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Abstract

We construct a family of upper semi-continuous set-valued func-
tions f : [0, 1] → 2[0,1] (belonging to the class of so-called comb
functions), such that for each of them the inverse limit of the in-
verse sequence of intervals [0, 1] and f as the only bonding function
is homeomorphic to Ważewski’s universal dendrite. Among other re-
sults we also present a complete characterization of comb functions
for which the inverse limits of the above type are dendrites.

1 Introduction

In 1923 T. Ważewski described an example of a dendrite in the plane which
contains a topological copy of any dendrite [26]. The described dendrite
is now known as Ważewski’s universal dendrite. In [20, p. 181] one can
find a construction of Ważewski’s universal dendrite using inverse limits. In
particular, it is constructed as the inverse limit of an inverse sequence of
planar dendrites and monotone bonding mappings. In this paper we con-
struct Ważewski’s universal dendrite as the inverse limit of inverse sequence
of closed unit intervals [0, 1] and a single upper semi-continuous set-valued
bonding function. This new presentation of Ważewski’s universal dendrite
significantly simplifies the construction described in [20].
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2 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

2 Definitions and Notation

Our definitions and notation mostly follow Nadler [20] and Ingram and
Mahavier [13].

A map is a continuous function. For i = 1, 2, πi : [0, 1] × [0, 1] → [0, 1]

denotes the i-th projection from [0, 1] × [0, 1] onto the i-th factor, and for
any positive integer i, pi : Π∞

n=1[0, 1] → [0, 1] denotes the i-th projection
from Π∞

n=1[0, 1] onto the i-th factor.
A continuum is a nonempty, compact and connected metric space. A

Peano continuum is a locally connected continuum.
A dendrite is a Peano continuum which contains no simple closed curve.
Let D be a dendrite, b ∈ D, and β a cardinal number. We say that b is

of order less than or equal to β in D, written ord(b,D) ≤ β, provided that
for each open neighborhood U of b in D, there is an open neighborhood V

of b in D, such that b ∈ V ⊆ U and |Bd(V )| ≤ β. We say that b is of order
β, ord(b,D) = β, provided that ord(b,D) ≤ β and ord(b,D) � α for any
cardinal number α < β.

Points of order 1 in a dendrite D are called end points of D, the set of
all end points of D is denoted by E(D). Points of order n > 2 are called
ramification points and the set of all ramification points of D is denoted by
R(D).

A free arc in a dendrite D is an arc such that all its points but its end
points are of order 2 in D. In particular, a maximal free arc in a dendrite D is
an arc A with end points x and y in D such that A∩(E(D)∪R(D)) = {x, y}.

A continuum S is a star if there is a point c ∈ S such that S can be

presented as the countable union S =
∞⋃

n=1

Bn of arcs Bn, each having c as

an end point and satisfying lim
n→∞

diam(Bn) = 0, such that Bn ∩ Bm = {c}

when m 6= n. The point c is uniquely determined and is called the center of
S. The arcs Bn are called beams of S.

Let D1 be a star in a compact metric space X. Let cA 6∈ R(D1) denote
a point in the maximal free arc A, for each maximal free arc A of D1 (here
maximal free arcs are precisely the beams of D1). Let C1 = {x1, x2, x3, . . .}

be any subset of the set {cA | A is a maximal free arc in D1}. For each
positive integer i, form a star Si in X with the center xi and otherwise
disjoint from D1, making sure that Si ∩ Sj 6= ∅ only when i = j and that
lim
i→∞

diam(Si) = 0. Let D2 = D1 ∪ (
⋃∞

i=1 Si). Next define D3 in a similar

manner. Let cA 6∈ R(D2) denote a point in the maximal free arc A in D2,
for each maximal free arc A of D2. Let C2 = {x1, x2, x3, . . .} be any subset ofPr
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Ważewski’s universal dendrite as an inverse limit 3

the set {cA | A is a maximal free arc in D2}. For each positive integer i, form
a star Si in X with the center xi and otherwise disjoint from D2, making
sure that Si ∩ Sj 6= ∅ only when i = j and that lim

i→∞
diam(Si) = 0. Let

D3 = D2 ∪ (
⋃∞

i=1 Si). Continuing in this manner, we obtain a continuum
Dn for each positive integer n. The following theorem (already implicitly
used in the above inductive construction) is a well-known fact, see [20] for
details.

