
resentations is in agreement with the “similarity distance”
S(x, y).

Two main points of our approach rely on the spectral
method where calculations are based on the eigenvalues
and eigenvectors of related Laplacian matrices. General
setting for this approach is surveyed by Mohar and Pol-
jak [27]. Usually, the spectral approach can be expressed,
via the Rayleigh quotient expressions for eigenvalues, as a
quadratic optimization and, more generally, via semidefi-
nite programming [1, 18, 30, 32].

Applications of eigenvalue methods in combinatorics,
graph theory and in combinatorial optimization have a long
history. For example, eigenvalue bounds on the chromatic
number were formulated by Wilf [31] and Hoffman [23] in
the 1960’s. Another early application, in the area of graph
partition, is due to Fiedler [15] and Donath and Hoffman
[13].

An important result was the use of eigenvalues in the
construction of superconcentrators and expanders by Alon
and Milman [2, 3]. Isoperimetric properties of graphs and
their eigenvalues play a crucial role in the design of various
randomized algorithms. These applications are based on
the so-called rapidly mixing Markov chains.

There is an increasing interest in the application of
eigenvalues to combinatorial optimization problems. For
example, Burkard, Finke, Rendl and Wolkowicz [14, 29]
used an eigenvalue approach in the study of the quadratic
assignment problem and general graph partition problems,
Delorme and Poljak [10, 11] and Goemans and Williamson
[19] in the max-cut problem, and Juvan and Mohar [24, 25]
in labelling problems. Spectral partitioning, which is based
on eigenvectors of Laplace eigenvalues of graphs, has
proved to be a successful heuristic approach in the design
of partition algorithms [7, 22, 21], in solving sparse linear
systems [28], clustering [20, 6], ranking [25, 21], in graph
drawing [16], automated finding of large components [12],
image and video segmentation [17], etc. We refer to [27]
for additional applications.

For further results, the reader may consult existing books

234 Informatica 28 (2004) 233–238 D. Bokal et al.

and survey papers, such as [8, 9, 27].

2 Problem description

Formally, the above problem can be stated as follows.
Given a data set containing n objects and the similarity
measure S(x, y) between pairs of objects, find an embed-
ding of the n points in the plane such that the distances
between the points representing similar objects are small,
while the points corresponding to objects with small sim-
ilarity are far from each other. In order to formally de-
scribe the “agreement” of the similarity measure with the
distances in the plane, one has to introduce a function
f : R → R which transforms every value s of similarity
into the desired distance between points representing two
objects whose similarity is S(x, y) = s. The transforma-
tion f must satisfy the following requirements:

(F1) Monotonicity: if s ≤ s′, then f(s) ≥ f(s′).

(F2) Validity: lims→∞ f(s) = 0.

It can be proved easily that (F1) and (F2) together imply:

(F3) Non-negativity: f(s) ≥ 0 for every s ∈ R.

Exact choice of f depends on the data to be represented and
on the properties of their similarity measure S. If similar-
ities of distinct objects are always positive, then one may
take, for example, f(s) = 1/s.

We consider the objects as vertices of the (complete)
weighted graph G whose edge-weights are determined by
S and f : the weight of the edge xy is equal to f(S(x, y)).
This setting has an advantage that in case when similarity
measure of certain pairs of objects is not defined, then the
edges corresponding to such pairs can be removed from the
graph.

We consider the following problem. Given is a graph
G = (V, E) and a weight function w : E → R+ (the edge-
weights). The goal is to find a mapping φ : V → R2, which
assigns to every vertex of G a point in the Euclidean plane,
such that the distance between the points φ(x) and φ(y) is
as close as possible to the prescribed weight w(xy). We
refer to this problem as the vertex placement problem.

The vertex placement problem is an optimization prob-
lem and there are several possible choices for the energy
function which is to be minimized. Our choice is described
in Subsection 3.2.

3 Solving the problem

We propose the following general algorithm to find (an ap-
proximate) solution to the vertex placement problem.

Algorithm 1: Basic algorithm for solving the vertex
placement problem

Input: Graph G = (V, E), similarity mea-
sure S : V × V → R.

Output: Placement of the vertices of G

into R2.

Description:
Compute the edge-weights of G,

w(xy) = f(S(x, y)), xy ∈ E.

Obtain the initial placement by the
spectral method.

Run the gradient method to obtain an
improved placement.

Correct the final solution.

3.1 Initial placement
To find the initial placement in Algorithm 1, the spectral
method is proposed. Its formal description is given as Al-
gorithm 2. Let us observe that this algorithm is only heuris-
tic, and there are no theoretical guarantees that it will return
a solution close to an optimum. However, as mentioned in
the introduction, it behaves quite well in practice. We refer
to [27] for more information.

Algorithm 2: Obtaining the initial placement of vertices

Input: Weighted graph G = (V,E) with
edge-weights w.

Output: Initial placement of the ver-
tices of G in R2.

Description:
Compute the auxiliary matrix A from
the edge-weights w by setting

(A)ij = 0, if i = j or ij /∈ E

(A)ij = 1/w(ij), if ij ∈ E.

Determine the Laplace matrix LA

from A:

(LA)ii =
∑n

k=1(A)ik,

(LA)ij = −(A)ij , i 6= j.

Compute the eigenvectors e, f of LA

corresponding to the two smallest
nontrivial eigenvalues of LA.

Set xi := ei, yi := fi as the coordinates
of the vertex i.

To obtain the auxiliary matrix A from the edge-weights
w, one can also use the following formula:

(A)ij = 0, if i = j or ij /∈ E

(A)ij = 1/(w(ij))2, if ij ∈ E.

Both alternatives seem to yield good results.
If the number of objects to be represented is too large, we

first apply the same spectral method to cluster the data set

SPECTRAL APPROACH TO REPRESENTATION OF DATA Informatica 28 (2004) 233–238 235

into smaller cluster sets whose size fits the requirements.
Particular clusters that are small enough can then be graph-
ically represented as described above. On the other hand,
the relations among clusters themselves can also be rep-
resented by the same method by defining the distance w
between two clusters X,Y as

w(X, Y) =
1

|X||Y |
∑

x∈X

∑

y∈Y

f(S(x, y)).

Similar spectral approach has already been applied to clus-
tering problem, see [4, 5].

3.2 The gradient method

The energy function we choose to minimize in solving the
vertex placement problem is the sum of the squares of the
relative differences between the distances implied by the
current placement of the vertices, and the desired distances:

E(x,y) =
∑

ij∈E

(
w(ij)− ‖(xi, yi)− (xj , yj)‖

w(ij)

)2

,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), (xi, yi)
is the point inR2 corresponding to the vertex i, w(ij) is the
desired distance between vertices i and j, and E is the set
of edges of the graph G on vertices {1, . . . , n}.

The gradient method is a well-known iterative algorithm
for solving optimization problems whose objective func-
tion is differentiable (see, e.g., [26]).

At each step, first the direction in which the placement
will change is determined: usually, the negative gradient
is taken as the direction, but in every third step the aver-
age of the last two gradients is used instead (this signifi-
cantly reduces the “zig-zag" behavior which otherwise of-
ten occurs). Then the length of the step in the chosen di-
rection is calculated. As the first approximation a step of
the Newton’s root finding method for the direction deriva-
tive of the energy function in the chosen direction is used
(the goal is a local minimum and the derivative evaluates
to zero in the minimum; the Newton’s method is used to
find this root). Then step of the calculated length is made
in the direction of decreasing energy function. If the value
of the energy function in the obtained point is higher than
the current value, the length of the step is corrected: it is
repeatedly multiplied by an appropriately chosen constant
factor from the unit interval until the value of the energy
function is lower than the current value. Additionally, if
two subsequent directions differ too much (the measure is
the angle between the two), the next step is to be shorter.
This method is a variant of an inexact line search using the
Armijo Rule as its stopping condition (cf. [26, sec. 3.2])
and combined with some heuristics.

The method stops when any of the following cases oc-
curs:

– the norm of the direction vector is small enough,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 1: Performance test for random graphs with param-
eters p = 0.1, q on the x-axis and r on the y-axis ranging
from 0.1 to 0.9.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 2: Performance test for random graphs (p = 0.8).

– the number of steps exceeds maximum number al-
lowed, or

– a certain number of the quotients of subsequent energy
values are small enough.

These criteria can be tuned to achieve either higher accu-
racy or faster performance.

Note that the problem is invariant under translations and
rotations of the plane. Thus we may fix the position of one
vertex and additionally one coordinate of another vertex.

4 Practical considerations
The behavior of proposed algorithms was tested on several
distance matrices of various sizes. For these tests we used
random graphs constructed as follows: let G = G(n, p)
be a random graph on n vertices, where each edge is
added to G with probability p. Choose randomly n points
x1, . . . , xn in the plane, and for each edge ij ∈ EG let

236 Informatica 28 (2004) 233–238 D. Bokal et al.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 3: Performance test for random graphs (p = 1).

20 40 60 8050

60

70

80

90

100

110

120

Figure 4: Decrease of the energy during iteration of the
gradient method.

(D)ij be the distance between the points xi, xj . With prob-
ability q the distances (D)ij are perturbed for a factor r
(half of the distances are increased, half are decreased).
Additional tests were performed using random bipartite
graphs, obtained in a similar way. Such graphs appear of-
ten in the real world applications, where objects considered
naturally fall into two disjoint classes.

Figures 1–3 demonstrate the results of the tests for pa-
rameters n = 10, q and r ranging from 0 to 0.9 by steps 0.1.
The thicker the point, the more steps the gradient method
required. The points were obtained averaging the results
of ten independently chosen random graphs with the same
parameters.

The performance analysis showed that the gradient
method requires the largest number of steps when p is large
with q and r being small (compare the aforementioned fig-
ures). The interpretation could be that then the optimum
solution is nearly exact and hard to find, as the graph is
dense. With large perturbations, the search space tends to
have more local optima that are close to the initial state and
the algorithm is more easily stopped in one of them. When
the graph is sparse, the problem usually splits into several
smaller subproblems and in general requires fewer steps of

20 40 60 80

200

400

600

800

1000

Figure 5: Changes in gradient norm during iteration of the
gradient method.

-1250 -1000 -750 -500 -250 250 500

-800

-600

-400

-200

200

400

Figure 6: Traces of positions of vertices in the plane dur-
ing the execution of the gradient method, initial placement
using eigenvectors of smallest eigenvalues

the gradient method.
Figure 4 presents the energy of the solution as a function

of the number of iterations performed. It is decreasing in
steps, which demonstrates that the solution may be jumping
from one local optimum to another at certain points in time.

Norm of the gradient calculated using the gradient
method is displayed in Figure 5. It is demonstrated that
the norm of the gradient is not decreasing monotonously,
however towards the local optimum its value settles and
approaches 0. The large jumps in the gradient norm cor-
respond to the bigger decreases in the value of the energy
function.

The progress of the algorithm was monitored using the
traces of the points in the plane. After every step of the
gradient method the graph was output and its position in
the plane was displayed. The positions of the same vertex
in two consecutive drawings were connected by a line seg-
ment. Thus for each point we reconstructed its trace dur-
ing the optimization process. Figures 6–8 display one such
picture for a graph on ten vertices. These traces were dis-
played for various initial placements of vertices of consid-
ered graphs. Results demonstrate that the traces are short-
est if we choose as the initial placement the one proposed

SPECTRAL APPROACH TO REPRESENTATION OF DATA Informatica 28 (2004) 233–238 237

-600 -400 -200 200 400 600

-500

-250

250

500

750

1000

Figure 7: Traces of positions of vertices, initial placement
using eigenvectors of larger eigenvalues

-400 -200 200 400 600

-400

-200

200

400

600

800

Figure 8: Traces of positions of vertices, random initial
placement

by Algorithm 2 (Figure 6). This was tested both against
choosing higher eigenvalues (Figure 7) and against choos-
ing a random initial placement (Figure 8). Note that the
position of the first vertex and one coordinate of the second
vertex are fixed, reducing the unnecessary computational
costs due to isometric transformations of the plane.

In Figure 7 certain “zig-zag" behavior of two points can
be observed. It hindered the gradient method from finding

the optimal solution fast. To reduce the effect of such a
behavior, we slightly modified the gradient method such
that in every third step, the position of vertices is updated
according to the average direction of the last two gradients
(see the description of the gradient method).

5 Conclusion
As demonstrated, the spectral method turns out to be well
applicable to the problem of graphical representation of
relations among objects. In the paper we suggested us-
ing gradient method to fine tune the solution obtained by
the spectral method, however, other local optimization al-
gorithms could be applied as well, cf. [26]. A compari-
son of their suitability to the described problem, as well as
some rigorous analysis of convergence could be the subject
of further research. One could also investigate theoretical
bounds of optimality of the solutions proposed by the spec-
tral method.

6 Acknowledgments
The authors acknowledge fruitful discussions about this
subject with Robert Reinhardt. Also, programming help
of Matija Mazi and Martin Milanič is greatly appreciated.
We also thank the referees for their suggestions.

References

[1] F. Alizadeh, Interior point methods in semidefinite
programming with applications to combinatorial op-
timization, SIAM J. Optimiz. 5 (1995) 13–51.

[2] N. Alon, Eigenvalues and expanders, Combinatorica
6 (1986) 83–96.

[3] N. Alon, V. D. Milman, λ1, isoperimetric inequalities
for graphs and superconcentrators, J. Combin. The-
ory, Ser. B 38 (1985) 73–88.

[4] M. Bolla, Spectra, Euclidean representations and
clusterings of hypergraphs, Discrete Math. 117
(1993), 19–39.

[5] M. Bolla, G. Tusnády, Spectra and optimal partitions
of weighted graphs, Discrete Math. 128 (1994), 1–20.

[6] P. K. Chan, M. Schlag, J. Zien, Spectral k-way ratio
cut partitioning and clustering, Symp. on Integrated
Systems, 1993.

[7] T.F. Chan, W.K. Szeto, On the optimality of the me-
dian cut spectral bisection graph partitioning method,
SIAM J. Scientific Comput. 18 (1997) 943–948.

[8] F. R. K. Chung, Spectral graph theory, American
Math. Soc., Providence, RI, 1997.

238 Informatica 28 (2004) 233–238 D. Bokal et al.

[9] D. M. Cvetković, M. Doob, H. Sachs, Spectra of
graphs, Academic Press, New York, 1979; 3rd edi-
tion, Johann Ambrosius Barth Verlag, Heidelberg,
1995.

[10] C. Delorme, S. Poljak, Laplacian eigenvalues and
the maximum cut problem, Math. Programming 62
(1993) 557–574.

[11] C. Delorme, S. Poljak, Combinatorial properties and
the complexity of a max-cut approximation, Europ. J.
Combin. 14 (1993) 313–333.

[12] C. Ding, X. He, and H. Zha, A spectral method to
separate disconnected and nearly disconnected web
graph components, Proc. 7th ACM Int’l Conf Knowl-
edge Discovery and Data Mining (KDD 2001), 2001,
pp. 275–280.

[13] W. E. Donath, A. J. Hoffman, Lower bounds for
the partitioning of graphs, IBM J. Res. Develop. 17
(1973) 420–425.

[14] G. Finke, R. E. Burkard and F. Rendl, Quadratic as-
signment problem, Ann. Discrete Math. 31 (1987) 61-
82.

[15] M. Fiedler, Algebraic connectivity of graphs, Czech.
Math. J. 23 (98) (1973) 298–305.

[16] P. W. Fowler, T. Pisanski, J. Shawe-Taylor, Molec-
ular graph eigenvectors for molecular coordinates,
in “Graph drawing: GD’94,” (R. Tamassia, ed.),
Springer-Verlag, Berlin, 1995, pp. 282–285.

[17] C. Fowlkes, S. Belongie, F. Chung, and J. Ma-
lik, Spectral grouping using the Nyström method,
preprint, 2002.

[18] M. Goemans, Semidefinite programming in combi-
natorial optimization, Math. Program. 79 (1997) 143-
161.

[19] M. X. Goemans, D. P. Williamson, Improved approxi-
mation algorithms for maximum cut and satisfiability
problems using semidefinite programming, J. ACM
42 (1995) 1115–1145.

[20] L. Hagen, A. B. Kahng, New spectral methods for
ratio cut partitioning and clustering, IEEE Trans.
Computer-Aided Design 11 (1992) 1074–1085.

[21] C. Helmberg, B. Mohar, S. Poljak, F. Rendl, A spec-
tral approach to bandwidth and separator problems in
graphs, Linear and Multilinear Algebra 39 (1995) 73–
90.

[22] B. Hendrickson, R. Leland, An improved spectral
graph partitioning algorithm for mapping parallel
computations, SIAM J. Sci. Comput. 16 (1995) 452–
469.

[23] A. J. Hoffman, On eigenvalues and colorings of
graphs, in “Graph Theory and Its Applications”
(B. Harris, ed.), Acad. Press, 1970, pp. 79–91.

[24] M. Juvan, B. Mohar, Optimal linear labelings and
eigenvalues of graphs, Discrete Appl. Math. 36
(1992) 153–168.

[25] M. Juvan, B. Mohar, Laplace eigenvalues and
bandwidth-type invariants of graphs, J. Graph Theory
17 (1993) 393-407.

[26] C. T. Kelley, Iterative Methods for Optimization,
SIAM, Philadelphia, 1999.

[27] B. Mohar, S. Poljak, Eigenvalues in combinatorial op-
timization, in “Combinatorial and Graph-Theoretical
Problems in Linear Algebra,” R. A. Brualdi, S. Fried-
land, V. Klee, Eds., IMA Volumes in Mathematics
and Its Applications, Vol. 50, Springer-Verlag, 1993,
pp. 107–151.

[28] A. Pothen, H. D. Simon, K.P. Liu, Partitioning sparse
matrices with eigenvectors of graph, SIAM J. Matrix
Anal. Appl. 11 (1990) 430–452.

[29] F. Rendl, H. Wolkowicz, Applications of paramet-
ric programming and eigenvalue maximization to
the quadratic assignment problem, Math. Progr. 53
(1992) 63-78.

[30] L. Vandenberghe and S. Boyd, Semidefinite program-
ming, SIAM Review 38 (1996) 49-95.

[31] H. S. Wilf, The eigenvalues of a graph and its chro-
matic number, J. London Math. Soc. 42 (1967) 330–
332.

[32] H. Wolkowicz, R. Saigal and L. Vandenberghe (edi-
tors), Handbook of semidefinite programming, The-
ory, algorithms, and applications, International Series
in Operations Research & Management Science 27,
Kluwer Academic Publishers, Boston, MA, 2000.

Informatica 28 (2004) 239–243 239

Algorithms for Drawing Polyhedra from 3-Connected Planar Graphs

Alen Orbanić, Marko Boben, Gašper Jaklič and Tomaž Pisanski
IMFM, OTR,
Jadranska 19,
Ljubljana, Slovenia
Emails: Alen.Orbanic@fmf.uni-lj.si, Marko.Boben@fmf.uni-lj.si,
Gasper.Jaklic@fmf.uni-lj.si, Tomaz.Pisanski@fmf.uni-lj.si

Keywords: graph drawing, Tutte’s drawing method, representation of a graph, polyhedral representations

Received: September 15, 2003

Two algorithms for producing polyhedral representations for 3-connected planar graphs are discussed in
the paper. One of them uses Tutte’s drawing algorithm [11] to produce a 2D drawing. Then the drawing is
lifted into 3D space obtaining a polyhedral embedding. The other is a simple algorithm by G. Hart [4] for
drawing canonical polyhedral representations. Some alternative aspects (physical model, Markov chain
model) in algorithms for obtaining Tutte’s drawings are presented and proved.

Povzetek: članek opisuje dva pristopa za grafičen prikaz planarnih grafov.

1 Introduction

A convex polyhedron can be viewed as a convex hull of its
vertices and referred as P = (p1, . . . ,pn), pi ∈ R3, or as
an intersection of the half-spaces defined by the support-
ing planes of the faces using the side of R3 that contains
the polyhedron. These are two dual definitions. For more
detailed and generalized definitions of polyhedra see [12].

Any graph mentioned in the article is 3-connected pla-
nar. Vertices and edges of a polyhedron P define a skele-
ton graph G(P) in an obvious way. The skeleton graph is
obviously planar. By Balinski’s theorem [12] this graph is
3-connected. In 1922 Steinitz proved that 3-connected pla-
nar graphs are exactly the skeletons of the convex 3D poly-
hedra. According to Whitney [2], every 3-connected planar
graph has a unique embedding in the plane and the faces of
the embedding are exactly the non-separating induced cy-
cles. These faces are exactly the faces of any polyhedron
with the same skeleton graph.

Given a 3-connected graph G one would like to have an
algorithm to obtain a polyhedron with its skeleton G. We
will call such a representation a polyhedral representation.
A graph is given as a combinatorial structure and our algo-
rithms return 3D coordinates of the vertices of the polyhe-
dron. There are infinitely many polyhedral representations
for a given graph. According to Koebe [5], for each polyhe-
dron there is the canonical form, which is determined up to
a rotation in 3D space. The canonical representation is es-
pecially “nice” because it possesses maximal possible geo-
metric symmetry. Each edge of such a polyhedron touches
the unit sphere in exactly one point and the center of the
gravity of these touching points is the origin. If a polyhe-
dron P is in canonical form, then the polar polyhedron is
also in canonical form and the dual edges have the same
touching points with the unit sphere. For a given polyhe-

dron P containing the origin of R3 a polar polyhedron P ∗

is well defined and unique:

P ∗ = {y ∈ R3 | 〈x,y〉 ≤ 1 for all x ∈ P}.

A skeleton graph of P ∗, G∗ := G(P ∗) is exactly the dual
graph of the skeleton graph G := G(P).

We will present some methods together with references
for more detailed information. 1

2 Tutte’s algorithm
The proofs and detailed descriptions can be found in [10]
and [11].

In 1963 Tutte [11] invented an interesting rubber-band
method for embedding a 3-connected planar graph G into
the plane. By this method one face C (on vertices k +
1, . . . , n, referred as the outer cycle) of a graph is em-
bedded into the plane as a fixed strictly convex polygon,
while the other adjacent vertices are connected with rubber-
bands. On the edge ij, where i, j not both in C, there is a
strictly positive stretching coefficient ωij . Later we will
also assign the weights ωij to edges ij ∈ C, but we will
not use them in the Tutte’s method. Let pi represent a po-
sition of the vertex i in the plane. The positions pi := p0

i ,
i = k+1, . . . , n are fixed. The other positions are to be cal-
culated and lie somewhere inside the polygon. The system
consisting of a rigid polygon as a frame and rubber-bands is
in equilibrium if the following system of equations holds:

∑

ij∈E(G)

ωij(pj − pi) = 0, i ∈ V (G)− V (C), (1)

pi = p0
i , i ∈ V (C).

1Supported in part by Ministrstvo za šolstvo, znanost in šport Republike Slovenije, grant J1-6161, J2-6193.

240 Informatica 28 (2004) 239–243 A. Orbanić et al.

Tutte proved that this system has a unique solution which
gives a set of positions that induces a straight line embed-
ding of G into the plane with convex faces. Instead of solv-
ing the system of the linear equations directly, two alterna-
tive approaches can be used.

In [8] the following algorithm called Schlegel diagram
was introduced:

ALGORITHM 1 Fix the positions of the vertices of the
outer cycle C on a convex polygon in R2. Assign to the
other vertices random positions inside the polygon. For
those vertices repeat the following steps:

– for each vertex i calculate the resulting force Fi of all
adjacent rubber-bands;

– move each vertex i for vector αFi, where α > 0 is a
fixed real number;

until the displacements of all vertices are sufficently small
(depends on the prescribed precision of the drawing).

We will determine the values of α which guarantee the
convergence of Algorithm 1.

A weighted Laplacian matrix Qω for a graph G on n
vertices and weights ω = (ωij)ij∈E(G) is a n × n ma-
trix with (Qω)i,j = (Qω)j,i = −ωij when ij ∈ E(G),
(Qω)i,j = 0, when i 6= j, and ij /∈ E(G) and (Qω)i,i =
−∑n

j=1,j 6=i(Qω)i,j . Let K = {1, . . . , k} and Qω,K be a
matrix that consists of the first k rows of Qω . Let

A =
(−Qω,K

0k,n−k −In−k

)
, (2)

where 0k,n−k represents a k × (n − k) zero matrix and
I` a ` × ` identity matrix. Let x = (x1, . . . , xn) and
y = (y1, . . . , yn), where pi = (xi, yi). Let pi := p0

i

be fixed values for i = k + 1, . . . , n and pi be the pairs
of variables for i = 1, . . . , k. Let also b = (b1, . . . , bn),
c = (c1, . . . , cn) and (bi, ci) = (0, 0) for i = 1, . . . , k
and (bi, ci) = −p0

i for i = k + 1, . . . , n. The system of
equations (1) can be written as:

Ax = b, Ay = c. (3)

The iteration procedure in the Algorithm 1 can be rewritten
as:

xn+1 = xn + α(Axn − b), (4)

yn+1 = yn + α(Ayn − c).

Let us determine the bounds for α that ensure that the algo-
rithm converges. It is sufficient to do this for the iteration
for x. Let us rewrite the iteration (4):

xn+1 = (αA + I)xn − αb. (5)

Let ρ(M) denote a spectral radius of a matrix M : It is well
known that an iteration of this type converges iff ρ(αA +
I) < 1, see [1]. We will show that for a sufficiently small
α > 0 it follows ρ(αA + I) < 1.

If σ(A) is the spectrum of the matrix A, then (with slight
abuse of notation) σ(αA+I) = 1+σ(αA) = 1+α ·σ(A).
Proving that σ(A) is strictly negative would yield the ex-
istence of the appropriate α, such that ρ(αA + I) < 1.
The matrix A is block diagonal and upper triangular with
two diagonal blocks−Qω,(K,K) and−Ik, where Qω,(K,K)

is a matrix obtained from Qω taking the rows and the
columns in the set K in induced order. It follows that
σ(A) = σ(−Qω,(K,K)) ∪ σ(−Ik). It suffices to show that
Qω,(K,K) is positive definite.

The matrix Qω,(K,K) is a principal sub-matrix of Qω.
We will prove that σ(Qω) ≥ 0 and that Qω,(K,K) is non-
singular. Cauchy’s interlacing theorem [1] implies that
Qω,(K,K) is also positive definite.

Using the Gershgorin’s theorem (see [1]) it is easy to see
that the eigenvalues of Laplacian matrix Qω are contained
in [0, 2 · maxi=1,...,n{(Qω)i,i}], hence σ(Qω) ≥ 0. By
Whitney’s theorem H = G − C is connected. Let Q′ :=
Qω(H) be a weighted Laplacian matrix of H and Q :=
Qω,(K,K). Then: Q = Q′ + ∆, where ∆ is a nonnegative
diagonal matrix. Since G is connected, ∆ 6= 0. For an
arbitrary vector w ∈ Rk:

wT Qw = wT Q′w + wT ∆w.

Since eigenvalues of Q′ are by Gershgorin’s theorem con-
tained in the interval [0, 2 ·maxi=1,...,k {Q′i,i}], it follows
that wT Q′w ≥ 0. Since H is connected, the multiplicity
of the smallest eigenvalue is 1. But the smallest eigenvalue
is 0 and its eigenvector is the all ones vector 1. Therefore
wT Q′w = 0 iff w = c1 for some c ∈ R. Since ∆ is a
nonnegative diagonal matrix, it follows that wT ∆w ≥ 0.
But for w = 1, wT ∆w = c21T ∆1 > 0, if c 6= 0. So
wT Qw > 0 for each w 6= 0 and Q is positive definite.
The following theorem holds:

THEOREM 1 Let G be a 3-connected planar graph. If:

0 < α <
2

max
{

1, 2 ·maxi=1,...,k

{∑
ij∈E(G) ωij

}} ,

then Algorithm 1 converges to the solution of (1).

The other alternative approach comes from probability.
Let us define a Markov chain X0, X1, . . . with transition
matrix P using the graph G and the weights ω:

Pij =





0 ij /∈ E(G),
ωijP

ik∈E(G) ωik
ij ∈ E(G)− E(C),

1 ij ∈ E(C).

(6)

After rewriting the system (1) we get:

pi =

∑
ij∈E(G) ωij · pj∑

ij∈E(G) ωij
, i ∈ V (G)− V (C), (7)

pi = p0
i , i ∈ V (C).

ALGORITHMS FOR DRAWING POLYHEDRA . . . Informatica 28 (2004) 239–243 241

or

Px = x,

Py = y, (8)

pi = p0
i = (x0

i , y
0
i), i ∈ V (C).

The vertices of the graph G are the states of the Markov
chain. Let A ⊂ V (G). The values:

hA
i = Pr(Xr ∈ A for some r ≥ 0 | X0 = i), (9)

are hitting probabilities for the set A when starting in the
state i. We will write hj

i for h
{j}
i . The following theorem

holds (see [7]):

THEOREM 2 A vector hA = (hA
1 , . . . , hA

n) is a solution of
a system:

1. hA
i = 1, for i ∈ A,

2.
∑n

j=1 Pijh
A
j = hA

i , for i /∈ A,

3. 0 ≤ hA
i ≤ 1 for all i.

If h̃A is any other solution then hA
i ≤ h̃A

i (inequality on
components). Therefore hA is a minimal solution.

Let hj = (hj
i)

n
i=1 be the vector of hitting probabilities.

By Theorem 2, Phj = hj . Let J = [hk+1, . . . , hn] be a
matrix with vectors hj as columns. Hence PJ = J .

Let x0 = (x0
k+1, . . . , x

0
n) and y0 = (y0

k+1, . . . , y
0
n) be

the coordinates of vertices on the outer polygon. Then:

PJx0 = Jx0, (10)

PJy0 = Jy0,

and

(Jx0)j = x0
j , (11)

(Jy0)j = y0
j , j = k + 1, . . . , n.

Thus pi = ((Jx0)i, (Jy0)i) is a solution of the system (7)
and it is unique by Tutte.

The following theorem holds:

THEOREM 3 Let G = ({1, . . . , n}, E(G)) be a 3-connec-
ted planar graph, C = (k + 1, . . . , n) be one of its faces,
and p0

i , i = k + 1, . . . , n, be the fixed coordinates of the
vertices of C forming a convex polygon in the cyclical or-
der of C. Let P be a transition matrix for the Markov chain
(Xr) and let hj

i be the hitting probabilities for entering
into vertices j = k + 1, . . . , n, starting from the vertex
i ∈ V (G). Then the Tutte’s drawing can be obtained in the
following way:

pi =
n∑

j=k+1

hj
ip

0
j , i ∈ V (G)− V (C),

pi = p0
i , i ∈ V (C).

The theorem was originally conjectured by T. W. Tucker.
To obtain the hitting probabilities hj

i one can make suffi-
cently large number of the following experiments: start in i
and make a series of steps until a state in C is reached. The
frequency of the walks ending in j is an approximation for
hj

i .
It can be easily verified that

lim
n→∞

(Pn)ij = hj
i , i /∈ C, j ∈ C.

Hence the hitting probabilities can be obtained by calculat-
ing P r, r large.

3 Lifting of a Tutte’s Drawing
A detailed procedure with proofs can be found in [10].

A weighted embedded 3-connected planar graph G with
weights ω and positions p1, . . . ,pn of the vertices is in
equilibrium if:

∑

ij∈E(G)

ωij(pj − pi) = 0, for all i ∈ V (G). (12)

The corresponding weight ω is called an equilibrium
weight. Maxwell-Cremona’s theorem states that if for an
embedded 3-connected graph with convex faces there ex-
ists an equilibrium weight with strictly negative weights on
the edges of the outer face and strictly positive weights on
the inner edges, then the drawing can be lifted to a polyhe-
dron. A Tutte’s drawing with the corresponding weights on
the edges that are not in the outer face has all the vertices
not on the outer face in an equilibrium. To use a Maxwell-
Cremona’s theorem there should be negative equilibrium
weights on the edges of the outer face. A simplified ver-
sion of the theorem will be used to solve that problem.

PROPOSITION 4 Let G be a 3-connected planar graph em-
bedded with one outer face f1 on a convex polygon with
all other faces (f2, . . . , fm) as convex polygons inside the
outer polygon. Let G∗ be the geometric dual of G. Let
e = ij ∈ E(G) and let e∗ = fg be the corresponding dual
edge, such that if one traverses from i to j in the embedding
of G, the face f is on the left side. Let (i, j, f, g) denote an
oriented patch and let qf1 = (0, 0, 0). Then for 2 ≤ k ≤ m
the unique assignments qfk

exist, such that:

qf − qg = ωij(pi × pj),

where ω is an equilibrium weight and × denotes a cross
product.

For the proof see [10].
Using vectors q one can define a function on the interior

of the outer polygon:

z(x) = 〈x,qfi〉, for x ∈ fi ⊂ R2. (13)

It can be proved that the function z(x) is linear, continuous,
convex, and the image of each face lies on some plane. It

242 Informatica 28 (2004) 239–243 A. Orbanić et al.

can be seen that if we have a Tutte’s drawing with a trian-
gle as the outer face, then using (12) on the Tutte’s draw-
ing, one can calculate the remaining negative weights on
the edges of the triangle. The surface defined by the graph
of the function z(x) together with a patch in the place of
the triangle determines a hull of the polyhedral representa-
tion of G. Using the fact that if G is 3-connected planar
then either G or G∗ has a triangle as a face (see [6]). This
implies the following algorithm:

ALGORITHM 2 1. Determine the faces of G (some pla-
narity algorithm).

2. If one of the faces is a triangle, use G otherwise use
G∗.

3. Draw a Tutte’s drawing.

4. From the Tutte’s drawing and using Proposition 4 de-
termine vectors q.

5. Determine the vertices of the polyhedron using the
function z(x).

6. If G was used, we have a polyhedral embedding. Oth-
erwise move the polyhedron so that the center of the
gravity of the vertices lies in the origin. Calculate the
polar polyhedron.

Figure 1: Dodecahedron and Fullerene C60 drawn by
Tutte’s method.

4 Canonical polyhedra
To produce the canonical polyhedral representation one can
use methods for determining primal-dual circle packing
(PDCP) of 3-connected planar graph. Having PDCP one
can easily obtain the canonical polyhedral representation
using the inverse of the stereographic projection on the unit
sphere. One of the algorithms is due to Mohar [6] (circle
packing in the plane or on the sphere). The other, which
works in 3D and on more or less small graphs, is due to
G. Hart [4]. We present some slight improvements for the
latter algorithm. The Hart’s algorithm reads:

ALGORITHM 3 1. Start with a “good approximation”
of a polyhedron that has edges as near as possible to
the unit sphere. For instance, get the representation

from the Algorithm 2, move the center of gravity into
the origin, and project vertices from the origin to the
unit sphere.

2. Repeat the following procedure until the positions of
the vertices are precise enough:

(a) for each edge e calculate the point pe, which is
the closest to the origin. If the edge is not at the
distance 1 to the origin, move the endpoints of e
for a vector α(1− ‖pe‖)pe, where 0 < α < 1.

(b) for each face calculate the approximate plane of
the vertices on the face. If some vertex v is at the
distance d(v) from the plane, move v towards the
plane in the direction of the normal for a magni-
tude βd(v), 0 < β < 1.

Algorithm 3 works well on small graphs. It seems to work
well on cubic graphs and perhaps on graphs with lower de-
grees of the vertices, but the convergence might be poor,
especially on the larger graphs. It behaves very poorly
(does not even converge) if degrees are rather high (≥ 4).
More or less we tested the performance on cubic graphs. If
the cubic graph is large the convergence is very poor. To
improve the convergence on cubic graphs we first use Al-
gorithm 3 for a few iterations. Then at each iteration we
calculate the vertices of the approximate polar (from ap-
proximate faces) and the dual edges. Then we check if the
current dual edges are perpendicular to the original edges.
If not, the vertices are moved in a manner of rotation for
some small magnitude that depends on the difference be-
tween the current angle and π/2. This brings a small im-
provement to the convergence of the algorithm.

Both methods significantly depend on α, β and similar
parameters in the improved algorithm. Unfortunately we
were not able to prove the convergence for any set of the
parameters.

Figure 2: A dodecahedron obtained by lifting Tutte’s draw-
ing of its dual graph (left) and a dodecahedron in the canon-
ical form (right).

ALGORITHMS FOR DRAWING POLYHEDRA . . . Informatica 28 (2004) 239–243 243

References
[1] J. W. Demmel, Applied numerical linear algebra,

SIAM Society for Industrial and Applied Mathemat-
ics, 1997.

[2] R. Diestel, Graph Theory, Springer, 1997.

[3] C. D. Godsil, G. F. Royle, Algebraic Graph The-
ory, Graduate Texts in Mathematics, 207, Springer-
Verlag, 2001.

[4] G. W. Hart, Calculating Canonical Polyhedra, Math-
ematica in Education and Research, Vol 6 No. 3, Sum-
mer 1997, pp. 5–10.

[5] P. Koebe, Kontaktprobleme der Konformen Abbil-
dung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys.
Kl., 88 (1936), 141–164.

[6] B. Mohar, A polynomial time circle packing algo-
rithm, Discrete Math. 117 (1993), 257–263.

[7] J. Norris, Markov Chains, Cambridge University
Press, 1999.

[8] T. Pisanski, B. Plestenjak, A. Graovac: NiceGraph
Program and its Applications In Chemistry, Croat.
Chem. Acta 68 (1995), 283–292.

[9] T. Pisanski et al., VEGA program,
http://vega.ijp.si/Htmldoc/Vega03.html

[10] J. Richter-Gebert, Realization Spaces of Polytopes,
Lecture Notes in Mathematics, Vol. 1643, Springer-
Verlag, Berlin, 1996.

[11] W.T. Tutte, How to draw a graph, Proc. London
Math. Soc. 13 (1963), 743–767.

[12] G. M. Ziegler, Lectures on Polytopes, Graduate Texts
in Mathematics 152, Springer-Verlag, New York
1995, Revised edition 1998.

244 Informatica 28 (2004) 239–243 A. Orbanić et al.

Informatica 28 (2004) 245–255 245

Grammar-Based Systems: Definition and Examples

Marjan Mernik, Matej Črepinšek, Tomaž Kosar, Damijan Rebernak and Viljem Žumer
University of Maribor, Faculty of Electrical Engineering and Computer Science
Smetanova ulica 17, 2000 Maribor, Slovenia
{marjan.mernik, matej.crepinsek, tomaz.kosar, damijan.rebernak, zumer}@uni-mb.si

Keywords: context-free grammars, attribute grammars, grammar-based systems

Received: January 30, 2004

Formal language theory is an important part of theoretical computer science and has also been applied in
many practical applications. The importance of context-free grammars and attribute grammars for com-
piler construction and automatic generation for compilers/interpreters is already well known. However,
grammars can be found in many other applications which are not as clearly related to their original ap-
plication - language description and implementation. We call such systems grammar-based systems. No
general comparison and classification has been done until now despite these systems having existed for a
long time. The aim of this paper is to introduce and popularize grammar-based systems.

Povzetek: članek opisuje definicije in primere sistemov s formalnimi slovnicami.

1 Introduction

This paper emphasizes grammars, especially context-free
grammars and attribute grammars. Their importance for
compiler construction is already well known. However,
from formal language definitions (e.g. attribute grammars)
many other language-based tools can be automatically gen-
erated [7, 9], such as: pretty printers, syntax-directed edi-
tors, type checkers, dataflow analyzers, partial evaluators,
debuggers, profilers, test case generators, visualizers, an-
imators, and documentation generators. In most of these
cases, the core language definitions have to be augmented
with tool-specific information. In other cases, only a part
of the formal language definition is sufficient for automatic
tool generation, or implicit information must be extracted
from the formal language definition in order to automati-
cally generate a tool.

Moreover, grammars can be found in many other appli-
cations which are not as clearly related to their original ap-
plication - language description and implementation. We
call such systems grammar-based systems (GBSs). Some
papers describing particular approaches even contain this
word in their titles (e.g. [4], [33], [36]). However, there
is no exact definition nor comparison and classification for
such systems. Since grammar-based systems are mainly
unnoticed, there is also a lack of identifying benefits of
such systems. The aim of this paper is to remedy this sit-
uation by defining, introducing and popularizing grammar-
based systems. The benefits of GBSs are identified and
clearly stated.

The organization of the paper is as follows. Section
2 presents the original application of grammars, namely
automatic generation of compilers/interpreters, and other
language-based tools using our compiler generator LISA
[22]. In section 3, we introduce GBSs, define them and

their application areas, followed by presentation of practi-
cal examples in section 4. Concluding remarks and future
research work are given in section 5.

2 Original Application of
Grammars

The original application of grammars is a notation for lan-
guage description and its implementation [1]. What do we
gain by formalizing the syntax and semantics of a program-
ming language? The following benefits are identified:

– The language definition standardizes the language.
This is important to programmers, who need to write
syntactically and semantically correct programs and
understand them without any doubt about their mean-
ing. It is also important to language implementors,
who need to write a correct compiler/interpreter of
the specified language.

– The language definition allows a formal analysis of
its properties, such as whether the definition is LL(k)
grammar and L-attributed grammar. This contributes
to better syntax and semantics of the programming
language. The programming language that has been
formally designed is more regular, has less exceptions
and is easier to learn.

– The language definition enables us to systematically
derive the implementation of a language, such as a
LR(k) parser and attribute evaluator. Moreover, such
an implementation can be automatically obtained. In
this case, the language definition is used as an in-
put to a compiler generator system. Researchers have

246 Informatica 28 (2004) 245–255 M. Mernik et al.

recognized the possibility that many other language-
based tools could be generated from a formal language
definition. Therefore, many tools not only automat-
ically generate a compiler/interpreter, but also com-
plete language-based environments [7]. Such auto-
matically generated language-based environments in-
clude editors, type checkers, debuggers, various ana-
lyzers, and animators.