Theorem 2.1. For each positive integer n, Dn is a dendrite.

The construction of the continuum, homeomorphic to Ważewski’s uni-
versal dendrite in [20, p. 181] uses the abovementioned construction of a
chain of dendrites D1 ⊆ D2 ⊆ D3 ⊆ . . ., then defines certain bonding maps
fn : Dn+1 → Dn, and then finally obtains Ważewski’s universal dendrite as
lim←−{Dk, fk}

∞
k=1.

Finally we state a result that is characterizing Ważewski’s universal den-
drite that will be needed in Section 4.

Theorem 2.2. For any dendrite D, D is homeomorphic to Ważewski’s
universal dendrite if and only if its set of ramification points is dense in D

and each of its ramification points is of infinite order.

Proof. [7, p. 169], [26, p. 123]

If (X, d) is a compact metric space, then 2X denotes the set of all
nonempty closed subsets of X. Let for each ε > 0 and each A ∈ 2X

Nd(ε, A) = {x ∈ X | d(x, a) < ε for some a ∈ A}.

The set 2X will be always equipped with the Hausdorff metric Hd, which is
defined by

Hd(H,K) = inf{ε > 0 | H ⊆ Nd(ε,K), K ⊆ Nd(ε,H)},

for H,K ∈ 2X . Then (2X , Hd) is a metric space, called the hyperspace of
the space (X, d). For more details see [12, 20].

When we say that f is a set-valued function from X to Y , we mean
that f is a single-valued function from X to 2Y , i.e. f : X → 2Y . By a
slight misuse of notation and terminology we will also say that function
f : X → 2Y is set-valued (without explicitly mentioning "from X to Y ").

A function f : X → 2Y is surjective set-valued function from X to Y if
for each y ∈ Y there is an x ∈ X, such that y ∈ f(x).Pr
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4 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

The graph Γ(f) of a set-valued function f : X → 2Y is the set of all
points (x, y) ∈ X × Y such that y ∈ f(x).

A function f : X → 2Y , where X and Y are compact metric spaces, is
upper semi-continuous set-valued function from X to Y (abbreviated u.s.c.)
if for each open set V ⊆ Y the set {x ∈ X | f(x) ⊆ V } is an open set in X.

The following is a well-known characterization of u.s.c. functions between
metric compacta (see [13, p. 120, Theorem 2.1]).

Theorem 2.3. Let X and Y be compact metric spaces and f : X → 2Y a
set-valued function. Then f is u.s.c. if and only if its graph Γ(f) is closed
in X × Y .

An inverse sequence of compact metric spaces Xk with u.s.c. bonding
functions fk is a sequence {Xk, fk}

∞
k=1, where fk : Xk+1 → 2Xk for each k.

The inverse limit of an inverse sequence {Xk, fk}
∞
k=1 with u.s.c. bonding

functions is defined to be the subspace of the product space
∏∞

k=1Xk of all
x = (x1, x2, x3, . . .) ∈

∏∞
k=1Xk, such that xk ∈ fk(xk+1) for each k. The

inverse limit of {Xk, fk}
∞
k=1 is denoted by lim←−{Xk, fk}

∞
k=1.

Note that each inverse sequence {Xk, fk}
∞
k=1 with continuous single-

valued bonding functions can be interpreted as an inverse sequence with
u.s.c. set-valued bonding functions and that the inverse limits obtained ac-
cording to both interpretations coincide. Therefore we do not specially em-
phasize the status of bonding functions in inverse sequences we deal with.

The notion of the inverse limit of an inverse sequence with u.s.c. bonding
functions was introduced by Mahavier in [18] and Ingram and Mahavier in
[13]. Since the introduction of such inverse limits, there has been much
interest in the subject and many papers appeared [1, 2, 3, 4, 5, 6, 8, 9, 11,
14, 15, 16, 21, 22, 23, 24, 25].

The most important case in the present paper is the case when for each
k, Xk = [0, 1] and fk = f for some f : [0, 1]→ 2[0,1]. In such case the inverse
limit will be denoted by lim←−{[0, 1], f}

∞
k=1.

On the product space
∞∏

n=1

Xn, where (Xn, dn) is a compact metric space

for each n, and the set of all diameters of (Xn, dn) is majorized by 1, we use
the metric

D(x, y) = sup
n∈{1,2,3,...}

{
dn(xn, yn)

2n

}

,

where x = (x1, x2, x3, . . .), y = (y1, y2, y3, . . .). It is well known that the
metric D induces the product topology [10, p. 190].Pr
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Ważewski’s universal dendrite as an inverse limit 5

3 The comb functions

Let A ⊆ [0, 1]× [0, 1] be defined by

A = {(t, t) ∈ [0, 1]× [0, 1] | t ∈ [0, 1]}.

For any positive integer n, let {(ai, bi)}ni=1 be a finite sequence in [0, 1]×[0, 1],
such that ai < bi for each i = 1, 2, 3, . . . , n and ai 6= aj whenever i 6= j.
Next denote by A(ai, bi)

n
i=1 the union

A(ai, bi)
n
i=1 =

n⋃

i=1

([ai, bi]× {ai}) ⊆ [0, 1]× [0, 1].

Then
G(ai, bi)

n
i=1 = A ∪ A(ai, bi)

n
i=1

is closed in [0, 1]× [0, 1], since it is a union of finitely many closed arcs. Fur-
thermore π1(G(ai, bi)

n
i=1) = π2(G(ai, bi)

n
i=1) = [0, 1]. Therefore by Theorem

2.3 there is a surjective u.s.c. function f(ai,bi)ni=1
: [0, 1]→ 2[0,1] such that its

graph Γ(f(ai,bi)ni=1
) equals to G(ai, bi)

n
i=1.

Definition 3.1. Let n be a positive integer and {(ai, bi)}ni=1 be a subset of
[0, 1] × [0, 1], such that 0 < ai < bi for each i = 1, 2, 3, . . . , n and ai 6= aj

whenever i 6= j. Then f : [0, 1] → 2[0,1] is called an n-comb function with
respect to {(ai, bi)}ni=1, if f = f(ai,bi)ni=1

.
We also say that f : [0, 1] → 2[0,1] is an n-comb function, if f is an

n-comb function with respect to some {(ai, bi)}ni=1.

Figure 1: The graph of an 8-comb function

It is not necessary to eliminate the possibility ai = 0 for some i (all the
proofs in the paper would go through also in such case), but we have chosenPr

ep
ri

n
t 

se
ri

es
, I

M
FM

, I
S

S
N

 2
23

2-
20

94
, n

o.
 1

16
9,

 J
an

u
ar

y 
27

, 2
01

2



6 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

to do so in order to reduce the number of cases that must be examined in
the proofs and since the main result can be obtained with this restriction
in place.

Definition 3.2. Let for each j, ij be a nonnegative integer. We use

(ai11 , a
i2
2 , a

i3
3 , . . .)

to denote the point (a1, a1, . . . , a1
︸ ︷︷ ︸

i1

, a2, a2, . . . , a2
︸ ︷︷ ︸

i2

, . . .) and

(ai11 , a
i2
2 , a

i3
3 , . . . , a

ij
j , t

∞)

to denote the point (a1, a1, . . . , a1
︸ ︷︷ ︸

i1

, a2, a2, . . . , a2
︸ ︷︷ ︸

i2

, . . . , aj, aj, . . . , aj
︸ ︷︷ ︸

ij

, t, t, t, . . .).

Example 3.3. Let f be a 1-comb function with respect to {(ai, bi)}1i=1.
Then x ∈ lim←−{[0, 1], f}

∞
k=1 if and only if

1. either x = (t∞) for a t ∈ [0, 1] or

2. there is a positive integer n such that x = (an1 , t
∞) for a t ∈ (a1, b1].

Therefore lim←−{[0, 1], f}
∞
k=1 is the star with the center (a∞1 ) and beams B0 =

{(t∞) | t ∈ [0, a1]}, B′
0 = {(t∞) | t ∈ [a1, 1]} and Bn = {(an1 , t

∞) | t ∈

[a1, b1]}, n = 1, 2, 3, . . .

...