Automatic generation of compilers/interpreters and
other language-based tools using our LISA compiler gen-
erator are presented in the rest of this section. To sup-
port incremental language development [21] and educa-
tional activities in teaching “Compiler construction" course
[23] the LISA (Language Implementation System based on
Attribute grammars) tool was developed [22]. LISA is a
compiler-compiler, or a system that automatically gener-
ates a compiler/interpreter from attribute grammar-based
language specifications. The specification of a toy lan-
guage SELA (Simple Expression Language with Assign-
ments) is given below, in order to illustrate the LISA style.

language SELA {
lexicon {

Number [0-9]+
Identifier [a-z]+
Operator \+ | :=
ignore [\0x09\0x0A\0x0D\]+

}

attributes Hashtable *.inEnv, *.outEnv;
int *.val;

rule Start {
START ::= STMTS compute {

STMTS.inEnv = new Hashtable();
START.outEnv = STMTS.outEnv;

};
}
rule Statements {

STMTS ::= STMT STMTS compute {
STMT.inEnv = STMTS[0].inEnv;
STMTS[1].inEnv = STMT.outEnv;
STMTS[0].outEnv = STMTS[1].outEnv;

}
| STMT compute {

STMT.inEnv = STMTS[0].inEnv;
STMTS[0].outEnv = STMT.outEnv;

};
}
rule Statement {

STMT ::= #Identifier \:= EXPR compute {
EXPR.inEnv = STMT.inEnv;
STMT.outEnv = put(STMT.inEnv,

#Identifier.value(), EXPR.val);
};

}
rule Expression {

EXPR ::= EXPR + EXPR compute {
EXPR[2].inEnv = EXPR[0].inEnv;
EXPR[1].inEnv = EXPR[0].inEnv;
EXPR[0].val = EXPR[1].val+

EXPR[2].val;
};

}
rule Term1 {

EXPR ::= #Number compute {
EXPR.val = Integer.valueOf(

#Number.value()).intValue();
};

}
rule Term2 {
EXPR ::= #Identifier compute {

EXPR.val = ((Integer)EXPR.inEnv.get(
#Identifier.value())).intValue();

};

}
}

LISA automatically generates a SELA com-
piler/interpreter from this specification An example
of a program written in the SELA language is shown in
Figure 1.

Figure 1: Language knowledgeable editor

LISA also automatically generates other tools, such as
language knowledgeable editors and various inspectors
(e.g. finite state automata visualizator (Figure 2), syn-
tax and semantic tree animators (Figure 3)) that are useful
for understanding the behavior of the generated language
compiler/interpreter. A LISA-generated language knowl-
edgeable editor is aware of the regular definitions of the
language lexicon. Therefore, it can color the different parts
of a program (comments, operators, reserved words) to en-
hance the understandability and readability of programs. In
Figure 1 the operators in the SELA program are recognized
while editing and displaying in a different color.

3 Grammar-Based Systems:
Definition

As already mentioned, grammars can be found in many
other systems than those described in section 2. These sys-
tems do not focus on language definition and implementa-
tion, but on solving various other problems. We call such
systems grammar-based. The essential characteristics of
GBSs is comprised in the following definition:

A grammar-based system is any system that uses a gram-
mar and/or sentences produced by this grammar to solve
various problems outside the domain of programming lan-
guage definition and its implementation. The vital compo-
nent of such a system is well structured and expressed with
a grammar or with sentences produced by this grammar in
an explicit or implicit manners.

The key characteristic of GBSs according to our defini-
tion is a grammar which presents a kernel for the problem
solving part of the system (application). Without this gram-
mar part, the system becomes less general, and by lacking
an important generic functionality, it can become usable

GRAMMAR-BASED SYSTEMS: DEFINITION. . . Informatica 28 (2004) 245–255 247

Figure 2: FSA visualizator

Figure 3: The snapshot of semantic tree animator

only in a very restricted manner. In many GBSs the trans-
formation of the representation to a context-free grammar
makes the various analyses of properties feasible. In oth-
ers the ability of context-free grammars to represent infinite
languages with a finite set of production rules is exploited.
Sometimes, a problem can be solved simply by converting
the representation to a context-free grammar since the ap-
propriate tools already exist. Why is the study of GBSs
so important? The theory of grammars is well-defined and
described in many books, where different examples and so-
lutions are presented [1, 32]. In our research we discovered
that grammars can be, and already are, used as a kernel part
of many different practical systems. The fact that gram-
mars are so well-defined is an advantage for developers,
because they can use that knowledge, and the already well
tested solutions, to build their own. The main problem of
using grammars as part of a solution is to identify those
problems that have grammatical nature (can be solved with
grammars) and to convert their presentation in the form of
grammars.

One may ask why traditional programming applications
such as compilers are excluded from the above definition
since it is clear that these applications heavily depend on
grammars. Actually, their whole construction is based on
grammars. Grammars have been used in this area since
their invention and other ad-hoc approaches were mainly
superseded by grammars a long time ago. In this case we
simply do not have other options. Therefore, talking about
grammar-based compiler would be awkward. On the other
hand, using grammars in other application areas can be re-
garded as an alternative and novel approach with clearly
defined benefits. In this case the noun qualifier “grammar-
based" is really appropriate.

Our longstanding interest in grammars inspired us to
start collecting information about their different practical
application areas, such as:

– Software engineering, where syntax definition occurs
in various software development processes – in the
form of rapid prototyping [28, 8], the modeling flow
and constrains of collaborating software components
[17], and many others [3, 15].

– Evolutionary computation is the study of computa-
tional systems that uses ideas from natural evolution
and adoption to search the solution space. One of the
research fields of evolutionary computations is gram-
matical evolution [26].

– Information theory comprises a vast range of diverse
scopes. So far, our observations noticed grammars
involved in encoding methods [2, 25], programming
compaction [4] and grammatical inference [19]. Other
grammar-dependent software in information theory
are under investigation.

– Neural networks bring grammars into use with gram-
matical description of neural networks topology [14,
6, 10].

248 Informatica 28 (2004) 245–255 M. Mernik et al.

– Data representation architecture uses special kinds
of grammars for communicating business data among
very diverse systems. The particular technology con-
sidered is XML [29].

– Other areas of Computer Science (speech recognition,
data mining, syntactical pattern recognition, etc).

Applications of grammars are found even in areas outside
computer science, such as organizational science [27] and
mechanical engineering [33].

Until now GBSs have been studied only for partic-
ular problems (e.g. compression) without any general
comparison and classification. The only attempt, to the
best of our knowledge, is a recent work described in
[15] where authors coined the word grammarware. To
quote their definition “Grammarware comprises grammars
and all grammar-dependent software, i.e. software arti-
facts that directly involve grammar knowledge." Their def-
inition classified compilers, program analysis tools, pro-
gram transformation tools, application generators, weav-
ing tools, CASE tools as grammarware. Their definition,
is in some, sense more restricted than ours and includes
just GBSs from those areas of software engineering where
grammars appear in an explicit form. Sentences produced
by this grammar are always computer programs. Our def-
inition is much broader since we are interested in GBSs
for application areas that are even outside computer science
(e.g. organizational science). On the other hand, in our def-
inition grammars and sentences produced by this grammar
can be expressed implicitly (e.g. in GOOD [17] a sentence
is a sequence of method calls during the execution of an
application program).

4 Grammar-Based Systems:
Examples

GBSs can be found in different application areas such as:
software engineering, evolutionary computations, informa-
tion theory, neural networks, data mining, syntactical pat-
tern recognition, and data representation. In this section
some of our own applications, as well as other representa-
tive applications of grammars, are presented and their ben-
efits are stressed in more detail. Examples clearly show
how grammars and sentences generated by a grammar can
be used to describe various structured artifacts. Moreover,
various possibilities exist for using GBSs. Examples in-
clude descriptions of GBSs where sentences generated by
grammar appear in explicit or implicit manner.

4.1 Software Engineering

4.1.1 Grammatical Approach to Problem Solving

In [8, 28] the grammatical approach to problem solving
(GAPS) is presented. It is based on the following steps:

– describe the syntax of the problem (the structure of the
classes that characterize problem domain), deriving
the context-free grammar from the conceptual class
diagram,

– describe the semantics of the problem (the meaning
of the classes in the problem domain), associating at-
tributes to every concept derived from the use cases
and operational diagrams,

– generate a rapid prototype of the system, using a com-
piler generator and the attribute grammar obtained in
the two previous steps.

Only the first step is explained for the purpose of this paper.
A detailed explanation of the above steps can be found in
[8].

The role of non-terminal symbols in a context-free gram-
mar is two fold. First, at a higher abstraction level non-
terminal symbols are used to describe different concepts in
the programming language (e.g. an expression or a declara-
tion in a general-purpose programming language). On the
other hand, at a more concrete level, non-terminal and ter-
minal symbols are used to describe the structure of a con-
cept (e.g. an expression consists on two operands separated
by an operator symbol, or a variable declaration consists
of a variable type and a variable name). Therefore, both
the concepts and the relations between them, belonging to
the specific problem domain, are captured in a context-free
grammar. But, this is also true for the conceptual class di-
agram [30] which describes concepts in a problem domain
and their relations. It is clear that both formalisms can be
used for the same purpose and that some rough transfor-
mation from a conceptual class diagram to a context-free
grammar and vice versa should exist. The transformation
from a conceptual class diagram to a context-free grammar
is depicted in Tables 1 and 2.

Classes can collaborate with more than just one class.
For example, class A associates with classes B, C and D. In
our approach, this collaboration is described with context-
free grammar production A→ B C D. The sequence of non-
terminal symbols on the right side of the production should
be in natural order and depends on the collaboration of en-
tities in a given problem domain.

As an example let’s transform the conceptual class dia-
gram in Fig. 4 to a context-free grammar. From this con-
ceptual class diagram the following context-free grammar
is obtained using transformation Tables 1 and 2.

VIDEO_STORE ::= MOVIES CUSTOMERS
MOVIES ::= MOVIES MOVIE | MOVIE
MOVIE ::= title PRICE
CUSTOMERS ::= CUSTOMERS CUSTOMER | epsilon
CUSTOMER ::= name RENTALS
RENTALS ::= RENTALS RENTAL | RENTAL
RENTAL ::= daysRented MOVIE
PRICE ::= new | child | reg

The next step of the grammatical approach is to write a
detailed semantic description of the problem domain deriv-
ing the attribute grammar. The prototype of the system is

GRAMMAR-BASED SYSTEMS: DEFINITION. . . Informatica 28 (2004) 245–255 249

Association Class diagram element Grammar

 attribute

Class Class (non-terminal)

attribute (terminal)
Class

Class A Class B
Association A ::= B

Class A Class B
Navigability A ::= B

Class A

Class B Class C
Generalization A ::= B | C

Class A Class B
A ::= B

(¬∃X ∈ N, X ⇒ B)
∧X �= A

Aggregation

Class A Class B
Composition A ::= B

Table 1: From a conceptual class diagram to a context-free
grammar

obtained after a straightforward transformation of attribute
grammar specification to LISA specification. The follow-
ing program describes a particular use of the system.

//entering movies into database
lion_king child
gone_with_the_wind reg
the_ring new
//customers and their rentals description
Andy 3 lion_king child

2 gone_with_the_wind reg
Mary 3 the_ring new

What are the advantages of using grammars in this case?
By transforming the conceptual class diagram to a context-
free grammar a domain-specific language is obtained that
describes the user interaction with the system. In this man-
ner a rapid prototype is obtained and can be used whenever

Cardinality Class diagram element Grammar

Multiplicity

exactly one

Class A Class B
1 A ::= B

Optional

multiplicity

Class A Class B
0..1 A ::= B | ε

Multiplicity

[0..m]

Class A Class B
0..*

A ::= MoreB

MoreB ::= MoreB B| ε

Multiplicity

many

Class A Class B
1..*

A ::= MoreB

MoreB ::= MoreB B | B

Table 2: Association multiplicity

Figure 4: Conceptual Class Diagram for Video Store

the user’s requirements are not well defined. Another ben-
efit is that a conformability check of the conceptual class
diagram is also possible.

4.1.2 Adaptive programming

Adaptive programming (AP) [18] is a subclass of aspect-
oriented programming [13]. The stress is put on code tan-
gling – for example, the required functionality is not always
trivial to implement in existing applications when cross-
cutting concerns exist. Adaptive programming offers a so-
lution in the form of traversal specifications, in order to
provide that additional functionality without modification
of the existing code. These specify connections between
objects as loosely as possible (called “structure-shy" pro-
gramming).

The structure of the application class dictionary can be
seen as a context-free grammar (Figure 5) from which an
object graph may be derived, express all possible naviga-
tions through the code.

Figure 5: Class dictionary (CFG) and its object graph

The idea of adaptive programming is very general. The
Demeter [18] language has been integrated with various
object-oriented programming languages (the Demeter tool
was successfully applied to Java). Demeter allows pro-
grammers to write the following specifications (see Fig. 5):

starting from object A, go to object C
via all objects with an attribute named "x".

to add arbitrary execution paths.
The problem of adaptive programming can also be

solved using other techniques (visitor pattern). In compari-
son, the presented solution avoids code tangling, increases
the programmer’s productivity and consequently, it reduces
error prone coding.

4.1.3 Other Approaches

In Grammar-Oriented Object Design (GOOD) [17] a
context-free grammar is used to represent a set of all possi-
ble interactions (collaborations) for objects in a particular

250 Informatica 28 (2004) 245–255 M. Mernik et al.

cluster, in order to fulfill the domain goals. When a gram-
mar is interpreted at run-time, a cluster will dynamically
bind the collaborators to the collaborations. Hence, GOOD
facilitates the creation of dynamically configurable compo-
nents, which encapsulates volatile business rules. The ra-
tionale behind this is that creating and representing a model
of solutions is more extensible, simpler and more scalable
than just creating the single solution. Possible solutions are
modeled with a meta-model and represented as a context-
free grammar. If this grammar is available to the “users”
at run-time, then they are able to customize the system’s
behavior. An example of a production rule in [17] using
EBNF is:

ShoppingCartOperation ::=
{AddItem | DeleteItem |
SaveShoppingCart} CheckOut

Since the interaction of objects is obtained from use case
diagrams that describe the functionality of a system, the au-
thor [17] called such a grammar a use case grammar. The
author [17] in his work distinguishes two types of meta-
models: the static (class diagram) and the dynamic (valid
object interaction sequences) meta-model. The latter is de-
scribed with a context-free grammar.

In [3] the correspondence between the feature diagram
and the context-free grammar has been identified, where
atomic features map to terminal symbols, composite fea-
tures map to nonterminal symbols, and feature operators
map to syntax operators. In domain analysis, feature dia-
grams are used to describe commonalities, variabilities and
dependencies between variable properties in the applica-
tion domain. By converting a feature diagram to a context-
free grammar (FD2CFG), syntax tools can be applied to
feature descriptions for free (e.g. validity of configuration
corresponds to successful parsing).

The Free University of Amsterdam recently launched a
project on Grammar Engineering - software engineering
for grammars [15]. Topics included are grammar recovery,
grammar implementation, and the application of grammars
in software renovation. The more technical issues include
concepts and technology for grammar-based software ren-
ovation factories, grammar adaptation, grammar documen-
tation, grammar testing and many others.

4.2 Evolutionary Computations

Genetic programming (GP) is an evolutionary approach in
which an evolving population consists of computer pro-
grams [16]. Each member of the population, a chromo-
some, represents a possible solution in the search space of
all possible programs written in a pre-selected program-
ming language (e.g. Lisp). Since the search space is
too large it is restricted by the user-defined function set
F and the terminal set T. The set T contains variables
and constants and the set F functions that are a priori
believed to be useful for the problem domain. For ex-
ample, in the Santa Fe ant trail problem [16] from sets

T = {(MOVE), (LEFT), (RIGHT)} and F = {IF-FOOD-
AHEAD, PROGN2, PROGN3} the following solution
(lisp program) can be evolved:

(IF-FOOD-AHEAD (MOVE)(PROGN3 (LEFT)(PROGN2
(IF-FOOD-AHEAD (MOVE)(RIGHT))(PROGN2 (RIGHT)
(PROGN2 (LEFT)(RIGHT))))(PROGN2
(IF-FOOD-AHEAD (MOVE)(LEFT))(MOVE))))

In [26] the concept of grammatical evolution (GE) has
been introduced. GE is an evolutionary algorithm that can
evolve programs in an arbitrary language [31]. The in-
put to the GE is a BNF definition for the genotype-to-
phenotype mapping process. For example, the following
grammar can be used as input to Santa Fe ant trail prob-
lem:
0. CODE ::= LINE
1. CODE ::= CODE LINE
0. LINE ::= EXPR
0. EXPR ::= IF-STAT
1. EXPR ::= OP
0. IF-STAT ::= if (food-ahead()) EXPR else EXPR
0. OP ::= left()
1. OP ::= right()
2. OP ::= move()

The population consists of variable-length binary strings
that determine which production rules from the grammar
definition are used in a genotype-to-phenotype mapping
process. The appropriate production rule is selected by
using the following mapping function:

rule = (Integer value stored in a chromosome)MOD
(numberof production rules for the left most nonterminal)

For example, the following chromosome (203 245 110
55 29 200 241 11 151 162 227 74) encodes the following
left-most derivation

CODE ⇒203MOD2 CODE LINE ⇒245MOD2

CODE LINE LINE ⇒110MOD2 LINE LINE LINE ⇒
EXPR LINE LINE ⇒55MOD2 OP LINE LINE ⇒29MOD3

move() LINE LINE ⇒ . . .⇒
move() if (food-ahead()) move() else left() move()

What are the benefits of using grammars in GE? Obvi-
ously, GE is much more flexible than GP because it can
produce a code in any language. Furthermore, in the GE
closure problem, the generation and preservation of valid
programs, does not exist. Other benefits come with the
separation of the search and solution spaces because gram-
mar enables the genotype-to-phenotype mapping process.
This allows an unconstrained evolutionary search to be per-
formed on simple variable-length binary strings. Moreover,
new advances in genetic algorithms can be easily incorpo-
rated into GE or any new search algorithm operating on
binary strings can be used.

4.3 Information Theory

The ability of a grammar to represent an infinite language
with a finite set of production rules also makes grammars
useful in compression algorithms. Grammar-based encod-
ing (GBEnc) methods, such as derivation encoding [34],
which represents a program by a sequence of grammar
rules to derive it from the start symbol, have been proven

GRAMMAR-BASED SYSTEMS: DEFINITION. . . Informatica 28 (2004) 245–255 251

useful for compressing programs. For example, the pro-
gram using the grammar from subsection 4.2 can be en-
coded as 1 1 0 1 2 0 1 2 1 0 1 2 by derivation encoding. The
derivation tree is shown in Figure 6. It was shown in [2]
that programs can be compressed to almost 10% of their
original size. Another grammar-based compression algo-
rithm is SEQUITUR [25] which constructs a context-free
grammar for its input. The resulting grammar is capable
of generating just one string, namely the original sequence.
For example, the sequence abcdbcabcd is represented by
the following grammar

S ::= CAC
A ::= bc
C ::= aAd

CODE1

CODE1 LINE

EXPR1

OP2

move()

CODE0 LINE

LINE

EXPR1

OP2

move()

EXPR0

IF-STAT

if(food-ahead()) else EXPR
1

EXPR
1

OP2

move()

OP0

left()

Figure 6: Derivation tree

The algorithm identifies the hierarchical structure (Fig-
ure 7) in sequences of symbols and uses that information
for compression. By detection and elimination of redun-
dancy it outperforms the standard compression techniques
on very large or highly structured sequences. SEQUITUR
preforms well on many practical problems such as DNA
sequences and genealogical databases. It is also possible
to use the system as a basis for generalization in grammat-
ical inference [19]. Grammar-based techniques (e.g. [4])
have also been used in program compaction, which is a
compression technique with an additional constraint - the
compressed program has to be executable.

abcdbcabcd

Figure 7: Hierarchical structure for grammar

4.4 Neural Networks

The selection of a suitable neural network topology is an
important step in finding a good solution for the problem

under investigation. Therefore, the search for suitable neu-
ral network architecture is a common task. Here we can
use direct encoding, or the so-called grammatical encoding
[14], where the architecture of the neural network is gen-
erated from its grammar description. The advantages of
grammatical encoding are better scalability and the possi-
bility of finding building blocks. This work is further elab-
orated in [6] where cellular encoding using graph gram-
mars was proposed. The architecture, the weights, and the
kind of sigmoids used by each neuron are encoded. Cellu-
lar encoding can be seen as a machine language for neural
networks and can be used as a tool for designing neural
networks.

In [10] an attribute grammar is used to specify classes
of neural network structures with explicit representation of
their functional organization. The approach is termed Net-
work Generating Attribute Grammar Encoding (NGAGE).
The specification of a neural network structure is extracted
from the attributes of the root symbol and interpreted to
produce a functional neural network. This neural network
can be randomly initialized and trained afterwards. The
NGAGE is specially usable in genetic programming, in the
form of neural network representation, where each produc-
tion rule (derivation subtree) corresponds to a meaningful
structural component of the neural network. These charac-
teristics of NGAGE can be used for genetic operators im-
plementation, crossover and mutation. The other benefit of
NGAGE is identical representation of different neural net-
works. The similarities and differences between them can
be emphasized within a common framework.

4.5 Data Representation

The use of mark-up languages on the Web is indispens-
able. The hypertext mark-up language (HTML) is the
best known example. In the last few years the eXtensible
Markup Language (XML) has been introduced, as a mark-
up language for uniform representation of data. It was orig-
inally meant as a format for transferring data over the In-
ternet. Separation of data from its representation increased
the standard applicability to other computing areas.

Although our perception is that compiler notation and
mark-up language have little in common, the reality is quite
different. The syntax of XML documents is conceptually
similar to the meta-language (defined by BNF) of com-
pilers. The analogy between compilers and mark-ups is
shown in table 3.

Notation Compiler Mark-up

meta-notation LISA, ASF+SDF XML

syntax context-free grammar DTD, XML Schema

Table 3: Analogy between compiler and mark-up

The syntax of an XML document is defined by Docu-
ment Type Definition (DTD). DTD defines document struc-
ture, elements, their attributes and types (see example be-

252 Informatica 28 (2004) 245–255 M. Mernik et al.

low). It uses the syntax of EBNF (’*’, ’+’, ’?’, ’|’) to de-
scribe the syntactical structure of XML documents. There-
fore, a DTD can be seen as an extended BNF (EBNF).

<!ELEMENT paper_collection (paper)*>
<!ELEMENT paper (title, author+, year,

published?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT published EMPTY>

An example of an XML document, for the given DTD
above, is written below. The XML elements from the DTD
can be seen as non-terminal symbols in EBNF. Empty ele-
ments are without contents (element ’<published>’) - their
meaning is in the position and attributes. Non-empty ele-
ments can contain other elements and textual content (ele-
ment ’<title>’). Textual content can be parallelized with
terminal symbols in EBNF.

<paper_collection>
<paper>

<title>Grammatical Approach to
Problem Solving</title>

<author>Pedro Henriques</author>
...
<year>2003</year>
<published/>

</paper>
...

</paper_collection>

Another similarity of mark-up languages and compilers
is the building of a parser. The XML parser generator ana-
lyzes the source DTD and automatically generates a parser
for XML documents which comply with the source DTD,
which is also the case in compiler building tools (e.g. LISA
[20]).

The disadvantage of XML against context-free grammar
is in its lexical part. The textual content of XML elements
can be either a generic string (denoted with ’#PCDATA’ in
DTD) or enumeration of allowed values. This limitation is
reduced with XML Schema, which offers richer notation
for describing the textual content of the XML elements.

4.6 Other Applications

Due to page limitation, all GBSs can not be described
in detail. The aim of the paper is to show a plethora of
different research areas where grammars are proven to be
useful. A short description of such systems in other areas
follows.

A number of researchers have proposed ways to use
grammar-based notation for expressing knowledge in
the speech recognition process. In most cases CFG was
used to generate or filter word transitions [24]. To im-
prove semantic sentence recognition, the probabilistic LR
parser has been used as well as stohastic CFG (SCFG) [12].

Data mining is an automated process of discovering
knowledge from databases. Various data mining methods
exist, among them are inductive logic programming and

genetic programming. In [36] both approaches were
integrated using logic grammars aiming to exploit the
benefits of both approaches. Special rule learning has been
developed where a grammar represents rules. Moreover,
the grammar can be modified in order to learn rules.

Formal language theory has been successfully applied
to pattern recognition problems [5] in which the patterns
contain most of their information in their structure rather
than in their numeric values. In order to make grammars
more suitable for pattern recognition the concept of
context-free grammars have been extended to stochastic
grammars [35] and fuzzy grammars [11].

The design of organizational and work processes is well
defined. However, there is a lack of formal approaches in
discovering new organizational processes. By using gram-
mars, one may systematically search for solutions in pro-
cess redesign, as well as for new solutions in process orga-
nization. Therefore, the process grammar [27] offers com-
plementary solutions to the existing ones.

4.7 Concluding remarks on GBSs examples

It is important that GBSs are not studied in an isolated man-
ner. In order to be able to make a general comparison of
different GBSs and to classify them, we need to find their
common and variable properties. The main reason for clas-
sification of GBSs is to identify differences among GBSs
and to identify the representative examples of it. These
classifications can be used by future developers to identify
whether their system is solvable using a grammar-based
approach. Developers can further use the classification to
build their own system faster and more efficiently.

The following questions help to identify different dimen-
sions of GBSs:

Q1 What is described with grammar G?

Q2 What is described with program P generated by lan-
guage L(G)?

Q3 Is the representation of program P generated by lan-
guage L(G) explicit?

Q4 Is the control flow from G→ P or P→ G? (Is the input
to GBS defined by grammar or program?)

Q5 Why was GBS invented?

In table 4, the answers to some examples are given.

It is important for future application developers to no-
tice that with a grammar-based approach their systems can
benefit in several directions:

– system can become more general (e.g. GOOD [17]),

– system can be easier to develop (e.g. [3]),

– system’s underlying representation can be more effi-
cient (e.g. [10]).

GRAMMAR-BASED SYSTEMS: DEFINITION. . . Informatica 28 (2004) 245–255 253

Q1 Q2 Q3 Q4 Q5

GAPS conceptual class dia-
gram (CCD)

user interaction with the system yes G → P to obtain rapid prototype of
the system

GOOD interaction between ob-
jects

sequence of method calls executed
by an application program

no G → P to extend generality of the
system

FD2CFG feature diagram (FD) an instance of a system described
by FD

yes G → P to check if an instance is a
valid system by FD

GE grammar of the target
language used in GP

program written in a target lan-
guage

no G → P to extend generality of the
system

GBEnc grammar of the target
language

program written in a target lan-
guage to be compressed

yes P → G for compression

SEQUITUR grammar of the target
sequence of symbols

sequence of symbols yes P → G for compression

AP connections between
objects

structure of application class dictio-
nary

no G → P to extend functionality of ap-
plications

NGAGE neural network (NN)
structure

a fully functional NN no G → P to simplify NN representation
for GP

Table 4: A comparison among different GBSs

This paper describes some of the representative exam-
ples of the above mentioned benefits. The main contribu-
tion of this paper therefore is:

– definition of grammar-based systems,

– identifying problems that can be solved with
grammar-based approach,

– identifying benefits of grammar-based system, and

– popularizing grammar-based systems.

5 Conclusions and future work

Formal language theory has been applied to many practical
applications. In addition to language description and
implementation (original applications of grammars),
grammars have been proven useful in many other areas.
However, there is no particular research of systems (appli-
cations) in which grammar plays a vital role. In this paper
such systems are introduced and defined as GBSs. The
paper contains representative examples of GBSs in various
areas of computer science, such as: software engineering,
evolutionary computations, information theory, neural
networks, and data representation.

Although the formal theory of grammar is well defined,
there are still many research possibilities in the field of
GBSs. We have noticed several unexplored areas in GBSs
such as:

– Classification of GBSs. There is no classification of
GBSs. We believe that this can be attained by ques-
tions similar to the ones proposed in section 4.7. How-
ever, further case studies of GBSs are required.

– When to develop GBS? No guidelines exist to show
whether a particular problem should be solved with
grammar knowledge.

– GBSs patterns. The remaining question is how to de-
velop GBSs. Identifying patterns would improve and
speed up the interest in developing GBSs.

In the future we plan to extend our research on GBSs.
Our research will be focused on solving those problems
presented in this paper and on finding other areas or prob-
lems that can be efficiently solved with the grammar-based
approach. We want to show that problem definition using
the formal approach (grammar) can increase the efficiency,
reliability and generality of the solution.

6 Acknowledgements

We would like to thank Jeff Gray and anonymous referees
for useful comments.

References

[1] A. V. Aho and J. D. Ullman. The theory of languages.
Mathematical Systems Theory, 2(2):97–125, 1968.

[2] R. Cameron. Source encoding using syntactic infor-
mation models. IEEE Transactions on Information
Theory, 34(4):843–850, 1988.

[3] M. de Jonge and J. Visser. Grammars as feature dia-
grams. draft, Apr. 2002.

[4] W. S. Evans and C. W. Fraser. Grammar-based com-
pression of interpreted code. ACM Communications,
46(8):61–66, 2003.

[5] K. Fu. Syntactic Pattern Recognition and Applica-
tions. Prentice-Hall, 1982.

[6] F. Gruau. Neural Network Synthesis using Cellular
Encoding and the Genetic Algorithm. PhD thesis,

254 Informatica 28 (2004) 245–255 M. Mernik et al.

Laboratoire de l’Informatique du Parallilisme, Ecole
Normale Supirieure de Lyon, France, 1994.

[7] J. Heering and P. Klint. Semantics of programming
languages: A tool-oriented approach. ACM Sigplan
Notices, 35(3):39–48, Mar. 2000.

[8] P. Henriques, T. Kosar, M. Mernik, M. J. V. Pereira,
and V. Žumer. Grammatical approach to problem
solving. In ITI 2003 : Proceedings of the 25th Inter-
national Conference on Information Technology In-
terfaces, pages 645–650. SRCE University Comput-
ing Centre, University of Zagreb, 2003.

[9] P. Henriques, M. V. Pereira, M. Mernik, M. Lenič,
E. Avdičaušević, and V. Žumer. Automatic genera-
tion of language-based tools. In M. van den Brand
and R. Laemmel, editors, Electronic Notes in Theoret-
ical Computer Science, volume 65. Elsevier Science
Publishers, 2002.

[10] T. Hussain and R. Browse. Attribute grammars for ge-
netic representations of neural networks and syntactic
constraints of genetic programming. In AIVIGI’98:
Workshop on Evolutionary Computation, 1998.

[11] Y. Inagaki and T. Fukumura. On the description
of fuzzy meaning of context-free languages. In
L. Zadeh, K. Fu, K. Tanaka, and M. Shimura, edi-
tors, Fuzzy Sets and Their Applications to Cognitive
and Decission Processes, pages 301–328. Academic
Press, 1975.

[12] D. Jurafsky, C. Wooters, J. Segal, A. Stolcke, E. Fos-
ler, G. Tajchman, and N. Morgan. Using a stochastic
context-free grammar as a language model for speech
recognition. In Proc. ICASSP ’95, pages 189–192,
Detroit, MI, 1995.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In Proceedings European
Conference on Object-Oriented Programming, vol-
ume 1241, pages 220–242. Springer-Verlag, 1997.

[14] H. Kitano. Designing neural networks by genetic al-
gorithms using graph generation systems. Complex
Systems, (4):461–476, 1990.

[15] P. Klint, R. Lämmel, and C. Verhoef. Towards an
engineering discipline for grammarware. Draft, Aug.
2003.

[16] J. R. Koza. Genetic Programming: On the Program-
ming of Computers by Natural Selection. MIT Press,
1992.

[17] K. Levi and A. Arsanjani. A goal-driven approach to
enterprise component identification and specification.
Communications of the ACM, 45(10):45–52, October
2002.

[18] K. J. Lieberherr. Adaptive Object-Oriented Soft-
ware: The Demeter Method with Propagation Pat-
terns. PWS Publishing Company, 1996.

[19] M. Mernik, M. Črepinšek, G. Gerlič, V. Žumer, B. R.
Bryant, and A. Sprague. Learning context-free gram-
mars using an evolutionary approach. Technical re-
port, University of Maribor and The University of Al-
abama at Birmingham, 2003.

[20] M. Mernik, N. Korbar, and V. Žumer. LISA: A tool
for automatic language implementation. ACM SIG-
PLAN Notices, 30(4):71–79, Apr. 1995.

[21] M. Mernik, M. Lenič, Enis Avdičaušević, and
V. Žumer. Multiple Attribute Grammar Inheritance.
Informatica, 24(3):319–328, Sept. 2000.

[22] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer.
LISA: An Interactive Environment for Programming
Language Development. In N. Horspool, editor, 11th
International Conference on Compiler Construction,
volume 2304, pages 1–4. Lecture Notes in Computer
Science, Springer-Verlag, 2002.

[23] M. Mernik and V. Žumer. An educational tool for
teaching compiler construction. IEEE Transactions
on Education, 46(1):61–68, February 2003.

[24] R. Moore, F. Pereira, and H. Murveit. Integrating
speech and natural-language processing. In Proc. of
the Speech and Natural Language Workshop, pages
243–247, Philadelphia, PA, 1989.

[25] C. G. Nevill-Manning and I. H. Witten. Compression
and explanation using hierarchical grammars. The
Computer Journal, 40:103–116, 1997.

[26] M. O’Neill and C. Ryan. Grammatical evolution.
IEEE Transaction on Evolutionary Computations,
5(4):349–358, August 2001.

[27] B. T. Pentland. Grammatical models of organizational
processes. Organization Science, 6(5):541–56, 1995.

[28] M. V. Pereira, M. Mernik, T. Kosar, P. Henriques,
and V. Žumer. Object-oriented attribute grammar
based grammatical approach to problem specification.
Technical report, University of Braga, Department of
Computer Science, 2002.

[29] E. T. Ray. Learning XML: Creating Self-Describing
Data. O’Reilly & Associates, Inc., 2001.

[30] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

[31] C. Ryan, J. J. Collins, and M. O Neill. Gram-
matical evolution: Evolving programs for an arbi-
trary language. In Proceedings of the First European
Workshop on Genetic Programming, volume 1391 of
LNCS, pages 83–95, Paris, 14-15 Apr. 1998.

GRAMMAR-BASED SYSTEMS: DEFINITION. . . Informatica 28 (2004) 245–255 255

[32] Salomaa, A. Theory of Automata. Pergamon Press,
1969.

[33] L. C. Schmidt and J. Cagan. Ggreada: A graph
grammar-based machine design algorithm. Research
in Engineering Design, 9:195–213, 1997.

[34] R. G. Stone. On the choice of grammar and parser
for the compact analytical encoding of programs. The
Computer Journal, 29(5):307–314, 1986.

[35] P. Swain and K. Fu. Stochastic programmed gram-
mars for syntactic pattern recognition. Pattern Recog-
nition, (4):83–100, 1972.

[36] M. L. Wong and K. S. Leung. Data mining using
grammar based genetic programming and applica-
tions. Kluwer Academic Publishers, 2000.

256 Informatica 28 (2004) 245–255 M. Mernik et al.

Informatica 28 (2004) 257–263 257

Improved Error Recovery in Generated LR Parsers

Boštjan Slivnik and Boštjan Vilfan
University of Ljubljana
Faculty of Computer and Information Science
Tržaška 25, 1000 Ljubljana, Slovenia
bostjan.slivnik@fri.uni-lj.si
bostjan.vilfan@fri.uni-lj.si

Keywords: LR parsing, error recovery and reporting

Received: February 17, 2004

A new method for error recovery in LR parsers is described. An error recovery routine based on this new
method can be generated automatically by a parser generator as a part of an LR parser. Based on the result
that a viable suffix from which the unread part of the input is derived can be computed in certain states
of an LR parser, the new method uses the viable suffix to discard the erroneous part of the input and to
synchronize the parser stack with the rest of the input afterwards. Thus it resembles a simple but efficient
error recovery method used by LL and other predictive parsers. It is proved that all states suitable for this
kind of error recovery can automatically be identified by a parser generator.

Povzetek: članek opisuje okrevanje po napaki v LR analizatorjih.

1 Introduction

Compilers are programs that mostly process erroneous in-
put. Robust error recovery and meaningful error reporting
are therefore essential parts of any industrial-strength com-
piler.

Nowadays many compilers perform syntax analysis us-
ing an LALR parser (more precisely, LA(1)LR(0) parser)
that is generated automatically by a parser generator like
yacc, bison, JavaCUP, etc. [3]. However, none of these
parser generators uses any advanced method for error re-
covery and reporting mainly, because these methods are ei-
ther (a) time consuming, or (b) require inspection of indi-
vidual parser states and manual insertion of error recovery
routines [4, 5].

LALR parser generators usually provide only a very
simple mechanism for error recovery and none for error
reporting. If a yacc generated parser is to recover after an
error is encountered within a sentential form derived from
a nonterminal A, a compiler writer should insert a produc-
tion

A −→ error α

manually where error is a yacc reserved word [2, 3]. In
case of an error, a parser abandons other productions ex-
panding A, moves forward over the erroneous part of the
input and discards it until a string which can be reduced
to α is seen. A reduction to A is performed and thus the
parser is resynchronized. However, “proper placement of
error tokens in a grammar is a black art” [3].

The paper is organized as follows. Section 2 includes
definitions of some basic elements of formal language the-
ory and parsing. Following the brief outline of the new

method in Section 3, the construction of the finite automa-
ton used by the error recovery routine is described in Sec-
tion 4. This is followed in Section 5 by (a) the algorithm
for computing the viable suffix needed for error recovery
and (b) the algorithm for computing a grammatical context
of the erroneous part of the input. Examples and figures are
given along the way.

2 Basic definitions

Standard terminology of formal language theory and pars-
ing is assumed [4, 5]. Throughout the paper we assume
that grammars are reduced (no useless or unreachable sym-
bols) and $-augmented (production S′ −→ S is added
as the only production expanding the new start symbol S′).
A string γ ∈ V ∗ is a viable prefix (suffix) of G iff there
exists a rightmost (leftmost) derivation S =⇒∗

G,rm γu

(S =⇒∗
G,lm uγR).

The nondeterministic LR(k) machine Nk for the gram-
mar G = 〈V, T, P, S〉 (where V contains both nonterminal
and terminal symbols) is a finite (semi)automaton with the
state set equal to Ik (the set of valid LR(k)-items forG), an
initial item i0 ∈ Ik, and a mapping δN : Ik× (V∪{ε}) −→
2Ik [1].

The deterministic LR(k) (or LR(k)LA(k′)) ma-
chine Mk for the grammar G is a finite (semi)automaton
with a set of states Q ⊆ 2Ik , an initial state qS ∈ Q, and a
mapping δM : Q × V −→ Q. If δ∗M (qS , γ) = q for some
q ∈ Q and γ ∈ V ∗, then [γ] denotes the set of equiva-
lent viable prefixes leading from the initial state qS to the
state q. Furthermore, [γ] uniquely determines q (and is thus
just another name for q).

258 Informatica 28 (2004) 257–263 B. Slivnik et al.

The LR(k) parser is a pushdown transducer 〈M, τ〉 (or
simply M). M denotes the deterministic pushdown au-
tomaton based on the deterministic LR(k) machine Mk,
and τ denotes the output effect (a mapping of parser ac-
tions into grammar productions). States of M are the same
as the states of Mk. The stack alphabet of M is a set
of states of Mk. A configuration (or instantaneous de-
scription) of a parser M is represented as $Γ u$, where
Γ ∈ Q∗ and u ∈ T ∗ denote the stack contents and the
unread part of the input, respectively.

3 The outline of the new method

To relieve a compiler writer of the “black art” of proper
placement of error productions, a better error recovery
method is needed. Let us suppose that the input string uv′

is being parsed with an LR(k) parser M . Starting with the
initial stack contents Γ0, the parser M performs the parser
steps π(u) corresponding to the derivation

$Γ0 uv′$ =⇒π(u)
M $Γ v′$ (1)

and enters a configuration $γ v′$ (note that γ and v′ de-
note the stack contents and the unread part of the input,
respectively). LR(k) parsers have the correct prefix prop-
erty [4, 5], i.e., any string of terminals pushed on the parser
stack is a prefix of some valid input. It follows from Deriva-
tion (1) that there exist derivations

S =⇒∗
rm γvi =⇒∗

rm uvi (2)

for various vi and a single viable prefix γ where Γ = Γ′[γ]
(the stack contents Γ of parser M corresponds to the viable
prefix γ of Derivations 2). Therefore, there exist leftmost
derivations

S =⇒∗
lm uδi =⇒∗

lm uvi (3)

for various viable suffixes δi.
Now suppose that $Γ v′$ is an error configuration. In

other words, v′ cannot be derived from any viable suffix δi
in any of Derivations (3). The idea, on which the new
method is based, can be outlined as follows:

1. If there is only one viable suffix δ = X1δ̂ such that
δi = δ for any i in Derivations (3), and

2. if this particular δ is known in the error configuration
$Γ v′$,

then the parser should discard the next few tokens of in-
put, resynchronize and continue parsing the string derived
from δ̂.

If there exists a unique viable suffix δ, there are two ap-
proaches to discard the erroneous part of the input. The
first is to skip everything until a string from FIRSTk(δ̂$)
is seen, and then to resynchronize by pushing the symbol
X1 on the stack. Using this approach, Derivation (1) can
be extended with the derivation

$Γ v′$ = $Γ v′1v̂$
=⇒π(v′

1)
M $Γ v̂$

=⇒M $Γ[γX1] v̂$

where the steps denoted by π(v′1) are used to skip the part
of the input derived from symbol X1. Thus, the string v̂$
is the longest suffix of v′$ having a property that (k : v̂$) ∈
FIRSTk(δ̂$).

The second approach is to skip everything until a string
which can be reduced to X2, the first symbol of δ̂, is read,
and then to resynchronize by pushing X1 and then X2 on
the stack. Formally, Derivation (1) is extended with the
derivation

$Γ v′$ = $Γ v′1v2v̂$
=⇒π(v′

1)
M $Γ[γX1] v2v̂$

=⇒π(v2)
M $Γ[γX1][γX1X2] v̂$

where the steps denoted by π(v′1) are used to skip the part
of the input derived from symbol X1 (as in the case above)
and where π(v2) is the parse of v2, the correct part of the
input, in M .

The parser using an error recovery routine based on ei-
ther of the two strategies tries to skip as few symbols of
the input string as possible. More precisely, there may be
many different, but viable splittings of the input string v′

either to strings v′1 and v̂ (as in the first approach) or to
strings v′1, v2 and v̂ (as in the second approach). However,
the problem of splitting the string v′ is beyond the scope of
this paper.

Finally, if the viable suffix δ cannot be determined
uniquely in the parser state [γ], the parser removes one state
at the time from the parser stack until a state with a unique
viable suffix is at the top of the stack. Then, one of the
approaches described above is applied.

4 The construction of the error
recovery routine

Two conditions were set in the previous section that must
be fulfilled if a parser is to recover from the error: (1) the
viable suffix δ must be unique and (2) it must be known.
In general, a viable prefix γ and thus a state [γ] (a set of
LR(k)-equivalent viable prefixes) can have many corre-
sponding viable suffixes δi. To identify states of an LR(k)
parser suitable for performing error recovery we start with
the following two definitions [6]:

Definition 1 LetNk = 〈IG
k , V, PNk

, i0〉 be a nondetermin-
istic LR(k) machine for a grammar G = 〈V, T, P, S〉. A
string of LR(k)-valid items i0i1 . . . in ∈ (IG

k)∗ is called
a 〈γ, k〉-path if there exists a sequence X1,X2, . . . , Xn ∈
(V ∪{ε}) so thatXn
= ε and [ij−1Xj → ij] ∈ PNk

where
i = 1, 2, . . . , n.