Figure 2: The graph of an 1-comb function and its inverse limit

Example 3.4. Let f be a 2-comb function with respect to {(ai, bi)}2i=1,
where a1 < a2. We distinguish the following two cases:

1. b1 < a2

Then x ∈ lim←−{[0, 1], f}
∞
k=1 if and only if

(a) either x = (t∞) for a t ∈ [0, 1] orPr
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Ważewski’s universal dendrite as an inverse limit 7

(b) there is a positive integer n such that x = (an1 , t
∞) for a t ∈ (a1, b1]

or

(c) there is a positive integer n such that x = (an2 , t
∞) for a t ∈

(a2, b2].

Therefore lim←−{[0, 1], f}
∞
k=1 is the union of two stars. The star S with

the center (a∞1 ) and beams B0 = {(t
∞) | t ∈ [0, a1]}, B′

0 = {(t
∞) | t ∈

[a1, 1]} and Bn = {(an1 , t
∞) | t ∈ [a1, b1]}, n = 1, 2, 3, . . ., and the star

S0 with the center (a∞2 ) and beams Cn = {(an2 , t
∞) | t ∈ [a2, b2]},

n = 1, 2, 3, . . .

.................. ..................

Figure 3: The graph of a 2-comb function and its inverse limit, b1 < a2

2. b1 ≥ a2

Then x ∈ lim←−{[0, 1], f}
∞
k=1 if and only if

(a) either x = (t∞) for a t ∈ [0, 1] or

(b) there is a positive integer n such that x = (an1 , t
∞) for a t ∈ (a1, b1]

or

(c) there is a positive integer n such that x = (an2 , t
∞) for a t ∈ (a2, b2]

or

(d) there are positive integers n and m such that x = (an1 , a
m
2 , t

∞)

for a t ∈ (a2, b2].

Therefore lim←−{[0, 1], f}
∞
k=1 is the union of countable many stars. The

star S with the center (a∞1 ) and beams B0 = {(t
∞) | t ∈ [0, a1]}, B′

0 =

{(t∞) | t ∈ [a1, 1]} and Bn = {(an1 , t
∞) | t ∈ [a1, b1]}, n = 1, 2, 3, . . .,

the star S0 with the center (a∞2 ) and beams Cn = {(an2 , t
∞) | t ∈

[a2, b2]}, n = 1, 2, 3, . . ., and for each positive integer k the star Sk

with the center (ak1, a
∞
2 ) and beams Ck

n = {(ak1, a
n
2 , t

∞) | t ∈ [a2, b2]},
n = 1, 2, 3, . . .Pr
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8 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

.................. ..................

..................

..................

..................

..................

Figure 4: The graph of a 2-comb function and its inverse limit, b1 > a2

.................. ..................

..................

..................

..................

..................

Figure 5: The graph of a 2-comb function and its inverse limit, b1 = a2

Note that if b1 = a2 the stars Sk, k = 1, 2, 3, . . ., are attached at the end
points (ak1, b

∞
1 ) of S and if b1 > a2 the stars Sk, k = 1, 2, 3, . . ., are attached

at the interior points of the maximal free arcs {(ak1, t
∞) | t ∈ [a1, b1]} of S,

k = 1, 2, 3, . . .

In the following theorem we show that any inverse limit of intervals [0, 1]
and a single n-comb function is a dendrite.

Theorem 3.5. Let n be any positive integer and let f : [0, 1] → 2[0,1] be
any n-comb function. Then lim←−{[0, 1], f}

∞
k=1 is a dendrite.

Proof. We prove Theorem 3.5 by induction on n by proving the more precise
claim that includes also information about maximal free arcs and ramifica-
tion points in the dendrite. For each positive integer ℓ, let us introduce the
following notation for certain statements that will be used in the inductive
proof of the theorem:

(a)ℓ The inverse limit Dℓ = lim←−{[0, 1], f(ai,bi)ℓi=1
}∞k=1 is a dendrite.

(b)ℓ The points of the form (x1, x2, x3, . . . , xm, a
∞
j ) ∈ Dℓ, j ≤ ℓ, are exactly

the ramification points of Dℓ.Pr
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Ważewski’s universal dendrite as an inverse limit 9

(c)ℓ The points of the form (x1, x2, x3, . . . , xm, b
∞
i ) ∈ Dℓ, i ≤ ℓ, where

m ≥ 1, ai = xm 6= bi, and bi 6∈ {ai+1, ai+2, ai+3, . . . , aℓ}, are endpoints
of Dℓ.

(d)ℓ All endpoints of Dℓ are of such form, except endpoints (0∞) and (1∞).