Definition 2 〈γ, k〉-paths ρ1 and ρ2, where ρ1 =
i0i1 . . . in and ρ2 = i0i

′
1 . . . i

′
m are 0-equivalent iff n = m

and items ij and i′j differ only in lookahead strings for
all j = 1, 2, . . . , n (i.e., if ij = [A → α • β, x] and
i′j = [A′ → α′•β′, x′], thenA = A′, α = α′, and β = β′).

IMPROVED ERROR RECOVERY IN. . . Informatica 28 (2004) 257–263 259

The reason for defining 0-equivalence of 〈γ, k〉-paths be-
comes obvious with the following lemma, which estab-
lishes a relationship between viable prefixes and suffixes
on the one hand and LR(k) machines on the other.

Lemma 1 Any two 0-equivalent 〈γ, k〉-paths define the
same viable suffix.

PROOF: Any 〈γ, k〉-path ρ = i0i1 . . . in specifies a set of
leftmost derivations all having the form

A1 =⇒p1
lm α1A2β1

=⇒π(α1)
lm u1A2β1

=⇒p2
lm u1α2A3β2β1

=⇒π(α1)
lm u1u2A3β2β1

...

=⇒pm

lm u1u2 . . . um−1αmAm+1βmβm−1 . . . β1

=⇒π(α1)
lm u1u2 . . . umAm+1βmβm−1 . . . β1,

where pj = Aj −→ αjAj+1βj is the production of the
j-th LR(k)-item of ρ having the dot in the initial posi-
tion at the far left (and Am+1 may be ε). As any change
of lookahead strings in LR(k)-items of ρ does not affect
the leftmost derivations above, all 〈γ, k〉-paths which are
0-equivalent to ρ define the same viable suffix δ, where
δR = Am+1βmβm−1 . . . β1.
�

When the traditional LR(k) parser enters the error con-
figuration $Γ v′$, the error is recognized because no ac-
tion is specified for q and x = k : v′, where Γ = Γ′q,
i.e., ACTION(q, x) = error . But as LR(k) parsers have
the correct prefix property, the first (k−1) symbols of the
lookahead buffer are correct — otherwise the error would
have been detected earlier.

The first step is to identify all states [γ] with the prop-
erty that for any γ′ ∈ [γ], all 〈γ′, k〉-paths ending with
an item (k−1)-active for (k − 1) : v′ are 0-equivalent (an
item [A → αX • β, y] is k-active for x if and only if
x ∈ FIRSTG

k (βy)). In other words, the stack contents of
the LR(k) parser and the first (k−1) symbols in the looka-
head buffer must define the viable suffix uniquely (remem-
ber that in error configuration $Γ v′$ the k-th symbol of v′

is erroneous and thus not useful for error recovery). To do
so, we change the focus to the nondeterministic LR(0) ma-
chine N0.

Definition 3 An LR(0)-item [A→ α•β] ofN0 is relevant
for state [γ] of the deterministic LR(k) machine for G if
and only if, for all γ′ ∈ γ and i′ = [A → α • β, y] ∈ [γ],
all 〈γ′, k〉-paths ρ = ρ′i′ are 0-equivalent.

During the parser construction, we compute a directed
graph GN with a set of vertices VN and a set of edges EN

defined as

VN = { 〈[A→ α • β], q〉
|∃q ∈ QM , y ∈ T ∗ : [A→ α • β, y] ∈ q}

and

EN = { 〈〈i1, q1〉, 〈i2, q2〉〉|∃X ∈ V ∪{ε} :
[q1X → q2] ∈ PM ∧ [i1X → i2] ∈ PN0},

respectively. It is derived from the graph of the nondeter-
ministic LR(0) machine by (1) replicating each LR(0)-
item as many times as there are states in M in which
an LR(k) item with the corresponding core appears, and
(2) erasing edge labels. Thus every path in GN starting
with 〈[S′ → •S], qS〉 has its corresponding path in N0

(and vice versa).
As an example, consider the following $-augmented

LALR grammar Gex with productions

S′ −→ S, S −→ AB,
A −→ aA, A −→ ε,
B −→ Bb, B −→ b.

The LALR machine for the grammar Gex as constructed
by a modified version of bison is shown in Figure 1. The
graph GN for the grammar Gex is shown in Figure 2.

The irrelevant vertices ofGN (i.e., vertices 〈i, q〉where i
is irrelevant for q) can be identified by the following simple
algorithm:

1. Compute the set of all conflicting vertices, i.e., those
with at least two different predecessors in the same
state:

V̄
(1)
N = {v| v = 〈[A→ •β], q〉 ∧

〈〈i1, q〉, v〉, 〈〈i2, q〉, v〉 ∈ EN ∧
i1
= i2}

(Different predecessors from different states represent
no problem as the state itself helps determining the
right path.)

2. Compute the set of successors of conflicting vertices:

V̄
(2)
N = {v|v is-reachable-from v′ ∈ V̄ (1)

N }

In Figure 2 the irrelevant vertices are shaded while in Fig-
ure 1 they are closed between double lines.

We define the skeleton automatonU with the set of states

QU = {i|〈i, q〉 ∈ VN \ (V̄ (1)
N ∪ V̄ (2)

N)},

alphabet QM , and the mapping δU : QU × QM −→ QU

defined as

δU (i, q′) = i′ ⇐⇒
〈〈i′, q′〉, 〈i, q〉〉 ∈ EN ∧
〈i, q〉, 〈i′, q′〉 ∈ VN \ (V̄ (1)

N ∪ V̄ (2)
N).

The skeleton automaton is just a compact representation
of the graph GN with irrelevant vertices removed. The
skeleton automaton for the grammar Gex is shown in Fig-
ure 3. The aforementioned modification of bison makes

260 Informatica 28 (2004) 257–263 B. Slivnik et al.

Figure 1: Bison-generated LALR machine for the grammar G. Note the different grammar augmentation: instead of
using production S′ −→ S, bison uses a production $accept −→ S$.

S ′ → •S, qS S ′ → $•S$, q0

S → •AB, q0

A→ •aA, q0

A→ •, q0

S ′ → $S•$, q2 S ′ → S•, q5

A→ a • A, q1

A→ •aA, q1

A→ •, q1 S → A •B, q3

B → •Bb, q3

B → •b, q3

S → AB•, q7

B → B • b, q7

B → Bb•, q8

B → b•, q6A→ aA•, q4

S ′ → •S, qS S ′ → $•S$, q0

S → •AB, q0

A→ •aA, q0

A→ •, q0

S ′ → $S•$, q2 S ′ → S•, q5

A→ a • A, q1

A→ •aA, q1

A→ •, q1 S → A •B, q3

B → •Bb, q3

B → •b, q3

S → AB•, q7

B → B • b, q7

B → Bb•, q8

B → b•, q6A→ aA•, q4

Figure 2: Graph GN for the grammar Gex.

IMPROVED ERROR RECOVERY IN. . . Informatica 28 (2004) 257–263 261

v1:S ′ → $ • S$ v2: S → •AB v3:S → A •B v4: S → AB•

v5: A→ • v6: A→ •aA v7: A→ a • A v8: A→ aA•

q0 q0 q3

q0

q1

q0 q1

q0, q1

q1

Figure 3: Skeleton automaton U for the grammar Gex.

bison capable of computing the skeleton automaton — bi-
son-generated skeleton automaton for the same grammar
(although differently augmented) is shown in Figure 4.

(the modification of bison makes bison capable of com-
puting the skeleton automaton as described below).

If the LR(k) parser is to start the error recovery process
in state q and with the string x in the lookahead buffer,
it should be able to select the right vertex of the skeleton
automaton U . Hence, apart from the skeleton automaton,
the parser must contain the table ERROR, which maps the
topmost state and the first (k−1) symbols of the lookahead
buffer to a vertex of U :

ERROR : Q× T ∗(k−1) −→ VN .

Construction of the table ERROR is straightforward. To
compute the value of ERROR(q, x), apply the following pro-
cedure:

1. If there exists a state of the skeleton automaton U cor-
responding to an item i where 〈i, q〉 ∈ VN \ (V̄ (1)

N ∪
V̄

(2)
N) and all items of the core of the state q which are

(k−1)-active for x map to i, i.e.,

∀[A→ α • β, y] ∈ Core(q) :
x ∈ FIRSTk−1(βy) =⇒ [A→ α • β] = i,

then ERROR(q, x) = i. Otherwise, the value of
ERROR(q, x) is undefined.

(The set Core(q) contains either all items [A → α •
β, y] where α
= ε if q
= qS or the item [S → •S, ε]
if q = qS .)

2. If there exists exactly one node 〈i′, q〉 ∈ VN \ (V̄ (1)
N ∪

V̄
(2)
N) where δU (i′, q) = i and there exists an item

[A→ α • β, y] ∈ q so that x ∈ FIRSTk−1(βy), then
set ERROR(q, x) = i′ and repeat Step 2; otherwise,
terminate.

In other words, make the path leading from q to qS as
long as possible, but keep it unique in respect with the
first (k − 1) symbols of the lookahead buffer.

Table 1 shows the ERROR table for the grammar Gex.

5 Computing the context of the
syntax error

As mentioned at the end of Section 2, not every state of
LR(k) parser is suitable for error recovery. If an error is de-

LR STATE SKELETON STATE

S [S′ → •S]
0 v2 : [S → •AB]
1 v7 : [A→ a •A]
2 v9 : [S′ → $S • $]
3 v3 : [S → A •B]
4 v8 : [A→ aA•]
5 v10 : [S′ → S•]
6 undefined
7 v4 : [S → AB•]
8 undefined

Table 1: The ERROR table for grammar Gex.

tected in the state where error recovery cannot start, i.e., in
the error configuration $Γ v′$ where Γ = Γ′q, x = k : v′

and ERROR(q, x) = ⊥, then the LR(k) parser must remove
the topmost state from the stack and repeat the spawning
of the error recovery. But as the lookahead string x in that
state is no longer available, the parser must push the appro-
priate vertex of the skeleton automaton together with the at
the time when the state itself.

More precisely, the parser stack should not contain just
parser states, but pairs consisting of a parser state and a
vertex of the skeleton automaton which is to be used if an
error occurs. Hence, whenever the state q is pushed onto
the stack (as a result of either shift or reduce action), it
should be pushed as a pair 〈q,⊥〉. In the next step, before
checking the action table and deciding on the next action,
the parser must check the table ERROR and correct the value
of the second component of the topmost pair on the stack.

The algorithm for computing the context in which a syn-
tax error occurs is presented in Figure 5 (δU is a transi-
tion function corresponding to the set of rewriting rules PU

of skeleton automaton U). It starts at the top of the stack
and proceeds downward. It produces a list of LR(0)-items
i1i2 . . . im where ij = [Aj → αj • Aj+1βj , yj], which
determine the derivation

A1 =⇒i1
lm α1A2β1

=⇒i2
lm α1α2A3β2β1

...

=⇒im

lm α1α2 . . . um−1αmAm+1βmβm−1 . . . β1

262 Informatica 28 (2004) 257–263 B. Slivnik et al.

Figure 4: Bison-generated skeleton automaton U for the grammar Gex.

context stack i | i == [S′ → $ • S$] = ε

context stack@((q, _) :st) [A→ •β] = ctx ◦ [A→ •β]
where i = δU ([A→ •β], q)

ctx = context stack i

context stack@((q, _) :st) [A→ αX • β] = ctx ◦ [A→ αX • β]
where ctx = context st [A→ α •Xβ]

Figure 5: Algorithm for computing the viable suffix.

and the viable suffix βR
1 β

R
2 . . . β

R
m. Hence, we can write

down the following theorem:

Theorem 1 If any two 〈γ′, k〉-paths ending with items
which are (k − 1)-active for x, are 0-equivalent for each
γ′ ∈ [γ], then a viable suffix δi in derivation (3) can be
computed from the stack contents Γ = Γ′[γ] in the parser
configuration $Γ v$ for any v = xv′.

A parse of erroneous string aacbb is shown in Tables
2 and 3. Both possible solutions mentioned in Section 2
are shown. In Table 2, the erroneous part of the input is
discarded until the string b ∈ FIRST1(AB$) is found in
the lookahead buffer. The resulting stack contents after er-
ror recovery is performed is therefore $[$][$a][$aa][$aaA].
This is a simple but efficient solution.

In Table 3, however, the string bb is reduced to the second
symbol of the viable suffix AB$, namely B. Hence, the re-
sulting stack contents is $[$][$A][$B]. Finding and reduc-
ing the substring bb can be performed in the same way as
by parsers generated by existing LALR parser generators
if error productions are used.

Finally, the list of items

[S′ → $ • S$], [S → •AB],
[A→ •aA], [A→ a •A],
[A→ •aA], [A→ a •A]

STACK INPUT

1. $(q0, v2) aacbb$
2. $(q0, v2)(q1, v7) acbb$
3. $(q0, v2)(q1, v7)(q1, v7) cbb$

⇒ context returns
[S′ → $ • S$]

[S → •AB]
[A→ •aA]

[A→ a •A]
[A→ •aA]

[A→ a •A]
yielding viable suffix (AB$)R:

4. $(q0, v2)(q1, v7)(q1, v7)(q4, v8) bb$

Table 2: A trace of parsing with error recovery: erroneous
part of the input is discarded until b ∈ FIRST1(AB$) is
seen.

IMPROVED ERROR RECOVERY IN. . . Informatica 28 (2004) 257–263 263

STACK INPUT

1. $(q0, v2) aacbb$
2. $(q0, v2)(q1, v7) acbb$
3. $(q0, v2)(q1, v7)(q1, v7) cbb$

⇒ context returns
[S′ → $ • S$]

[S → •AB]
[A→ •aA]

[A→ a •A]
[A→ •aA]

[A→ a •A]
yielding viable suffix (AB$)R:

4. $(q0, v2)(q3, v3)(q7, v4) $

Table 3: A trace of parsing with error recovery: erroneous
part of the input is discarded until bb derived from B in
AB$ is reduced.

represents a particularly good starting point for printing
out helpful error messages because it provides the compiler
writer with the exact grammatical context within which the
error occurred.

6 Conclusion

The presented method works with both, canonical LR(k)
parsers as well as LA(k)LR(k′) parsers. The error recov-
ery routine does not slow down or influence the parser until
it encounters the first error, and it can be generated auto-
matically. Besides, it has two main benefits: (a) a com-
piler writer needs not add any additional productions to the
grammar and (b) it is a good starting point for meaningful
error reporting. However, the generation of parser is slower
and the generated parser is larger.

References

[1] A. V. Aho and J. D. Hopcroft. Introduction to Automata
Theory, Languages and Computation. Addison-
Wesley, 1979.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley se-
ries in Computer Science. Addison-Wesley, 1986.

[3] J. Levine, T. Mason, and D. Brown. Lex & Yacc.
O’Reilly & Associates, 1992.

[4] S. Sippu and E. Soisalon-Soininen. Parsing The-
ory, Volume I: Languages and Parsing, volume 15
of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1988.

[5] S. Sippu and E. Soisalon-Soininen. Parsing The-
ory, Volume II: LR(k) and LL(k) Parsing, volume 20
of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1990.

[6] B. Slivnik. Kombinacija Knuthovega in Lewis-
Stearnsovega sintaksnega analizatorja z minimalno
uporabo Knuthove analize. PhD thesis, University of
Ljubljana, Ljubljana, Slovenia, 2003.

264 Informatica 28 (2004) 257–263 B. Slivnik et al.

Informatica 28 (2004) 265–275 265

Informational Design of Conscious Entities

Anton P. Železnikar
Volaričeva ul. 8, Ljubljana, SI–1111
s51em@hamradio.si

Keywords: definitions, informational design, informational consciousness, informational methodology, metaphysicalistic
organization, thesaural approach

Received: June 8, 2003

Thesaural approach to entities’ metaphysicalistic organization is shown within the design of an informa-
tional consciousness system.

Besides phenomenal, psychological, biological, quantum-mechanical, artificial, and other possible def-
initions of consciousness, the informational consciousness (IC) is outlined as a major autonomous subsys-
tem necessary in any conscious system. It is impossible to imagine a kind of the beyond to the informational
phenomenalism in brain, nature, cosmos, and artifact. IC is founded formally by its own informational ax-
iomatism, formulas, formula systems, schemes, scheme systems, graphs, and other constructive means
and, within this theory and implementation possibilities, remains clearly scientifically disciplined. More
actually, IC systems can be designed by the proposed informational methodology and implemented within
existing complex computer systems and informational nets.

Povzetek: članek opisuje informacijsko zasnovo zavestnih entitet.

1 Definitions of different sorts of
consciousness

A precise and exhaustive definition of consciousness does
not exist at all. Definitions can emerge according to the
research of brain, mind, cognition, emotions, motivation,
and other ingredients of the consciousness complex. There
are loose attempts stating a few commonly accepted prin-
ciples within the concept of consciousness. Definitional
distinguishing among philosophical consciousness, artifi-
cial consciousness, phenomenal consciousness, psycho-
logical consciousness, biological consciousness, quantum-
mechanical consciousness, informational consciousness,
and other sorts of consciousness is possible.

Definitions of consciousness can substantially differ in
different languages. The philosophical background dic-
tates the inclination to such or another definition together
with different views of research and the emerging science
of consciousness. Let us make a short list of possible def-
initions explicitly concerning consciousness of such or an-
other sort. In a way, major consciousness components like
cognition and emotions should be incorporated in the rough
forms of definition.

Instead with definitions we start with the assumptions of
the following sort.

Assumption 1 From the research point of view different
sorts of consciousness can be distinguished:

InC: individual (human, animal) consciousness,
BC: biological consciousness,
PhC: phenomenal consciousness,
PhiC: philosophical consciousness (phenomenology),
PsC: psychological consciousness,

SC: social consciousness,
LC: local consciousness,
GC: global consciousness,
CC: cosmological consciousness,
QtC: quantum-theoretical consciousness,
AC: artificial consciousness,
IC: informational consciousness,
AIC: artificial informational consciousness, etc.

These sorts of consciousness represent the majority of con-
cepts known nowadays. �

Assumption 2 Consciousness concerns an object or a
complex of objects and emerges out of the subconscious or
unconscious background, being the possible informational
space. The substance of any sort of consciousness is infor-
mational and, within the informational, consciousness-like
components can emerge being organized consciously. �

This assumption does not deviate essentially from known
definitions of consciousness. As an exception the infor-
mational view of consciousness may be understood which,
however, seems to be evident.

Assumption 3 Consciousness is generally regarded to be
a conscious system with abilities or components represent-
ing conscious properties. One of the major system compo-
nents is self-awareness or self-consciousness, the ability to
perceive the component by itself. Perception as a conscious
component perceives the relation between component and
component environment. �

To repeat: Informational consciousness seems to be
the essential component or property of any consciousness
system. We experience how the phenomenal conscious-
ness the consciousness in the living human brain has its

266 Informatica 28 (2004) 265–275 A.P. Železnikar

evident informational roots, for instance, in pure linguistic
experience, where memory performs as an associative stor-
age of learned and experienced information. Phenomenol-
ogy in philosophy performs as a literary information and,
in this view, as informational phenomenology.

2 Informational consciousness
system

Instead of consciousness a more appropriate term will be
introduced, called conscious system. For a general deno-
tation of an informational formula system, symbol Φ will
be used. Conscious system is a formula system concerning
consciousness as a particular informational entity, denoted
by z. Thus, Φ	z
will symbolize the conscious system at the
first glance, not expressed informonically yet. In general, it
is adequate to use informational systems instead of proper-
ties like consciousness, subconsciousness, perception, cog-
nition, emotions, and so on. A conscious system can unite
such kind of subsystems organizationally. The system view
of informational entities approaches also the understand-
ing of informons and entropons as complex conscious and
subconscious entities representing the named informational
entities.

Assumption 4 Conscious system, denoted naively (prim-
itively) by Φ	z
, is a system of major subsystems, where
z stands for consciousness, that is, z � cconsciousness,
ssubconsciousness for subconsciousness, uunconsciousness for
unconsciousness, ccognition for cognition, eemotions for emo-
tions, mmotivation for motivation, hhomeostasis for homeosta-
sis, bbehavior for behavior, etc. Φ	z
 is meant to be a circu-
lar, component-distributed, serial-parallel system of com-
ponents, tied informationally by common operands. �

In the next step of theory development, the informonic
view has to be considered to explicate the complex and
holistic nature of a conscious system. An informon α al-
ways appears together with its adequately named entropon
α. They build the so-called α-informational space, denoted
by (α,α). Or, consequently, recursively,

α, α delivers (α,α);

(α, α), (α, α) delivers
(
(α, α), (α, α)

)
;(

(α, α), (α, α)
)
,
(
(α, α), (α, α)

)
delivers((

(α, α), (α, α)
)
,
(
(α, α), (α, α)

))
; . . .

This sort of informon-entropon recursion represents the
holistic informational propagation of α-meaning through
the informonic-entroponic consciousness system, being de-
fined by the next assumption.

Assumption 5 Consciousness system is an informonic-
entroponic organization, denoted complexly by Φ

⌈
(z, z)

⌉
.

Such a system connects in an informational way, through
common operands, the informonic-entroponic spaces(
z, z

)
and

(
αi,αi

)
in the form

Φ
⌈
(z, z)

⌉
�

⎛⎜⎜⎜⎝
(
z, z

)
;(

αi,αi

)
;

i = 1, 2, . . . , n;
n <∞

⎞⎟⎟⎟⎠
Relation n <∞means that n is potentially not limited and
rises with the informational development of the system. �

Spaces
(
z, z

)
and

(
αi,αi

)
are informationally connected

through common operands. Since each informon αi

is a conscious entity, on the primitive formula level,
αi�. . . , z, . . .� holds. On the informonic level, there is, cer-
tainly, αi

⌊
. . . , z, . . .

⌋
and, consequently, αi

⌊
. . . , z, . . .

⌋
.

3 Meaning of informational
operands

One of the central notions of the informational and the con-
scious is the meaning of informational entities. One sort of
understanding meaning comes from the use of natural lan-
guage. Meaning is nothing more than the use of language
within a community. In this way, meaning is the expression
in language as such. The expression means that something
comes to word where sequences of words appear.

Assumption 6 Meaning concerns operands occurring in a
formula, formula scheme and formula graph, and formula
system, system scheme and system graph. Meaning of an
operand is determined by the informational context with
other operands and operators in different informational ex-
pressions. Meaning is nothing else than the expression of
an operand, in a contextual or explicit way. �

In a formula ϕ
�
�

⌊
α1, α2, . . . , αi, . . . , αn

ϕ
�
�

⌋
, where � ∈

{→,←,�, (→,←)} and � ∈ {λ,�}, operand αi is ex-
pressed contextually, within the formula between other
operands. The scheme of this formula for � =→ is

S
⌈
ϕ

�
→

⌊
α1, α2, . . . , αi, . . . , αn

ϕ
�
→

⌋⌉
�(

α1 |= α2 |= . . . |= αi |= . . . |= αn
ϕ

�
→

[|= α1]
)

From this scheme we see how αi occurs in the context of
other operands. Within this context, it has a specific mean-
ing, so the conclusion can be made, what does it in fact
mean. Option [|= α1] in the scheme represents the circu-
lar case, where � =�. In a circular situation, operand αi

in the scheme can be rotated to the initial position of the
scheme, that is,

S	µ	αi

�(
αi |= . . . |= αn

ϕ
�
→
|= α1 |= α2 |= . . . |= αi

)

INFORMATIONAL DESIGN OF CONSCIOUS ENTITIES Informatica 28 (2004) 265–275 267

where µ � mmeaning. This kind of the scheme can be
grasped as an explicit circular definition, that is, the one
among parallel meaning schemes pertaining to operand
αi. The unambiguous meaning µ	αi
 can be obtained by
parenthesizing this scheme, for instance, by formula

µ	αi
� ϕ
�
1→

⌊
αi, . . . , αn

ϕ
�
→
, α1, α2, . . . , αi

⌋
Formally, the schematic result obtained by the operand ro-
tation procedure can be expressed directly, using the rota-
tion operand R concerning operand αi, in the form

S	µ	αi

�
R	αi

⌈
S
⌈
ϕ

�
→

⌊
α1, α2, . . . , αi, . . . , αn

ϕ
�
→

⌋⌉⌉
Meaning µ	αi
 is then a concrete parenthesizing of the
scheme, that is,

µ	αi
�
P
⌈
R	αi

⌈
S
⌈
ϕ

�
→

⌊
α1, α2, . . . , αi, . . . , αn

ϕ
�
→

⌋⌉⌉⌉
where P is the operator of parenthesizing.

A direct, serial, or linear meaning of an informational
operand α1 is given by a serial, non-circular formula in the
form ϕ�

⌊
α1, α2, . . . , αi, . . . , αnϕ→

⌋
putting

α1 � ϕ�

⌊
α1, α2, . . . , αi, . . . , αnϕ�

⌋
For getting the meaning of formula system Φ’s operand

αiji
, it would suffice to put at the relation

ϕ
�i

i�i

⌊
αiji

, . . . , αin
ϕ

�i
i�i

, αi1, αi2, . . . , αi−1

⌋
∈ Φ,

αiji
� Φ. It is understood that system formulas

ϕ
�1

1�1
, ϕ

�2

2�2
, . . . , ϕ

�i

i�i
, . . . , ϕ

�nΦ
nΦ�nΦ

∈ Φ

are mutually informationally connected (dependent, im-
pacted) through common operands. In this view the mean-
ing of αiji

becomes as complex as possible, expressed by
system formulas, interpreting its meaning in different pos-
sible, explicit and implicit ways.

4 How to make an informational
entity conscious?

By an informational entity the meaning is understood be-
longing to the explicitly expressed entity’s title, its name.
For instance, entity α has the name α and simultaneously
represents α’s meaning in the form of an informational
formula α � α�α1, α2, . . . , αi, . . . , αnα

�, schematized
by S	α
 � (α1 |= α2 |= . . . |= αi |= αnα

), where some
operands αi may equal to α. A complex meaning of α is

expressed by a formula system which could mean an ex-
plicit definition of operand α in the form

α �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α�α11, α12, . . . , α1i1 , . . . , α1n1� ;
α�α21, α22, . . . , α2i2 , . . . , α2n2� ;
...
α
⌊
αj1, αj2, . . . , αjij

, . . . , αjnj

⌋
;

...
α�αm1, αm2, . . . , αmim

, . . . , αmnm
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
schematized by

S	α
�⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 |= α12 |= . . . |= α1i1 |= . . . |= α1n1 ;
α21 |= α22 |= . . . |= α2i2 |= . . . |= α2n2 ;

...
αj1 |= αj2 |= . . . |= αjij

|= . . . |= αjnj
;

...
αm1 |= αm2 |= . . . |= αmim

|= . . . |= αmnm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where some operands αjij

may equal α. System formulas
α
⌊
αj1, αj2, . . . , αjij

, . . . , αjnjα

⌋
of the meaning system α

can be mutually connected also by other common operands
than α, where j = 1, 2, . . . ,m and ij = 1, 2, . . . , nj .

Assumption 7 An informational entity, named by α, be-
comes primitively conscious if it is informationally con-
nected with at least one conscious space

(
β,β

)
within a

consciousness system Φ
⌈(

z, z
)⌉

. The ability of conscious-
ness is granted to α transitively, via the conscious organi-
zation of informon β. Thus, entity α transits into informon
α and (α,α) ∈ Φ

⌈(
z, z

)⌉
. �

This kind of α’s conscious emergence does not need α’s
own metaphysicalistic organization. So, α cannot decide
autonomously upon its own conscious development and is,
in this respect, dependent on informational spaces of other
system operands.

Assumption 8 An informational entity, named by α, be-
comes properly conscious if it is organized in the sense of
initial informational metaphysicalism M

�‖
� 	α
 and, then,

complexly developed to the informonic-entroponic space
(α,α). Through metaphysicalism, informon α appro-
priates its own ability of consciousness, and the cor-
responding ability of subconsciousness, expressed entro-
ponically by α. This means that space (α,α) is com-
plexly connected to spaces

(
z, z

)
and

(
αi,αi

)
, con-

stituting the common consciousness system Φ
⌈(

z, z
)⌉

,
where (α,α),

(
z, z

)
,
(
αi,αi

)
∈ Φ

⌈(
z, z

)⌉
. Conscious-

ness space
(
z, z

)
is meant to be the central informonic-

entroponic space for the metaphysicalistically organized
informational entity z � cconsciousness. �

268 Informatica 28 (2004) 265–275 A.P. Železnikar

Informonic solution for operand α becomes, according
to the previous formula system, as complex as

α �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
⌊
α11,α12, . . . ,α1i1 , . . . ,α1n1

⌋
;

α
⌊
α21,α22, . . . ,α2i2 , . . . ,α2n2

⌋
;

...

α
⌊
αj1,αj2, . . . ,αjij

, . . . ,αjnj

⌋
;

...

α
⌊
αm1,αm2, . . . ,αmim

, . . . ,αmnm

⌋

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
5 Informational organization of a

language thesaurus

An exhaustive and adequately structured language the-
saurus is the key means at the design and implementation
of informational consciousness. It is a must for the design
of metaphysicalistically conceptualized artificial informa-
tional consciousness system (MCAICS) being the major
component of other possible concepts, theories, and imple-
mentations of consciousness systems.

In Fig. 1, the recursive graph of a more or less complete
thesaurus of a natural language is presented [1]. This graph
can be additionally meaningly refined according to the de-
sign needs, and shows, at the first glance, a linear or se-
rial, tree-like structure. However, the graph becomes circu-
lar as soon as, in a concrete case, the word (informational
operand) appears, being used in a previous (higher) knot
of the graph. Such a circular situation is regular and can
concern any headword in the dictionary.

Let us look a case from thesaurus [1] in which the head-
word attention is presented in the following way1:

attention n 1 a focusing of the mind on something <gave
the problem careful attention>
syn application, concentration, consideration, debate,
deliberation, heed, study
rel assiduity, diligence, industry, sedulity, sedulous-
ness; notice, observation, regard, remark; absorption,
engrossment, immersion, intentness
con absence, absentmindedness, abstraction, detach-
ment, remoteness, withdrawal; disinterest, indiffer-
ence, unconcern, unmindfulness
ant inattention
2 syn see NOTICE 1
rel awareness, consciousness, mindfulness, sensibil-
ity
con disregard, heedlessness, insensibility, unaware-
ness, unconsciousness

1The meaning of abbreviations, also in further examples, is the
following:

syn synonym(s) rel related word(s)
ant antonym(s) con contrasted word(s)
idiom idiomatic equivalent(s)
‖ use limited; if in doubt, see a dictionary

3 syn see COURTESY 1
rel deference, homage, honor, reverence, benignity;
considerateness, consideration, kindliness, solicitude
con neglect, negligence; aloofness, indifference,
unconcern; discourtesy

notice n 1 a noting of or concerning oneself with some-
thing <take notice of the gathering clouds>
syn attention, cognizance, ear, head, mark
‖ mind, note, observance, observation, regard, remark
rel care, concern, consideration, thought; apprehen-
sion, grasp, understanding
con disinterest, disregard, indifference, uncon-
cern; carelessness, heedlessness, unmindfulness; in-
souciance, negligence, recklessness
2 syn see MEMORANDUM 2
3 syn see CRITICISM 1

Etc. One sees how by the use of thesaurus the meaning of
the headword attention expands in a positive and negative
sense. However, a thesaurus includes also other words used
in the subscript language of informational operands and in-
formational operators (verbs, adjectives, prepositions, etc.)
Between two subscribed operands, an appropriately sub-
scribed operator must be chosen, meaningly corresponding
to the context in which operands and operators occur. Thus,
verbs or verbal phrases can be searched in a thesaurus too.

6 Where does a thesaurus meet
informational metaphysicalism?

A thesaurus must not be understood as a headword-
synonym dictionary but rather a much more complex in-
terpretation of the headword meaning also in a contrasted,
idiomatic, and other possibilities of positively and nega-
tively related word meaning, concerning the headword [1].
In such a dictionary, synonyms, antonyms, related words,
contrasted words, idiomatic equivalents, and other mean-
ingly relevant words and phrases to a headword can be
searched. Then, in the second step of searching, again, all
these categories of words and phrases can be searched to a
found synonym, antonym, related word, contrasted word,
idiomatic equivalent, and other meaningly relevant word
and phrase. This technique of the initial headword identifi-
cation within a broader meaning can expand as deep as nec-
essary, offering the sufficient informational complexity of
the headword interpretation by sentences, concerning the
searched thesaural entities. To this pure thesaural identi-
fication of a headword, sentences can be constructed, ex-
plaining or defining the headword meaning. In this way, a
complex meaning of the headword can emerge expressing
what the headword represents informationally in a context
and what it does not represent at all.

A thesaurally represented headword α can come close to
the concept of metaphysicalistic decomposition M

�‖
� con-

cerning the headword α, that is, M
�‖
� 	α
. Informational

INFORMATIONAL DESIGN OF CONSCIOUS ENTITIES Informatica 28 (2004) 265–275 269

Headword in thesaurus (name, title, naming of informon and entropon)

Synonyms��� Antonyms Related
words���

Contrasted
words���

Idiomatic
equivalents���

Other rele-
vant head-
words���

Synonyms��� Antonyms��� Related
words���

Contrasted
words���

Idiomatic
equivalents���

Other rele-
vant head-
words���

Figure 1: Recursive organization of thesaurus [1] for the design of thesaural-metaphysicalistic structure developing
informon. Such a thesaurus is a must in conceptualizing and design of informational consciousness.

metaphysicalism is organized as informing, counterinform-
ing, and informational embedding concerning an informa-
tional entity, in this case, the headword. Thesaural identifi-
cation of a headword is structured

– by its synonyms and meaningly related words a kind
of positive identification in the sense of metaphysical-
istic informing,

– by its antonyms and meaningly contrasted words a
kind of negative identification in the sense of meta-
physicalistic counterinforming, and

– by a kind of meaningly idiomatic identification (an
equalization) in the sense of metaphysicalistic infor-
mational embedding (fixing the meaning).

Informational embedding can be grasped also as a kind of
decision making upon the meaning, resulting from meta-
physicalistic informing and counterinforming of the head-
word. To the metaphysicalistic-thesaural model belongs
also the determination of concrete operators figuring in
the metaphysicalistic organization which subscripts can be
chosen by means of the thesaurus. The operand-operator
identification in a metaphysicalistic model can be effi-
ciently meaningly covered by words and word phrases ob-
tained by the use of a thesaurus. Thesaural approach is in
fact a complex approach to the problem of meaning con-
cerning a headword and its identification up to the possible
details of meaning or interpretation.

For each informational entity intending to inform in a
conscious way, it is necessary to know what consciousness
does mean in the most possible complex way of meaning
expression. Therefore, the meaning of the concept “con-
sciousness” must be developed in an informationally com-
plex manner. What is needed is the informon cconsciousness,
represented by its informational synonym z, and deter-
mined by the possible, informationally most complex form,

from the thesaural point of view. Further, within the meta-
physicalistic model of an operand α, one has to distinguish
meaningly relatively closely positioned operands, like in-
forming Iα and to it corresponding informational entity iα,
counterinforming Cα and to it corresponding counterinfor-
mational entity cα, and informational embedding Eα and
to it corresponding informational embedding entity eα. In-
formational embedding is a kind of decision making in the
understanding of that which results from metaphysicalistic
informing and the corresponding counterinforming within
systemically organized entity’s metaphysicalism.

Let us show an experiment made on the basis of Tab. 1,
where metaphysicalistic components are listed both in the
sense of thesaural contents and metaphysicalistic meaning
(semantics). The table proceeds from name α, being the in-
formational identifier of metaphysicalistic decomposition
in the left-most column. The following columns represent
metaphysicalistic informing Iα (second column), meta-
physicalistic informational entity iα (third column), meta-
physicalistic counterinforming Cα (fourth column), meta-
physicalistic counterinformational entity cα (fifth column),
metaphysicalistic informational embedding Eα (sixth col-
umn), and metaphysicalistic informational embedding en-
tity eα (seventh column). All of the columns include meta-
physicalistically appropriate, thesaural, and intentional
contents, dedicated for the future development of meta-
physicalistic organization, up to the complex informonic
and entroponic perplexity of occurring operands. Thus, the
table becomes a significant reminder for the metaphysical-
istic decomposition of the named operand α.

In the upper part of the table, the first column deals
with the named operand, being for instance a noun or a
noun phrase in a thesaurus, dictionary, or encyclopedia.
The named operand will appear as a headword, idiom, or
otherwise related word in thesaurus. After a time of de-

270 Informatica 28 (2004) 265–275 A.P. Železnikar

N
am

e
α

;
M

et
ap

hy
si

ca
lis

tic
M

et
ap

hy
si

ca
lis

tic
M

et
ap

hy
si

ca
lis

tic
M

et
ap

hy
si

ca
lis

tic
M

et
ap

hy
si

ca
lis

tic
M

et
ap

hy
si

ca
lis

tic
In

fo
rm

at
io

na
l

in
fo

rm
in

g
I

α
in

fo
rm

at
io

na
l

co
un

te
rin

fo
rm

in
g

co
un

te
rin

fo
rm

a-
in

fo
rm

at
io

na
le

m
-

in
fo

rm
at

io
na

le
m

-
id

en
tifi

er
en

tit
y

i α
C

α
tio

na
le

nt
ity

c α
be

dd
in

g
E

α
be

dd
in

g
en

tit
y

e α

N
ou

n;
α

-in
te

nt
io

na
li

n-
α

-in
te

nt
io

na
le

n-
α

-c
ou

nt
er

in
te

n-
α

-c
ou

nt
er

in
te

n-
In

fo
rm

in
g

of
α

-in
te

n-
α

-in
te

nt
io

na
le

m
be

d-
N

ou
n

ph
ra

se
fo

rm
in

g
tit

y
tio

na
li

nf
or

m
in

g
tio

na
le

nt
ity

tio
na

le
m

be
dd

in
g

di
ng

en
tit

y

N
ou

n
he

ad
-

P
ar

tic
ip

le
s

co
rr

e-
N

ou
n

sy
no

ny
m

s;
P

ar
tic

ip
le

s
co

rr
e-

A
nt

on
ym

s;
In

fo
rm

in
g

of
un

de
r-

U
nd

er
st

an
di

ng
of

w
or

d
in

a
sp

on
di

ng
to

R
el

at
ed

no
un

s;
sp

on
di

ng
to

C
on

tr
as

te
d

w
or

ds
;

st
an

di
ng

,t
o

it
co

r-
sy

no
ny

m
s,

an
to

ny
m

s,
th

es
au

ru
s;

na
m

e
sy

no
ny

m
s,

S
yn

on
ym

s
of

α
-

an
d

i α
-a

nt
o-

S
yn

on
ym

s
of

re
la

te
d

he
ad

w
or

ds
sy

no
ny

m
s

of
sy

no
-

Id
io

m
at

ic
al

ly
na

m
e

re
la

te
d

no
un

sy
no

ny
m

s;
ny

m
s,

sy
no

ny
m

s
an

to
ny

m
s;

as
pa

rt
ic

ip
le

s;
ny

m
s

an
d

an
to

ny
m

s,
na

m
ed

he
ad

w
or

ds
,

Id
io

m
s

in
a

of
an

to
ny

m
s,

an
d

Id
io

m
at

ic
G

en
er

at
in

g
m

ea
n-

an
to

ny
m

s
of

sy
no

-
en

tit
y;

na
m

e-
id

io
m

at
ic

th
es

au
ru

s;
an

to
ny

m
s

of
op

po
si

tio
n;

in
g

co
rr

es
sp

on
d-

ny
m

s
an

d
an

to
ny

m
s,

A
ss

oc
ia

tiv
el

y,
m

ea
ni

ng
;

In
te

nt
io

na
lly

sy
no

ny
m

s,
to

re
-

C
ou

nt
er

in
te

nt
io

n-
in

g
to

na
m

e
α

,
an

d
en

tit
ie

s
re

la
te

d
ot

he
rw

is
e

in
-

S
yn

on
ym

iz
in

g
na

m
e-

re
la

te
d

la
te

d
he

ad
w

or
ds

al
ly

na
m

e-
re

la
t-

µ
�α

�,
its

in
te

nt
io

n
to

th
em

,i
n

di
ffe

re
nt

fo
rm

at
io

na
lly

na
m

e-
re

la
te

d
w

or
ds

an
d

an
d

id
io

m
s

co
n-

ed
w

or
ds

an
d

i α
,µ

�i α
�,

an
d

its
po

ss
ib

le
w

ay
s,

an
d

re
la

te
d

he
ad

-
co

nc
ep

ts
;

co
nc

ep
ts

;
ce

rn
in

g
th

em
;

co
nc

ep
ts

;
co

un
te

rin
te

nt
io

n
re

cu
rs

iv
el

y
to

ar
bi

-
w

or
ds

in
a

α
-in

te
nt

io
na

l
α

-in
te

nt
io

na
l

α
-c

ou
nt

er
in

te
n-

α
-c

ou
nt

er
in

te
n-

c α
,µ

�c α
�;

tr
ar

y
de

pt
hs

;
th

es
au

ru
s;

in
fo

rm
on

ic
an

d
in

fo
rm

on
s’

an
d

tio
na

le
nt

ro
po

ni
c

tio
na

li
nf

or
m

on
s’

α
-in

te
nt

io
na

lm
ea

n-
R

es
ul

tin
g

in
fo

rm
on

ic
α

-n
am

ed
en

tr
op

on
ic

en
tr

op
on

s’
an

d
in

fo
rm

on
ic

an
d

en
tr

op
on

s’
in

g,
em

be
dd

in
g

in
-

m
ea

ni
ng

of
th

e
in

fo
rm

on
;

in
fo

rm
in

g;
en

vi
ro

nm
en

t;
in

fo
rm

in
g;

en
vi

ro
nm

en
t;

fo
rm

on
ic

in
fo

rm
in

g;
α

-n
am

ed
en

tit
y;

..
.

..
.

..
.

..
.

..
.

..
.

..
.