(e)ℓ The maximal free arc in Dℓ having the point x = (x1, x2, x3, . . . , xm, b
∞
i )

described in (c)ℓ as one endpoint, has (x1, x2, x3, . . . , xm, a
∞
ℓ ) as the

other endpoint if aℓ < bi; if aℓ > bi then the maximal free arc in Dℓ

ending at x equals to the maximal free arc in Dℓ−1 ending at x.

(f)ℓ The arc with endpoints (a∞ℓ ) and (1∞) is a maximal free arc in Dℓ.

1. Let n = 1. There are a1, b1 ∈ [0, 1] such that a1 < b1 and f =

f(ai,bi)1i=1
. In Example 3.3 it was shown that the inverse limit D1 =

lim←−{[0, 1], f}
∞
k=1 is a star, and is therefore a dendrite. We see that

(a∞1 ) is the only ramification point of D1 and that maximal free arcs
of D1 are exactly the beams B0 = {(t

∞) | t ∈ [0, a1]}, B′
0 = {(t

∞) | t ∈

[a1, 1]} and Bk = {(ak1, t
∞) | t ∈ [a1, b1]}, k = 1, 2, 3, . . . of the star

D1. Note that (a)1–(f)1 hold true.

2. Let f be any n-comb function, n ≥ 2. Without loss of generality we
may assume that f = f(ai,bi)ni=1

, where a1 < a2 < a3 < . . . < an.

Let, as the inductive assumption, (a)n−1–(f)n−1 hold true for f(ai,bi)n−1

i=1
.

We show that the inverse limit

lim←−{[0, 1], f}
∞
k=1 = Dn = lim←−{[0, 1], f(ai,bi)

n
i=1
}∞k=1

satisfies all the abovementioned properties for ℓ = n.

By the inductive assumption Dn−1 = lim←−{[0, 1], f(ai,bi)
n−1

i=1
}∞k=1 is a den-

drite.

Case 1. an > bi for each i = 1, 2, 3, . . . , n− 1

In this case any x ∈ Dn \Dn−1 is of the form x = (akn, t
∞), where k is

a positive integer and t ∈ (an, bn]. Therefore

Dn = Dn−1 ∪ S,

where S = {(akn, t
∞) | k ∈ N, t ∈ [an, bn]}, and we see that S is a star

with the center (a∞n ) ∈ Dn \R(Dn−1). Obviously (a)n-(f)n hold true.

Case 2. an ≤ bi for some i = 1, 2, 3, . . . , n− 1Pr
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10 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

In this case we show that

Dn = Dn−1 ∪
(⋃

S
)

,

where

(a) S = {S1, S2, S3, . . .} is a countable family of stars with centers
c1, c2, c3, . . . respectively, where c1, c2, c3, . . . ∈ Dn\R(Dn−1), and
each of the maximal free arcs in Dn−1 contains at most one of
these centers,

(b) for each positive integer i, Si ∩Dn−1 = {ci},

(c) Si ∩ Sj = ∅ if i 6= j, and

(d) lim
i→∞

diam(Si) = 0,

and therefore it will follow that Dn is a dendrite by Theorem 2.1, using
(a)n−1. That will prove (a)n.

Any point of Dn\Dn−1 is of the form (x1, x2, x3, . . . , xm, a
k
n, t

∞), where
k is a positive integer, m is a nonnegative integer, t ∈ (an, bn], and
xm 6= an, and vice versa.

The set

{(x1, x2, x3, . . . , xm, a
k
n, t

∞) | k ≥ 1, t ∈ [an, bn]}

is a star centered in (x1, x2, x3, . . . , xm, a
∞
n ) having the beams

{(x1, x2, x3, . . . , xm, a
k
n, t

∞) | t ∈ [an, bn]},

for each k ≥ 1. Note that S is infinite since for each i such that
an ≤ bi the family S contains stars centered at (aki , a

∞
n ) for each

positive integer k.

From f−1

(ai,bi)
n−1

i=1

(an) = {an} it follows that if for x ∈ Dn−1 and for some
positive integer m, pm(x) = an, then pm+1(x) = an. Therefore such x

ends with the block a∞n . Let X1 = {(a∞n )} and let for each positive
integer m ≥ 2,

Xm = {x ∈ Dn−1 | pm(x) = an, pm−1(x) 6= an}.

Then Xm is a finite set for each m. Therefore X =
⋃∞

m=1Xm is a finite
or countable infinite subset of Dn−1 \ R(Dn−1) ((b)n−1 is also used).
Also, each maximal free arc of Dn−1 contains at most one x ∈ X.Pr
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Ważewski’s universal dendrite as an inverse limit 11

To prove this, we shall for each x ∈ X find the uniquely determined
maximal free arc of Dn−1 containing x. Let

x = (x1, x2, x3, . . . , xm, a
∞
n ) ∈ X,

where xm 6= an. Then xm = ai for some i < n. Note that since
ai ∈ f(ai,bi)n−1

i=1
(an), it follows that an ∈ [ai, bi] and therefore bi ≥ an.

Now we distinguish two cases, bi > an and bi = an.

If bi > an, then bi 6∈ {ai+1, ai+2, . . . , an}, hence (x1, x2, . . . , xm, b
∞
i ) is

an endpoint of Dn−1 by (c)n−1 and the arc

{(x1, x2, x3, . . . , xm, t
∞) | t ∈ [an−1, bi]}

is a maximal free arc of Dn−1 by (e)n−1. Obviously x belongs to the
arc, since an ∈ [an−1, bi].

If bi = an, then x is an endpoint of Dn−1 by (c)n−1, and clearly it be-
longs to the maximal free arc {(x1, x2, x3, . . . , xm, t

∞) | t ∈ [an−1, bi]}

of Dn−1, which is a maximal free arc in Dn−1 by (e)n−1.

Now, when we have the explicit description of all maximal free arcs in
Dn−1 containing elements of X, we see that each such maximal free
arc contains exactly one point from X.

Take any x = (x1, x2, x3, . . . , xm, a
∞
n ) ∈ X, where xm 6= an. Then

xm = ai for some i < n. For each positive integer k, let

Bk = {(x1, x2, x3, . . . , xm, a
k
n, t

∞) | t ∈ [an, bn]}.

Obviously, Bk is an arc in Dn and S(x) =
⋃∞

k=1Bk is a star centered
at x. The diameter of S(x) satisfies

diam(S(x)) ≤ D((x1, x2, . . . , xm, 0
∞), (x1, x2, . . . , xm, 1

∞)) ≤
1

2m+1
.

Since for each m there are only finitely many such points x ∈ X (Xm

is finite), it follows that the set S = {S(x) | x ∈ X} is finite or
it can be presented as S = {S1, S2, S3, . . .}. From the above upper
bound for the diameters of the stars in the infinite case it follows that
lim
i→∞

diam(Si) = 0.

Take any point x ∈ Dn \ Dn−1. As already noticed, it is of the form
x = (x1, x2, x3, . . . , xm, a

k
n, t

∞), where k is a positive integer, m is aPr
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12 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

nonnegative integer, t ∈ (an, bn], and xm 6= an. Therefore x ∈ S(y),
where y = (x1, x2, . . . , xm, a

∞
n ) ∈ X. Therefore

Dn \Dn−1 =

(
⋃

x∈X

S(x)

)

\X =
(⋃

S
)

\X,

and finally

Dn = Dn−1 ∪ (
⋃

x∈X

S(x)) = Dn−1 ∪
(⋃

S
)

,

proving (a)n.

To prove that the points of the form x = (x1, x2, x3, . . . , xm, b
∞
i ) ∈ Dn,

where i ≤ n, xm = ai, and bi 6∈ {ai+1, ai+2, ai+3, . . . , an}, are endpoints
of Dn, we distinguish two cases. If i ≤ n−1 then x ∈ Dn−1 and then x

is an endpoint of Dn−1 by (c)n−1, since bi 6∈ {ai+1, ai+2, ai+3, . . . , an−1}.
Since bi 6= an the only star attached to the maximal free arc in Dn−1

ending at x is centered at a point that differs from x, or no star is
attached to that arc at all, it follows that x ∈ E(Dn). If i = n then
bi = bn and therefore x is an endpoint of a star from S. That proves
(c)n.