C
on

sc
io

us
-

C
on

sc
io

us
ne

ss
C

on
sc

io
us

ne
ss

C
on

sc
io

us
ne

ss
C

on
sc

io
us

ne
ss

C
on

sc
io

us
ne

ss
in

te
n-

C
on

sc
io

us
ne

ss
in

te
n-

ne
ss

,z
�

in
te

nd
in

g
I

z
;

in
te

nt
io

n
i z

;
co

un
te

rin
te

di
ng

;
co

un
te

rin
te

nt
io

n;
tio

na
le

m
be

dd
in

g,
tio

na
le

m
be

dm
en

t,
c c

on
sc

io
us

ne
ss

;
In

te
nd

in
g

to
be

In
te

nt
io

n
to

be
C

ou
nt

er
in

te
nd

in
g

to
C

ou
nt

er
in

te
nt

io
n

to
co

ns
tit

ut
io

na
liz

in
g

co
ns

tit
ut

in
g

m
ea

ni
ng

-
In

fo
rm

on
z

co
ns

ci
ou

s,
I

z
co

ns
ci

ou
s,

i z
be

co
ns

ci
ou

s,
C

z
be

co
ns

ci
ou

s,
c z

to
be

co
ns

ci
ou

s,
E

z
ly

to
be

co
ns

ci
ou

s,
e z

A
w

ar
en

es
s;

B
ei

ng
co

ns
ci

ou
s;

C
on

sc
io

us
ne

ss
;

B
ei

ng
su

bc
on

-
S

ub
co

ns
ci

ou
sn

es
s,

C
on

sc
io

us
em

be
dd

in
g;

C
on

sc
io

us
em

be
dm

en
t;

S
el

f-
co

n-
B

ei
ng

aw
ar

e,
aw

-
A

w
ar

en
es

s,
aw

ak
-

sc
io

us
,u

na
w

ar
e,

un
aw

ar
en

es
s,

C
og

ni
zi

ng
;

C
og

ni
tio

n;
sc

io
us

ne
ss

;
ke

,c
og

ni
za

nt
,

en
es

s,
co

gn
iz

a-
ig

no
ra

nt
,i

ns
en

-
in

se
ns

ib
ili

ty
,

E
m

ot
io

na
liz

in
g;

E
m

ot
io

ns
;

M
in

d;
se

ns
ib

le
,a

liv
e;

nc
e,

se
ns

ib
ili

ty
;

si
bl

e,
un

al
iv

e;
un

aw
ak

en
ed

ne
ss

;
A

tte
nd

in
g;

A
tte

nt
io

n;
In

te
lle

ct
;

P
er

ce
iv

in
g;

P
er

ce
pt

io
n;

M
is

pe
rc

ei
vi

ng
;

M
is

pe
rc

ep
tio

n;
B

ei
ng

in
te

lli
ge

nt
;

In
te

lli
ge

nc
e;

In
te

lli
ge

nc
e;

C
og

ni
zi

ng
;

C
og

ni
tio

n;
D

og
m

at
iz

in
g;

D
og

m
at

is
m

;
M

ot
iv

at
in

g;
M

ot
iv

at
io

n:
M

en
ta

lit
y;

A
pp

re
he

nd
in

g;
A

pp
re

he
ns

io
n;

M
is

ap
pr

eh
en

di
ng

;
M

is
ap

pr
eh

en
si

on
;

B
ei

ng
ho

m
eo

st
at

ic
;

H
om

eo
st

as
is

;
A

ffe
ct

s;
R

at
io

na
liz

in
g;

R
at

io
na

lis
m

;
D

is
re

ga
rd

in
g;

D
is

re
ga

rd
;

B
eh

av
in

g;
B

eh
av

io
r;

D
is

po
si

tio
n;

O
bs

er
vi

ng
;

O
bs

er
va

tio
n;

Ig
no

rin
g;

Ig
no

ra
nc

e;
R

ec
og

ni
zi

ng
;

R
ec

og
ni

tio
n;

Te
m

pe
r;

C
on

tr
ol

lin
g

C
on

tr
ol

of
D

iv
er

si
fy

in
g

D
iv

er
si

ty
of

O
bs

er
vi

ng
;

O
bs

er
va

tio
n;

O
pi

ni
on

;
th

ou
gh

t;
th

ou
gh

t;
th

ou
gh

t;
th

ou
gh

t;
C

on
ce

nt
ra

tin
g;

C
on

ce
nt

ra
tio

n;
P

er
so

na
lit

y;
M

ar
ki

ng
by

T
he

th
ou

gh
t-

,
M

ak
in

g
ob

sc
ur

e
T

he
th

ou
gh

t-
,

E
xa

m
in

in
g;

E
xa

m
in

at
io

n
S

pi
rit

;
th

ou
gh

t,
w

ill
,

w
ill

-,
m

in
d-

.
by

th
ou

gh
t,

w
ill

,
w

ill
-,

m
in

d-
.

In
fe

rr
in

g;
In

fe
re

nc
e;

R
ea

so
n;

m
in

d,
de

si
gn

;
de

si
gn

-m
ar

ke
d:

m
in

d,
de

si
gn

;
de

si
gn

-o
bs

cu
re

d:
C

om
pr

eh
en

di
ng

;
C

om
pr

eh
en

si
on

;
A

tm
os

ph
er

e;
C

on
ce

iv
in

g;
C

on
ce

pt
s;

M
is

co
nc

ei
vi

ng
;

M
is

co
nc

ep
tio

n;
C

on
ce

pt
ua

liz
in

g;
C

on
ce

pt
s;

In
tu

iti
on

;
In

no
va

tin
g;

In
no

va
tio

n;
S

ch
ol

as
tic

iz
in

g;
S

ch
ol

as
tic

is
m

;
D

es
ig

ni
ng

;
D

es
ig

n;
..

.
..

.
..

.
..

.
..

.
..

.
..

.

Table 1: A rough thesaural expansion of metaphysicalistic operand α, in the upper part of the table, interpreted by an
example of consciousness z, in the lower part of the table.

INFORMATIONAL DESIGN OF CONSCIOUS ENTITIES Informatica 28 (2004) 265–275 271

velopment by decomposition, the initially named operand
α will result into informon α, becoming a conscious en-
tity through its complexity and informational perplexed-
ness with other conscious entities, that is, through infor-
mons of a conscious system.

In the next six columns (2–7), the α-intentional and
α-counterintentional (positively and negatively α-related)
subjects come into the decompositional foreground. They
mean that informing, counterinforming, and informational
embedding of entities must follow the α-intentional and α-
counterintentional platform, respectively. That concerns a
definition process of the α-named operand, that is, what it
is or what it represent, and what it is not or what it does not
represent.

In the second column of the upper table part, metaphys-
icalistic informing Iα as an α-intentional component is
treated. It is expressed as participles corresponding to α-
synonyms, α-related headwords, α-idioms meanings in a
thesaurus, for instance. In this way, α-related concepts
can be synonymized. This kind of intentional inform-
ing results gradually into α-informonic and α-entroponic
components, building up the informational space of α-
informing.

Consequently, the third column of the upper table deals
with metaphysicalistic informational entity iα, through
which the most substantial α-intentional platform is emerg-
ing. This happens intentionally by the inclusion of α-
synonyms and whichever α-related concepts into the or-
ganization of iα, that is, in entity’s informational context.
Gradually, such a gathering of α-intentional concepts leads
to emerging of α-informon and α-entropon with α-specific
intention.

Counterinforming in columns four and five is being char-
acterized by an opposing informing to the α-intentional in-
forming, searching for contraries and contrasts, also nega-
tions in regard to α-positive meaning. α-counterinforming
brings in the foreground the possibility to say what
does α-entity not mean, that is, its anti-definition. By
this, the domain of meaning for an entity can be ex-
pressed in a negative way of α-understanding and α-
interpretation. α-conterinforming is on the way to produce
such an α-negative domain of meaning in the form of α-
conterinformational entity cα in column five.

In the fourth column of the upper part of the table, meta-
physicalistic conterinforming Cα as an α-counterintending
component comes into the scope of discussion as an α-
counterintending entity. The informing of this specific
component dictates the searching and including of par-
ticiples corresponding to α- and iα-antonyms, α- and iα-
synonyms of antonyms, and α- and iα-antonyms of syn-
onyms to related headwords and idioms concerning them.
Through complex counterinforming, α-counterinforming
informons and entropons can come into informational ex-
istence, spreading the negative or opposing meaning of
operand α.

The fifth column of the upper part of the table deals with
conterinformational entity cα as an α-counterintentional

component emerging as a consequence of otherwise infor-
mationally involved entities of the system. Here, the α-
counterintentional nature comes to the informational sur-
face. α-antonyms, α-contrasted words, and synonyms of
α-antonyms pervade in entity’s organization. α-idiomatic
opposition comes into interpretation of operand α within
the formula system represented by cα. Counterintention-
ally α-related words, word phrases, sentences, paragraphs,
and concepts come into the informational texture of cα.
This kind of phenomenalism results in cα-informons and
cα-entropons (cα, cα, and others) constituting the counter-
informational space of α.

Informational embedding filters, modulates, and unites
α-intentionally the meaning of α-informing and α-
counterinforming and performs as a kind of understand-
ing of the α-named operand in a complex informational
environment. By informational embedding, metaphysical-
istic components inform as characteristic, initially deter-
mined components of a conscious system, following the
cognitive-emotional paradigm together with other possi-
ble conscious constituents. The embedding entity is an α-
intentional summary expressing positively and negatively
informational properties of name α, that is, its meaning.

In the sixth column of the upper part of the table,
dealing with metaphysicalistic α-informational embedding
Eα, participles corresponding to the field of understand-
ing and interpretation, and to them correlated headwords or
phrases, are considered. Here, the summarized α-meaning
µ	α
 is being generated, taken into account both the α-
intentional and α-counterintentional meaning, µ	iα
 and
µ	cα
, respectively. In the form of informing of em-
bedding, the informonic α-intentional meaning is coming
into existence together with accompanying entropons of in-
volved entities.

In the last, seventh column of the upper part of the ta-
ble, metaphysicalistic informational embedding entity eα

is confronted with the α-intentional embedment of com-
ponents resulting during the informing of α-intentionally
and α-counterintentionally oriented informational environ-
ment. Here, different forms (formulas, formula systems
corresponding to sentences, paragraphs, etc., respectively)
of terminal understanding of synonyms, antonyms, syn-
onyms of synonyms and antonyms, antonyms of synonyms
and antonyms, entities related to all of them come into in-
formational existence, recursively (circularly) to arbitrary
depth of meaning. The result is the generated α-informonic
and α-entroponic meaning of the α-named entity in the
left-most column of the table.

The lower, concrete part of Tab. 1, can be called the the-
saurus constructed for the headword “consciousness”, as
needed in the design of initial and, later, informonic meta-
physicalistic organization, z, in Fig. 2. The first step can
be made by the use of an existing thesaurus (for instance,
[1]) or dictionary, where some word meaning can be found.
More adequate or professional approach is considering the
cognitive-emotional paradigm in the informational study
and design of conscious entities, using concepts and cat-

272 Informatica 28 (2004) 265–275 A.P. Železnikar

�
��

�

�

�

aawareness,
sself-consciousness,
mmind,
iintellect,
iintelligence,

mmentality,

aaffects,

ddisposition,

ttemper,

oopinion,

ppersonality,

sspirit,

rreason,
aatmosphere,

iintuition,���

�

�

�

�

bbeing_conscious,

bbeing_aware, _awake,
bbeing_cognizant,

bbeing_sensible, alive,
pperceiving,

ccognizing,
aapprehending,

rrationalizing,

oobserving,

ddirecting_thought,
ccontrolling_thought,

mmarking_by_thought, will,

mmarking_by_mind,

mmarking_by_design,
cconceiving,

iinnovating,���
�
�

�
��

�

�

�

cconsciousness,
aawareness, awakeness,
ccognizance,
ssensibility, aliveness,

pperception,

ccognition,

aapprehension,

rrationalism,
oobservation,

ddirection_of_thought,
ccontrol_of_thought,
mthe_thought-, will-marked,

mthe_mind-marked,
mthe_design-marked,

cconcepts,

iinnovation,���

�

�

�

�

bbeing_subconscious,

bbeing_unaware, _unawakened,
bbeing_ignorant,

bbeing_insensible, _unalive,
mmisperceiving,

ddogmatizing,
mmisapprehending,

ddisregarding,

iignoring,

ddiversifying_thought,
mmarking_obscure_by_thought,

mmarking_obscure_by_will,

mmarking_obscure_by_mind,

mmarking_obscure_by_design,
mmisconceiving,

sscholasticizing,���
�
�

�
��

�

�

�

ssubconsciousness,
uunawareness, unawakenedness,
iignorance,

iinsensibility, unaliveness,
mmisperception,

ddogmatism,
mmisapprehension,

ddisregard,

iignorance,

ddiversity_of_thought,
othe_obscured_by_thought,
othe_obscured_by_will,

othe_obscured_by_mind,
othe_obscured_by_design,

mmisconception,
sscholasticism,���

�

�

�

�

cconscious_embedding,
ccognizing,
eemotionalizing,
aattending,

ibeing_intelligent,

mmotivating,

bbeing_homeostatic,

bbehaving,
rrecognizing,

oobserving,
cconcentrating,

eexamining,

iinferring,

ccomprehending,
cconceptualizing,

ddesigning,���
�
�

�
��

�

�

�

cconscious_embedment,
ccognition,
eemotions,
aattention,
iintelligence,

mmotivation,

hhomeostasis,

bbehavior,
rrecognition,

oobservation,
cconcentration,

eexamination,
iinference,
ccomprehension,
cconcepts,

ddesign,���
�

�
�

�
�

�
	z �

�

�

�
�

�
	Iz ��

�

��
�

�
	iz �

�

�

�
�

�
	Cz ��

�

��
�

�
	cz ��

�

�

�
�

�
	Ez ��

�

��
�

�
	ez�

Figure 2: Informational formalization of the lower part of Tab. 1, representing the graph of consciousness z and its components in

informonic form, showing how entity z becomes conscious. As seen from the graph, initial metaphysicalistic decomposition M
�‖
→ �z�

grows into the corresponding informonic complex.

alogs of cognitive and emotional components, as shown
elsewhere [2, 4, 7, 9].

Some of hints to the meaning of “consciousness” can be

identified as

consciousness (in [6]) n 1 a : the quality or state of being

INFORMATIONAL DESIGN OF CONSCIOUS ENTITIES Informatica 28 (2004) 265–275 273

aware esp. of something within oneself b : the state
or fact of being conscious of an external object, state,
or fact c : AWARENESS; esp : concern for some social
or political case 2 : the state of being characterized by
sensation, emotion, volition, and thought : MIND 3 :
the totality of conscious states of an individual 4 : the
normal state of conscious life 5 : the upper level of
mental life of which the person is aware as contrasted
with unconscious processes

aware (in [1]) adj marked by realization, perception, or
knowledge often of something not generally realized,
perceived, or known <aware of her own inner
weakness>
syn alive, apprehensive, au courant, awake, cognizant,
conscious, conversant, knowing, mindful, sensible,
sentient, ware, witting
rel acquainted, appraised, informed; alert, heedful;
impressionable, perceptive, receptive
con anesthetic, impassible, insensible, insensitive;
ignorant, unknowing
ant unaware

conscious adj 1 syn see AWARE

rel noticing, noting, observing, perceiving, remark-
ing; vigilant, watchful
con forgetful, oblivious, unmindful; disregarding, ig-
noring, overlooking
ant unconscious
2 syn see SELF-CONSCIOUS

From nouns, adjectives, verbs, etc. in dictionaries and
thesauri adequate operand names for metaphysicalistic
operands can be chosen as shown in Tab. 1 and Fig. 2. En-
tering into recursive depth of dictionaries and thesauri, the
complexity of operands and their mutual connection can
rise up to the required degree and precision of concrete
operand meanings.

The metaphysicalistic organization of operand z, that is,
of cconsciousness, in the graph of Fig. 2, is informonized, that
is, complexly informationally interweaved within a con-
scious system Φ

⌈
(z, z)

⌉
discussed in Assumption 5. For

the initial metaphysicalistic organization, the serial decom-
position M

�‖
→ 	z
was taken and, then, informonically orga-

nized according to the operand suggestions in Tab. 1.

On the other hand, nothing was determined on the level
of graph operators, which in the same way as operands can
be determined by adequate subscripts fitting the operator
position between concrete operands. Namely, the general
operator |=, as an informational joker, can be in principle
put between arbitrary operands. However, in a concrete sit-
uation, the operator is subscribed according to the used nat-
ural language, expressing a verb or a verbal phrase (in the
last case by an operator composition, e.g., as the operator
composition in α |=α ◦ |=β β).

7 Methodology of the design of
informational consciousness

In the preceding section several possible and essential
methods of designing informational consciousness have
been demonstrated. Systematically, the methods can be for-
mulated as follows.

Method 1 [The naive expansion of consciousness.] The
most general, in fact, non-structural or naive way of mak-
ing an informational entity α conscious is to include it in
an existing conscious system Φ

⌈
(z, z)

⌉
informonically, that

is, α ∈ Φ
⌈
(z, z)

⌉
, connecting it to informonic operands of

system Φ
⌈
(z, z)

⌉
through common operands. �

This method needs additional explanation. Operand α, un-
derstood as a formula or formula system, is so far a rough
informational entity determined as a usual informational
formula (also as a single operand) or informational formula
system. As such, it has not the property of being con-
scious, but is an unconscious entity yet. Such a case can
happen in reading a sentence in a foreign language. Then,
the unknown operands can be linked to the known trans-
lated operands and the similar is done with unknown op-
erators. Thus, the sentence becomes linked to already con-
scious (common, that is, translated) operands in the context
of meaningly known entities. The sentence becomes under-
standable, that is consciously perceivable.

The second method intends to give a future conscious
entity a primordial organization for the development into
a proper self-content conscious informational entity, pro-
ceeding from the initial, thesaurally-metaphysicalistically
organized structure. This method puts in the foreground
the beginning of the design of an informational conscious-
ness system when at least some key components must be
developed first to the level of conscious informational be-
havior. One of such entities is without doubt the complex
meaning of the headword ‘consciousness’.

Method 2 [The thesaural-metaphysicalistic expansion
of consciousness.] A headword, h � hheadword, of a com-
plete informational thesaurus, denoted by tthesaurus, with
h ∈ tthesaurus, is made conscious by its informonic expan-
sion h through a consequent recursive use of tthesaurus in
a metaphysicalistic way, that is, proceeding from the ini-
tial decomposition M

�‖
� 	h
 to the informonic organization

M
�‖
�

⌈
h
⌉
, building up the informational space

(
h,h

)
�(

M
�‖
�

⌈
h
⌉
,M�‖

�

⌈
h
⌉)

. �

What would the entroponic decomposition of entropon h,

M
�‖
�

⌈
h
⌉

, and the informonic decomposition of entropon

h, M
�‖
�

⌈
h
⌉

, mean at all? As already shown in Sect. 2,(
M

�‖
�

⌈
h
⌉
,M�‖

�

⌈
h
⌉)

delivers((
M

�‖
�

⌈
h
⌉
, M

�‖
�

⌈
h
⌉)
,
(
M

�‖
�

⌈
h
⌉
, M

�‖
�

⌈
h
⌉))

274 Informatica 28 (2004) 265–275 A.P. Železnikar

as recursive expansion, to which the pointed-out entroponic
decomposition of entropon and informonic decomposition
of entropon do not belong. In a general case of operand α,

– entropon of entropon, an up to now not discussed en-
tity α or, more precisely, (α), could mean entropon α
developing (emerging, coming into unconsciousness,
expanding it) in an entroponic way, and

– informon of entropon is an up to now not discussed
entity α, understood ambiguously as both (α) and

(α); (α) could mean entropon α developing (emerg-
ing, coming into consciousness in the very moment)
informonically, and (α) could mean informon α en-
troponizing in the very moment.

Thus, decomposition M
�‖
�

⌈
h
⌉

means entropon h, which

fragments in this very moment come into consciousness

in a metaphysicalistic way, and decomposition M
�‖
�

⌈
h
⌉

,

which fragments in this very moment emerge uncon-
sciously, that is, entroponically, in a metaphysicalistic way.

Consequence 1 [Determination of operator subscripts
by means of a thesaural-metaphysicalistic approach.]
By the choice of headwords or headword phrases, denoted
by h1 and h2, where h1, h2 ∈ tthesaurus, the operator sub-
script (verb or verb phrase) for |=subscript ∈ tthesaurus, in
a basic or complex (interiorly parenthesized h1- and h2-
transition h1 |=subscript h2), depends on meaningly con-
text determined circumstances, where operator |=subscript

must fit the operator composition |=h1-subscript_dependent

◦ |=h2-subscript_dependent, that is,

(h1 |=subscript h2) �
(h1 |=h1-subscript_dependent ◦ |=h2-subscript_dependent h2)

Operator subscript dependence is a matter of meaning
within the natural language context, that is, the use of lan-
guage. �

In Fig. 2, all the paths of the graph, representing opera-
tors, are informational jokers |=, with the general meaning
of the verb “to inform”. They are not subscribed yet. For
instance, the operator of informational concern |=Ψ could
be used in many cases. However, more specific operators
from the thesaurus, appearing in headword definitions, can
be chosen, e.g., |=be_conscious, |=be_aware, |=be_unconscious,
|=conceive, |=perceive, |=understand, |=intend, etc.

8 Conclusion

The design of a thesaurus belongs to the hard problems of
linguistic study, being an innovative effort in the direction
of a deeper understanding of language, of enlarging and
spreading the word and phrase meaning.

It is important to comment where the informational ap-
proach to conscious agents could meet the Computing Re-
search Repository (ACM) as an innovative research the-
ory and practice on the way to informational conscious-
ness. This paper shows how the subject concerns nat-
ural language processing [Computation and Language],
combinatorics and graph theory [Discrete Mathematics],
indexing (naming), dictionaries (thesauri), retrieval, con-
tent and analysis (meaning) [Information Retrieval], mul-
tiagent systems (informons), distributed artificial intelli-
gence, intelligent agents, coordinated interactions, and
practical applications [Multiagent Systems], connection-
ism and adaptive behavior [Neural and Evolutionary Com-
putation], other not listed subject areas (consciousness)
[Other], and robotics in the sense of informational con-
sciousness [Robotics] [5]. Informational consciousness
directly concerns cognitive psychology, cognitive science
[2, 4], linguistics, and the philosophy of information [3]
and mind.

This paper and [8] show how in English and German,
respectively, it is possible to begin the design and program-
ming of informational consciousness system by the use of
language thesaurus. It becomes evident that particular the-
sauri have to be constructed concerning the consciousness
related terms of a natural language. The process of transla-
tion could be hidden behind a bit more complex organiza-
tion of informational conscious system: in the first phase,
the first natural language is translated into the first (sub-
scribed) informational language. In the second phase, the
mapping of the first informational language into the second
informational language takes place. This mapping can be
determined in advance by approved rules between two lan-
guages. In the third phase, the obtained result in the second
informational language is translated into the second natural
language.

References

[1] THE MERRIAM-WEBSTER CONCISE SCHOOL AND

OFFICE THESAURUS. 1991. Merriam-Webster Inc.,
Publishers. Springfield, MA.

[2] DALGLEISH, T. & M. POWER, EDS. 2000. Handbook
of Cognition and Emotion. John Wiley & Sons. Chich-
ester, England.

[3] FLORIDI, L., Ed. 2003/2004. The philosophy of infor-
mation. Minds and Machines 13:459–588/14:1–132.

[4] LEWIS, M. & J.M. HAVILAND-JONES, Eds. 2000.
Handbook of Emotions. Second Edition. The Guilford
Press. New York, London.

[5] MORAVEC, H. 1999. Robot. Mere Machine to Tran-
scendent Mind. Oxford University Press. New York.

[6] WEBSTER’S NINTH NEW COLLEGIATE DICTIO-
NARY 1986. Merriam-Webster, Inc. Springfield, MA.

INFORMATIONAL DESIGN OF CONSCIOUS ENTITIES Informatica 28 (2004) 265–275 275

[7] ŽELEZNIKAR, A.P.2 2003. Conscious informational
entities. Informatica 27:483–494.

[8] ŽELEZNIKAR, A.P. 2004. Informon und Entropon
im Bewusstseinssystem. Grundlagenstudien aus Ky-
bernetik und Geisteswissenschaft/Humankybernetik
45:81–89.

[9] ŽELEZNIKAR, A.P.2 2004. Introduction to Artifi-
cial Consciousness. The Philosophy of the Informa-
tional, Formalization, and Implementation. A study in
progress.

2Readable also in PDF (Adobe Acrobat Reader), at the website
<http://www.artifico.org>.

276 Informatica 28 (2004) 265–275 A.P. Železnikar

 Informatica 28 (2004) 277–287 277

The Demarcate Construction: A New Form of Tree-based Priority
Queues
Rick Siow Mong Goh, Wai Teng Tang, Ian Li- Jin Thng and Marie Therese Robles Quieta
National University of Singapore, Department of Electrical and Computer Engineering
3 Engineering Drive 3, CCN Laboratory, Singapore 117576
<engp1815,eng90464,eletlj,g0202825@nus.edu.sg>

Keywords: priority queue, splay tree, skew heap, calendar queue

Received: February 22, 2004

A new form of tree-based priority queues is proposed. These priority queues employ the demarcation
process to systematically split a single tree-based priority queue into many smaller trees, each divided
by a logical time boundary. These new Demarcate Construction priority queues offer an average
speedup of more than twice over the single tree-based counterparts and outperform the current expected
O(1) Calendar Queues in many scenarios. Their generality in small to large queue sizes, insensitivity to
priority increment distributions and low overhead costs, render them suitable for many applications.

Povzetek: članek opisuje novo obliko prioritetnih vrst.

1 Introduction
In this article we apply the concepts of demarcation to
tree-based priority queues. We define demarcation as the
process where by events in a tree-based priority queue
are separated clearly by time-boundaries in the form of
buckets, where each bucket is made up of a single tree.

We are motivated by the observation that the known
kinds of efficient trees such as the Splay Tree [1] and
Skew Heap [2] only have at best an amortized time
bound of O(log(n)) per operation, where by amortized
time is meant the time per operation averaged over a
worst-case sequence of operations [3]. Comparatively,
multilist-based priority queues such as the Calendar
Queue (CQ) [4] and its variant Dynamic CQ (DCQ) [5]
offer an “expected” O(1) average time bound per
operation, where by “expected” is meant that the CQs are
not theoretically proven to be O(1) but rather displays an
O(1) performance in numerous application scenarios.
However, the drawback of employing the CQs in
applications is that the worst-case time bound per
operation can be as poor as O(n) [6].

That said, the CQ has nonetheless been a popular choice
as the pending event set structure in discrete event
simulators such as CSIM18 [7], GTW [8], Network
Simulator v2 [9], as well as in a quality of service
algorithm where it maintains the real-time packet
requests [10] and even as part of a rate controller for
ATM switches [11]. Similarly, tree-based priority queue
– the Splay Tree too has a wide array of applications: the
pending event set structure in the CelKit (formerly
known as SimKit) simulator [12], the data structure for
fast IP lookups [13], data compression [14] and is also
used in the block sorting process of Burrows and
Wheeler [15].

An important use of priority queues, both tree and
multilist-based, is in the area of discrete event simulation
(DES). In DES, the pending event set (PES) is defined as
the set of all events generated during a DES which have
not been simulated yet. The PES is in essence a priority
queue controlling the flow of the simulation of events
with the minimum timestamp having the highest priority
and maximum timestamp having the least priority.

Comfort [16] has revealed that up to 40% of the
computational effort in a simulation may be devoted on
the management of the PES alone, where the enqueue
and dequeue operations account for as much as 98% of
all operations on the PES. A DES frequently operates in
a three-step cycle: dequeue – removal of an event with
the highest priority from the PES; execute – processing
this dequeued event; enqueue – insertion of new event/s
resulting from the execution into the PES. The two basic
operations, enqueue and dequeue, have run-time
complexity closely dependent on the total number of
events in the PES. Therefore, a PES structure should be
efficient especially for large-scale simulations that
involve large number of events during simulation jobs.

In most applications the metric of interest for a priority
queue is often the time required to perform the most
common operations. This metric is referred to as access
time. In typical applications such as DES, the total run-
time of the simulation job is by far more important than
the individual times of the operations, except for real-
time applications. Therefore, the amortized (or average)
access time per operation is by far more important than
the worst-case access time for each individual operation.
Fine-grain simulations, such as but not limited to ATM
network simulations, are time-consuming due to the huge
number of events to process [5]. The faster and the larger

278 Informatica 28 (2004) 277–287 R.S.M. Goh et al.

the networks, the higher the number of events would be
in the PES and the longer run-times these network
simulations would require, which may take days or
weeks to yield results with an acceptable level of
statistical error. For example, experiments conducted in
Tcpsim [17] for a three-minute simulated time over Sun
Ultra 1 took more than one day execution time on
average [5]. Therefore, to speed up simulation jobs, one
approach is to develop high-performance priority queue
structures for the PES.

In this article we develop the Demarcate Construction
(Demarco) priority queue, a multilist-based structure
which is made up of two building blocks. The name
Demarco arises from the word “demarcate” which means
to divide and separate clearly as if by boundaries. The
primary structure is an array of buckets, where each
bucket may contain a tree holding near-future events.
The secondary structure is made up of a simple unsorted
linked list to hold far-future events. Demarcation refers
to the process of constructing the primary structure and
transferring events from the secondary structure to the
primary. In an amortized sense, this demarcation process
ensures that a tree-based priority queue has comparable
performance or better, than one which does not undergo
demarcation.

The rest of this article is organized as follows: Section 2
describes in detail the Demarcate Construction, Section
3 explains the performance measurement techniques and
the empirical results from various experiments using
these techniques are given in Section 4. Finally, Section
5 concludes.

2 Demarcate Construction
The Demarcate Construction (Demarco) has four
essential principles.

First and foremost, the concept of demarcation is to have
many trees each containing a small number of events. In
contrast, a tree-based priority queue manages only a
single tree containing all the nodes or events. Upon
applying demarcation, an array of logical buckets is
constructed. Each bucket spans equal time-interval and
these buckets systematically enable the events to be
demarcated and distributed in the buckets. Thus on the
average, the tree in each bucket will have a smaller
number of events leading to a much reduced height as
compared to a single tree priority queue.

Secondly, Demarco defers the sorting of events until
necessary. At the onset, all enqueued events are
appended in the secondary tier (SecT) of Demarco. These
events are not sorted according to their timestamps.
During the first dequeue operation, the primary tier
(PriT) is constructed and the events are inserted into the
corresponding buckets in PriT where they are sorted
according to the tree-based priority queue’s native
enqueue algorithm.

Thirdly, unlike other multilist-based priority queues,
Demarco does not rely on sampling heuristics to obtain
structure parameters. The parameters used when
constructing PriT are obtained from the events
distribution in the SecT.

Lastly, the algorithm of Demarco proceeds in
demarcation cycles where by a cycle is defined as the
duration when: the events in SecT are transferred to the
PriT, more events are enqueued in PriT and SecT, and all
the events in the PriT are dequeued.

X X B B B B

Primary Tier (PriT) Seconary Tier (SecT)

SecT_Min,
SecT_Max and
SecT_Num get
updated as
events are
appended in
SecT

SecT_Cur
PriT_Start

Legend

A bucket which may contain events.B

X -

-

An invalidated bucket where all events have
already been dequeued.

- An event, which can also be considered as a tree node.

Figure 1: Basic structure of a Demarcate Construction.

2.1 Basic structure of Demarco
Figure 1 shows an example of the basic structure of a
Demarcate Construction (Demarco). The main building
blocks of the Demarco consist of:
1. Primary Tier (PriT) – an array of buckets where each

bucket may contain a tree. Each tree-node contains
an event holding a near-future (i.e. soon to be
dequeued) timestamp. Within each bucket, the
events are sorted according to the algorithm of the
tree-based priority queue. The parameters used in
creating the PriT are obtained from the events
distribution in SecT. In Figure 1, there are a total of
six buckets of which two of them are invalidated (i.e.
events have already been dequeued before) and four
buckets which may contain events.

2. Secondary Tier (SecT) – an unsorted singly linked
list. Acting as an overflow list to contain far future
events, SecT buffers events that do not affect the
PriT. This reduces the number of events in the PriT
and thus, on the average, the number of events in
each bucket decreases as simulation time progresses.
Since the performance of tree-based priority queues
depends on the height (or number of levels),
reducing the number of events in PriT will
eventually lead to a reduction in the height of the
tree in the buckets in PriT. This without doubt leads
to a superior overall performance.

2.2 The Demarco algorithm
Demarco marks the first departure from the CQs’ resize
triggers and sampling heuristics to obtain structure

THE DEMARCATER CONSTRUCTION: A NEW... Informatica 28 (2004) 277–287 279

parameters such as the number of buckets and the
bucketwidth. Instead of the static methodologies used in
the CQs, Demarco employs a dynamic approach of
updating its structure parameters, which is explained in
Section 2.2.1.

The Demarco structure keeps a set of variables to
function and they are defined as follow:
PriT_Start – Used for calculating the bucket-index of the
event which is to be enqueued in PriT. It is set to
SecT_Min during each Demarcation process, where by
events are transferred from SecT to PriT.
PriT_Num – Number of events in PriT.
PriT_Bw – Bucketwidth of PriT.
PriT_Index – Bucket-index of the first non-empty bucket
bucket in PriT.
SecT_Cur – Minimum timestamp of an event that can be
enqueued in SecT. This value will be set equal to
SecT_Max at each transfer of events from SecT to PriT.
SecT _Min – Minimum timestamp in SecT.
SecT _Max – Maximum timestamp in SecT.
SecT _Num – Number of events in SecT.

2.2.1 Dequeue operation
At the onset, all enqueued events are placed in SecT in a
FIFO manner without time-order thus leaving PriT being
empty. On the first dequeue operation, PriT is
constructed and thereafter, all the events are transferred
from SecT to PriT.

The bucketwidth of PriT, an important structure
parameter, is dynamically assigned using equation (1).

PriT_Bw = Bucketwidth =
_

SecT_Max - SecT_Min

SecT Num
 (1)

The number of buckets to be created in PriT is set to be
SecT_Num, giving an average of one event per bucket on
the assumption that the event distribution is a uniform
distribution. Though in practical scenarios this may not
be true, the Demarco will still perform well because the
enqueue of events into PriT is O(log(nB)) per event
whereby nB is the number of events in a bucket. For most
scenarios, nB << N, where N is the total number of events
in the Demarco structure.

After the construction of PriT, the events in SecT are
transferred to PriT. Transferring of an event into PriT is
alike enqueuing an event into PriT which utilizes the
tree-based priority queue’s native enqueue algorithm.
Thereafter, the highest priority event would be in the first
bucket in PriT (where PriT_Index = 0 and that PriT_Start
= SecT_Min have been initialized). On each dequeue, the
highest priority event would be removed from the first
bucket in PriT by employing the tree-based priority
queue’s native dequeue algorithm.

Subsequently, when the first bucket is empty, it is
invalidated and the second bucket is then considered,
where at the same time, parameter PriT_Index is
incremented by one.

If the second bucket is empty, PriT_Index is incremented
again until a non-empty bucket is found and the current
highest priority event is dequeued. After all the events in
PriT are dequeued, i.e. all the buckets are empty, the
demarcation cycle repeats itself with SecT treating the
next dequeue to be alike the first dequeue as mentioned.

Figure 2: Dequeue operation.

Figure 2 illustrates an example of a demarcation process
during a dequeue operation when there are events in SecT
but PriT is empty. Essentially, PriT is created with
parameters set according to the events found in SecT.
Thereafter, events in SecT are transferred to PriT. Figure
2 demonstrates how the three smallest timestamp events
(shaded) are being transferred from SecT to Bucket 0.
For this example, we first assume that five events, with
timestamps 0.5, 7.0, 1.1, 0.9 and 4.5, are enqueued in an
empty PriT. Since SecT_Cur equals 0, all the events are
enqueued in SecT. On the first dequeue, PriT is created
with the parameters as stated in Figure 2 using equation
(1). Thereafter, events from SecT are transferred to PriT.
Immediately after this, the following variables are
updated: SecT_Cur = SecT_Max = 7.0; SecT_Min,
SecT_Max, SecT_Num are then reset. Events from the
first non-empty bucket, i.e. Bucket 0, should now have
already been sorted according to the tree’s enqueue
algorithm. Next, event 0.5 is dequeued, followed by 0.9
and 1.1 according to the tree’s dequeue algorithm. After
each dequeue PriT_Num is decremented and after
dequeuing 1.1, PriT_Num should now be 2.

Subsequently, the algorithm searches for the next non-
empty bucket, which is Bucket 3, and PriT_Index is
updated as 3. Thereafter, event 4.5 is dequeued. When all
the events in PriT are dequeued, the cycle repeats with
SecT handling the next dequeue operation alike the first
dequeue as mentioned earlier.

2.2.2 Enqueue operation
For each enqueue operation, Demarco checks if that
event timestamp is greater than SecT_Cur. If so, the
event is simply placed at the end of the linked list in
SecT. If the event is not inserted in SecT, then the event
is enqueued in PriT. On enqueuing in PriT, the bucket-

280 Informatica 28 (2004) 277–287 R.S.M. Goh et al.

index of the bucket where this event is to be inserted in
PriT is:

Bucket_index =
timestamp - PriT_Start

PriT_Bw
 (2)

and the event is enqueued according to the tree’s native
enqueue algorithm.

2.3 Brief time complexity analysis
This section seeks to provide a brief performance
analysis of a Demarco structure using the amortized time
complexity analysis [3].

Assume N events are enqueued into an empty Demarco
structure. Initially all the events would be enqueued into
SecT. This enqueue of events into SecT is O(1) per event
since SecT is an unsorted linked list and the events are
simply appended at the end of the linked list. On the first
dequeue, all the events from SecT would be bucket-
sorted into PriT, where PriT is made up of buckets with
an equal time-interval (bucketwidth). Events would be
distributed in PriT according to the event distribution.
For instance, for a uniform distribution, each bucket
would approximately hold one event.

Suppose during these dequeue operations, more events
are enqueued into the Demarco structure. Since each
bucket has equal time-interval, the events in PriT are
likely to be spread out with each bucket having relatively
small number of events. Therefore, even though a tree-
based priority queue has O(log(nB)) complexity, nB is
expected to be << N, leading to near O(1) enqueue and
dequeue complexity. Note that the cost of transferring the
events from SecT to PriT is also ~ O(N) / N = O(1) per
event. Table 1 summarizes the theoretical performance of
a Demarco structure with a tree-based priority which has
O(log(n)) amortized complexity for both its enqueue and
dequeue operation.

Table 1: Amortized time complexity of a Demarco
structure.

 PriT
(expected, worst)

SecT
(expected, worst)

Enqueue O(1), O(log(n)) O(1)
Dequeue O(1), O(log(n)) –

Through simulation benchmarks, we have shown
empirically in Section 4 that a Demarco structure has
near O(1) performance under all distributions.

3 Performance Measurement
Techniques

The performance of priority queues are often measured
by the average access time to enqueue or dequeue an
event under different load conditions. The parameters to
be varied for each queue are: the access pattern model,
the queue size and the priority distribution. The queue
size refers to the number of events in a priority queue.

For our experiments, the queue size ranges from 100 to 1
million events. This wide range represents what small to
large-scale real simulation jobs will encounter.

3.1 Access pattern models
The access pattern models that have been proposed either
emulate the steady-state or the transient phase of a
typical simulation. They are as follow:
1. Classic Hold model [18]. The queue to be tested is

initially built up to the specified benchmark size by
using a random series of enqueues (with slightly
higher probability) and dequeues. Thereafter a series
of hold operations ensue. A hold operation is defined
as a dequeue followed by an enqueue. The
timestamp of a new enqueue event is obtained as
follows: a random variable which describes the
desired priority distribution to be tested is picked.
The value of the random variable is then added to
the timestamp of the event that was just dequeued
and the result is the timestamp of the new enqueue
event. The average access time to be calculated is
the average time taken for one hold operation. The
recommended number of hold operations, in order to
obtain a reasonable accurate average, should be 30
times the queue size [6]. This method has the
following features:
a. The problem of determining the transient period

is avoided, and
b. The effect of the transient period on the

different queue sizes tested are similar [6].
2. Up/Down model [19]. In an Up/Down test, the

queue is built up to the benchmark queue size by a
sequence of enqueues. Thereafter, the queue size is
returned to zero by an equally long sequence of
dequeues. The average access time to be calculated
is the time taken for all queue operations (in the
enqueue phase and dequeue phase), divided by the
total number of queue operations. This Up/Down
model emulates the worst case scenario of a
simulation job which is not stable in queue size [19].

3.2 Priority increment distributions
The priority increment distributions, often used for the
benchmarking of priority queue structures [5,6,18,19],
are illustrated in Figure 3. The rand() used can be found
in [20]. The Camel(x,y) distribution [19] represents a 2-
hump heavily skewed distribution with x% of its mass
concentrated in the two humps and the duration of the
two humps is y% of the total interval. In addition to the
five distributions as shown in Figure 3, the
Change(A,B,x) distribution [19] was also used to test the
sensitivity of the CQ when exposed to drastic changes in
priority increment distribution. The compound
distribution Change(A,B,x) interleaves two different
priority increment distributions A and B together.
Initially, x priority increments are drawn from A followed
by another x priority increments drawn from B and so on.
Change distributions can be used to model simulations
where the priority increment distributions vary
significantly over different time periods, for example

THE DEMARCATER CONSTRUCTION: A NEW... Informatica 28 (2004) 277–287 281

battlefield simulations. In our experiments, we use
Camel(0,1000,0.001,0.999) and Change(Exp(1),
Triangle(90000,100000),2000) which have been used in
the landmark survey [6].

Figure 3: Priority increment distributions.

3.3 Benchmarking codes and hardware
The performance of the priority queues was obtained by
conducting experiments on an AMD Athlon MP server.
Even though this server has dual processors, the
experiments did not make use of its true SMP capabilities
as the algorithms are sequential. However, this server
ensured that when each benchmark was carried out, other
background processes that might affect the results were
kept at a minimum, thus obtaining more accurate
experimental results.

The code used for the Splay Tree was based on the
Pascal code used by Jones [18]. Skew Heap
implementation was based on the non-recursive code
given by Jones [21]. SCQ and DCQ were based on the
codes supplied by Brown [4] and Oh et al. [5]
respectively. Two empirical tests were conducted to
verify that no items in the priority queues were gained or
lost and that successive dequeues removed events in
stable time-order.

The experiments were performed with the required
memory for each priority queue being pre-allocated. This
was to eliminate the underlying memory management
system which might affect the results. This is a good
practice in actual DES as it prevents memory
fragmentation when creating new events and deleting the
serviced events. This method of pre-allocating memory
would also enhance the performance of the DES. The
method of pre-allocation could be made dynamic by an
initial pre-allocation and subsequently, an allocation of
memory on demand methodology could be employed.

All code was written in the C programming language
with all recursive procedure calls and the like being
eliminated. Loop overhead time and the time taken for
random numbers generated were removed by factoring
out the time required for running a dummy loop. Five
runs of each experiment were done and the median value
was obtained for each queue size simulated in the
experiment. The median value is a measure of the central
tendency and is chosen over the mean value because

some background processes could have adversely
affected a particular run of an experiment and averaging
this value could render less accurate results.