Also each endpoint of Dn, which belongs to Dn−1, is also an endpoint
in Dn−1, therefore it is of the form x = (x1, x2, x3, . . . , xm, b

∞
i ) ∈ Dn,

where xm 6= bi and bi 6∈ {ai+1, ai+2, ai+3, . . . , an−1}, by (d)n−1. Points
of such form with bi = an are centers of the newly attached stars
and therefore are not endpoints of Dn. It follows that bi 6= an and
therefore bi 6∈ {ai+1, ai+2, ai+3, . . . , an}. Each endpoint of Dn, which
belongs to Dn \Dn−1, is necessarily an endpoint of a newly attached
star and therefore is of the form x = (x1, x2, x3, . . . , xm, b

∞
n ), an =

xm 6= bn. Additional condition bi 6∈ {ai+1, ai+2, ai+3, . . . , an} is satisfied
vacuously for i = n. Obviously (0∞) and (1∞) are endpoints of Dn,
too. That proves (d)n.

Let x = (x1, x2, x3, . . . , xm, b
∞
i ) ∈ Dn be any endpoint of Dn men-

tioned in (c)n, where ai = xm 6= bi and bi 6∈ {ai+1, ai+2, ai+3, . . . , an}.
If i < n then by (c)n−1 x is an endpoint of Dn−1. If an < bi then we
have already proved that a new star centered at (x1, x2, x3, . . . , xm, a

∞
n )

is attached to the maximal free arc of Dn−1 ending at x, and since no
other star was attached to this arc it follows that (x1, x2, x3, . . . , xm, a

∞
n )

is the other endpoint of the maximal free arc of Dn ending at x. If
an > bi then no star was attached to the maximal free arc of Dn−1Pr
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Ważewski’s universal dendrite as an inverse limit 13

ending at x = (x1, x2, x3, . . . , xm, b
∞
i ), and therefore it remained a

maximal free arc of Dn as well. This proves (e)n.

By (f)n−1 the maximal free arc of Dn−1 having (1∞) as one endpoint
has (a∞n−1) as the other endpoint. Since a star centered at (a∞n ) was
attached to Dn−1, and since no other star was attached to the above-
mentioned arc, (f)n follows.

Finally (b)n follows from (b)n−1 and from the fact that at each point
of the form (x1, x2, x3, . . . , xm, a

∞
n ) ∈ Dn a new star was attached to

Dn−1, as shown above.

In the following remark we extract certain parts of the above proof for
later use.

Remark 3.6. Let n be a positive integer.

1. For each positive integer n and for each y ∈ Dn, y is either of the
form y = (t∞), t ∈ [0, 1], or of the form y = (ak1i1 , a

k2
i2
, ak3i3 , . . . , a

km
im
, t∞),

where m is a positive integer and for each ℓ ≤ m it holds that iℓ ≤ n,
kℓ > 0, aiℓ < aiℓ+1

≤ biℓ , and aim < t ≤ bim .

2. Any point of Dn+1 \Dn is of the form

(x1, x2, x3, . . . , xm, a
k
n+1, t

∞),

where k is a positive integer, m is a nonnegative integer, t ∈ (an+1, bn+1],
and xm 6= an+1.

3. x ∈ Dn is a ramification point in Dn if and only if there are positive
integers m and j ≤ n, such that pk(x) = aj for each positive integer
k ≥ m.

Definition 3.7. We will use Dn to denote the dendrite

Dn = lim←−{[0, 1], f(ai,bi)
n
i=1
}∞k=1.

Next we define functions that we shall use later in proof of the main
result.

Definition 3.8. We define the function fn : Dn+1 → Dn by

fn(x) =

{
gn(x) ; x ∈ Cl(Dn+1 \Dn),
x ; x ∈ Dn,Pr
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14 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

where gn : Cl(Dn+1\Dn)→ Dn is defined as follows. Any point of Cl(Dn+1\

Dn) is of the form

x = (x1, x2, x3, . . . , xm, a
k
n+1, t

∞),

where k is a positive integer, m is a nonnegative integer, t ∈ [an+1, bn+1],
and xm 6= an+1 (see Remark 3.6), and we define

gn(x) = (x1, x2, x3, . . . , xm, a
∞
n+1).

Note that fn is continuous for each n by [19, Theorem 7.3 p. 108].

Lemma 3.9. Let x ∈ Dn.