4 Experimental Results
The objectives of this section are firstly to present the
performance of tree-based priority queues with and
without Demarco. Secondly, we compare Demarco
priority queues with the current fastest multilist-based
queues – CQ and DCQ. Lastly, we would like to
determine Demarco priority queues’ generality and
sensitivity in the five priority increment distributions
using the Classic Hold and Up/Down models, as well as
when the queue size increases from 100 to 1 million.
Note that a logarithmic scale has been used for the
queue-size axis which leads to logarithmic complexity
for linear plots.

4.1 Steady-state experiments
Figures 4(a) to 4(f) show the results obtained under the
Classic Hold experiments which is commonly employed
to test the steady-state performance of the priority
queues. Note that the obvious knee seen in the graphs is
due to the declining cache performance and occurs when
the queue size is about 10,000. This phenomenon is also
observed in the graphs in [6] where the experiments were
done on SUN and Intel architectures.

Figures 4 show vividly that the performance of Demarco
structures, i.e. Demarco-Skews and Demarco-Splays,
outperform the tree-based priority queues; Skew Heap
and Splay Tree, where by Demarco-Skews/-Splays is
made up of a Demarco structure where each bucket in
PriT of Demarco may contain a Skew Heap/Splay Tree.
At larger queue sizes, the performance speedup that
Demarco offers is more than three times.

Figures 4(a) to 4(d) show that the performance of the
Demarco structures are comparable to the expected O(1)
complexity multilist-based priority queues, i.e. CQ and
DCQ. Furthermore, Figures 4(e) and 4(f) demonstrates
clearly that the Demarco structures outperform the CQs
which have erratic performance for skewed distributions
such as the Camel and Change. The reasons for their
inferior performance are:
1. The CQ size-based resize triggers are an

incompetent mechanism for handling skewed
distributions. The triggers are too rigid to react
according to the events distribution since a resize
trigger occurs only if the queue size fluctuates by a
factor of two [4]. It results in many events being
enqueued into a few buckets with long sublists and
many empty buckets. Long sublists make enqueue
operations expensive since each enqueue entails a
sequential search, whereas excessive traversal of
empty buckets increases the process of dequeue
operations. The DCQ incorporates two additional
cost-based triggers, one for dequeue and another for
enqueue operation. These additional triggers help to

282 Informatica 28 (2004) 277–287 R.S.M. Goh et al.

reduce the instability faced by the CQ under Change
distribution but however, the DCQ performs worse
than the CQ for the Camel distribution.

2. Sampling heuristic is inadequate to obtain good
operating parameters, namely, the number of buckets
and the bucketwidth, when skewed distributions are
encountered. During each resize operation, the CQ
samples at most the first twenty-five events. This is
clearly too simplistic because for skewed
distributions in which many events fall into some
buckets, the inter-event time-gap of the first twenty-
five events, which can span several buckets, and
those in the few populated buckets may vary a lot.
To simply increase the events sampled is not prudent
unless it is uniform distribution. For most
distributions, particularly skewed distributions such
as the Camel, if we sample more events then take the
mean or median, it is unlikely that it will be accurate
since events are spread unevenly. Even if we sample
the most populated bucket (i.e. in the DCQ), the
DCQ also performs poorly because events in that
bucket will have a small average time-gap whereas
other events have widely diverse time-gaps. If the
bucketwidth is updated to this small time-gap, there
will likely be numerous empty buckets. Skipping
these buckets will lead to inferior performance.
Furthermore, sampling more events inevitably leads
to higher overheads for each resize operation,
affecting the CQ performance on a whole.

(a)

(b)

(c)

(d)

THE DEMARCATER CONSTRUCTION: A NEW... Informatica 28 (2004) 277–287 283

(e)

(f)

Figure 4: Performance graphs for Classic Hold

model experiments.

4.2 Transient-state experiments
The Up/Down model which tests the performance of
priority queue structures during transient periods when
the queue size fluctuates frequently, reveals the
weaknesses of the CQs. Figures 5(a) to 5(d) show that
the CQs experience several peaks and these suggest
strongly that the resize operations found in the CQs can
be costly since the CQs resize whenever the queue size
fluctuates by factors of two. The form of triggers found
in the CQs are clearly inflexible because even though the
CQs can be performing well with its existing operating
parameters, but because of their static triggers, they still
have to resize whenever the queue size fluctuates by
factors of two. Figures 5(e) and 5(f) again demonstrate
that the CQs are sensitive to skewed distributions.

The Demarco structures outperform all the priority
queues in all these experiments.

(a)

(b)

(c)

284 Informatica 28 (2004) 277–287 R.S.M. Goh et al.

(d)

(e)

(f)

Figure 5: Performance graphs for Up/Down model

experiments.

4.3 Overall performance comparison
This section illustrates numerically the performance
speedup of the Demarco structures over the normal
single tree-based priority queues. In addition, we
compare the relative performance of the Demarco
structures and tree-based priority queues versus the
multilist-based CQ and DCQ.

Table 2: Speedup offered by the Demarco structure
normalized over a single tree-based priority queue –
comparison by priority increment distribution.
Distribution Demarco-Skews Demarco-Splays
Rectangle 2.99 2.61
Exponential 2.62 2.66
Triangle 3.01 2.46
NegTriangle 2.99 2.66
Camel 2.05 1.31
Change 1.91 1.39
Average 2.60 2.18

Table 3: Speedup offered by the Demarco structure
normalized over a single tree-based priority queue –
comparison by queue size.
Queue
Size

Demarco-
Skews

Demarco-
Splays

Cost (MB)*

100 1.14832 1.27259 0.0016
200 1.21848 1.35236 0.0032
300 1.26669 1.39214 0.0048
400 1.32153 1.55857 0.0064
500 1.33875 1.47472 0.0080
700 1.37699 1.50817 0.0112
1000 1.42609 1.57609 0.0160
2000 1.45507 1.59857 0.0320
3000 1.58005 1.67455 0.0480
4000 1.60971 1.71499 0.0640
5000 1.59277 1.61879 0.0800
7000 1.33867 1.35547 0.1120
10000 1.38927 1.39643 0.1600
20000 1.78548 1.56020 0.3200
30000 1.99237 1.67113 0.4800
40000 2.17161 1.77727 0.6400
50000 2.30145 1.83629 0.8000
70000 2.50331 1.97654 1.1200
100000 2.69297 2.08904 1.6000
200000 3.00549 2.37097 3.2000
300000 3.15127 2.49080 4.8000
400000 3.21057 2.55460 6.4000
500000 3.33468 2.63459 8.0000
700000 3.48493 2.75407 11.2000
1000000 3.66322 2.88340 16.0000
*MB refers to one million bytes. Memory incurred is
sixteen bytes per bucket and the number of buckets used
is equal to the queue size tested.

THE DEMARCATER CONSTRUCTION: A NEW... Informatica 28 (2004) 277–287 285

Table 4: Relative performance for Exponential distribution
(normalized with respect to the fastest access time where 1.00 is the fastest).

Model Queue Size Demarco-

Skews
Demarco-

Splays
Skew
Heap

Splay
Tree

CQ DCQ

100 1.23 1.35 1.67 2.06 1.00 1.20
1000 1.19 1.32 2.17 2.81 1.00 1.10
10000 1.34 1.50 2.20 2.60 1.00 1.16
100000 1.12 1.26 3.90 3.50 1.00 1.07
1000000 1.05 1.17 5.33 4.77 1.00 1.03

C

la
ss

ic
 H

ol
d

Average 1.19 1.32 3.05 3.15 1.00 1.11
100 1.00 1.06 1.15 1.22 2.31 2.57
1000 1.00 1.04 1.56 1.73 1.76 1.94
10000 1.00 1.12 1.31 1.45 1.33 1.54
100000 1.00 1.12 2.39 2.43 1.52 1.64
1000000 1.00 1.12 3.55 3.49 1.44 1.52

U

p/
D

ow
n

Average 1.00 1.09 1.99 2.06 1.67 1.84
Total Average 1.09 1.21 2.52 2.61 1.34 1.48

Table 5: Relative average performance for all distributions
(normalized with respect to the fastest access time where 1.00 is the fastest).

Model Queue Size Demarco-

Skews
Demarco-

Splays
Skew
Heap

Splay
Tree

CQ DCQ

100 1.07 1.14 1.31 1.61 1.59 1.00
1000 1.15 1.26 1.76 2.15 1.00 1.41
10000 1.00 1.10 1.55 1.70 5.32 1.23
100000 1.00 1.12 3.27 2.59 1.20 1.81
1000000 1.00 1.11 4.44 3.61 1.90 NA*

C

la
ss

ic
 H

ol
d

Average 1.04 1.15 2.47 2.33 2.20 NA*
100 1.00 1.09 1.01 1.12 2.17 2.38
1000 1.00 1.06 1.25 1.42 1.56 1.75
10000 1.00 1.08 1.16 1.27 19.55 15.96
100000 1.00 1.10 1.93 1.95 NA* NA*
1000000 1.00 1.10 2.67 2.63 NA* NA*

U

p/
D

ow
n

Average 1.00 1.09 1.60 1.68 NA* NA*
Total Average 1.02 1.12 2.04 2.01 NA* NA*

* NA is meant that some of the access times are too high in at least one or more distributions. Thus the results are not
considered in this comparison.

Table 2 shows that the speedup offered by the Demarco
structure is more than two times, average over all queue
sizes and distributions. Table 3 shows the speedup for
each queue size, average under all the distributions. From
the table, it is obvious that as the queue size increases,
the speedup increases to more than three times for the
Skew Heap and close to three times for the Splay Tree.

Tables 4 and 5 illustrate the relative performance of all
the priority queues considered. The Demarco-Skews and
Demarco-Splays outperform their tree-based
counterparts and is generally more stable than the CQs.

4.4 Generality, sensitivity and cost-
performance ratio of Demarco
structures

Figures 6(a) and 6(b) shows the generality and
insensitivity of Demarco-Skews under the various
distributions and queue sizes (Demarco-Splays has
similar graphs and is thus not included). Though the
performance of Demarco-Skews may differ by as much
as twice for different distributions, the complexity is still
considered near O(1). Furthermore, the graphs show that
it is stable for all the distributions unlike the CQs which
is near O(n) for skewed distributions. This superior
performance is made possible because of the four
essential principles mentioned in Section 2.

286 Informatica 28 (2004) 277–287 R.S.M. Goh et al.

(a)

(b)

Figure 6: Performance graphs for Demarco-Skews.

We also consider the cost-performance ratio of
employing Demaro on the tree-based priority queue. The
additional memory allocation required to obtain a
Demarco structure is as shown in Table 3. The bulk of
memory requirement is the number of buckets allocated.
Other memory variables such in SecT (e.g. SecT_Min,
etc) take up an insignificant amount of memory and thus
are not considered. In C programming language, a bucket
is “struct bucket { unsigned int count;
struct event *evt; }”. Therefore, each bucket
in PriT takes up eight bytes on a 32-bit hardware
platform and sixteen bytes on a 64-bit platform. Table 3
assumes a higher cost of sixteen bytes per bucket and
that the number of buckets used is equal to the queue size
tested.

From Table 3, it is shown that if the queue size of a
simulation is 100,000, the speedup expected for a
Demarco-Skews is 2.69 and the cost of additional
memory incurred is about 1.6MB, where MB refers to
one million bytes. And for a one million queue size
simulation, a Demarco-Skews performs 3.66 times better

than a Skew Heap and the cost incurred is 16MB of
shared memory. By today’s standard, 16MB is
considered affordable. This is even more so in the near
future, when 64-bit workstations (which can
accommodate more physical memory) begin to
proliferate the desktop market.

5 Conclusion
Demarcate Construction is a new form of tree-based
priority queues which employs the demarcation process.
These new priority queues offer an average speedup of
more than twice over the single tree-based counterparts
and outperform the current expected O(1) Calendar
Queues in many scenarios. Its generality in small to large
queue sizes, insensitivity to priority increment
distributions and low overhead costs, make it a superior
priority queue for many applications such as the pending
event set structure in discrete event simulations.

References
[1] Sleator, D. D. and Tarjan, R. E. (1985) Self-adjusting
binary search trees. Journal of the ACM 32, 3 (July), pp.
652-686.

[2] Sleator, D. D. and Tarjan, R. E. (1986) Self-adjusting
heaps. SIAM Journal of Computing 15, 1 (Feb.), pp. 52-
69.

[3] Tarjan, R.E. (1985) Amortized computational
complexity. SIAM Journal on Algebraic and Discrete
Meth. 6, 2 (April), 306-318.

[4] Brown, R. (1988) Calendar queues: A fast O(1)
priority queue implementation for the simulation event
set problem. Commun. ACM 24, 12 (Dec.), 825-829.

[5] Oh, S., and Ahn, J. (1998) Dynamic calendar queue.
In Proceedings of the 32nd Annual Simulation
Symposium, pp. 20-25.

[6] Rönngren, R. and Ayani, R. (1997) A comparative
study of parallel and sequential priority queue
algorithms. ACM Trans. Model. Comput. Simul. 7, 2
(April), pp. 157-209.

[7] Schwetman, H. (1996) CSIM18 User’s Guide.
Austin, TX: Mesquite Software, Inc.

[8] Das, S., Fujimoto, R., Panesar, K., Allison, D., and
Hybinette, M. (1994) GTW: a time warp system for
shared memory multiprocessors. In Proceedings of the
1994 Winter Simulation Conference, pp. 1332-1339.

[9] Fall, K. and Varadhan, K. (2002) The ns Manual.
UCB/LBNL/VINT Network simulator v2.
http://www.isi.edu/nsnam/ns/.

[10] Stoica, I., Zhang, H., and Ng, T.S.E. (2000) A
hierarchical fair service curve algorithm for link-sharing,
real-time, and priority services. IEEE/ACM Trans.
Networking, 8, 2 (Apr.), pp. 185-199.

THE DEMARCATER CONSTRUCTION: A NEW... Informatica 28 (2004) 277–287 287

[11] Hagai, A. and Patt-Shamir, B. (2001) Multiple
priority, per flow, dual GCRA rate controller for ATM
switches. IEEE Workshop on High Performance
Switching and Routing 2001, pp. 169-174.

[12] Gomes F., S. Franks, B. Unger, Z. Xiao, J. Cleary,
and A. Covington. (1995) SimKit: A high performance
logical process simulation class library in C++. In
Proceedings of the 1995 Winter Simulation Conference,
pp. 706-713.

[13] Narlikar, G. and Zane, F. (2001) Performance
modeling for fast IP lookups. In Proceedings of the 2001
ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pp. 1-
12.

[14] Grinberg, D., Rajagopalan, S., Venkatesan, R., Wei,
V. K. (1995) Splay trees for data compression, In
Proceedings of the sixth annual ACM-SIAM symposium
on Discrete Algorithms, pp. 522-530.

[15] Yugo, K. I. R., Moffat, A., and Ngai, C. H. A.
(2002) Enhanced word-based block-sorting text
compression. In Proceedings of the twenty-fifth
Australasian conference on Computer science, pp. 129-
137.

[16] Comfort, J. C. (1984) The simulation of a master-
slave event set processor. Simulation 42, 3 (March), pp.
117-124.

[17] Dupuy, A., Schwartz, J., Yemini, Y. and Bacon, D.
(1990) NEST: a network simulation and prototyping
testbed, Commun. ACM 33, 10 (Oct.), pp. 63-74.

[18] Jones, D. W. (1986) An empirical comparison of
priority-queue and event-set implementations. Commun.
ACM 29, 4 (April), pp. 300-311.

[19] Rönngren, R., Riboe, J., and Ayani, R. (1993) Lazy
queue: New approach to implementing the pending event
set. Int. J. Computer Simulation 3, pp. 303-332.

[20] Park, S. K. and Miller, K. W. (1988) Random
number generators: Good ones are hard to find. Commun.
ACM 31, 10 (Oct.), pp. 1192-1201.

[21] Jones, D. W. (1989) Concurrent operations on
priority queues. Commun. ACM 32, 1 (Jan.), pp. 132-137.

288 Informatica 28 (2004) 277–287 R.S.M. Goh et al.

 Informatica 28 (2004) 289–296 289

Fault-Free Maximal Submeshes in Faulty Torus-Connected
Multicomputers
Seong-Moo Yoo
Electrical and Computer Engineering Department, University of Alabama in Huntsville
Huntsville, Alabama 35899, USA
e-mail: yoos@eng.uah.edu

Hee Yong Youn
School of Information and Communication Engineering, Sungkyunkwan University
Suwon, Korea
e-mail: youn@ece.skku.ac.kr

Hyunseung Choo

School of Information and Communication Engineering, Sungkyunkwan University
Suwon, Korea
e-mail: choo@ece.skku.ac.kr

Keywords: fault-free subsystem, maximal submeshes, reconfiguration, torus-connected multicomputers, virtual
submeshes

Received: May 11, 2004

In a parallel computer system with faulty processors, it is highly desirable to reconfigure the system by
eliminating the faulty ones and thereby restore the system to some operational state. In the
reconfiguration maintaining the maximum size fault-free subsystem is the main problem. In this paper,
we propose an efficient scheme for identifying maximum size fault-free submeshes in a faulty torus-
connected multicomputer system. For this, the relations between two submeshes have been defined.
Then we take two-phase approach. In the first phase, an efficient algorithm for determining maximal
faulty submeshes in a faulty torus has been introduced. In the second phase, we have introduced a
procedure to identify the maximal fault-free submeshes by removing all faulty submeshes from a whole
torus. The time complexity of the proposed scheme is O(Nf

3) where Nf is the number of faulty processors
in a 2D torus. The proposed scheme can be utilized to the task allocation in 2D tori in the presence of
failed nodes.

Povzetek: članek obravnava delovanje večprocesorskega sistema ob izpadu nekaj procesorjev.

1 Introduction
Fault-tolerance for the multiprocessor system is achieved
either by using the workable portion of the system to
emulate the whole machine with certain slowdown or by
reconfiguring the machine to a smaller sized system after
faults occur. Letting the fault-free part of a machine
emulate entire system functionality tends to have
limitations in practical use because slowdown could
translate into a considerable performance loss. Hence,
fault tolerance by reconfiguration is very important in
such a large distributed computing environment for
continued operation of the multiprocessor after the
failure of one or more processors and/or links. Once the
faulty elements have been identified, graceful
degradation can be achieved by reconfiguring the
multiprocessor and the distributed algorithm running on
the multiprocessor. The algorithm is formulated to run on
a single processor which would typically be the host or
the resource manager in a commercial multiprocessor
system.

In parallel computer systems consisting of a number
of interconnected processors, incoming jobs are allocated

to the subsystems of a required number of processors
such as subcube for hypercube or submesh for mesh
system, respectively. Due to its complexity, some
processors in the entire structure can be defective, and
then they need to be excluded from the allocation. In
other words, all the processors in the allocated subsystem
must be good. In the presence of failed nodes, thus, the
system should be reconfigured to allow fast contiguous
allocation of fault-free subsystems to incoming jobs.

Among several parallel computer systems, torus-
connected multicomputer system has become popular,
and it has become the base of many parallel computer
systems such as the Tera Computer [1] and the Cray T3D
[2]. Task allocation problem in 2D meshes has recently
drawn a lot of attention [3-18]; however, the allocation
problem in a torus system in the presence of faulty nodes
has not. Reconfiguring a faulty system into smaller size
systems has been investigated for the hypercube
architecture [19-20], but little work has been reported for
torus-connected system to the best of our knowledge.
The reconfiguration problem in a torus-connected

290 Informatica 28 (2004) 289–296 S.-M. Yoo et al.

multiprocessor system reduces to finding the maximum
size fault-free submeshes.

In this paper, we propose a scheme which can
effectively identify the maximum size fault-free
submeshes in a two-dimensional (2D) torus. For this, the
relations between any two submeshes in a 2D torus are
first defined. Then two-phase approach is taken. In the
first phase, the largest size faulty submeshes in a faulty
torus are determined. In the second phase, largest size
fault-free submeshes are identified by removing all faulty
submeshes. The time complexity of the proposed scheme
is O(Nf

3), where Nf is the number of faulty processors in a
2D torus. The proposed scheme will be useful for task
allocation in 2D torus with faulty processors, and it can
be applied to a 3D torus system.

In the case of a real high performance parallel
computer (numerical solver etc.), torus connection is
crucial, high speed is needed, and faulty processors must
be replaced. Usually, for an efficient parallel system,
communication links have to operate with maximal
speed. In the case of faulty processors, the original torus
structure is lost, because some indirect communication
channels have to be used, or new links introduced to
bridge a faulty processor. In this paper, the whole
algorithm is organized globally. It is supposed that the
parallel system works in fact by the master-slave
principle (computer farm). In such cases, the algorithm
proposed could be useful even though the proposed
algorithm has not considered faulty links and
unconnected links that are left after removing faulty
processors.

The rest of the paper is organized as follows. In
Section 2, definitions and notation used throughout the
paper are introduced. In Section 3, the procedures
grouping the faulty processors into faulty submeshes are
introduced. The procedure identifying the largest size
fault-free submeshes is then presented. Finally, we
conclude the paper in Section 4.

2 Definitions and Notation

In this section, we define meshes by introducing the
index set. Refer to Figure 1. A node, n = (x, y), (0 ≤ x ≤
a-1 ∧ 0 ≤ y ≤ b-1), refers to a processor where a two-
dimensional torus, 2DT(a, b) = {(x, y) | (0 ≤ x ≤ a-1 ∧ 0 ≤
y ≤ b-1)}, is an a × b rectangular grid. Here a and b
represent the width and height of the torus, respectively.
A submesh, S (base, end) = ((xb, yb), (xe, ye)) = {(x, y) | (xb
≤ x ≤ xe ∧ yb ≤ y ≤ ye)}. w and h denote the width and
height of S, respectively.

Definition 0: (Neighbor):

),(nn yxn = ,),(mm yxm = .

 n |- m ⇔)1(+= nm xx ∧)(nm yy = : m is right
neighbor of n, and n is left neighbor of m.
n ⊥ m ⇔)(nm xx = ∧)1(+= nm yy : m is upper
neighbor of n, and n is lower neighbor of m.

Figure 1. Index set for a 2D mesh and a submesh.

Figure 2. Four different virtual submeshes considering

(base, end).

Definition 1: (Virtual submesh): Refer to Figure 2.
)),(),,((vevebbv yxyxS = for

)),(),,((eebb yxyxS = , ,mod axx vee =

byy vee mod= ,
⎩
⎨
⎧

+
≤

=
otherwiseax

xxifx
x

e

ebe
ve

 ,

⎩
⎨
⎧

+
≤

=
otherwiseby

yyify
y

e

ebe
ve

.

Definition 2: Separate : φ=⇔◊ 2121 SSSS I ,

overlapped : φ≠⇔Ο 2121 SSSS I .

Definition 3: Covered : 2121 SSSS ⊆⇔⋅ ,

equivalent :)(2121 SSSS ⊆⇔≡ ∧)(12 SS ⊆ .
Definition 4: (adjacent)

),(|| 2121 SmSnSS r ∈∈∃⇔ [n |- m ∧

21 SS ◊]: 2S is right adjacent of 1S , and 1S is left

adjacent of 2S .

),(|| 2121 SmSnSS u ∈∈∃⇔ [n ⊥ m ∧

21 SS ◊]: 2S is upper adjacent of 1S , and 1S is lower

adjacent of 2S .

Definition 5: (Intersected submesh) 21 SSS I= .

FAULT-FREE MAXIMAL SUBMESHES IN FAULTY... Informatica 28 (2004) 289–296 291

Definition 6: S is a maximal submesh in 2DT ⇔ not ∃ S2
[21 SS ⋅]. Maximal submeshes may either be separate or
overlapping one another.

3 The Proposed Scheme

Our scheme finding maximal submeshes in a faulty 2DT
consists of two phases. In the first phase, maximal faulty
submeshes are determined by grouping the faulty
processors. In the second phase, maximal fault-free
submeshes are identified by removing all maximal faulty
submeshes. For locating maximal faulty submeshes, a
mechanism combining two submeshes need to be
developed. We first consider that.

3.1 Maximal Faulty Submeshes
3.1.1 Combining Two Submeshes

Definition 7: Combining two submeshes, S1 + S2, is a
procedure for identifying new maximal submeshes such
that each of the new submesh consists of part or whole of
S1 and S2. The details of the procedure are explained
below.

There exist four cases in combining S1 and S2 according
to the relative positions of them. Case 1: S1 ⊆ S2 ∨ S2
⊆ S1. Case 2: S1 ◊ S2 ∧ S1 ∦ S2. Case 3: S1 ‖ S2. Case 4:
S1 Ο S2 ∧ ¬ (S1 ⊆ S2) ∧ ¬ (S2 ⊆ S1). In Case 1, no
new submesh is identified because S1 + S2 is S1 or S2
itself. In Case 2, no new submesh is identified either. In
Case 3, one new submesh may be identified. S3 if S1 ‖r S2
or S4 if S1 ‖u S2 is generated as shown in Figure 3. The
addresses of S3 and S4 can be referred to Table I. Note
that the base and end points of a virtual submesh Si are
denoted by (xib, yib) and (xie, yie), respectively. In this
case, S1 should be deleted if S1 ⊆ S3 or S4, and S2 if S2
⊆ S3 or S4. In Case 4, no or two submeshes are
identified. In Figure 4(a), two new submeshes, S3 and S4,
are identified whose addresses are given in Table I. In
Figure 4(b) and (c), no new submesh can be identified
since S1 ≡ S3 and S2 ≡ S4. Therefore, in Case 4, S3 and S4
should be checked whether each of them is equivalent to
either S1 or S2.

Table I. Addresses of new maximal submeshes obtained

by combining two submeshes.
 S3 S4

xb min (x1b, x2b) max (x1b, x2b)
yb max (y1b, y2b) min (y1b, y2b)
xe max (x1e, x2e) min (x1e, x2e)
ye min (y1e, y2e) max (y1e, y2e)

 When submeshes in 2DT are identified, we can do
that for only separate ones or even overlapped ones. If
only separate ones are identified, however, the largest
submesh may not be able to be recognized. For example,
refer to Figure 5.

Figure 3. Generating new maximal submeshes when two
submeshes are adjacent.

Figure 4. Generating new maximal submeshes when two

submeshes overlap.

Figure 5. An example of recognizing the available largest
size submeshes.

292 Informatica 28 (2004) 289–296 S.-M. Yoo et al.

We want to identify maximal submeshes from 12
processors in Figure 5(a). The processors can be formed
into two separate submeshes as shown in (b) and (c).
Note that these are the two ways which can identify
separate largest size submeshes. The way shown in
Figure 5(b), however, cannot recognize the 6 × 1
submesh. Similarly, in Figure 5(c), the 3 × 3 submesh
cannot be identified. On the contrary, if the identified
submeshes are allowed to overlap as shown in Figure
5(d), all the available largest size submeshes can be
recognized. Therefore, the proposed scheme identifies
new submeshes which can overlap with other submeshes.

3.1.2 Finding Maximal Faulty Submeshes

Here we maintain a data structure F, an ordered list
keeping faulty submeshes, for finding the maximal faulty
submeshes. Initially any faulty processor is a submesh of
one node itself, and F keeps the single node submeshes.
These faulty submeshes are then combined into maximal
faulty submeshes. They are combined first columnwise
then rowwise. For this, all the faulty submeshes of a
single node are inserted into F by the increasing order of
x-coordinates of their bases, and then by the y-
coordinates of the bases if the x-coordinates are same. If
the base coordinates are the same, the end coordinates
are considered. Next is the procedure for columnwise
combining.
Procedure Column_combining ()
S1 ← first submesh in F; S5 ←Nil
Repeat
 S2 ← next submesh in F
 if (x1b = x2b)
 if (y1b = 0 ∧ S1 ≢ S5) then S5 ← S1
 if (S1 ‖u S2)
 S3 ← S1 + S2; delete S1 and S2 from F;
 insert S3 into F
 if (y3b = 0) then S5 ← S3
 S1 ← S3
 else
 S1 ← S2
 else
 if (S5 ≠ Nil ∧ S1 ‖u S5)
 S3 ← S1 + S5; delete S1 and S5 from F;
 insert S3 into F
 S1 ← S2
 S5 ← Nil
Until all submeshes in F are considered

 For example, in Figure 6(a), suppose that the 17
processors marked as X are faulty. Initially F contains 17
submeshes whose addresses are ((0, 0), (0, 0)), ((0, 2), (0,
2)), ((0, 3), (0, 3)), (0, 5), (0, 5)), ((1, 0), (1, 0)), ((1, 1),
(1, 1)),..., and ((3, 5), (3, 5)). First consider two
submeshes S1((0, 0), (0, 0)) and S2((0, 2), (0, 2)). Here S5
is ((0, 0), (0, 0)). Since S2 ∦u S1, S1 and S2 cannot be
combined. Now consider S1 ((0, 2), (0, 2)) and S2((0, 3),

(0, 3)). Since S1 ‖u S2, S1 and S2 are combined into S3((0,
2), (0, 3)) and deleted from F. Next S1((0, 2), (0, 3)) and
S2((0, 5), (0, 5)) cannot be combined. Consider S1((0, 5),
(0, 5)) and S2((1, 0), (1, 0)). The x coordinates of bases of
S1 and S2 are different. Therefore, we consider S1((0, 5),
(0, 5)) and S5((0, 0), (0, 0)). Since S5 ‖u S1, those
submeshes are combined into ((0, 5), (0, 0)) and deleted
from F. The new submesh ((0, 5), (0, 0)) is inserted into
F, and S2((1, 0), (1, 0)) becomes new S1. So far, ((0, 2),
(0, 2)), ((0, 3), (0, 3)), ((0, 0), (0, 0)), and ((0, 5), (0, 5))
are deleted, and ((0, 2), (0, 3)) and ((0, 5), (0, 0)) are
inserted. This procedure is continued and finally F
contains ((0, 2), (0, 3)), ((0, 5), (0, 0)), ((1, 4), (1, 2)), ((2,
1), (2, 1)), ((2, 4), (2, 5)) and ((3, 1), (3, 5)) after the
columnwise combining as shown in Figure 6(b). Note
that the submeshes in F after columnwise combining
have the following properties.
(1) The width of every submesh is 1.
(2) If S1 is ahead of S2 in F, either (x1b = x2b ∧ y1e < y2b) or
(x1e < x2b) holds.
(3) All submeshes are separate.

 Next the procedure for rowwise combining is given
as follows.
Procedure Row_combining()
S1 ← first submesh in F
S2 ← next submesh in F
Repeat
 if (S1 ‖r S2 ∨ S2 ‖r S1)
 S3 ← S1 + S2
 insert S3 to F
 if S1 ⊆ S3, delete S1 from F and S1 ← S3
 if S2 ⊆ S3, delete S2 from F
 if there is next submesh of S2 in F
 S2 ← the submesh
 else
 S1 ← next submesh of S1 in F
 S2 ← next submesh of S1 in F
Until no more next submesh of S1 exists
 /* all submeshes in F are considered */

 For example, suppose that the faulty processors are
combined as shown in Figure 6(b) after the columnwise
combining. Initially, all submeshes are arranged by the
increasing order of the y-coordinates of their bases, and
then by the x-coordinates of the bases if the y-coordinates
are same. If the base coordinates are the same, the end
coordinates are considered. Thus, the submeshes in
Figure 6(b) are ordered as ((2, 1), (2, 1)), ((3, 1), (3, 5)),
((0, 2), (0, 3)), ((1, 4), (1, 2)), ((2, 4), (2, 5)), and ((0, 5),
(0, 0)). First, considering S1((2, 1), (2, 1)) and S2((3, 1),
(3, 5)) which are adjacent each other, new submesh ((2,
1), (3, 1)) is identified. Since ((2, 1), (2, 1)) ⊂ ((2, 1), (3,
1)), ((2, 1), (2, 1)) is deleted from F, ((2, 1), (3, 1)) is
inserted to F, ((2, 1), (3, 1)) is new S1, and ((0, 2), (0, 3))
is new S2. S1 cannot be combined with S2. Consider S2((1,
4), (1, 2)). Here, a new submesh ((1, 1), (3, 1)) is
identified and it is new S1. The S1 cannot be combined
into any other remaining submesh ((2, 4), (2, 5)) or ((0,

FAULT-FREE MAXIMAL SUBMESHES IN FAULTY... Informatica 28 (2004) 289–296 293

5), (0, 0)) in F. Now new S1 is ((3, 1), (3, 5)) and new S2
is ((0, 2), (0, 3)). This procedure is continued, and final
submeshes in F after rowwise combination become ((1,
1), (3, 1)), ((3, 1), (3, 5)), ((0, 2), (0, 3)), ((0, 2), (1, 2)),
((1, 4), (1, 2)), ((1, 4), (3, 5)), ((0, 5), (3, 5)), and ((0, 5),
(1, 0)) as shown in Figure 6(c).

Figure 6. An example of finding faulty submeshes.

 We analyze the time complexity of the procedure for
finding maximal faulty submeshes as follows. Assume
that Nf is the number of faulty processors in an a × b
mesh system. The initial sorting of the faulty processors
takes O(Nflog2Nf). Columnwise combining takes only
θ(Nf) since each faulty processor is considered only once
and deletion/insertion of a submesh tales θ(1) using a
doubly-linked list. Rowwise combining takes O(Nf

2)
because all submeshes in F should consider all other
submeshes in F in the worst case. Consequently, the time
to find maximal faulty submeshes is O(Nf

2).
 We next show how the maximal fault-free
submeshes are identified using the maximal faulty
submeshes.

3.2 Maximal Fault-free Submeshes

Here we maintain another data structure FF, an ordered
list keeping fault-free submeshes. The basic idea for
identifying maximal fault-free submeshes is to chop off
the portions of the fault-free submeshes which are part of
maximal faulty submeshes. Initially, FF keeps one entire
mesh. Then the faulty submeshes are removed from it
one by one. In this section, the mechanism for removing
faulty submeshes is first explained. Then the procedure
for identifying maximal fault-free submeshes follows.

3.2.1 Removing Submeshes

Assume S1 Ο S2 and S9 ← S1 ∩ S2 . Let k as the number
of same coordinates in the addresses of S1 and S9. Recall
that each submesh has four coordinates, xb, yb, xe, and ye.
In Figure 7, the cases corresponding to five different
values of k are shown. For example, in the case of Figure
7(c), k = 2 since x1b = x9b and y1b = y9b, but x1e ≠ x9e and
y1e ≠ y9e.

Figure 7. Five different values of k.

Definition 8: Removing S2 from S1, S1 - S2, is a procedure
for identifying new maximal submeshes such that the
new submeshes are the remainder of S1 after excluding
the processors belonging to S2. S1 - S2 is the same as S1 -
S9 where S9 ← S1 ∩ S2. If S1 ◊ S2, S1 - S2 = S1 and no
change in S1. If S1 Ο S2, new submeshes may be
identified.

 The details of the procedure for each case of k are
explained below.
k = 4: Since S1 ≡ S9, no submesh remains after removing
S9 from S1.
k = 3: There exist four cases as shown in Figure 8, Case
1: y1e ≠ y9e, Case 2: x1e ≠ x9e, Case 3: y1b ≠ y9b, and Case
4: x1b ≠ x9b. A new submesh S3 is generated after
removing S9 from S1. The address of S3 is referred to
Table II.

Figure 8. Four cases of location of intersected submesh

when k = 3.

Table II. Address of new submesh from S1 - S9 when k =

3.
Case S3 x3b y3b x3e y3e

1 A x1b y9e + 1 x1e y1e
2 B x9e + 1 y1b x1e y1e
3 C x1b y1b x1e y9b- 1
4 D x1b y1b x9b - 1 y1e

k = 2: There exist six cases as shown in Figure 9, Case 1:
x1b = x9b ∧ y1b = y9b, Case 2: x1b = x9b ∧ x1e = x9e, Case 3:
x1b = x9b ∧ y1e = y9e, Case 4: y1b = y9b ∧ x1e = x9e, Case 5:
y1b = y9b ∧ y1e = y9e, and Case 6: x1e = x9e ∧ y1e = y9e. In
each case, two new submeshes are generated after
removing S9 from S1. The addresses of the new
submeshes in Figure 9 are as follows; A, C, G: same as
Case 1 in Table II; B, F, J: same as Case 2; D, E, K: same
as Case 3; H, I, L: same as Case 4.
k = 1: There exist four cases as shown in Figure 10, Case
1: x1b = x9b, Case 2: x1e = x9e, Case 3: y1e= y9e, and Case 4:
y1b = y9b. In each case, three new submeshes are
generated. The addresses of the new submeshes in Figure

294 Informatica 28 (2004) 289–296 S.-M. Yoo et al.

10 are as follows; A, D, K: same as Case 1 in Table II; B,
I, L: same as Case 2; C, F H: same as Case 3; E, G, J:
same as Case 4.

Figure 9. Six cases of location of intersected submesh

when k = 2.

Figure 10. Four cases of location of intersected submesh

when k = 1.

Figure 11. Location of intersected submesh when k = 0.

k = 0: Four new submeshes are generated as shown in
Figure 11. The addresses of the new submeshes in Figure
11 are as follows; A: same as Case 1 in Table II; D: same
as Case 2; C: same as Case 3; B: same as Case 4.

3.2.2 Identifying Maximal Fault-free Submeshes

After the removing operation, the maximal fault-free
submeshes are identified using the following procedure.
Procedure Collection_faultFree ()
FF = { ((0, 0), (a-1, b-1)) }
F = set of faulty submeshes
while F is not empty
 S2 ← extract first submesh in F
 repeat
 S1 ← first submesh in FF
 if S1 Ο S2
 generate new submeshes from S1 - S2

 as explained in Section 3.2.1
 if any of those submeshes ¬ ⊆ any
 submesh in FF
 insert it into FF
 until all submeshes in FF are considered

Figure 12. An example of removing faulty submeshes.

Recall that there exist 17 faulty processors (marked

as ‘X’) in Figure 6(a) and those 17 processors are
combined into 8 overlapped, faulty submeshes shown in
Figure 6(c). Let us use the same example. There exist 19
fault-free processors (un-marked as ‘X’) in Figure 6(a).
To identify the maximal fault-free submeshes from the
19 fault-free processors, the faulty submeshes in Figure
6(c) are removed from the whole torus, instead of
directly combining the 19 fault-free processors. Refer to
Figure 12. Initially, the whole torus ((0, 0), (5, 5)) exists.
After removing ((1, 1), (3, 1)), the first faulty submesh in
Figure 6(c), from the whole torus, two overlapped
submeshes, ((0, 2), (5, 0)) and ((4, 0), (0, 5)), exist as
shown in Figure 12(a). Next consider ((3, 1), (3, 5)), the
second faulty submesh. It does not overlap with ((4, 0),
(0, 5)) but overlaps with ((0, 2), (5, 0)). ((3, 1), (3, 5)) ∩

FAULT-FREE MAXIMAL SUBMESHES IN FAULTY... Informatica 28 (2004) 289–296 295

((0, 2), (5, 0)) = ((3, 2), (3, 5)), and ((0, 2), (5, 0)) – ((3,
2), (3, 5)) = ((0, 0), (5, 0)) and ((4, 2), (2, 0)). The
remaining submeshes after the removing ((3, 1), (3, 5))
are ((4, 0), (0, 5)), ((0, 0), (5, 0)), and ((4, 2), (2, 0)) as
shown in Figure 12(b). Similarly, remaining faulty
submeshes, ((0, 2), (0, 3)), ((0, 2), (1, 2)), ((1, 4), (1, 2)),
((1, 4), (3, 5)), ((0, 5), (3, 5)), and ((0, 5), (1, 0)), are
removed. Finally, as shown in Figure 12(c), there exist
six fault-free submeshes, ((1, 3), (2, 3)), ((2, 0), (5, 0)),
((2, 2), (2, 3)), ((4, 0), (5, 5)), ((4, 1), (0, 1)), and ((4, 4),
(0, 4)), which are maximal faulty-free submeshes.
 We analyze the time complexity of the procedure
to identify maximal fault-free submeshes. Initially, FF
contains only one submesh and F contains O(Nf)
submeshes. The while loop executes O(Nf) times and the
repeat loop executes O(Nf) times. Generation of new
submeshes takes O(1) times. Comparison and insterstion
take O(Nf) times because FF is an ordered list. Therefore,
the time to find maximal fault-free submeshes takes
O(Nf

3). Thus, the total time of the proposed scheme is
O(Nf

3). Recall that Nf is the number of faulty processors
in an a × b mesh system.

4 Conclusion

In this paper, we have proposed a scheme which can
efficiently identify the largest size fault-free submeshes
in a 2D torus with faulty processors. The proposed
scheme employs two phase approach for systematically
find the desired fault-free submeshes. The main idea is
that the largest size faulty submeshes are first identified,
and then the portion of fault-free submeshes overlapped
with the maximal faulty submeshes is excluded to find
the largest size fault-free submeshes. For the effective
manipulation of this process, the relative locations of any
pair of submeshes in a 2D torus have also been defined.
The time complexity of the proposed scheme is O(Nf

3),
where Nf is the number of faulty processors in a 2D torus.
 Even though task allocation problem in 2D meshes
has recently drawn a lot of attention, the allocation
problem in a torus system in the presence of faulty nodes
has not. We are currently developing a task allocation
scheme in a faulty 2D torus based on the proposed
reconfiguration scheme.

References

[1] Alverson et al., "The Tera computer system,"

Proc. 1990 Int'l Conf. on Supercomputing, pp. 1-6,
1990.

[2] R. E. Kessler and J. L. Schwarzmeier, "CRAY
T3D: A new dimension for Cray research," in
Proc. COMPCON, pp. 176-182, Feb. 1993.

[3] J. Ding and L.N. Bhuyan, “An adaptive submesh
allocation strategy for two-dimensional mesh
connected systems,” Int'l Conf. on Parallel
Processing, pp. II-193-200, Aug. 1993.

[4] D.D. Sharma and D.K. Pradhan, “A fast and
efficient strategy for submesh allocation in mesh-
connected parallel computers,” Symp. on Parallel

and Distributed Processing, pp. 682-689, Dec.
1993.

[5] S. M. Yoo, H.Y. Youn, and B. Shirazi, "An
efficient task allocation scheme for 2D mesh
architectures," IEEE Trans. on Parallel and
Distributed Systems, pp. 934-942, September
1997.

[6] T. Liu, W.K. Huang, F. Lombardi, and L.N.
Bhuyan, “A submesh allocation scheme for mesh-
connected multicomputer systems,” Int'l Conf. on
Parallel Processing, pp. II-159-163, August 1995.

[7] S. Bhattacharya and W.T. Tsai, “Lookahead
processor allocation in mesh-connected massively
parallel multicomputers,” Int'l Parallel Processing
Symposium, pp. 868-875, April 1994.

[8] J. Upadhayay and P. Mohapatra, “An efficient
processor allocation scheme for mesh connected
parallel computers,” Symposium on Parallel and
Distributed Processing, pp. 196-203, October
1995.

[9] W. Liu, V. Lo, and K. Windisch, “Non-contiguous
processor allocation algorithms for distributed
memory multicomputers,” Supercomputing, pp.
227-236, November 1994.

[10] G. Kim and H. Yoon, "On submesh allocation for
mesh multicomputers: a best-fit allocation and a
virtual submesh allocation for faulty meshes,"
IEEE Trans. on Parallel and Distributed Systems,
pp. 175-185, February 1998.

[11] G.M. Chiu and S.K. Chen, "An efficient submesh
allocation scheme for two-dimensional meshes
with little overhead," IEEE Trans. on Parallel and
Distributed Systems, pp. 471-486, May 1999.

[12] B.S. Yoo and C.R. Das, “A fast and efficient
processor allocation scheme for mesh-connected
multicomputers,” IEEE Trans. on Computers, 51
(1), pp. 46-60, Jan. 2002.

[13] L.D. de Cerio, M. Valero-Garcia, and A. Gonzalez,
“Hypercube algorithms on mesh connected
multicomputers,” IEEE Trans. on Parallel and
Distributed Systems, 13 (12), pp. 1247–1260, Dec.
2002.

[14] D. Wang and J. Cao, “On optimal hierarchical
configuration of distributed systems on mesh and
hypercube,” Parallel and Distributed Processing
Symposium, pp. 8, April 2003.

[15] K.H. Seo and S.C. Kim, “A dynamic processor
management scheme on the reconfigurable
meshes,” Int’l Conf. on Parallel and Distributed
Computing, Applications and Technologies
(PDCAT'2003), pp. 497-501, Aug. 2003.

[16] N.C. Wang and T.S. Chen, “Task migration in all-
port wormhole-routed 2D mesh multicomputers,”
Int’l Symp. on Parallel Architectures, Algorithms
and Networks, pp. 123-128, May 2004.

[17] H.J. Ho and W.M. Lin, “A performance-
optimizing scheduling technique for mesh-
connected multicomputers based on real-time job
size distribution,” Int’l Conf. on Parallel and
Distributed Systems (ICPADS 2004), pp. 639-646,
July 2004.

296 Informatica 28 (2004) 289–296 S.-M. Yoo et al.

[18] A.L. Rosenberg, “On scheduling mesh-structured
computations for Internet-based computing,”
IEEE Trans, on Computers, 53(9), pp. 1176-1186,
Sept. 2004.

[19] S. Latifi, “Distributed subcube identification
algorithms for reliable hypercubes,” Information
Processing Letters 38, pp. 315-321, June 1991.

[20] N.F. Tzeng and G. Lin, “Identifying maximal
incomplete subcubes in faulty hypercubes,” Symp.
on Parallel and Dist. Comp. Systems, pp. 186-193,
Oct. 1994.

Informatica 28 (2004) 297–305 297

Distributing State Space for Parallel Computation of CTL Model Checking

Mustapha Bourahla
Computer Science Department, University of Biskra, Algeria
mbourahla@hotmail.com

Mohamed Benmohamed
Computer Science Department, University of Constantine, Algeria
ibnm@yahoo.fr

Keywords: Model Checking, Distributed Systems, Parallel Computation

Received: March 3, 2003

In this work we discuss the problem of performing distributed CTL model checking by splitting the given
state space into several partial state spaces, and therefore the distribution of the transition relation. This
work thus significantly extends the scope of properties that can be verified for very large designs. Each
computer involved in the distributed computation owns a partial state space and performs a model checking
algorithm on it. To be able to proceed, a CTL property is checked by the different processes and the results
are combined to produce the final decision about the satisfaction of this CTL property. In this paper, we
present the splitting algorithm of the state space. We will present also a new algorithm of the distributed
CTL model checking whose correctness is formally proved.

Povzetek: članek analizira delovanje porazdeljenega CTL modela.

1 Introduction

The main aim in exploiting a distributed environment for
model checking [5] is to extend the applicability of model
checking algorithms to larger and more complex systems.
Many sequential approaches have been proposed to deal
with large state spaces, e.g. partial-order methods, sym-
bolic verification, abstractions, and partial state space rea-
soning. Often these approaches do not suffice-time or space
resources can still significantly limit the practical applica-
bility [3]. Recently, a new promising method for increasing
the memory capacity was introduced. The method uses the
collective pool of memory modules in a network of pro-
cesses. A parallel super computer, grid or a network of
computers can provide extra resources needed to fight more
realistic verification problems. Here we consider a network
of workstations that communicate via message passing.

The important feature of algorithms running in a dis-
tributed environment is to solve the given task by distribut-
ing the data among the participating workstations with as
small amount of coordination as possible. One of the main
issues in distributing model checking algorithms is how
to partition the state space (data) among the individual
computers called here network nodes. There are two as-
pects that significantly influence the overall effectiveness
of model-checking in the distributed environment: locality
and (spatial) balance of the state space partition. Locality
means that most of the state’s descendants are assigned to
the same node as the parent state, thus reducing communi-
cation and cooperation overhead. Balance means that each

network node is assigned approximately the same number
of states, thus achieving good speed-up.

The main idea of many distributed algorithms is similar:
the state graph is partitioned among the network nodes, i.e.,
each network node owns a subset of the state space. The
differences are in the way the state space is partitioned.
Probabilistic techniques to partition the state space have
been used e.g. in [2, 10, 14], and a technique which ex-
ploits some structural properties derived from the verified
formula has been proposed in [1]. The model checking al-
gorithm running on each network node has thus access only
to a part of the entire system. Depending on the type of the
algorithm, it communicates with other nodes to achieve the
required (global) result.

The authors of [9, 16] have developed an approach to
model checking of software which uses modularity. Their
notion of a module differs from that used in modular model
checking as understood for example in [7, 8, 13]. A module
here is not a part of a whole system that runs in parallel with
other modules (i.e. that contributes to the whole system
in a multiplicative way), but a subset of a state space that
originates from splitting the whole system in an additive
way. It is defined by following the syntactical structure of
the program. This notion of module has also been used in
[11], where the system is split according to the semantics
of the program. Besides this partition, the authors in [9,
16] have also defined the notion of an assumption function
that represents partial knowledge about truth of formulas
provided by the rest of the system (by other parts).

In this contribution we propose a new method of split-

298 Informatica 28 (2004) 297–305 M. Bourahla et al.

ting the state space that is based on manipulations of Bi-
nary Decision Diagrams (BDDs) implementing this state
space. Any transition system modeled as a Kripke struc-
ture, is implemented by a BDD. Our method will partition
the original Kripke structure (the original BDD) by cre-
ating different BDDs that are linked by a way preserving
the original behavior. Hence, these BDDs represent the
different fragments of the original Kripke structure. The
CTL property will be checked over the fragments of the
Kripke structure in a parallel or a sequential way, where
each fragment is used by a different process running the
model checking algorithm on a workstation node. These
processes will exchange information if necessary to make
a decision about the satisfaction check. The exchange of
information is based essentially on the links between the
different fragments. Furthermore, we have modified the
model checking algorithm in such a way that it can be run
in a distributed environment.

The main idea is, once the system is partitioned, the
Kripke structure on each network node can contain partial
states and transitions between these states. These transi-
tions can be unconditional transitions (their executions do
not need exchange of information with other processes) or
conditional where their executions will happen only after
reception of information from other processes running on
other nodes. This information represent the condition of
these conditional transitions. In all cases we have also to
take into account the associated communication complex-
ity.

The rest of this paper is organized as follows: in Sec-
tion 2, we present the definition of transition systems and
their modeling as Kripke structures. Section 3 is devoted
to our method of partitioning the state space. In Section
4, we present the language CTL and its semantics over a
partitioned Kripke structure. The distributed CTL model
checking algorithm and the proof of its correctness are pre-
sented in Section 5. At the end, in Section 6 we present a
conclusion and related works.

2 Modeling Transition Systems

Our aim is to perform a model checking algorithm on a
transition system which can model any concurrent system
that can be described with a high level language, on a clus-
ter of n workstations, called (network) nodes. In addition
to the sequential case a partition algorithm is used to par-
tition the state space among the nodes. After partitioning
the state space, each node owns a part of the original state
space. We will show that we can run distributed model
checking on these parts of state spaces to verify CTL prop-
erties.

Definition 1 A transition system M is a triple M =
(V,R, I) where V = {v1, . . . , vn} is a finite set of Boolean
variables containing a sub-set of the atomic propositions
(AP), R ⊆ 2V × 2V is a transition relation and I ⊆ 2V is
a set of initial states.

Definition 2 A Kripke structure is a quintuple K =
(Q,R, s0, AP,L) where:

1. Q is a non-empty (possibly infinite) set of states,

2. R ⊆ Q × Q is a total transition relation (i.e., (∀s :
s ∈ Q : (∃s′ : s′ ∈ Q : 〈s, s′〉 ∈ R))),

3. s0 ∈ Q is the initial state,

4. AP is a set of atomic propositions, and

5. L : Q→ 2AP is a state-labeling function.

A Kripke structure may be viewed as labeled directed
graph. The states are the graph’s vertices, the transition
relation defines the edges, the initial state is marked with a
small incoming arrow, and each state is labeled with a set
of atomic propositions.

A transition system is modeled with a Kripke structure,
where the states in the Kripke structures (Q) are defined
to be mapped to Boolean expressions composed of the
variables from V describing the transition system. These
Boolean expressions are defined in the transitions set of the
original system. Note that, because the transition relation
is required to be total, our model described with a Kripke
structure has the same set of transitions defined by the re-
lation R in the original transition system with the addition
of loop transitions from and to vertices that don’t have out-
going edges.

The labeling function L : Q → 2AP is intended to as-
sociate with each state in Q an interpretation of the atomic
propositions in AP . Thus, through L we know for each
state s ∈ Q which atomic propositions are true, namely
those in L(s), and which ones are false, namely those
not in L(s). The Kripke structures are implemented using
the Reduced Order Binary Decision Diagrams (ROBDD or
shortly BDD). These structures will be used as a base for
our algorithms.

Example 1 The Kripke structure of the transition system
defined by the triple M = (V = {a, b, c}, R = {〈a ∧ b ∧
c, a ∧ b̄ ∧ c̄〉, 〈a ∧ b ∧ c, ā ∧ b ∧ c̄〉, 〈a ∧ b̄ ∧ c̄, ā ∧ b ∧ c̄〉,
〈a∧ b̄∧ c̄, ā∧ b̄∧c〉, 〈ā∧b∧ c̄, a∧b∧ c̄〉, 〈ā∧ b̄∧c, a∧b∧ c̄〉},
I = a ∧ b ∧ c), is shown in Figure 1, where s0 is the initial
state of this Kripke structure. We assume AP = {b}.

3 Partitioning the Kripke Structure

The Kripke structure (which is represented by a BDD)
modeling a transition system will be partitioned using the
algorithm defined below (Algorithm 1). To partition any
Kripke structure, we have to define a list of clusters C
of Boolean variables from the set of variables V . Then,
each cluster of variables from C, is used to generate a cor-
responding Kripke sub-structure. We note that the vari-
ables in V are ordered. The clusters C should be also or-
dered which means that Ci ≺ Cj if ∀vi : vi ∈ Ci and
∀vj : vj ∈ Cj then vi ≺ vj . Each Kripke sub-structure

DISTRIBUTING STATE SPACE FOR. . . Informatica 28 (2004) 297–305 299

s0

{b}

s1

∅

s2

{b}

s3

∅

s4

{b}

a ∧ b ∧ c

a ∧ b̄ ∧ c̄

ā ∧ b ∧ c̄

ā ∧ b̄ ∧ c

a ∧ b ∧ c̄

Figure 1: Kripke structure of the transition system M

Ki is composed of states that can be mapped to Boolean
expressions B of the variables in Ci with the condition that
∃B′ such that B ∈ B′ and B′ is the Boolean expression
using the whole set V , of a state si in the original Kripke
structureK. The composition of the generated Kripke sub-
structures Ki, i = 0, 1, · · · , n should be equal to the origi-
nal Kripke structure K.

Algorithm 1 Partionning the Kripke
structures

BDD partition(BDD K, G, H; ClustersList C)
{

if (C �= nil) {
if (K == true) return G
if (K == false) return H
x = min(root(K), root(G), root(H))
if (x ∈ CurrentCluster(C)) {

T = partition(Kx, Gx, Hx, C)
E = partition(Kx̄, Gx̄, Hx̄, C)
if T == E return T
return createNode("x", T, E)

} else {
Ki = partition(K, G, H , NextCluster(C))
if (∃P ∈ FragmentsList | P == Ki)

return createNode(P.Label, nil, nil)
else {

InsertFragment(Ki)
return createNode("Ki", nil, nil)

}
}

} else return nil
}

The Kripke sub-structures resulting from the partition of
the given Kripke structure, are called fragments.

Definition 3 A Kripke structure Ki =
(Qi, Ri, s0i, APi, Li) is a fragment of a Kripke structure
K = (Q,R, s0, AP,L) if

– ∀s : s ∈ Qi ⇒ ∃s′ : s′ ∈ Q | s ∧ s′ = s′

– s0i ∧ s0 = s0

– ∀〈s1, s2〉 ∈ Ri ⇒ ∃〈s′1, s′2〉 ∈ R | (s1 ∧ s′1 = s′1) ∧
(s2 ∧ s′2 = s′2)

– APi ⊆ AP

– Li : Qi → 2APi | ∀s : s ∈ Qi : (∃s′ : s′ ∈ Q :
((s ∧ s′ = s′) ∧ (Li(s) ⊆ L(s′))).

This algorithm is using a list of fragments
FragmentsList to store the generated fragments of
the original Kripke structure. By this algorithm, we can
partition a complete Kripke structureK to many fragments
Ki. Each Ki is a Kripke structure of a sub-system.
Once the given system is partitioned, the resulting Kripke
structuresK0, · · · ,Kn can have links between them which
make the sub-systems dependant. A fragment Ki of K is a
sub-structure of K satisfying the property that every state
in Ki can have unconditional and/or conditional successor
states in Ki.

Then, a transition in the system represented by the frag-
ment Ki can be unconditional or conditional transition.
Formally, if ∃Ki and ∃〈s1, s2〉 : 〈s1, s2〉 ∈ Ri (Ri is the
transition relation ofKi), we denote the unconditional tran-
sition by s1 → s2 which means a transition from the state
s1 to the state s2 can occur without any reference to the
other fragments (its execution is independent). By contrast,
the conditional transition has the form s1

processj−−−−−→ s2,
where processj is a link label to another Kripke structure
Kj .

This will be handled by communications between the
processes running the different sub-structures. This means
that a process will be suspended on a conditional transition
until reception of information from the process running the
Kripke sub-structure indicated by the label. There is a par-
ticular Kripke sub-structure which is not referenced by any
transition in the other sub-structures. We call this the root
Kripke sub-structure.

A path π in a Kripke structure K from a state s0 is a
sequence π = s0s1 · · · such that ∀i ≥ 0 : si, si+1 ∈ Q
and 〈si, si+1〉 ∈ R. An equivalent path can be computed
using the fragments of K. Figure 2 shows the partition
of the Kripke structure presented in Figure 1 after the ex-
ecution of the following call: InsertFragment(partition(K,
true, false, {{a}, {b}, {c}})).

There are three clusters of variables ({{a}, {b}, {c}}.
Each Kripke structure Ki represents a sub-system Mi. The
sub-systems Mi can be executed in sequence or in parallel.
These Kripke sub-structures can be represented as BDDs
(It suffice just to remove the transition labels). So, for each

300 Informatica 28 (2004) 297–305 M. Bourahla et al.

K0:

a ā

K3

K2

K1

K1:

b b̄

K5

K4

K2:

b b̄

K4 K6

K5

K3:

b b̄

K4

K4:

c c̄

K5:

c̄

K6:

c c̄

�

�

�

�

�

�

Figure 2: Fragments of K with their links

state we realize a formula of the form F = f ∧
∨m

i=1 gi,
where f is the state formula and the sub-formulas gi are the
labels on its outgoing edges.

The transitions drawn by the dashed edges have a la-
bel indicating which sub-system to communicate with
(receivefrom()) to get information (the condition) before
this transition can take place (it is waiting for an infor-
mation). We should remark that the number of generated
Kripke sub-structures depends on the number of the speci-
fied clusters of variables and the original Kripke structure.
Also, some Kripke sub-structures can have the same set
of states but different transitions. This is very important
to reduce the communication complexity and to improve
the performance of the model checking. The advantage of
representing any transition system with a fragmented and
therefore distributed Kripke structure that we can execute
this transition system in a sequential or in parallel manner.

The main goal of our distributed algorithm is to reduce
the memory requirement. In symbolic model checking,
pre-image is one of the operations with the highest memory
requirement. Given a set of states S, pre-image computes
pred(S), which is the set of all predecessors of states in S.
The pre-image operation can be described by the formula
pred(S) = {s′ ∈ Q | ∃s ∈ S : R(s′, s)}. It is easy to see
that the memory requirement of this operation grows with
the sizes of the transition relation R and the set S. Further-
more, intermediate results sometimes exceed the memory
capacity even when pred(S) can be held in memory.

Our distributed algorithm reduces memory requirements
by restricting each of the computed sets of states to a frag-
ment. This takes care of the S parameter of pre-image,
and the reduction of the transition as well. The following
algorithm is the parallel version of the pre-image function
pred.

DISTRIBUTING STATE SPACE FOR. . . Informatica 28 (2004) 297–305 301

Algorithm 2 the pre-image function

2Q pred(Kripke K, 2QS)
{

res = {s ∧ receivefrom(processi) |
∃t.s processi−−−−−→ t ∧ t ∈ S} ∪ {s | ∃t.s→ t ∧ t ∈ S}

for each process processi �= pid
sendto(processi, res)

return res
}

For each Kripke sub-structureKi, we associate a process
to calculate the pre-image function pred in parallel with the
other processes. The image function succ can be defined
by the same way. All the processes processi, i = 0, · · · , n
execute pred once in parallel and then they begin commu-
nication to exchange information until there are no infor-
mation to exchange which indicates the end of the function
pre-image pred. The global result is the pre-image result
of the process running the root Kripke sub-structure.

Example 2 In this example (Figure 3), we compute the
pre-image of the states characterized by the expression
S = ā ∧ b ∧ c̄. We observe that the computation is par-
allel where the function pre-image pred is executed simul-
taneously on all the Kripke sub-structures by different pro-
cesses P0, · · · , P6 located on different nodes. If a process
has a link label to another process, it will send a message
to get the result of its execution. This communication will
continue until all the information requested has been de-
livered. The result of the global function pre-image is the
result of the process running the root Kripke sub-structure
K0.

To reconstruct the original Kripke structure, it suffices to
remove the conditional transitions by making them uncon-
ditional transitions. To do that we replace each conditional
transition by transitions which are the product of this con-
ditional transition and all the unconditional transitions in
the fragment indicated by the link label on the conditional
transition. The source states and the target states are also
composed to get new source and target states. The result-
ing new transitions will inherit the attribute unconditional.
This process will be iterated many times until there will be
no conditional transitions.

Algorithm 3 Reconstructing the original
Kripke structure

Kripke Reconstruct(Kripke K)
{

while ∃τ = s1
Kj−−→ s2 ∈ K do {

if Kj contains conditional transitions then
Kj = Reconstruct(Kj)

for all transitions s′1 → s′2 ∈ Kj do {
Q = Q ∪ {s1 ∧ s′1, s2 ∧ s′2}
R = R ∪ {〈s1 ∧ s′1, s2 ∧ s′2〉}

}
}

}

To get the original Kripke structure from its fragments,
we have just to execute the call Reconstruct(K0).

Lemma 1 The produced Kripke structure by removing the
conditional transitions from the fragments of a Kripke
structure, is the same original Kripke structure used as in-
put to the partition algorithm.

We have illustrated the parallel execution which is our
goal in addition to solving the explosion problem. The se-
quential execution is also possible using the same structure.
In the next section, we will present the CTL semantics over
a transition system represented by fragments of a Kripke
structure.

4 CTL Model Checking

Computational Tree Logic (CTL) is the most popular tem-
poral logic introduced for formal verification with model
checking [9, 10]. This logic is formally based on models
where at each moment there may be several different pos-
sible futures (branching temporal logic). Its semantics is
a tree of states, each path in the tree is intended to repre-
sent a single possible computation of the system. The tree
itself thus represents all possible computations. The CTL
operators allow the expression of properties of some or all
computations of a system.

Definition 4 (Syntax of CTL). The language of
CTL is defined by the following abstract syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ∃Xϕ | ∃Gϕ | ϕ∃Uϕ

where p ranges over the set of atomic propositions AP , X
is pronounced "next", ∃ "for some path", ∀ "for all paths"
and U "until".

There are two types of operators, state operators X , F
and G, and path operators ∃ and ∀. All CTL temporal op-
erators are composed of a path operator followed by a state
operator. This grammar is not given in its most succinct
form and there exist equivalence rules to express the same
formula with different operators. In practice, by using this
equivalence rules, a formula can be written such that the
negation appears only at the level of atomic propositions.
Such a form of a formula is known as Positive Normal
Form (henceforth PNF form) [6].

A CTL-model M is represented as a Kripke structure
(M = (Q,R, s0, AP,L)). A path ρ is an infinite sequence
of states s0s1s2 · · · such that 〈si, si+1〉 ∈ R,∀i ≥ 0. ρ[i]
denotes the (i+1)-th element of ρ. The set of paths starting
in state s of the model M is defined by ΠM(s) = {ρ |
ρ[0] = s}.

For any CTL-model M = (Q,R, s0, AP,L) and state
s ∈ Q, there is an infinite computation tree with root la-
beled s such that (s′, s′′) is an arc in the tree if and only if
(s′, s′′) ∈ R. A state s for which p ∈ L(s) is sometimes
called a p-state. ρ is called a p-path if it consists solely of
p-states.

302 Informatica 28 (2004) 297–305 M. Bourahla et al.

P0(K0) P1(K1) P2(K2) P3(K3) P4(K4) P5(K5) P6(K6)

a ∧ K2 b ∧ K5 ∨ b̄ ∧ K4 b ∧ K4 ∨ b̄ ∧ K5 b ∧ K5 c c̄ c

b ⊕ c b ⊕ c b ∧ c̄

a ∧ b ⊕ c

Figure 3: Parallel computation

Definition 5 (Semantics of CTL). The semantics
of CTL are defined by a satisfaction relation between a
modelM, one of its states s, and a formula ϕ. s |=M ϕ if
and only if ϕ is valid in state s of modelM. The satisfac-
tion relation is defined by:

– s |=M p iff p ∈ L(s)

– s |=M ¬p iff not (s |=M p)

– s |=M ϕ ∧ ψ iff (s |=M ϕ) ∧ (s |=M ψ)

– s |=M ∃Xϕ iff ∃ρ ∈ ΠM(s).ρ[1] |=M ϕ

– s |=M ∃Gϕ iff ∃ρ ∈ ΠM(s).∀j ≥ 0.ρ[j] |=M ϕ

– s |=M ϕ∃Uψ iff ∃ρ ∈ ΠM(s).(∃j ≥ 0.ρ[j] |=M
ψ) ∧ (∀k, 0 ≤ k < j.ρ[k] |=M ϕ)

Given a CTL-formula ϕ and a CTL-modelM with a finite
set of states (Q), the model checking algorithm computes
the set of states for which ϕ is valid. This set is denoted
Sat(ϕ), and is computed in a recursive way, i.e. by com-
puting for each sub-formula ψ of ϕ the set Sat(ψ). In order
to decide whether s |=M ϕ we just have to check whether
state s is a ϕ-state, i.e., whether s ∈ Sat(ϕ).

Theorem 1 The system M represented by the Kripke
structureK and the systemM ′ represented by its fragments
Ki, 0 ≤ i ≤ n are bi-similar.

Proof. We have to prove that M simulates M ′ and M ′

simulates M . formally,

M ∼M ′ ⇔ (∀〈s1, s2〉 ∈ R→ ∃〈s̃1, s̃2〉 ∈ R̃)∧

(∀〈s̃1, s̃2〉 ∈ R̃→ ∃〈s1, s2〉 ∈ R),

where s̃1 and s̃2 are global states in M ′ that are computed
from s1 and s2 respectively by the partition algorithm. R̃
is the global transition relation of M ′. We assume there
are n + 1 processes each one is running a fragment from
the n + 1 Kripke sub-structures. By construction s1 has
a corresponding global state in M ′, which is defined by
s̃1 =

∧n
i=0 s

i
1. Then it exists a next state of s1 that also

is represented with the same form by the next state of s̃1
which can be computed by the global transition relation R̃.

∃s̃2 : R̃(s̃1, s̃2) =

∃s02 : R0(s01, s
0
2 ∧ receivefrom()) = · · · =

R0(s01, s
0
2 ∧

n∧
j=1

receivefrom()) = R0(s01,
n∧

j=0

sj
2),

where Ri, i = 0, · · · , n are the transition relations of the
corresponding fragments Ki. Each processj j = 1, · · · , n
will send its image state sj

2 computed by using the local
transition relation Rj , to the root process. The final image
result is

∧n
j=0 s

j
2. We remark that by construction s2 is in

each sj
2 then, s2 ∈

∧n
j=0 s

j
2.

On the other hand, for ∀s̃1 we assume there exists s1
which is in s̃1. By definition of Kripke structure it exists s2
such that R(s1, s2). By construction s2 has a correspond-
ing global state in M ′, which is defined by s̃2 =

∧n
i=0 s

i
2.

By construction of the partial transition relations during the
partition process, it is easy to verify that R̃(s̃1, s̃2) is true.
�

To define the semantics of CTL formulas over Kripke
structures composed with fragment sub-structures we need
to adapt the standard semantic definition. CTL is usually
interpreted over complete structures, while our structures
are typically non-complete. By theorem 1, we have the
following equivalences in the definition of semantics.

Lemma 2 (Semantics of the distributed
system). Let ϕ be a CTL formula, and Ki (0 ≤ i ≤ n)
are the fragments of K, computed using the partition
algorithm. Then, we have this equality

Sat(K,ϕ) =
n⋂

i=0

(Sat(Ki, ϕ)).

5 Distributed CTL Model Checking

Each fragment Ki is managed by a separate process Pi.
These processes are running in parallel on each node. Each

DISTRIBUTING STATE SPACE FOR. . . Informatica 28 (2004) 297–305 303

Algorithm 4 Distributed CTL Model Checking

2Q pSat(Kripke Ki, CTL ϕ)
{

switch(ϕ) {
case p:

res = {s ∧ receivefrom(Pj) | p ∈ Li(s) ∧ ∃t ∈ Qi.t
Pj−→ s ∈ Ri}∪

{s | p ∈ Li(s)∧ � ∃t ∈ Qi ∧ (∀j : 0 ≤ j ≤ n.t
Pj−→ s ∈ Ri)}

sendtoOtherProcesses(res)
case ¬p:

res = {s ∧ receivefrom(Pj) | p �∈ Li(s) ∧ ∃t ∈ Qi.t
Pj−→ s ∈ Ri}∪

{s | p �∈ Li(s)∧ � ∃t ∈ Qi ∧ (∀j : 0 ≤ j ≤ n.t
Pj−→ s ∈ Ri)}

sendtoOtherProcesses(res)
case ϕ1 ∧ ϕ2: res = exchange(pSat(Ki, ϕ1)) ∩ exchange(pSat(Ki, ϕ2))
case EXϕ: res = exchange(pred(pSat(Ki, ϕ)))
case EGϕ : res = fixpoint(pSat(Ki, ϕ), false,Qi)
case ϕ1EUϕ2 : res = fixpoint(pSat(Ki, ϕ1), pSat(Ki, ϕ2), false)

}
return res

}

2Q fixpoint(2Q ϕ, ψ, init) 2Q exchange(2Q S)
{ {

Qval = init res = S
do for each process Pi �= pid

Qold = exchange(Qval) sendto(Pi, S)
Qval = ψ ∪ (ϕ ∩ pred(Qold)) for each process Pi �= pid

while Qold �= exchange(Qval) res = res ∧ receivefrom(Pi)
return Qval return res

} }

process Pi checks the satisfaction of the CTL formula
(which is in PNF) using the adapted symbolic algorithm
of model checking (Algorithm 4) presented below.

If the satisfaction check can not be decided only after
reception of the results of other processes, the process run-
ning pSati will send messages to receive information from
these processes. These steps are repeated until a fix-point
is reached (global stabilization occurs), i.e. until no new
information can be computed. The processes repeatedly
compute information about truth of formulas and send and
receive computed information to and from other processes,
respectively. This finishes when a fix-point is reached.
Then each process extrapolates information, using the fact
that the fix-point has been reached. This is performed re-
peatedly until the information we search for is computed.

For each state and each formula we want to say if its
value has already been computed or not. We consider a
value for a state and a formula computed if an appropriate
value of receivefrom() has already been defined for some
process Pi. After reaching the fix-point at the end it can be
necessary to resolve undefined values to be able to continue
in the computation, i.e. to consider as computed a value for
some state and some formula.

The fact that a fix-point has been reached cannot be de-
tected locally. How- ever, by employing an additional com-
munication (exchange()) between computers we are able

to determine it. Additional communication between pro-
cesses is also needed to find out what tuples (S, ϕ) are min-
imal. Suppose a fix-point has been reached. Each process
Pi computes a set of tuples that are minimal in the set for
which is undefined. When finished, it sends the set to every
other process and receives similar information from other
processes. Using this information, each process is able to
determine what tuples are minimal in the undefined set.

5.1 Correctness

To prove the correctness of the distributed algorithm, we
assume the sequential algorithm is correct. The sequen-
tial algorithm evaluates a formula by computing the set
of states satisfying this formula. In the distributed algo-
rithm every such set is owned by the process running the
root Kripke sub-structure which is also portioned among
the processes in a conjunctive way. In the proof we show
that, for every CTL formula, the set of states computed by
the sequential algorithm is identical to the set computed by
the processes in the distributed algorithm.

Theorem 2 (Correctness). Let ϕ be a CTL for-
mula, Ki, i = 0, 1, · · · , n are the fragments of K com-
puted by the algorithm 1. If Sat(K,ϕ) and pSati(Ki, ϕ)
for i = 0, 1, · · · , n terminate, then Sat(K,ϕ) =∧n

i=0 pSati(Ki, ϕ).

304 Informatica 28 (2004) 297–305 M. Bourahla et al.

Proof. We prove the theorem by induction on the structure
of ϕ. If ϕ = p for p ∈ AP . The sequential algorithm Sat()
returns the union of all the states in Q that are marked by
p. The process running the root Kripke sub-structure in the
distributed algorithm returns

resid = (Sid ∧
∧

j �=id

receivefrom()) =
n∧

j=0

Sj .

This is based on the fact that each process can wait for in-
formation which represents the transition condition, from
other process.

For formulas of the form ϕ = ϕ1 ∧ ϕ2, pSatid(ϕ) first
computes pSatid(ϕ1) ∧ pSatid(ϕ2). At the end of this
computation, the global set is:

n∧
i=0

(pSati(ϕ1) ∧ pSati(ϕ2)) =

n∧
i=0

pSati(ϕ1) ∧
n∧

i=0

pSati(ϕ2).

By the induction hypothesis, this is identical to Sat(ϕ1) ∧
Sat(ϕ2) which is identical to Sat(ϕ1 ∧ ϕ2).

For the formula EXϕ, we compute the pre-image of ϕ
(pred(ϕ)).

predid(ϕ) = (s1 ∨ s2) ∧
∧

j �=id

receivefrom() |

∃s′1 : s1
Pj �=id−−−−→ s′1 ∧ ϕ(s′1) ∧ ∃s′2 : s2 → s′2 ∧ ϕ(s′2).

We have s1 ∨ s2 is in Qid. Then,

predid =
n∧

j=0

Sj .

If the formula is EGϕ, we would like to prove∧n
i=0 pSati(EGϕ) = Sat(EGϕ). So, we need

to prove that
∧n

i=0 fixpointi(S, false,Qi) =
fixpoint(S, false,Q), where S is the satisfaction set of
ϕ. The following lemma proves stronger requirements.

Lemma 3 Let Qj be the value of Qval in iteration j of
the sequential fixpoint algorithm. Similarly, let Qj

id be the
value ofQval in iteration j of the distributed fix-point algo-
rithm in process id. Q0 is the initialization of the sequential
algorithm; Q0

id is the initialization of the distributed algo-
rithm. Then, for every j : Qj =

∧k
i=1Q

j
i . If the sequential

fixpoint algorithm terminates after i0 iterations then so
does the distributed fixpoint algorithm.

Proof. We prove the lemma by induction on the num-
ber j of iterations in the loop of the sequential function
fixpoint. At iteration 0, the initialization of the sequen-
tial algorithm, as well as the distributed algorithm is false.
Hence, Q0 = Q0

id = false which implies Q0 =
∧n

i=0Q
0
i .

Both algorithms perform at least one iteration, so they do
not terminate at iteration 0.

Assume Lemma 3 holds for iteration j. We prove it for
iteration j + 1. By the induction hypothesis of Lemma 3
we know that Qj =

∧k
i=1Q

j
i . Qj+1 = Sat(Qj , ϕ) and

Qj+1
id = pSatid(Q

j
id, ϕ). Thus, the induction hypothesis

of Theorem 2 is applicable and implies that Sat(Qj , ϕ) =∧n
i=0 pSati(Q

j
i , ϕ). Hence, Qj+1 =

∧n
i=0Q

j+1
i .

The sequential fixpoint procedure terminates at iter-
ation j + 1 if Qj = Qj+1. We prove that this holds
if and only if for every process id, exchange(Qj

id) =
exchange(Qj+1

id). From above, Qj =
∧n

i=0Q
j
i and

Qj+1 =
∧n

i=0Q
j+1
i .

∀id : exchange(Qj
id) = exchange(Qj+1

id)⇔

∀id :
n∧

i=0

Qj
i =

n∧
i=0

Qj+1
i ⇔

∀id : Qj = Qj+1 ⇔ Qj = Qj+1.

The last equality is implied by the previous one. This
completes the proof of the lemma. �

Then the proof of the theorem is completed. �

6 Conclusions and Related Work

In this work we have considered a technique that uses es-
tablished links between the Kripke sub-structures (frag-
ments) generated by a partitioning algorithm of the state
space to perform CTL model checking in a distributed en-
vironment. We have developed the necessary theoretical
background and described the distributed algorithm. The
experimental version of the algorithm is currently being
implemented. One of the points that would certainly de-
serve at least some comments is how to chose the clusters
of variables to do partitioning so as to minimize communi-
cations. For example we could choose to partition accord-
ing to few variables that are known to change rarely. We
expect to elaborate more possibilities in the future.

In this work in contrast to others, we have focused on
the partitioning problem and we have given a complete ap-
proach. Other work is based on the modular model check-
ing approach [9] which uses assumptions about missing
parts of the state space. An other approach that utilizes
a decomposition of the system into parts (modules, frag-
ments) is in [12]. They present a model checking algo-
rithm for pushdown processes and consider the semantics
of "fragments" which are interpreted as "incomplete por-
tions" of the process. Another work is the model checking
algorithm for the logic EF and CTL and pushdown pro-
cesses [15]. Finally, in [4] the authors have used 3-valued
logic (with ? representing "don’t know if property is true
or false") to reason about Kripke structures with partial la-
beling (called partial state space).

For the future work, our first goal is to perform an ex-
perimental evaluation. In particular we would like to find

DISTRIBUTING STATE SPACE FOR. . . Informatica 28 (2004) 297–305 305

out how the performance is influenced by various types of
partition function. We also intend to consider other logics
and model checking algorithms in place of the "node algo-
rithm".

References

[1] Barnat J., L. Brim and I. Cerna (2002) Property
Driven Distribution of Nested DFS, VCL’02, Pitts-
burgh (USA).

[2] Barnat J., L. Brim and J. Stribrna (2001) Distributed
LTL Model-Checking in SPIN, The 8th Interna-
tional SPIN Workshop on Model Checking of Soft-
ware (SPIN’01), LNCS 2057 Springer-Verlag, pp.
217–234.

[3] Bourahla M. and M. Benmohamed (2002) Predi-
cate Abstraction and Refinement for Model Checking
VHDL State Machines, Electronic Notes in Theoreti-
cal Computer Science 66(2), Elsevier Science.

[4] Bruns G. and P. Godefroid (1999) Model checking
partial state spaces with 3-valued temporal logics,
11th International Computer Aided Verification Con-
ference, LNCS Springer-Verlag, pp. 274–287.

[5] Clarke E. M., O. Grumberg and D. A. Peled (1999)
Model Checking, The MIT Press.

[6] Emerson E., C. Lei (1986) Efficient Model Check-
ing in Fragments of the prepositional µ-calculus, The
First Annual Symposium of Logic in Computer Sci-
ence.

[7] Kupferman O. and M. Y. Vardi (2000) An automata-
theoretic approach to modular model checking, ACM
Transactions on Programming Languages and Sys-
tems 22.

[8] Kupferman O. and M. Y. Vardi (1997) Modular model
checking, COMPOS, pp. 381–401.

[9] Laster K. and O. Grumberg (1998) Modular model
checking of software, TACAS’98, LNCS 1384
Springer-Verlag, pp. 20–35.

[10] Lerda F. and R. Sisto (1999) Distributed-memory
model checking with SPIN, The 6th International
SPIN Workshop on Model Checking of Software
(SPIN’99), LNCS 1680 Springer-Verlag, pp. 22–39.

[11] Pierre-Alain Masson J. J. and H. Mountassir (2000)
Modular verification for a class of PLTL prop-
erties, The 7th International SPIN Workshop on
Model Checking of Software (SPIN’00),LNCS 1945
Springer-Verlag, pp. 398–419.

[12] Steffen B. and O. Burkart (1994) Pushdown pro-
cesses: Parallel composition and model checking,
CONCUR’94, LNCS 836 Springer-Verlag, pp. 98–
113.

[13] Tsay Y.-K. (2000) Compositional verification in
linear-time temporal logic, FoSSaCS 2000, pp. 344–
358.

[14] Stern U. and D. L. Dill (1997) Parallelizing the
murϕ verifier, Computer Aided Verification (CAV
’97), LNCS 1254 Springer-Verlag, pp. 256–267.

[15] Walukiewicz I. (2000) Model checking CTL prop-
erties of pushdown systems, Foundations of Soft-
ware Technology and Theoretical Computer Science,
LNCS 1974 Springer-Verlag, pp. 127–138.

[16] Yorav K. (2000) Exploiting Syntactic Structure
for Automatic Verification, Ph.D. thesis, Technion,
Haifa, Israel.

306 Informatica 28 (2004) 297–305 M. Bourahla et al.

Informatica 28 (2004) 307–313 307

On-line Handwriting Chinese Character Analysis and Recognition Using
Stroke Correspondence Search

Jungpil Shin
Department of Computer Software, University of Aizu, Aizu-Wakamatsu City, Fukushima, 965-8580, Japan
e·mail: jpshin@u-aizu.ac.jp

Keywords: on-line character recognition, stroke order-free, stroke number-free, stroke information, stroke correspon-
dence search

Received: January 14, 2003

To improve the computational time and recognition accuracy in stroke order- and stroke number-free on-
line handwriting character recognition, we have performed a structural analysis of stroke order style and
stroke connection. Using handwritten characters chosen from among 2965 Chinese characters, we have
deduced information on stroke order and connection using an automatic stroke correspondence system.
First, we have shown that the majority of real characters are written in a fixed stroke order, and that the
actual stroke order is predominantly the standard stroke order, with about 98.1% of the characters being
written in the standard stroke order. Almost all the stroke connections occurred in the standard order
(92.8%); while two-stroke connections were common, stroke connections in non-standard order occurred
very rarely. In a comparison of our findings with the expected stroke connections, very few were found to
actually occur. Second, we have shown methods for incorporating the information in a completely stroke
order- and number-free framework. Third, we have shown that the proposed methods can be selected
according to the quality of the writer(s), the character(s), and the recognition system. Finally, a large
improvement in both computational time and recognition accuracy is demonstrated by experiment.

Povzetek: članek opisuje prepoznavanje kitajskih pisanih znakov.

1 Introduction

On-line recognition of handwritten cursive characters is a
key issue in state-of-the-art character recognition research
[8], and extensive research has been conducted to mitigate
the variation seen in stroke order, stroke number and stroke
deformation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18]. In contrast with off-line recognition, on-line
recognition has the important advantage of being able to
use stroke order and connection information, because the
character pattern is expressed by ordered time sequences.
Based on stroke order and stroke connection information,
there are two approaches to realize on-line character recog-
nition. The first approach actively uses the stroke order
and connection information, and the second approach takes
into account the inevitable changes in stroke order and con-
nection that occur from person to person, and hence uti-
lizes "free stroke order" and "free stroke number". Our
approach is basically the same as the second method, and
the framework for character recognition is stroke order-free
and stroke number-free. Using this framework for stroke
order-free and number-free character recognition, we can
obtain locally available information on the stroke order and
connection [15, 16, 17, 18].

The algorithm required to construct a system for stroke
order- and number-free recognition needs a correct perfor-
mance of stroke correspondence between the input pattern
and the reference pattern for the highest recognition perfor-

mance [2, 11, 17, 18]. However, this type of algorithm also
carries out a large number of stroke correspondences that
do not actually occur. To realize high quality recognition
on a small microprocessor with a built-in memory, such as a
Personal Digital Assistant (PDA), the recognition time and
required computational resources must be reduced. For this
purpose, it is expected that a reasonable level of stroke cor-
respondence searching can be realized by using informa-
tion on the stroke order and stroke connection as they actu-
ally occur. The development of a recognition framework
that incorporates information on stroke order and stroke
connection is expected to achieve a reduction in compu-
tational time and to improve the recognition accuracy by
neglecting any non-real stroke correspondences.

This paper is based on the assumption that recognition
can be performed on the stroke order- and number-free
framework. First, we investigate whether useful informa-
tion can be obtained in regard to the stroke order and con-
nection by focussing on a style analysis of the stroke order
variation and the connection between strokes. Second, we
propose the methods for incorporating the information in a
framework that is completely stroke order-free and stroke
number-free. Third, we show that the proposed methods
can be selected according to the quality of the writer(s), the
character(s), and the recognition system. Finally, a large
improvement in both the computational time and the recog-
nition accuracy are demonstrated by experiment.

308 Informatica 28 (2004) 307–313 J. Shin

Input Pattern Reference Pattern

B 1 B 2 B 3 B 4 B 5

A1

A2

A3

A4

A5

: stroke correspondence

A1

A2

A3

A4

A5

B2

B1

B3

B4

B5

(a)

(b)

Figure 1: The correct stroke correspondence between: (a)
the input pattern, and (b) the reference pattern.

2 The Stroke Correspondence
Problem

An on-line input character can be expressed as an ordered
series of writing strokes, i.e.,

A = A1A2 · · ·Ak · · ·AN , (1)

where the k-th stroke, Ak, is the time sequence represen-
tation of the local feature, aik, of a character, e.g., the x-y
coordinates or stroke direction. This is expressed as

Ak = a1ka2k · · · aik · · · aIk, I = I(k).

The reference pattern can be similarly expressed as

B = B1B2 · · ·Bl · · ·BM (2)

Bl = b1lb2l · · · bjl · · · bJl, J = J(l).

The stroke number of the input pattern is denoted by N ,
and the stroke number of the reference pattern is denoted
by M , with N being equal to M for correct stroke number
recognition.

The measure of dissimilarity between the input pattern
stroke, Ak, and the reference pattern stroke, Bl, is calcu-
lated using the stroke information of the character shape
and position, and is denoted by the stroke distance, δ(k; l).
A one-to-one stroke correspondence is defined by the bijec-
tion, {l(k)}, of the stroke number l of the reference pattern
from the stroke number k of the input pattern, as shown in
Fig.1. The sum of the stroke distances, δ(k; l), is used as an
evaluation standard of the optimum correspondence. Thus,

Table 1: Occurrence of changes in stroke number.

Stroke-number Occurrence Ratio (%)
change number

2 13 0.000050
1 662 0.002560
0 172428 0.666767
-1 54100 0.209201
-2 18933 0.073213
-3 7268 0.028105
-4 3202 0.012382
-5 1105 0.004273
-6 517 0.001999
-7 226 0.000874
-8 99 0.000383
-9 29 0.000112

-10 11 0.000043
-11 7 0.000027
-12 1 0.000004
-13 2 0.000008

Total 258603

based on the stroke information, the solution of the follow-
ing minimization problem is considered to give the opti-
mal stroke correspondence in which the minimum value,
D(A,B), is chosen as the measure of matching (i.e., the
dissimilarity) [11].

D(A,B) = min
{l(k)}

[
N∑

k=1

δ(k; l(k))

]
(3)

Solving this stroke correspondence determination problem
provides a structural analysis of the pattern, and therefore,
the dissimilarity, D(A,B), and the stroke correspondence,
{l(k)}, between the patterns are obtained.

3 Preparation for Analysis

The investigation data consisted of 2,965 categories of Chi-
nese characters, i.e., specified characters in the first level of
the Japanese Industry Standard (JIS) code set, as written
by 90 university students (total = 258,603 characters). The
students were directed to write cursively in a normal man-
ner. The data were recorded using a stylus pen on a liquid
crystal display (LCD) tablet. The investigation into the re-
sults of the change in stroke number are shown in Table 1.
This result is in good agreement with [2, 11, 18].

Reference patterns were generated from the training data
by storing the average values of the loci of feature points
from non-connected strokes that were extracted by re-
arranging the strokes according to the correct stroke order.
One reference pattern for each category was made.

The input character was transformed into a 256 x 256
mesh plane by preprocessing using redundant elimination,
smoothing, size normalization and feature point extraction.
The x-y coordinates and movement directional vector be-
tween one point and the next were extracted as feature in-
formation from the character data. The feature information

ON-LINE CHINESE CHARACTER ANALYSIS. . . Informatica 28 (2004) 307–313 309

(a)

(b)

Figure 2: Examples of: (a) the input, and (b) the reference
patterns.

of the input and reference patterns was placed into aik and
bjl, respectively. Figure 2 shows typical reference and in-
put patterns.

Automatic searching for the correct stroke correspon-
dence between the input and reference patterns was not
easy, since the analysis of the stroke order and the stroke
connection had to be performed simultaneously with a high
accuracy.

First, the Cube Search method [17, 18] was used to cor-
rect the stroke correspondence between the input and refer-
ence patterns by automatically searching using backtrack-
ing. This algorithm has a novel advantage in being able to
search efficiently for the optimal stroke correspondence in
spite of: (i) variation in stroke order, (ii) variation in stroke
number owing to stroke connections, and (iii) exceptional
user-generated stroke deformations. Some of the incorrect
stroke correspondences were manually converted into more
appropriate stroke correspondences from observation of the
characters. These errors arose from strokes written in erro-
neous positions.

4 Stroke Order and Stroke
Connection Information

On the Cube Search method [17, 18], to realize a com-
pletely free condition for stroke order, a high percentage
of unreal stroke correspondences was also carried out.

We expected that a reasonable level of stroke correspon-
dence searching could be realized by using the actual infor-
mation on the stroke order and stroke connection. Further-
more, there would be no hindrance for the framework of the
stroke order- and number-free recognition by use of statis-
tically stable information. The development of a recogni-
tion framework that incorporates information on the stroke
order and stroke connection is expected to achieve a reduc-
tion in computational time, and to improve the recognition
accuracy by neglecting non-real stroke correspondences.

We analysed the stroke order and stroke connection of
each handwritten character using an automatic stroke cor-
respondence analysis system based on the Cube Search

75 0 15 0 0 0 0 0
 15 75 0 0 0 0 0 0

0 15 75 0 0 0 0 0
 0 0 0 90 0 0 0 0
 0 0 0 0 90 0 0 0
 0 0 0 0 0 79 11 0
 0 0 0 0 0 2 79 9
 0 0 0 0 0 9 0 81

«

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

r=2

(b)

(a)
C67

Figure 3: The occurrence, Ckl, of correct stroke correspon-
dence between: (a) the input pattern stroke, k, and (b) the
reference pattern stroke, l.

18 72 0 0 0
 72 18 0 0 0

0 0 90 0 0
 0 0 0 90 0
 0 0 0 0 90

–ƒ

1
2
3
4
5

1 2 3 4 5

r=1

90 0 0 0 0 0 0
 0 88 2 0 0 0 0
0 2 43 21 24 0 0

 0 0 40 50 0 0 0
 0 0 5 19 66 0 0
 0 0 0 0 0 69 21
 0 0 0 0 0 21 69

‰Ø

1
2
3
4
5
6
7

1 2 3 4 5 6 7

r=2
r=0

90 0 0 0 0 0
 0 90 0 0 0 0
0 0 90 0 0 0

 0 0 0 90 0 0
 0 0 0 0 90 0
 0 0 0 0 0 90

ˆ

1
2
3
4
5
6

1 2 3 4 5 6

Figure 4: Examples of the occurrence of correct stroke cor-
respondences.

method [17, 18].

4.1 Stroke Order Analysis

Stroke order variation among writers is mainly caused by
the particular writing style of the individual. To use the
stroke order information in the framework of stroke order-
free recognition, changes in the real stroke order data were
investigated from the following viewpoints:

(1) the range of the fluctuation of the stroke order in com-
parison with the standard stroke order, or

(2) whether the stroke order change was completely ran-
dom.

One such analysed result can be shown using the fre-
quency of an example included in Fig. 3. The quantity Ckl

Figure 5: Character examples, each having a gap.

310 Informatica 28 (2004) 307–313 J. Shin

70

75

80

85

90

95

100

0 2 4 6 8 103 5 7 91

pe
rc

en
ta

ge
(%

)

range(r)

Figure 6: Stroke correspondence distribution.

is the number of the input pattern in which the l-th stroke
of the reference pattern is written as the k-th stroke of the
input pattern. Note that a connected stroke is composed
of strokes that correspond to the reference pattern strokes,
based on the fact that the change in stroke order of charac-
ters with a connected stroke has the same tendency as the
change in stroke order of characters having only a single
stroke.

In the example " ", 15 among the 90 writers sampled
wrote the third to the first stroke incorrectly, and the de-
viations of the 15 incorrect writers are shown in the dis-
tribution of the first, second and third strokes. From the
results of the stroke order analysis, 76% of all characters
were written in accordance with the standard stroke order,
and further, the distribution of the remaining characters was
concentrated along the diagonal line.

In the occurrence table of Fig. 3, if the maximum dis-
tance having a non-zero element from the diagonal line is
r, then it is denoted by r-gap. Figure 4 shows examples
with an r-gap value. Figure 5 shows character examples,
each having a gap. Figure 6 shows the percentage of char-
acters having r-gap, with 95.7% and 98.1% of the charac-
ters included in the r = 2 and r = 3 ranges, respectively.

Based on the above stroke correspondence results, the
following methods can be incorporated into the Cube
Search algorithm.

(1) If there is no case where the l-th stroke of the reference
pattern can be written as the k-th stroke of the input
pattern, i.e., Ckl = 0, then the (k, l) correspondence
is excluded.

(2) Based on the tendency that the stroke correspondences
are concentrated on the diagonal line, if |k − l| > r
then the (k, l) correspondence is excluded.

One of the above methods or the range r can be selected
according to the quality of the writer(s), the character(s),
and the recognition system. In the example " ", only 15
pairs of Ckl
= 0 or 34 pairs within r = 2 were considered
as objects suitable for searching for correspondences. By
using the stroke order information, a large improvement is

Figure 7: Typical stroke connections and character exam-
ples.

Stroke-
Number

Stroke-
Number

Transformation
 of Character

Transformation
 of Character

13

12

11

10

14 9

8

7

4

Figure 8: Transformation of the character “ŃŹ” by the oc-
currence of stroke connections.

expected in terms of the recognition accuracy and compu-
tation time.

4.2 Stroke Connection Analysis

Stroke connection occurs mainly in rapid or in cursive
handwriting. As a result, the number of strokes in a char-
acter decreases. Figure 7 shows examples of characters
in which stroke connections occur, and where some fixed-
shape stroke connections occur. Figure 8 shows the trans-
formation of a character from the occurrence of stroke con-
nections. The following points need to be considered for
stroke connection.

(1) How many strokes are there in consecutive continuous
writing?

(2) In one character, in how many places does indepen-
dent continuous writing occur?

ON-LINE CHINESE CHARACTER ANALYSIS. . . Informatica 28 (2004) 307–313 311

Table 2: Occurrence of consecutive stroke connection with:
(a) standard, and (b) non-standard order.

type of consecutive (a)
stroke connection number ratio(%) kinds ratio(%)

2-strokes 94970 78.88 12779 65.78
3-strokes 15483 12.86 3695 19.02
4-strokes 1093 0.91 751 3.87

5- or more strokes 251 0.21 238 1.23
(b)

2-strokes 8036 6.67 1513 7.79
3-strokes 417 0.35 318 1.64
4-strokes 140 0.12 117 0.60

5- or more strokes 15 0.01 15 0.08
total 120405 100 19426 100

single stroke 2580086 32717

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 24

2 stroke-connection :
3 stroke-connection :
4 stroke-connection :

kinds of stroke-connection per category

nu
m

be
r

of
 c

at
eg

or
ie

s

Figure 9: Number of categories having stroke connections.

(3) Are the above occurrences of continuous writing fol-
lowed by use of a standard stroke order, or by a non-
standard stroke order?

The actual situation is complicated. A connection consist-
ing of k strokes is represented as a k-stroke connection.

Table 2 shows the occurrences of consecutive stroke con-
nections, which are divided into standard and non-standard
stroke orders. Note that the total number of single strokes
is 2,580,086 and includes 32,717 types. Almost all stroke
connections occur in the standard order (92.85%); while
two-stroke connections occur frequently, stroke connec-
tions in non-standard order occur rarely.

The relationship between the connection type and the
number of categories is shown in Fig. 9. From these
graphs, the connection types 4.82, 1.35 and 0.29 for each
character category can be calculated as two-, three-, and
four-stroke connections, respectively. As a result, three-
and four-stroke connections are 29% and 6% of the two-
stroke connections, respectively. Therefore, it can be said
that few-stroke connections occur more frequently than
many-stroke connections.

Given that a character is composed of N strokes, then
C(N, k) (the combination of n objects taken r at a time)

number of strokes

av
er

ag
e

fo
r

ki
nd

s
of

 s
tr

ok
e-

co
nn

ec
tio

n

2 stroke-connection :
3 stroke-connection :
4 stroke-connection :

0

1

2

3

4

5

6

7

8

9

10

5 10 15 20 251

Figure 10: Average of various types of stroke connection.

Table 3: Expected and actual occurrences of each stroke
connection type.

stroke-number expected actual actu./exp.(%)

2-stroke connection
5 C(5, 2) = 10 1.71 17.10
10 C(10, 2) = 45 4.03 8.95
15 C(15, 2) = 105 5.88 5.60
20 C(20, 2) = 190 8.04 4.23

3-stroke connection
5 C(5, 3) = 10 0.32 3.20
10 C(10, 3) = 120 1.18 0.98
15 C(15, 3) = 455 1.74 0.38
20 C(20, 3) = 1140 2.68 0.235

4-stroke connection
5 C(5, 4) = 5 0.025 0.500
10 C(10, 4) = 210 0.210 0.001
15 C(15, 4) = 1365 0.456 0.0003
20 C(20, 4) = 1995 0.440 0.0002

connection types of k strokes can be expected. For ex-
ample, in the case of a character with ten strokes, then
C(10, 2) = 45 two-stroke connections can possibly oc-
cur. However, characters have a common stroke order, and
most writers compose the characters according to a stan-
dard stroke pattern. Figure 10 shows the average stroke
connections for each character category. As shown in Fig-
ure 10 and Table 3, there were 4.03 two-stroke connections,
which was 8.95% of the expected number in a character
that consisted of ten strokes. Therefore, many fewer stroke
connections than expected occurred in a character.

Based on the above results of stroke connection, the fol-
lowing methods can be incorporated into the Cube Search
algorithm.

(1) Using the connection information shown in Table 2,
only the stroke connection type that actually occurs is
permitted.

(2) In addition to the above condition, a two-stroke con-
nection with standard order is permitted for every pos-
sible pair based on the finding that this type occurs

312 Informatica 28 (2004) 307–313 J. Shin

frequently, or

(3) a stroke connection with standard order is permitted
for each possible pair, and a stroke connection with a
non-standard order is permitted using the connection
information.

One of the above methods can be selected according to the
quality of the writer(s), the character(s), and the recogni-
tion system. By using the stroke connection information, a
large improvement is expected in terms of the recognition
accuracy and computation time.

5 Experimental Results

The usefulness of the proposed method was demonstrated
using PC-based recognition experiments with a Pentium III
processor operating at 700 MHz. The training data con-
sisted of 2,965 Chinese character categories, the same as
used in the investigation described in Section 3. Reference
patterns were generated from the training data by storing
the average values of the loci of feature points from strokes,
extracted by rearranging them according to their correct
stroke order. The test data were provided by 20 writers,
and consisted of the same characters as those of the train-
ing data (total = 57,667 characters). Twenty categories se-
lected at random were used for the input patterns in groups
organized into stroke numbers of 4, 8, 12, 16, and 20.

The input character was transformed into a 128 x 128
mesh plane by using the preprocessing steps of redun-
dant elimination, smoothing, size normalization and fea-
ture point extraction. The x-y coordinates and the move-
ment directional vector between one point and the next
were extracted as feature information from the character
data. The feature information of the input and the refer-
ence patterns was placed into aik and bjl, respectively.

Using DP matching, the stroke distance, δ(k; l), was cal-
culated using the weighted sum of: (1) the distance of the
x-y coordinate sequences, and (2) the distance of the direc-
tional vector sequences. An asymmetric DP equation was
employed for the DP matching [16].

The evaluation parameter, ρ, of the difference between
the inter-stroke information was determined using the dis-
tance as

ρ(k, l; p, q) =
1
4
[R(dss(Ap, Ak),dss(Bq, Bl))

+R(dse(Ap, Ak),dse(Bq, Bl))
+R(des(Ap, Ak),des(Bq, Bl))
+R(dee(Ap, Ak),dee(Bq, Bl))]. (4)

where l denotes the stroke number, Bl is the l-th stroke of
the reference pattern, dss(Ap, Ak) is the vector from the
start point of Ap to the start point of Ak, dse(·, ·) is the
vector from a start point to an end point, des(·, ·) is the
vector from an end point to a start point, and dee(·, ·) is the
vector from an end point to an end point. The weighted sum

Table 4: Recognition experiment results.

Experiment 1 Experiment 2

Search time(sec) 0.76 0.24
Recognition rate(%) 98.39 98.92

of the directional difference and the longitudinal difference
between vectors is denoted by R(·, ·).

The recognition results were obtained using a force de-
cision that selects the candidate with the minimum dissim-
ilarity, D(A,B). The optimal weighting factors were de-
termined for each experiment.

The following experiments were performed to demon-
strate the effectiveness of the proposed method.

(1) Experiment 1: A recognition experiment was car-
ried out performing the stroke correspondence search
without using stroke order and connection informa-
tion.

(2) Experiment 2: A recognition experiment was car-
ried out performing the stroke correspondence search
using stroke order and connection information, and
where we used the condition (2) of stroke order in sec-
tion 4.1 and the condition (2) of stroke connection in
section 4.2.

Table 4 summarizes the results from the recognition ex-
periments. A large improvement in the recognition rate is
achieved by using stroke order and connection information
with the stroke correspondence search. The stroke corre-
spondence search time using these data sets can be reduced
to about a third of the usual time. The sum total of the
recognition time was about 0.65 s, which is the total of the
calculation time of δ and ρ and the search times. The rea-
sons for the remaining misrecognitions are: (1) the exis-
tence of characters that closely resemble one another, and
(2) heavy deformation of a character.

6 Conclusions

In this paper, based on the assumption that recognition
can be performed in a stroke order- and stroke number-
free framework, useful information with regard to stroke
order and connection has been revealed. Using an au-
tomatic stroke correspondence system, we have observed
the correct stroke order and connection characteristics of
2,965 categories of Chinese handwritten characters. We
have shown that the real stroke order of a character mainly
follows a standard order, in which the character categories
of 95.7% and 98.1% are included within two- and three-
strokes, respectively, and 92.85% of all stroke connections
are written in standard stroke order. In comparison with
the expected stroke connections, very few non-standard
connections actually occur. We have described a method
for incorporating the information in a framework that is

ON-LINE CHINESE CHARACTER ANALYSIS. . . Informatica 28 (2004) 307–313 313

completely stroke order-free and stroke number-free. In-
formation from either the stroke order and/or the stroke
connection can be applied to the framework, which can
be altered according to the quality of the data. By intro-
ducing this knowledge-based technique into a stroke order-
and number-free system, we have achieved a reduction of
computational time, and greatly improved recognition ac-
curacy.

Future work will include the development of a technique
for efficiently extracting and registering exceptional user-
generated stroke deformations. Based on this information,
the reference pattern dictionary can be substantially com-
pressed.

References

[1] K. Yoshida and H. Sakoe (1982) Online Handwritten
Character Recognition for a Personal Computer Sys-
tem, IEEE Trans. Consumer Electronics, vol. 28, no.
3, pp. 202-208.

[2] T. Wakahara, K. Odaka, and M. Umeda (1983) Stroke
Number and Order Free On-Line Character Recog-
nition by Selective Stroke Linkage Method, IECE
Trans., Japan, vol. J66-D, no. 5, pp. 593-600 (in
Japanese).

[3] M. Yurugi, S. Nagata, K. Onuma, and K. Kubota
(1985) Online Character Recognition by Hierarchical
Analysis Method, IECE Trans., Japan, vol. J68-D, no.
6, pp. 1320-1327 (in Japanese).

[4] K. Odaka, T. Wakahara and I. Masuda (1986) Stroke-
Order-Independent On-Line Character Recognition
Algorithm and Its Application, Rev. Electrical Comm.
Laboratories, vol. 34, no.1, pp. 79-85, 1986.

[5] Y. Sato and H. Adachi (1985) Online Recognition of
Cursive Writings, IECE Trans., Japan, vol. J68-D, no.
12, pp. 2116-2122 (in Japanese).

[6] K. Ishigaki and T. Morishita (1988) A Top-Down On-
line Handwritten Character Recognition Method via
the Denotation of Variation, Proc. 1988 Int. Conf. on
Computer Processing on Chinese and Oriental Lan-
guages, pp. 141-145.

[7] M. Nakagawa (1990) Non-keyboard Input of
Japanese Text – On-Line Recognition of Handwritten
Characters as the Most Hopeful Approach, IPSJ
Trans., Japan, vol. 13, no. 1, pp. 15-34.

[8] C.C. Tappert, C.Y. Suen, and T. Wakahara (1990) The
State of the Art in On-Line Handwriting Recognition,
IEEE Trans. Pattern Anal. Machine Intell., vol. 12,
no. 8, pp. 787–808.

[9] M. Nakagawa and K. Akiyama (1994) A Linear-time
Elastic Matching for Stroke Number Free Recogni-
tion of On-Line Handwritten Characters, Proc. 4th

Int. Workshop on Frontiers in Handwriting Recogni-
tion, pp.48-56.

[10] A. Hsieh, K. Fan, and T. Fan (1995) Bipartite
Weighted Matching for On-Line Handwritten Chi-
nese Character Recognition, Pattern Recognition,
Vol.28, No.2, pp.143-151.

[11] T. Wakahara, A. Suzuki, N. Nakajima, S. Miyahara,
and K. Odaka (1996) Stroke-Number and Stroke-
Order Free On-Line Kanji Character Recognition as
One-to-One Stroke Correspondence Problem, IEICE
Trans. Inf. & Syst., vol. E79-D, no. 5, pp. 529–534.

[12] Y. Ishii (1986) Stroke Order Free Online Handwrit-
ten Kanji Character Recognition Method by Means
of Stroke Representative Points, IECE Trans., Japan,
vol. J69-D, no. 6, pp. 940–948 (in Japanese).

[13] T. Uchiyama, N. Sonehara, and Y. Tokunaga (1997)
On-Line Handwritten Character Recognition Based
on Non-Euclidean Distance, IEICE Trans. Inf. &
Syst., vol. J80-D-II, No. 10, pp. 2705–2712 (in
Japanese).

[14] T. Wakahara and K. Odaka (1997) ’On-Line Cur-
sive Kanji Character Recognition Using Stroke-Based
Affine Transformation, IEEE Trans. Pattern Anal.
Machine Intell., vol. 19, no. 12, pp. 1381–1385.

[15] H. Sakoe and J. Shin (1995) A Stroke Order Search
Algorithm for On-Line Character Recognition, Tech-
nical Report of IEICE, vol. PRU-95, no. 59, pp. 55–60
(in Japanese).

[16] H. Sakoe and J. Shin (1997) A Stroke Order Search
Algorithm for Online Character Recognition, Re-
search Reports on Information Science and Electri-
cal Engineering of Kyushu University, vol. 2 no. 1,
pp. 99–104 (in Japanese).

[17] J. Shin, M. M. Ali, Y. Katayama, and H. Sakoe
(1999) Stroke Order Free On-Line Character Recog-
nition Algorithm Using Inter-Stroke Information, IE-
ICE Trans. Inf. & Syst., vol. J82-D-II, No. 3, pp. 382–
389 (in Japanese).

[18] J. Shin and H. Sakoe (1999) Stroke Correspondence
Search Method for Stroke-Order and Stroke-Number
Free On-Line Character Recognition — Multilayer
Cube Search, IEICE Trans. Inf. & Syst., vol. J82-D-II,
No. 2, pp. 230–239 (in Japanese).

314 Informatica 28 (2004) 307–313 J. Shin

Informatica 28 (2004) 315–321 315

A System for Evaluation of Human Upper Extremity

Nives Klopčar and Jadran Lenarčič
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
nives.klopcar@ijs.si, jadran.lenarcic@ijs.si, http://www2.ijs.si/∼nklopcar/

Keywords: human arm evaluation, reachable workspace, shoulder ranges of motion, rehabilitation

Received: February 13, 2004

A standard method to determine the shoulder range of motion in physiotherapy is to measure the dec-
lination angles in predefined planes in the glenohumeral joint. These angles can hardly be understood
and visualized and they do not directly interpret the functionality of the arm. In this article, we report a
computer program which computes the human arm reachable workspace based on a simplified kinematic
model. The program uses as input data the values of the measured declination angles in combination with
the proportions of the measured limb. It thus enables to obtain a graphic interpretation of the arm’s reach-
ability, quantifies the workspace volume and represents a platform to objectively validate the functionality
of the arm. The obtained numerical and graphical results can be used for visualization, computer-aided
documentation, comparison between different phases of a rehabilitation process, comparison between dif-
ferent subjects, and can also serve for a deeper mathematical and biomechanical analysis.

Povzetek: članek opisuje sistem za izračun dosegljivega delovnega prostora človeske roke.

1 Introduction

Objective measurements, mathematical processing of the
measured data, and effective interpretations and visualiza-
tions are of crucial importance in advanced rehabilitation
engineering. Many contributions with the purpose to de-
velop new techniques of data capturing, development of
new therapeutical approaches and new rehabilitation de-
vices were reported in the literature in the area of human
gait. On the contrary, there is a lack of investigations aimed
to evaluate the functionality of the human upper extremity.
This is primarily because the human gait can be seen as
a relatively simple planar motion, while the motion of the
human upper extremity is spatial and extremely difficult to
evaluate and interpret.

The purpose of this investigation is to develop a com-
puter program which computes, visualizes, and quanti-
fies the human arm reachable workspace (AWS). The hu-
man arm reachable workspace is referred to as the volume
within which all points can be reached by the chosen ref-
erence point on the wrist, namely the center point between
process styloideus ulnae and process styloideus radii [1].
The AWS program is in the process of being introduced as
part of a regular measurement and evaluation process of the
upper extremity of (in particular hemiplegic) patients in the
Institute for Rehabilitation, Ljubljana, Slovenia.

The input data to the AWS program are the arm propor-
tions and the ranges of motion in the joints of the shoulder
and of the elbow complexes as measured by the physiother-
apist. At the current stage, the measurement technique in
the rehabilitation center is entirely manual and only stan-
dardized selective motions are measured. The main diffi-

culty, however, is related to the effectiveness of the com-
putation of the workspace from the measured data since
this is an extremely time-consuming numerical procedure.
To make it useful and implementable on a personal com-
puter, a very concise kinematical model of the human up-
per extremity must be used in the program. In this in-
vestigation, the human arm motion is seen as a combina-
tion of the shoulder and the elbow motion. The shoulder
motion is composed of elementary motions in the gleno-
humeral, scapulothoracic, sternoclavicular, and acromio-
clavicular joint [2, 3, 4, 5]. In order to obtain the reach-
able workspace effectively, all these motions are modelled
as a single spherical joint possessing three perpendicular
rotation axes intersecting in the center of the human gleno-
humeral joint. The elbow joint is understood as a uniaxial
joint connecting the ulna with the humerus and the radius
with the humerus. These two joints allow the elbow flexion
and extension [6] and are modelled as a single rotation. The
radioulnar joint, which allows the supination and pronation
of the forearm, is not included in the model since it does
not influence the spatial position of the wrist.

The workspace is computed as a number of points
in space and is then graphically converted into a three-
dimensional body by the use of a proper computer graphics
module. A physiotherapist can utilize the AWS program to
compute and visualize the workspace of the injured arm
and compare it with an ideal healthy arm. It is possible to
numerically quantify the workspace in terms of its volume,
compactness and other mathematical criteria representing
the arm functionality.

The first section of this article presents the basic kine-
matic properties of the human upper extremity and de-

316 Informatica 28 (2004) 315–321 J. Lenarčič et al.

velops a simplified kinematical model. In the follow-
ing section we discuss the computation of the reachable
workspace and its numerical evaluation. In the last section,
an example of the treatment of a hemiplegic patient is re-
ported.

2 Simplified kinematics

The movements of the arm are measured relatively to the
arm’s reference pose, which is when the upper arm is fully
extended downward by the side of the body and the forearm
flexed for 90◦ (placed forward in a horizontal direction)
so that the palm of the hand is turned towards the body.
The principal shoulder movements are shown in Figure 1.
The shoulder elevation through flexion and retroflexion are
measured in the sagittal plane around the coronal axis, the
elevation through abduction and adduction is measured in
the frontal plane around an anterior-posterior axis. The in-
ternal and external rotations are measured in the horizontal
plane around a vertical axis [7, 8, 9]. The principal elbow
movement is the flexion-extension which is measured in
the sagittal plane.

180
o

60
o

90
o

90
o

180
o

0
o

0
o

0
o

internal

rotation

external

rotation

flexion

retroflexion

adduction

abduction

(a) (b) (c)

Figure 1: The shoulder complex movements: The elevation
through flexion - retroflexion (a), the elevation through ab-
duction - adduction (b) and the internal - external rotation
(c).

Figure 2 presents a kinematical model of the arm that
replicates the motion characteristics of each single joint in-
cluded in the arm [5, 6, 10]. Here, U denotes the univer-
sal joint that contains two perpendicular rotations, S is the
spherical joint that contains three perpendicular rotations,
joint T is a translation and joint R a rotation. In the shoul-
der girdle, the sternoclavicular joint Sc is modelled as an
universal joint, the acromioclavicular joint Ac as a spheri-
cal joint, and the scapulathoracic joint St as two translations
and one rotation. The rest of the shoulder motion is con-
centrated in the glenohumeral joint Gh which is spherical.

The sum of the degrees of freedom in the shoulder girdle
is f = 8. The number of movable segments is N = 4
and the number of joints is n = 5. In accordance to the

ST

R

SU

T

(b)

Sc
Ac

St

Gh

El

Wr

(a)

S R

S

S

Figure 2: The shoulder complex joints Sc, Ac, St, Gh, the
elbow El, and the wrist Wr (a) kinematical model (b).

Grübler’s formula only

F = λ(N − n) + f = 6(4− 5) + 8 = 2

degrees of freedom are independent (λ = 6 is used since
the girdle’s motion is spatial). One can see that these two
independent degrees of freedom are rotations, meaning that
the primary function of the girdle is to point the gleno-
humeral joint in space. The same motion can be obtained
by using only an universal joint U as shown in Figure 3a.
If there is a need to also replicate the changing of the size
of the girdle, we have to additionally include a dependent
translation T which depends on the rotations in the girdle’s
U joint [11].

In a similar way, we can analyze the kinematical struc-
ture of the elbow joint and of the wrist. The ulna is attached
to the humerus by a rotational joint R and the radius by a
spherical joint S. On the other end, the bones of ulna and
radius are attached to the hand by two spherical joints S
(Figure 2b). The presented forearm mechanism contains
N = 3 movable links (the hand is considered as a single
rigid link) and n = 4 joints. The sum of degrees of free-
dom in these four joints is f=10. The Grübler’s formula
gives

F = λ(N − n) + f = 6(3− 4) + 10 = 4

independent degrees of freedom. They can be replaced
by two independent U joints and, eventually, a dependent
translation T that models the changing in distance of the
forearm (Figure 3a). However, the position of the wrist de-
pends only on the elbow flexion-extension, so that only one
degree of freedom (rotation) is needed to model the elbow
complex when computing the reachable workspace (Figure
3b). Other three are, therefore, neglected.

A PROGRAM FOR EVALUATION OF. . . Informatica 28 (2004) 315–321 317

S

R

S

U

U

T

T

T

U

dH

dF

dSGx

y

z

0

W

�f

�A

�F

�R

�
a

�ed
�pr

�r

�EF

�esp

(b)(a)

�ef

Figure 3: A functional kinematical model (a) and a simpli-
fied kinematical model (b) of the arm.

By comparing the joint arrangements in (Figure 3a)
with the functional movements of the human arm, it is
possible to observe that the first two rotations ϕed and
ϕpr represent the elevation-depression and the protraction-
retraction of the shoulder girdle with the center in the
sternoclavicular joint Sc. Angles ϕa, ϕf and ϕr repre-
sent the humeral abduction-adduction, flexion-retroflexion
and internal-external rotations with the rotation center in
the glenohumeral joint Gh. In order to compute the arm
workspace effectively, the movements in the shoulder com-
plex can additionally be simplified by producing the sum
of movements in the girdle and in the glenohumeral joints.
Thus, the arm elevation through abduction ϕA, elevation
through flexion ϕF and rotation ϕR are combined by mo-
tions in the shoulder girdle and in the glenohumeral joint.
For the sake of simplicity it is also assumed that the rota-
tion center is fixed in glenohumeral joint. The final model
is seen in Figure 3b.

The complex anatomical properties of the arm do not
directly correspond to the presented arrangement of sim-
ple rotations about fixed axes [1, 12, 13, 14]. In such a
model, therefore, one has to include the interdependencies
between the joint coordinates. The lower and the upper
limits of joint angles depend on the values of other joint
angles. Also the length of the shoulder segment, of the up-
per arm and of the forearm are dependent on the motions
in the simplified joints. Based on the measurements of a
number of healthy subjects the correlations between joint
coordinates were identified in the past [1].

The simplified model, as presented in Figure 3b, is a very
rough approximation of the human arm kinematics. It pri-
marily represents the spatial motion of the reference point
W on the wrist. The model includes three rigid segments,

the shoulder girdle segment dSG representing the clavic-
ula and scapula, the upper arm segment dH representing
the humerus, and the forearm segment dF representing the
radius and ulna. We fixed the origin of the reference coor-
dinate inside the body in the region of sterna (Figure 3b).
In the reference pose of the arm, when all joint angles are
zero, the shoulder segment is parallel to x (medial direc-
tion), the upper arm segment to z (vertical direction) and
the forearm segment to y (anterior direction). Thus, the
segment vectors for the left arm are

rSG = (−dSG, 0, 0)T, (1)

rH = (0, 0,−dH)T, (2)

rF = (0, dF, 0)T. (3)

There are three rotations in the glenohumeral joint. The
elevation through flexion-extension is expressed as a rota-
tion about axis x. The rotation matrix is

RF =

⎡⎣ 1 0 0
0 cosϕF − sinϕF

0 sinϕF cosϕF

⎤⎦ . (4)

The elevation through abduction-adduction is a rotation
about axis y and the rotation matrix is

RA =

⎡⎣ cosϕA 0 sinϕA

0 1 0
− sinϕA 0 cosϕA

⎤⎦ . (5)

The internal external rotation is modelled as a rotation
about axis z and the corresponding rotation matrix is as
follows

RR =

⎡⎣ cosϕR − sinϕR 0
sinϕR cosϕR 0

0 0 1

⎤⎦ . (6)

It is assumed in this model that the limits of angle ϕA

are constant and independent of other coordinates so that
its range is as follows

ϕA = [ϕAm, ϕAM], (7)

where ϕAm and ϕAM are measured in the reference pose
of the arm. The limits of the elevation through flexion-
extension are linear functions of the elevation through
abduction-adduction angle [1]. The range of this coordi-
nate varies as follows

ϕF = [ϕFm + ϕA/3, ϕFM − ϕA/6], (8)

where ϕFm and ϕFM are measured in the reference pose of
the arm. The limits of the internal and external rotation
have a quadratic relationship with the elevation through
abduction-adduction and flexion-extension angle [1]. Its
range varies within the following values

ϕR = [ϕRm + 7ϕA/9− ϕF/9 + 2ϕAϕF/810,
ϕRM + 4ϕA/9− 5ϕF/9 + 5ϕAϕF/810], (9)

318 Informatica 28 (2004) 315–321 J. Lenarčič et al.

where ϕRm and ϕRM are measured in the reference pose
of the arm. In Equations 8,9 the angles are expressed in
degrees.

The elbow flexion-extension rotation is calculated as a
rotation about axis x and the corresponding rotation matrix
is

REF =

⎡⎣ 1 0 0
0 cosϕEF − sinϕEF

0 sinϕEF cosϕEF

⎤⎦ . (10)

It is assumed that the limits of this angle are constant and
independent on other coordinates so that its range is as fol-
lows

ϕEF = [ϕEFm, ϕEFM]. (11)

Here, ϕEFm = −90◦ and ϕEFM = 60◦ are fixed as for the
healthy elbow [1, 7, 8].

The position of the reference point W is calculated by

rW = rSG + RR ·RA ·RF · rH + REF · rF. (12)

3 Workspace computation

The input data to the AWS program are the joint limits
measured in the reference pose of the arm, which are ϕAm,
ϕFm, ϕRm, ϕEFm, ϕAM, ϕFM, ϕRM, and ϕEFM. These pa-
rameters vary considerably among individuals as affected
by age, sex, injuries, and stage of the illness [7]. Rela-
tively to the hight of the subject H , the segments of the
arm are normalized in accordance to the anthropometric
table [15]. The length of the shoulder girdle length is then
dSG = 0, 129 ·H , of the humerus is dH = 0, 185 ·H , and
of the forearm dF = 0, 146 ·H .

The procedure to determine the workspace has few
stages. The first stage is to compute the set of points which
can be reached by the wrist. This computation involves
four nested loops, each associated with one joint angle. In
every iteration, position rW (Equation 12) is computed and
stored as a three dimensional vector. The procedure is re-
peated until all ranges of joint angles are swept [1]. In
addition, the collisions between the segments of the arm
(humerus and forearm) and the body (head, neck and trunk)
have to be taken into account. If during the computation an
arm segment intersects the body, the related position of the
wrist is eliminated as impossible and is not considered as
part of the workspace. An elliptical cylinder to approxi-
mate the body whose size is 0, 174 ·H in the frontal plane
and 0, 089 · H in the sagittal plane is used. The head is
approximated by a sphere whose radius is 0, 065 ·H [15].

The resolution is set to 5◦ for all joint angles. It corre-
sponds to the measurement error in the input data. Since the
ranges of coordinates change from one subject to another
and throughout the workspace, it is impossible to exactly
predict the number of iterations. Usually, tens of thousands
of iterations are needed to determine the whole set of points
approximating the reachable workspace.

The obtained set of points lies inside a cube of edge L =
2(dH + dF) whose center is in the center of the shoulder

joint. This cube is seen as a volume of n3 smaller cubes
with edge L/n, where n is a desired resolution, which is
limited by

L/n > (dH + dF) tan 5◦. (13)

The cubes that do not contain at least one point rW are
eliminated. As a result, the workspace of the arm is de-
scribed by a set of cubes of edge L/n.

In order to increase the accuracy, the cubes forming the
surface of the workspace are broken into smaller ones with
edge of half length. In every step i the workspace volume
is computed by

V i = V i
I +

V i
S

2
, (14)

where VS is the volume of cubes on the surface, and VI the
volume of all other (inner) cubes. The procedure is ended
when

νi =
|V i − V i−1|

V i−1
(15)

is smaller than a prescribed value ν.
The last stage in determining the arm workspace is to

smoothing the surface cubes. For this purpose a Bezier in-
terpolation [16] is performed. The workspace can thus be
visualized with different color textures, illuminated with
different positions of light, or made transparent.

A comparison between the calculated and the measured
reachable workspace of the healthy left arm is shown in
Figure 4. The workspace in Figure 4a was measured in
equidistant planes in [1]. Such a measurement is extremely
complicated and time consuming. It can only be per-
formed on healthy subjects. On the contrary, the calcu-
lated workspace (Figure 4b) can be obtained based on very
simple manual measurements which are part of a standard
procedure in treating hemiplegic patients in the rehabilita-
tion center. The similarity between the measured and the
calculated workspace is quite evident.

Figure 4: A comparison between the measured (a) and the
calculated (b) reachable workspace.

4 Example

An example of a treatment of a hemiplegic patient is
presented in Figure 5. The figure shows the reachable
workspace of the left handicapped arm before the treatment

A PROGRAM FOR EVALUATION OF. . . Informatica 28 (2004) 315–321 319

(WL1) and two different phases during the treatment (WL2

and WL3). Workspace WR0 is associated with the healthy
right arm inverted to the left hand side for comparison. The
measured ranges of motion are collected in Table 1.

Figure 5: A comparison of the reachable workspace of the
left handicapped arm with the reachable workspace of the
right healthy arm of a hemiplegic patient.

The measured ranges of motion of the handicapped left
shoulder before and during the treatment, as well of the
healthy right shoulder, are reported in Table 1. The elbow
flexion-extension angles are taken as for the healthy arm
and are ϕEFm = −90◦ and ϕEFM = 60◦.

Table 1: The measured shoulder ranges

ϕFm ϕFM ϕAm ϕAM ϕRm ϕRM

WL1 −45◦ 65◦ −10◦ 80◦ −55◦ 25◦

WL2 −55◦ 140◦ −10◦ 95◦ −60◦ 40◦

WL3 −80◦ 120◦ −10◦ 95◦ −45◦ 50◦

WR0 −60◦ 170◦ −10◦ 170◦ −60◦ 90◦

Table 2 shows the computed volume of the reachable
workspace of the handicapped left arm and of the healthy
right arm. The workspace was computed with ν ≤ 10%
relative error. The hight of the subject is 180, 0 cm.

Note the workspace volume is not directly associated
with functionality of the arm. Other indices in combina-
tion with the volume can be used, such as the workspace
compactness [17]. The workspace compactness quantifies
the similarity of the workspace shape with a sphere. It is
assumed that a compact workspace is more adaptable then
an elongated one. Also the location of the workspace rela-

Table 2: The computed workspace volume for H = 18, 00
dm

volume ±ν

WL1 190, 4 dm3

WL2 401, 4 dm3

WL3 364, 3 dm3

WR0 598, 2 dm3

tive to the body is an important issue. A reachable space in
front of the body could in general be more useful.

The AWS program is written in Matlab and converted
into an autonomic form. It is designed to be used at the
Institute for Rehabilitation as a standard tool for the ex-
amination of the shoulder complex. The input data form
contains an identical information as the paper form used in
the past. The workspace block is added (Figure 6).

Figure 6: The input form of the AWS program.

The workspace is visualized in a posterior and in an an-
terior view. It is possible to superimpose the workspace
of the handicapped arm onto the one of the healthy arm
by using a transparent envelope (Figure 7). Thus, the
workspaces can be directly compared during different
phases of the rehabilitation process. The results can eas-
ily be documented and stored in a computer or printed.
They can be displayed and numerically processed, as well

320 Informatica 28 (2004) 315–321 J. Lenarčič et al.

as electronically transferred to another user.

Figure 7: A direct comparison of the workspace of the
handicapped arm (WL1) with the one of the healthy arm
(WR0) by superimposing the two workspaces.

5 Conclusion

A computer program which computes the human arm
reachable workspace is reported in this article. The pro-
gram is based on a simplified kinematic model of the hu-
man upper extremity in which the shoulder complex is ap-
proximated by a spherical joint and the elbow complex by
a rotation. The input data to this program are taken from a
standard evaluation procedure in physiotherapy. The reach-
able workspace can be quantified by its volume or other
mathematical indices.

The main advantage of this program is that it can vi-
sualize the reachability of the measured human arm. The
obtained results can be used for computer-aided documen-
tation, numerical or visual comparison between different
phases of a rehabilitation process, and numerical or visual
comparison between different subjects. This helps us to
plan and control the rehabilitation procedure of shoulder
patients. The program is now being introduced in the Insti-
tute for Rehabilitation, Ljubljana, Slovenia.

Acknowledgement

This investigation was supported by the Slovenian Min-
istry of Education, Science and Sport. We are grateful to
the employees of the Institute for Rehabilitation, Ljubljana,
Slovenia, for their valuable contribution.

References

[1] J. Lenarčič, A. Umek (1994) Simple model of human
arm reachable workspace, IEEE Trans. System, Man
and Cybernetics, Vol. 24, pp. 1239–1246.

[2] V. M. Zatsiorsky (1998) Kinematics of human motion,
Human Kinematics.

[3] A. E. Engin and S. T. Tumer (1989) Three-
dimensional kinematic modeling of the human shoul-
der complex - part I: Physical model and determina-
tion of joint sinus cones, Trans. of the ASME Jour. of
Biomech. Eng., Vol. 111, pp. 107–112.

[4] J. E. Wood, S. G. Meek and S. C. Jacobsen (1989)
Quantitation of human shoulder anatomy for pros-
thetic arm control - II. Anatomy Matrices, Jour. of
Biomech., Vol. 22, No. 4, pp. 309–325.

[5] Z. Dvir and N. Berme (1987) The shoulder complex
in elevation on the arm: a mechanism approach, Jour.
of Biomech., Vol. 11, pp. 219–225.

[6] J. Lenarčič and M. Stanišić (2003) A humanoid shoul-
der complex and the humeral pointing kinematics,
IEEE Trans. on Robotics and Automat., Vol. 19, No.
3, pp. 499–506.

[7] C. C. Norkin and D. J. White (1985) Measurement
of joint motion: A guide to gonimetry, F. A. Davis
Company Philadelphia.

[8] I. A. Kapadanji (1970) Physiology of the Joints,
Churchill Livingstone, London.

[9] D. J. Magee (1997) Orthopaedic Physical Assess-
ment, W. B. Saunders Company, 3rd ed.

[10] J. Hesselbach, M. B. Helm, H. Kerle, M. Frindt and
A. M. Weinberg (1998) Advances in Robot Kinemat-
ics: Analysis and Control, Kluwer Academic Publish-
ers, pp. 551–560.

[11] J. Lenarčič, M. M. Stanišić. V. Parrenti-Castelli
(2000) Kinematic design of a humanoid robotic
shoulder complex, Proc. Int. Conf. On Robotics and
Automat., San Francisco, USA.

[12] V. T. Inman, J. B. Saunders, L. C. Abbott (1944) Ob-
servation on the function of the shoulder joint, Jour.
of Bone and Joint Surgery, Vol. 26, pp. 1–30.

A PROGRAM FOR EVALUATION OF. . . Informatica 28 (2004) 315–321 321

[13] C. Högfors, B. Peterson, G. Sigholm and P. Herberts,
(1991) Biomechanical model of the human shoulder
joint - II. The shoulder rhythm, Jour. of Biomech., Vol.
24, No. 8, pp. 699–709.

[14] S. D. Bagg and W. J. Forrest, (1980) A Biomechani-
cal analysis of scapular rotation during arm abduction
in scapular plane, American Jour. of Phy. Med. Reha-
bilitation, Vol. 67, No. 6, pp. 238–245, 1980.

[15] D. A. Winter (1990) Bimechanics and motor control
of human movement, Wiley-Interscience Publication,
University of Waterloo.

[16] F. Gerald (1990) Curves and surfaces for computer
aided geometric design, Academic Press Inc. - Har-
court Brace Jovanovich Publisher.

[17] J. Lenarčič (1992) An approach to optimum design
of robot manipulators, Laboratory Robotics and Au-
tomation, Vol. 4, pp. 137–143.

322 Informatica 28 (2004) 315–321 J. Lenarčič et al.

 Informatica 28 (2004) 323–331 323

A Software Architecture for Enterprise Components
D. A. Helton
Computer Information Systems
Northern Michigan University
Marquette, Michigan, USA
E-mail: dhelton@nmu.edu

Keywords: component-based software development, enterprise components, software components, component
software, COTS

Received: January 31, 2004

Component-based software development, the idea of constructing computer programs from existing software
modules, has attracted considerable attention. Component size has become a significant consideration.
Recently, there have emerged significant research prototypes and early commercial systems for constructing
major business applications from a few components of coarse granularity, termed enterprise components,
rather than combining hundreds of small components. This research with large components has shown that
building applications from components of coarse granularity presents distinct challenges from assembling
systems from small elements. The focus of this paper is a proposed system architecture, synthesizing the best
features of other systems using enterprise software components, and adding new features, as needed, as a step
towards the improvement of software development involving large components.

Povzetek: članek opisuje gradnjo poslovnih sistemov iz velikih modulov.

1 Introduction
There is growing interest in coarse-grained software
components, or enterprise components (Levi & Arsanjani
2002), which offer the potential of building applications
quickly from a few large modules rather than by
composing numerous fine-grained components. An
analysis of an organization's functional areas determines
what is to be included within each of these large
components. Each major process becomes a single
enterprise component (Bandini et al., 2002, Helton 1999,
Levi & Arsanjani 2002).

The objective of this study is to derive an improved
system architecture for software development with large
components, which will be presented in sections 2, 3 and
4 of this paper, as follows: (section 2) a review and
synthesis of features from existing systems, (section 3)
the definition of functionalities of system components
and interrelationships among them, and (section 4) the
system architecture specification.

2 Review and Synthesis of Previous
Systems

This stage includes three activities: (1) review existing
systems handling large components to determine
requirements for an improved software architecture, (2)
locate candidate features that might fulfill these
requirements within these systems or other sources, (3)
select a group of items from the candidates for synthesis
into an improved system. The first and second activities
were completed in a previous study (Helton 1999) and a
summary of the results will be included below. This
preliminary study contained an examination of research

prototypes and early commercial systems using
enterprise components, including Carnegie-Mellon
University Software Engineering Institute (SEI) reports
of development with commercial-off-the-shelf (COTS)
systems (Carney 1997), work at Harvard University’s
Brigham & Women’s Hospital on large component
imaging software (Deibel & Greenes 1995), Sun
Microsystems’ Enterprise JavaBeans (EJB) model
(Thomas 1997), the large component version of SAP
enterprise resource planning (ERP) applications (SAP
1997), and Stanford University’s CHAIMS project on
very large-grained, heterogeneous, distributed
components (Beringer et al. 1998). The study (Kim
2002) of the Korean government's initiative in promoting
enterprise component development also was beneficial.

Review of Other Systems. As an immature technology,
existing large-component software systems do not meet
adequately the needs envisioned by their designers. The
aforementioned study (Helton 1999) of the other large
component systems uncovered some of their
deficiencies. Despite encountering these inadequacies,
the study of these and other related systems provides a
source for locating functionalities that meet these
requirements. Theoretically, building systems from a few
large components should be less challenging than
building a system from many small components. The
study of existing systems indicated the following needs
for enhanced large-components systems: (1)
streamlined components, (2) simple interfaces, (3)
straightforward composition, (4) plug-and-play
compatibility, and (5) standard distribution infrastructure.

324 Informatica 28 (2004) 323–331 D. Helton

The aforesaid review of these systems (Helton 1999)
suggests a need for simplifying rather than complicating
the large components. Several of the large component
systems described do not subordinate appropriately the
details of coarse-grained components. Scrutiny of these
systems indicates that large components manifest a
complexity that makes their composition with other
elements significantly more challenging than assembling
systems from fine-grained components.

The previous study (Helton 1999) also indicated that, as
the granularity moves up the scale, the appropriateness of
using the conventional set of object-oriented (OO)
features becomes suspect. Several of the systems
(Enterprise JavaBeans, SAP R/3, and the Harvard
information system research) overdo object orientation
by extending it to the highest level, i.e., to that of the
overall large component structure. The design of the
inner structure or implementation of a large component,
which is not the focus of this paper, may follow
extensively the OO paradigm, if the designer so chooses.
Even in working on the implementation design, great
care must be taken to avoid creating mazes of confusing
OO inheritance hierarchies. Nevertheless, the basic
concept of OO, that is, depicting in the software an entity
from some business domain, was appropriate for each
system studied.

The preliminary study (Helton 1999) also revealed that
the use of OO features beyond this inner structure
presented problems in these other systems. Since only a
few components are involved, many elements of OO are
superfluous. The inherent complexity of large
components makes them challenging enough to handle
without adding further complications. Large components
are stable and do not require dynamic features for their
quick replication or frequent modification. As
mentioned earlier, each enterprise component might
represent a distinct, complex business function, such as a
payroll system or an inventory process. Instantiation,
when only a few components of this granularity are
involved, is a needless complication. As observed by
Taylor (1995), the reusability of components decreases
as complexity increases. At this point of component
granularity, reusability is minimal. Thus, the small
reusability attained by permitting inheritance is
overwhelmed by the disadvantages generated by
entangling class hierarchies. Following the same logic
with regards to the diminishing returns of reusability as
components increase in size, other OO features offer
little in return for the baffling complexity required to
implement them.

The previous review (Helton 1999) of the systems also
shows that simple interfaces are another essential
requirement to facilitate the handling of large
components. The systems mentioned above further
complicate large component systems by using OO
inheritance for interfaces of large components. This
overuse of OO inheritance can permit direct access to
deeply nested interfaces within a large component

(D’Souza & Wills 1998). This contradicts the basic idea
of hiding component details behind interfaces (Szyperski
1997).

Streamlining component interfaces may be achieved by
delegation (Lewandowski 1998). The overall component
contains a straightforward interface, providing the only
internal implementation access to external clients. The
large component may contain nested interfaces, even
several layers deep. Access to these inner interfaces is
via forwarding or delegation, which restricts flexibility to
some degree, but keeps component structure simple.

The examination of other large component systems
(Helton 1999) brought to light another requirement for
improving this type of system. In order to work
effectively, the system needs a straightforward means of
connecting together the enterprise components. If the
cumbersome OO interface and implementation
hierarchies are eliminated, then an uncomplicated glue
component may be inserted to tie pre-existing
applications together. The Stanford CHAIMS
researchers used this technique, and D’Souza and Wills
(1998) also suggested it.

Plug-and-Play compatibility of large business
components from multiple vendors is another major
requirement revealed by the earlier study (Helton 1999)
of these systems. Though the ERP vendors allow
competitors to add secondary modules, none of these
vendors guarantee that their major modules may be
substituted by comparable components produced by
competitors. Experience with component projects has
indicated that effective reuse of large components is
generally restricted to vertical industry segments
(Szyperski 1997). This conforms to the reusability
principle, where the more specialized a module is, the
less reuse potential it has. Thus, the feasibility of using
components across industry boundaries is much more
restricted for large components than it is for small ones.
The Harvard information systems project confirms the
need for establishing standards within particular business
domains (Deibel & Greenes 1995).

The interchangeability of components from multiple
sources requires, foremost, standardization of the
specification, i.e., the interface and related descriptions
about the functionality of the enterprise component.
Uniform implementations are not required for plug-and-
play compatibility of components. Researchers at
PeopleSoft and SAP also confirm the need to develop
specialized, standard interfaces for particular industries.
Experience has demonstrated that standardizing
interfaces for specific industry groups yields adequate
compatibility to effectively assemble the respective large
components.

A standard distribution infrastructure is one of the most
important requirements for development with large
components. Companies usually expect that new major
applications will be deployed over networks. The

A SOFTWARE ARCHITECTURE FOR... Informatica 28 (2004) 323–331 325

pressures of competition have produced incompatible
distribution systems (Szyperski 1997), making
development with large components challenging. Some
high-level data models abstract the complexity of data
storage mechanisms by simply depicting persistent data
as being contained within application modules. The
conceptual framework (Helton 1999) for the proposed
architecture, however, incorporates, at the top level,
software elements of large granularity connected by a
distribution system, as well as a data storage facility,
normally a database management system (DBMS).

 Originally, CORBA, DCOM, and Java, were not
designed to support large software components
(Szyperski 1997). Enterprise JavaBeans extends Java to
the point that EJB is a whole, distinct component system,
rather than just a distribution system. Though capable of
handling large components, EJB is an adaptation of a
system designed to handle small software elements. EJB
thus retains the overuse of some OO features that is
commonplace in systems focusing upon small
components. Those working with large component
development described in the aforesaid study (Helton
1999), pertinent to COTS, Harvard University's Brigham
& Women's Hospital, EJB, ERP, and CHAIMS projects,
as well as the recent initiative in Korea (Kim 2002)
found that it was difficult to find existing infrastructures
that supported their conceptual models for handling
large-grained components. For example, in the Harvard
information systems project (Deibel & Greenes 1995),
investigators initially developed an attractive architecture
for handling large components. As the work progressed,
however, the Harvard researchers realized that no
existing distribution systems completely supported their
model. Thus, they modified their architecture to conform
to the requirements of existing infrastructures, oriented
towards components of small granularity.

The complexity and magnitude of building business
applications requires developers and researchers to focus
upon assembling large components, despite the
inadequacies of underlying distribution systems that are
available. The preliminary study (Helton 1999) of early
commercial and research prototypes of large component
systems have been forced to use infrastructure systems
that do not adequately support their coarse-grained
components. The Stanford CHAIMS was unique in that,
rather than compromising by using an incompatible
infrastructure, the researchers developed their own
infrastructure (Beringer et al. 1998).

Thus, this concludes the review of existing systems
handling large components in order to establish
requirements for improving large-component systems.
As noted earlier, these requirements are: (1) streamlined
components, (2) simple interfaces, (3) straightforward
composition, (4) plug-and-play compatibility, and (5)
standard distribution infrastructure. The next activity is
to locate feasible elements that satisfy these five
requirements.

Locate Candidate Features. The review of prior
systems, in the foregoing section, suggests that the
requirements for a large-component architecture may be
met by making the following enhancements: (1)
acceptance of attractive features used with the structured
approach to software development, (2) removal of
inappropriate object-oriented features, (3) patterning
each enterprise after a complete business process, (4)
adoption of solid notions from the client/server model,
and (5) employment of standards specially designed for
the large components.

In developing the conceptual framework for the
architecture (Helton 1999), candidate features were
obtained from the following sources: (1) structured
programming, (2) object orientation, (3) process-oriented
notions, (4) the client/server model, and (5) standards
concepts. In this step, locate candidate features, the four
preceding sources of features for an enhanced software
architecture will be examined further.

High cohesion and loose coupling, two concepts
associated with structured development, enhance
component development (Budgen 2003, Sametinger
1997). Inclusion of these two features with the suggested
architecture is possible because unattractive inheritance
hierarchies and other inappropriate OO notions have
been expunged. Insuring that everything pertaining to a
particular function adheres to a central, unifying purpose
attains high cohesion. Loose coupling is achieved by
eliminating all connections between components other
than data linkages.

Structured interfaces, derived from structured
programming, should be beneficial to the proposed
architecture. Several systems (Enterprise JavaBeans,
Harvard health information systems, SAP R/3),
unnecessarily complicate development with large
components by including OO interfaces, which produce
puzzling interface hierarchies. The rationale for
including this maze of interfaces is to permit direct
external access to smaller components embedded within
larger ones. Even if component inheritance and other
inappropriate OO features are eliminated, this
compromise, consisting of the inclusion of interface
inheritance, potentially degrades the effectiveness of a
system. The Stanford CHAIMS project confirms that
procedural (structured) interfaces streamline
development involving large components. Though these
structured interfaces only allow indirect communication
with embedded components, they enhance the
construction of applications with large components by
subordinating minutia.

Information hiding (Inverardi & Tivoli 2002,
Ravichandran & Rothenberger 2002) is another feature
from structured programming suggested for the proposed
architecture. Information hiding abstracts the intricacy
of a large component’s inner workings. Even a baffling
maze of OO inheritance hierarchies, for example, may be
concealed through this feature. A large business

326 Informatica 28 (2004) 323–331 D. Helton

component, comprised of an aggregation of smaller
components, should limit access to nested elements via
delegation instead of exposing inner interfaces
(Lewandowski 1998).

Component development with small components
incorporates many features that do not function well with
enterprise components. Several of the systems
(Enterprise JavaBeans, SAP R/3, Harvard health
information systems research), however, overextend OO
concepts to large components, making their handling
unduly complex. The central OO notion of mapping
business entities directly to software is worthwhile for
large components. A modified version of OO
encapsulation is useful for large components, too.
Simply expressed, this means that an object class
encapsulates both data and related operations on the data
(Pressman 1997). The implementation of a component
may follow any model desired (Buck-Emden 1996, Short
1997, Szyperski 1997). If the inner structure follows the
OO model, a single enterprise component may have
many object classes. A large component represents a
function from the business domain and encapsulates
everything pertaining to this function (D’Souza & Wills
1998, Levi & Arsanjani 2002, Shaw et al. 1995). A
component may even subordinate, through abstraction,
all of the mechanics involved with attaining persistence
of data, that is, storage of data, generally in a DBMS.

Most other OO concepts are neither necessary nor
beneficial for handling large components. Enterprise
components tend to be more static in nature than small
components (D’Souza & Wills 1998). The
implementation of a large component may or may not
follow OO structure. The details of the inner structure
remain hidden and consequently are insignificant at the
high level view of the architecture. This is consistent
with the concept of black-box assembly of components
(Inverardi & Tivoli 2002, Ravichandran & Rothenberger
2002). In composing large components, the developer
works at a level of abstraction where the concern is upon
the connections between components. Thus, the study of
other systems (Helton 1999) made it clear that at this
high level, components need to be simplified,
irrespective of the complexity of their inner workings.

Extending OO ideas, other than the aforementioned
mapping of business functions to software entities, is
detrimental development with large components, as
illustrated by the CHAIMS project at Stanford University
(Beringer et al. 1998). Confusion exists, among many
developers, about the differences between OO and
component approaches to development (D’Souza &
Wills 1998). Development with coarse-grained
components should capitalize on the static demeanor of
these large components by reducing their number to just
a handful. Having classes instantiate enterprise
components only complicates development with large
components and is unnecessary. Since only a few large,
stable components are involved in these systems, using
OO inheritance, and thereby possibly creating entangled

dependency hierarchies, is even more inappropriate.
Multiple inheritance has the potential of creating
extremely confusing class hierarchy webs (Hissam et al.,
2002, Pressman 1997) and thus is controversial even
when working with small grained components, and is
highly questionable for composing large components. In
addition, removal of inheritance eliminates problems
with related features, particularly those associated with
overriding and polymorphism. Since large components
are inherently static, and thus use static binding, late
binding is generally unnecessary.

Though mapping elements from the business domain to
software is a central OO notion, the process-oriented
manifestation of this idea is better suited to large
component development. This means that an entire
business process may be portrayed within an application
as a large component (D’Souza & Wills 1998, Levi &
Arsanjani 2002).

At two levels, client/server concepts may be included in
the large component architecture (Helton 1999). First is
the common practice of transforming a program into
modules, with a central client module calling server
elements. The business components communicate only
through a coordinating glue component. At the second
level, the client/server model may be employed in the
architecture to demonstrate the interaction of
concurrently executing processes. While the physical
distribution of these processes was implicit in the
conceptual framework (Helton 1999), this feature will be
specified explicitly in the proposed architecture.

The review of the coarse-grained systems (Helton 1999)
suggests several sources suggests that standards are
needed for: (1) large components, in general, to provide
functionality identical to that of equivalent units
available from other vendors; (2) interfaces, to make
components plug compatible with those from other
companies; and (3) underlying distribution systems, so
that developers may focus upon the application software
and so that the distribution infrastructure is able to handle
large components appropriately. Though at times an
elusive goal, significant precedents for de facto or formal
standards exist in the software field (Szyperski 1997) and
meaningful component development requires standards
(Hissam et al. 2002).

A standard for large components would include
specifications to insure that the behavior of a component
from one vendor is equivalent to a comparable
component from a competitor (Vitharana 2003).
Components with standard, that is identical, interfaces
would be plug compatible with each other. Both of the
foregoing standards would be necessary. Otherwise, one
might expect components with identical interfaces but
dissimilar specifications to function correctly. They
would, however, yield erroneous functionality. Standard
distribution infrastructures are absolutely essential since
communication between elements is impossible without
using the same distribution system. Components must be

A SOFTWARE ARCHITECTURE FOR... Informatica 28 (2004) 323–331 327

compatible in each of these three areas in order to
interact properly. Consequently, a particular ERP
vendor, for example, must maintain rigid internal
standards within the corporation in order to attain
component functionality. The only other possibility
would be to rig heterogeneous elements together with
wrappers and other patches. As discussed in reviewing
these systems, vendors have been reluctant to enter into
agreements for standards that would make components
interchangeable between companies.

ERP vendors do not provide general, straightforward
plug compatibility (Helton 1999). These companies
include mechanisms for appending peripheral
components, but protect their own key business
components so that they are not interchangeable with
modules produced by competitors. Though companies
are reluctant to make agreements regarding components
with independent standardization agencies, once
organizations consent, they are usually willing to extend
the standards beyond the three compulsory areas listed
above (Szyperski 1997). Similarly, the proposed
architecture contains suggestions for features beyond the
minimal requirements of component specification,
interface, and distribution infrastructure. These
additional features, though not essential, enhance a
system’s performance.

Selection of Features for Architecture. The next
activity is to select a set of features for the proposed
architecture. The set of features was derived by applying
the two initial stages of review and synthesis of prior
systems. Figure 6.1 divides these selected features into
three categories: (1) general component structure, (2)
interface, and (3) distribution infrastructure.

General Component Structure. The features selected for
this category are the following: (1) standard components
providing plug-and-play interoperability, (2) business
domain process mapping directly to software, (3)
encapsulation, (4) high cohesion, (5) the server depicting
large business application components, and (6) a client as
a glue component. These features describe the overall
structure of large components.

A standardization of implementation is accomplished
through standard components providing plug-and-play
interoperability. This assures that a component performs
as specified, in contrast to the standardization of
interfaces, which guarantees that components
interconnect properly. Identical specifications are
required to have true interchangeability of elements, not
solely identical interfaces. A developer needs to know
what specific functionality to expect from a large
component. Components with indistinguishable
specifications must behave in the same way. The
specification, however, implies nothing about the
similitude of component implementations. Explicitly
specified in the Stanford CHAIMS architecture, and
implicit in several of the other systems (Helton 1999), is
the assumption that the architecture will have

incompatible components requiring wrappers to make
them work together effectively. Commercial developers
encounter a staggering quantity of incompatible software
elements in their work, and these professionals are quite
successful in devising mechanisms to enable these
heterogeneous elements to function together to some
degree. Inherently incompatible components, however,
suggest sub-par performance, and will not be specified as
a feature of the proposed architecture. Standard,
compatible components are the ideal, and thus will be
included.

The next feature selected for the architecture is business
domain process mapping directly to software. This key
concept has its roots in OO development facilitates
preliminary data modeling, which is beyond the scope of
this paper, and makes the software more comprehensible.
This feature enables the software to capture the essence
of what is actually happening in the corresponding
business domain. One-to-one mapping of domain
objects upon the software is well established in OO
programming. Though mapping business elements to
software is a key OO feature, process-oriented
development (Matthes et al. 1999) extends this idea to
elements of larger granularity. In development with
large components, generally an entire business process,

such as a hotel reservation system, is mapped to an
enterprise component, consistent with process-oriented
approach. Conceptually, this is appealing, because a

328 Informatica 28 (2004) 323–331 D. Helton

large system may be developed by combining just a
handful of these coarse-grained elements.

The encapsulation feature, a notion associated with OO
development helps make a component a manageable,
autonomous unit. Unfortunately, this feature has
remained to some degree an ideal, not having been
implemented completely in practice. Instead of a module
containing all of its related behavior, portions of its
functionality would be placed outside of the module, or
even in a separate library. At times, encapsulation is
challenging, such as in the case of data storage.
Conceptually, the handling of persistent data occurs
within the module, whereas in reality the management of
permanent data takes place mainly in an external DBMS.
Physically, the data are stored in an external database
shared by many enterprise components. Logically,
however, the data are internal to the component in
question. Though this and other considerations force
designers to place, outside of a module, items properly
belonging within it, encapsulation of everything directly
pertaining to a module remains the ideal.

Proponents of structured programming established high
cohesion of software modules as one of their guiding
principles. This feature also fits well within OO design.
Focusing everything within a component to one objective
is readily attainable within small components with
limited functionality. Applying this principle to large
components is more challenging because of the increased
complexity. Superficially, a highly cohesive large
component may appear to contain elements with diverse
functionality, which actually are related functions, all
supporting a common purpose. Care must be taken to
insure that items within a complicated component do not
support unrelated tasks.

The next feature, a server with large business application
components, has precedents in the Stanford University
CHAIMS architecture and in the client/server application
model. At least conceptually, ERP systems and other
architectures also imply the presence of this feature,
which implies a system with only a few components of
coarse granularity. Tedious, yet relatively stable
business processes, such as payroll and inventory, should
make good candidates for mapping to the software as
large server components. As indicated in Figure 1, the
last feature from the general component structure
category, a client containing a large glue component,
was suggested by D’Souza and Wills (1998) and also
incorporated into the Stanford CHAIMS architecture.
An earlier precedent for this was the client/server
application model, where a coordinating client requests
services from a server module. Later, this feature will be
discussed further, under the next step of the systems
development research methodology, involving
functionalities of components and their interactions.

Interface. The features chosen for this category,
enumerated in Figure 1, are: (1) standard interfaces, (2)
structured interfaces, (3) information hiding, and (4)

external access only. Interfaces are crucial to the
interrelationship of components.

Standard interfaces, the first feature in this category
chosen for the proposed architecture, is required for large
components to connect together correctly.
Interchangeability between two components, as
explained under the general component structure
category, above, also demands functionality to be
identical. Otherwise, a component would plug into the
system properly, but not provide the desired
functionality. Standard interfaces also offer extensibility
to the system. A new component with a standard
interface may be added to the system, as long as the new
item’s business functionality is compatible with the rest
of the application.

The proposed architecture for large components would
incorporate structure interfaces to eliminate the
possibility of generating confusing interface inheritance
hierarchies through using OO interfaces, such as those
featured in several systems described earlier (Enterprise
JavaBeans, Harvard health information systems, SAP
R/3). The Stanford CHAIMS project has demonstrated
that large, stable components work well with
straightforward structured interfaces rather adding the
complications of OO interfaces. Large, stable
components do not require the dynamic capability of
instantiating interfaces from classes of interfaces.

The next feature incorporated into the proposed software
architecture is information hiding, which abstracts
implementation details behind a component’s interface.
This concept was common in structured programming
and was carried over to some extent in OO development.
The object approach, unfortunately, permitted direct
external access to nested interfaces, thereby completely
nullifying the hiding feature.

Permitting external access only to components is a
feature related to information hiding that will be included
in the proposed architecture. As suggested by
Lewandowski (1998), access to embedded interfaces
should be only through delegation. This forwarding of
calls maintains information hiding, which is important
for keeping large components manageable.

 Distribution Infrastructure. As indicated in Figure 1, the
features in this category are: (1) standard distribution
protocols, and (2) loose coupling. These features enable
remote communication between components, an
expectation in current large business applications.

Standard distribution protocols are obligatory for any
intercommunication whatsoever between physically
isolated modules. The three most widely used
commercial systems, CORBA, DCOM, and Java, were
designed for small components. Enterprise JavaBeans, is
an extension of Java that handles large components.
EJB, however, overextends the OO paradigm, retaining
features that worked satisfactorily with FGCs, but which

A SOFTWARE ARCHITECTURE FOR... Informatica 28 (2004) 323–331 329

are unsuited for components of large granularity. CBSD
demands attention on the business application, not the
underlying distributions structure. Consequently, the
developer usually is required to use the most suitable
distribution system available, irrespective of problems it
might present with large components. The Stanford
CHAIMS research project managed to achieve
communication between large components by creating a
new middleware layer to set atop a current commercial
distribution system. This is a sub-optimal solution for
communication among large communications. The
architecture, therefore, includes a suggestion for a
distribution system specifically designed for large
components.

Loose coupling, a key notion borrowed from structured
programming (Sametinger 1997), is the final feature
recommended for the improved architecture for
assembling components of large granularity. If not
loosely coupled, independent deployment of components
is infeasible. Even moderate coupling complicates the
assembly of components as autonomous units. Instead of
building software from discrete component blocks, the
developer must wire together entire sub-assemblies of
overly coupled modules.

3 Definition of Component
Functionalities and
Interrelationships

During this step in creating the system architecture,
functionalities of system components and
interrelationships among them will be defined. In the
previous step, review and synthesis of prior systems,
desirable features were derived for an improved
architecture for composing large components, as
indicated in Figure 1. This step will focus upon what
components do and how they relate to other system
elements.

Component Functionality. As discussed in the
previous phase, the proposed architecture features
standardized components of large granularity. This
means that the components from one company are
completely interchangeable with those from another, as
long as the elements have identical specifications and
interfaces. The system may be extended by adding other
compatible components. Thus the architecture calls for
homogeneous elements because research with the
systems discussed in Helton (1999) indicates serious
problems with handling disparate elements. These
standardized elements are included in the architecture as
an ideal, though extenuating circumstances might force
someone implementing such a system to use wrappers to
harmonize the functioning of heterogeneous components.
Entire business processes are mapped directly to the
software as server components of coarse granularity.
Thus, the entire application might be constructed from

just a handful of large components, as discussed in the
previous step on review and synthesis of prior systems.

A glue component coordinates the operations of the
application, consistent with the Stanford CHAIMS
project and suggested by D’Souza and Wills (1998).
Since current technology assumes the use of graphical
user interfaces, a user interface component may be
added. Optionally, the glue component may be
combined with the user interface component.

Irrespective of its type, each component encapsulates its
functionality so that each component remains a discrete,
manageable unit. A conceptual framework might
abstract functionality in such a way that a data storage
facility might seem to be encapsulated within the
component. The software architecture, however, depicts
the reality that the database management system is a
distinct mechanism, external to the other components.

In addition, all components, regardless of their type, must
exhibit high cohesion, as explained in the review and
synthesis step of the research methodology. Everything
within the enterprise component should focus upon one
central objective.

Component Interrelationships. Interconnections
between components involve two aspects of a system:
(1) interfaces, and (2) the distribution infrastructure.
These will be described in the following section and
elaborated further in the third step, system architecture
development, of the research methodology.

Standard interfaces are included in the improved
architecture to make components plug compatible. Two
components with identical specifications should be
completely interchangeable if their interfaces are also
indistinguishable. Standard interfaces may also be used
to extend system functionality by adding components.
The standard interfaces permit these appended
components to fit properly into the system, contingent
upon the component specification being compatible with
the rest of the system.

The proposed architecture incorporates structured
interfaces. In several of the systems studied (Helton
(1999), OO interfaces were employed, rendering them
susceptible to the generation of puzzling inheritance
interface hierarchies.

The proposed architecture uses information hiding to
abstract the implementations of large components,
making them manageable. The inner workings may
follow any paradigm whatsoever.

The only type of direct access to components permitted
in the proposed architecture is direct external access.
This restriction reinforces information hiding.
Delegation permits indirect access to interior interfaces,
as suggested by Lewandowski (1998).

330 Informatica 28 (2004) 323–331 D. Helton

Standard distribution protocols are specified in the
proposed architecture, even though the only distribution
systems commercially available either were designed for
small components or have been extended somewhat
imperfectly to handle large components. As was
discussed in the review and synthesis of prior systems
step of the research methodology, the distribution system
ideally should be one that was specifically crafted to
handle large components. A specialized infrastructure
for large components would obviate the need for building
extra middleware software, as the Stanford CHAIMS
researchers were forced to do, to adapt large components
to infrastructures really designed for fine-grained
components.

Since the proposed architecture is for a distributed
system, loose coupling of elements is required. As
adherents of structured programming demonstrated, tight
coupling of modules even complicates applications that
are not distributed (Sametinger 1997). The glue
component provides central control, which facilitates
loose coupling. This will be discussed further in the next
section.

4 System Architecture Specification

The final step in defining the improved software
architecture is to bring everything together to form a
coherent system. Though the focus here is upon
composing large components for a business application,
the architecture specifies some general requirements for
the physical distribution of software. The system
architecture provides detail down to the level of interface
specification. The implementation of components is
abstracted because component inner structure is a widely
researched topic, beyond the scope of this dissertation.
The overall system architecture is depicted in Figure 2.
This figure conforms to the completed conceptual
framework developed in (Helton 1999).

The proposed system architecture, as illustrated in Figure
2, contains a glue component, one or more large
application server components, a database management
system, and an underlying distribution infrastructure.
The role of each of these elements in the architecture will
be discussed in the subsequent material.

Glue Component. The glue component coordinates the
activities of the large application components. The glue
component, as well as the other components, has a
structured interface. Observe in Figure 2 that all
invocations are made through the glue component in
forcing loose coupling between application elements.
The effectiveness of this type of glue component has
been well established in the client/server application
model for programming (Berson 1996).

Server Application Components. Components A and
B in Figure 2 represent a small number of large

components that comprise the server application
components. Their implementations are obscured
through information hiding. No direct external access to
inner elements is permitted. Either A or B, however,
may have nested interfaces accessible through
delegation, as described earlier in this chapter

A new server component X could be substituted for
component B if the interfaces and specifications for both
X and B are identical. This mechanism provides
interchangeability of elements obtained from competing
vendors. An element C, moreover, distinct in its
functionality from anything presently available within
the application, could be appended to the system to
extend the application’s capabilities. Component C
would have to have a standard interface and its
functionality could not conflict with that of the rest of the
system.

As indicated in Figure 2, component A should not make
a direct invocation to B, or vice versa, though this is
possible theoretically. Having one server component call
another violates the programming principle of passing
unconditional control to another module. Channelling all
calls through the glue component eliminates this type of
undesirable invocation.

Database Management System. Though conceptually
data is contained within components, at the operational
level persistence requires components to access the
database management system, as depicted in Figure 2.

The client component (Glue Component, in this case)
makes invocations of server Components A and B as if
they stored the data and, via delegation, the server
components make calls to the DBMS.

A SOFTWARE ARCHITECTURE FOR... Informatica 28 (2004) 323–331 331

Distribution System. In the proposed system
architecture, a standard underlying distribution system
manages all communication between the dispersed
system elements. Ideally, an infrastructure specifically
designed to handle large components would be used.
This would eliminate the need for creating and
maintaining, between the distribution system and the
application, an additional software layer, such as the
extra software stratum required in the Stanford CHAIMS
system because the distribution system is designed to
manage small rather than large components.

5 Summary

The goal of this study was to suggest an enhanced system
architecture for large components. The conceptual
framework (Helton 1999) formed the input for
delineating the system architecture. This resulting
software architecture synthesizes the best features from
existing systems presented in (Helton 1999, Kim 2002)
and related technologies.

References

[1] Bandini S., Paoli F., Manzoni S. & Mereghetti P.

(2002) A supports system to COTS-based
software development for business services. 14th
International Conference On Software
Engineering & Knowledge Engineering, Ischia,
Italy.

[2] Beringer D., Tornabene C., Jain P., & Wiederhold
G. (1998) A language and system for composing
autonomous, heterogeneous and distributed
megamodules. International Workshop on Large-
Scale Software Composition, in conjunction with
DEXA’98, Ninth International Workshop on
Database and Expert Systems Applications,
Vienna, Austria, p. 826-833.

[3] Berson A. (1996) Client/Server Architecture, 2nd
ed. New York: McGraw-Hill.

[4] Buck-Emden R. & Jürgen G. (1996) SAP R/3
System: A Client/Server Technology.

 Weinland A. (trans.). Harlow, England: Addison-
Wesley.

[5] Budgen D. (2003) Software Design, 2nd ed.
Harlow, England: Addison-Wesley.

[6] Carney D. (1997) Assembling large systems from
COTS components: Opportunities, cautions, and

 complexities. SEI Monographs on Use of
Commercial Software in Government Systems.
Pittsburgh, PA: Carnegie Mellon University.

[7] Deibel S. & Greenes R. (1995) Component based
computing in radiology systems
architecture. Decision Systems Group Technical
Report, DSG-AR-005-1.0, Brigham & Women's
Hospital. Cambridge, MA: Harvard University.

[8] D’Souza D. & Wills A. C. (1998) Objects,
components and frameworks with UML: the

 Catalysis approach. Reading, MA: Addison-
Wesley.

[9] Helton D. (1999) Coarse-grained components as
an alternative to component frameworks.
Proceedings, 4th International Workshop on
Component-Oriented Programming, Lisbon,
Portugal.

[10] Hissam S. A., Seacord R. C. & Lewis G.A. (2002)
Building systems from commercial components.
Proceedings of the 24th International Conference
on Software Engineering, Orlando, Florida, USA,
p. 679-680.

[11] Inverardi P. & Tivoli M. (2002) The role of
architecture in components assembly.
Proceedings, 7th International Workshop on
Component-Oriented Programming, Malaga,
Spain.

[12] Kim S. D. (2002) Lessons learned from a
nationwide CBD promotion project.
Communications of the ACM, 45, no. 10, p. 83-87.

[13] Levi K. & Arsanjani A. (2002) A goal-driven
approach to enterprise component identification
and specification. Communications of the ACM,
45, no. 10, p. 45-52.

[14] Lewandowski S. M. (1998) Frameworks for
component-based client/Server computing,” ACM

 Computing Surveys, 30, no. 1, p. 3-27.
[15] Matthes, F., Wegner H. & Hupe P. (1999) A

process-oriented approach to software component
definition,” Proceedings, 1lth Conference on
Advanced Systems Engineering, Heidelberg,
Germany, June 14-18, 1999.

[16] Pressman R. S. (1997) Software Engineering: a
Practitioner's approach, 4th ed. New York:
McGraw-Hill.

[17] Ravichandran T. & Rothenberger M. A. (2003)
Software reuse strategies and component markets.
Communications of the ACM, 46, no. 8, p. 109-
114.

[18] Sametinger J. (1997) Software Engineering with
Reusable Components. Berlin: Springer-Verlag.

[19] SAP AG (1997) R/3: System benefits of the
business framework. Walldorf, Germany: SAP
AG Technology Marketing.

[20] Shaw M. et al. (1995) Abstractions for software
architecture and tools to support them. IEEE

 Transactions on Software Engineering, 21, no. 4,
p. 314-335.

[21] Szyperski C. (1997) Component Software: Beyond
Object-Oriented Programming. Reading, MA:
Addison-Wesley.

[22] Thomas, A. (1997) Enterprise JavaBeans: server
Component model for Java. Boston, MA: Patricia
Seybold Group.

[23] Vitharana P. (2003) Risks and challenges of
component-based software development.
Communications of the ACM, 46, no. 8, p. 67-72.

332 Informatica 28 (2004) 323–331 D. Helton

Informatica 28 (2004) 333

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

In the last year on the site of the Jožef Stefan Institute,
the Technology park “Ljubljana” has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
joint ventures between university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno-
vative products.

At the present time, part of the Institute is being reor-
ganized into several high-tech units supported by and con-
nected within the Technology park at the Jožef Stefan In-
stitute, established as the beginning of a regional Technol-
ogy park “Ljubljana”. The project is being developed at
a particularly historical moment, characterized by the pro-
cess of state reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the Jožef Stefan Institute. The framework of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Natalija Polenec

Informatica 28 (2004)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica LATEX format and
figures in .eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE

Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1111 Ljubljana,
Slovenia.

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://ai.ijs.si/informatica/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, Doug Howe, Rod Howell, Tomáš Hruška, Don Huch, Simone
Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard Jakubowski, Piotr
Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan Lah, Phil Laplante, Bud
Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine,
Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman, Vincenzo Loia, Matija Lokar,
Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej Małachowski, Peter Marcer, Andrzej
Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel
Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin R. Mikler, Gautam Mitra, Roland
Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Jari Multisilta, Hari
Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian Niedq’zwiedziński, Jaroslav Nieplocha,
Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano Nolfi, Franc Novak, Antoni Nowakowski,
Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle, Wojciech Olejniczak, Jerzy Olszewski, Cherry
Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg, William C. Perkins, Warren Persons, Mitja Peruš,
Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin Place, Peter Planinšec, Gabika Polčicová, Gustav
Pomberger, James Pomykalski, Tomas E. Potok, Dimithu Prasanna, Gary Preckshot, Dejan Rakovič, Cveta
Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D. Radonjic, Luc de Raedt, Ewaryst
Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter Rechenberg, Felix Redmill, James Edward
Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo
Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek Sarin, Iztok Savnik, Ichiro Satoh, Walter
Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis Sewer, Zhongzhi Shi, Mária Smolárová,
Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek, Olivero Stock, Janusz Stokłosa,
Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun, Tomasz Szmuc, Zdzislaw
Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič, Gheorge Tecuci, Piotr
Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic, Wieslaw Traczyk, Denis
Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz
Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Jan
Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc, Eugene
Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard Widmer, Stefan
Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang, Ales Zivkovic,
Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Archive of abstracts may be accessed at USA: http://, Europe: http://ai.ijs.si/informatica, Asia:
http://www.comp.nus.edu.sg/ liuh/Informatica/index.html.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2004 (Volume 28) is
– USD 80 for institutions,
– USD 40 for individuals, and
– USD 20 for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

LATEX Tech. Support: Borut Žnidar, Kranj, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d.o.o., Žibertova 1, 1000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. R. Murn,
Jožef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number or use
the bank account number 900–27620–5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841 for
domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: AI and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt für Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Education, Science and Sport, Trg
OF 13, 1000 Ljubljana, Slovenia.

Volume 28 Number 3 November 2004 ISSN 0350-5596

Introduction B. Vilfan,
R. Grossi

225

An Average Running Time Analysis of a
Backtracking Algorithm to Calculate the Size of the
Union of Cartesian Products

S. Suzuki,
T. Ibaraki

227

A Spectral Approach to Graphical Representation of
Data

D. Bokal,
M. Juvan, B. Mohar

233

Algorithms for Drawing Polyhedra from
3-Connected Planar Graphs

A. Orbanić,
M. Boben, G. Jaklič,
T. Pisanski

239

Grammar-Based Systems: Definition and Examples M. Mernik,
M. Črepinšek, T. Kosar,
D. Rebernak, V. Žumer

245

Improved Error Recovery in Generated LR Parsers B. Slivnik,
B. Vilfan

257

Informational Design of Conscious Entities A.P. Železnikar 265
The Demarcate Construction: A New Form of
Tree-based Priority Queues

R.S.M. Goh,
W.T. Tang,
I.L.-J. Thng,
M.T.R. Quieta

277

Fault-Free Maximal Submeshes in Faulty
Torus-Connected Multicomputers

S.-M. Yoo,
H.Y. Youn, H. Choo

289

Distributing State Space for Parallel Computation of
CTL Model Checking

M. Bourahla,
M. Benmohamed

297

On-line Handwriting Chinese Character Analysis and
Recognition Using Stroke Correspondence Search

J. Shin 307

A System for Evaluation of Human Upper Extremity N. Klopčar,
J. Lenarčič

315

A Software Architecture for Enterprise Components D.A. Helton 323

Informatica 28 (2004) Number 3, pp. 225–333