1. If
x = (ak1i1 , a

k2
i2
, ak3i3 , . . . , a

kj
ij
, t∞) ∈ Dn,

where j > 0, i1, i2, i3, . . . , ij ≤ n, ai1 < ai2 < · · · < aij , k1, k2, . . . , kj >
0, and t ∈ [aij , bij ], then for each

y ∈ f−1
n (x)

and for each i ≤ k1 + k2 + k3 + . . .+ kj +1 it holds that pi(x) = pi(y).

2. If x = (t∞), t ∈ [0, 1], then for each

y ∈ f−1
n (x)

it holds that p1(x) = p1(y) = t.

Proof. If y ∈ Dn, then y = x and the claim is obviously true. Note that in
Case (1) from t = aij it follows that y ∈ Dn.

If y ∈ Dn+1 \Dn, then by Remark 3.6 (2) y is of the form

(x1, x2, x3, . . . , xm, a
k
n+1, s

∞),

where k is a positive integer, m is a nonnegative integer, s ∈ (an+1, bn+1],
and xm 6= an+1. Then x = fn(y) = gn(y) = (x1, x2, x3, . . . , xm, a

∞
n+1).

In Case (1) in the remaining subcase t 6= aij it follows that m =

k1 + k2 + k3 + . . . + kj and t = an+1. Therefore (x1, x2, x3, . . . , xm, an+1) =

(ak1i1 , a
k2
i2
, ak3i3 , . . . , a

kj
ij
, t).

In Case (2) it follows that m = 0 and t = an+1.

Lemma 3.10. Let x = (x1, x2, x3, . . . , xm, a
∞
n+1) ∈ Dn, where n is a positive

integer, m is a nonnegative integer, and xm 6= an+1. Then f−1
n (x) is a star

centered in x.Pr
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Ważewski’s universal dendrite as an inverse limit 15

Proof. From what we have seen in the proof of Lemma 3.9 it follows that

f−1
n (x) =

∞⋃

k=1

{(x1, x2, x3, . . . , xm, a
k
n+1, s

∞) | s ∈ [an+1, bn+1]},

and for each k the set

Bk = {(x1, x2, x3, . . . , xm, a
k
n+1, s

∞) | s ∈ [an+1, bn+1]}

is an arc with endpoints x and (x1, x2, x3, . . . , xm, a
k
n+1, b

∞
n+1), Bi∩Bj = {x}

for any i 6= j, and limk→∞ diam(Bk) = 0.

Let {(an, bn)}∞n=1 be any sequence in [0, 1] × [0, 1], such that an < bn

for each positive integer n, and ai 6= aj whenever i 6= j. Next denote by
A(an, bn)

∞
n=1 the union

A(an, bn)
∞
n=1 =

∞⋃

n=1

([an, bn]× {an}) ⊆ [0, 1]× [0, 1].

and by G(an, bn)
∞
n=1 the subset of [0, 1]× [0, 1], defined by

G(an, bn)
∞
n=1 = A ∪ A(an, bn)

∞
n=1,

where A = {(t, t) | t ∈ [0, 1]} as above.
It is easy to see that π1(G(ai, bi)

n
i=1) = π2(G(ai, bi)

n
i=1) = [0, 1].

Obviously G(an, bn)
∞
n=1 is not necessarily closed in [0, 1] × [0, 1]. The

following theorem gives a whole family of sets G(an, bn)
∞
n=1 that are closed

in [0, 1]× [0, 1].

Theorem 3.11. Let {(an, bn)}∞n=1 be any sequence in [0, 1] × [0, 1], such
that

1. an < bn for each positive integer n,

2. ai 6= aj whenever i 6= j,

3. lim
n→∞

(bn − an) = 0.

Then G(an, bn)
∞
n=1 is a closed subset of [0, 1]× [0, 1].

Proof. Let {xn}
∞
n=1 be any sequence in G(an, bn)

∞
n=1, which is convergent in

[0, 1]×[0, 1] with the limit x0 ∈ [0, 1]×[0, 1]. We show that x0 ∈ G(an, bn)
∞
n=1.

If there are positive integers k and n0, such that xn ∈ [ak, bk] × {ak}

for each n ≥ n0, then, since [ak, bk] × {ak} is compact, x0 ∈ [ak, bk] × {ak}

and therefore x0 ∈ G(an, bn)
∞
n=1. Otherwise there are strictly increasingPr
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16 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

sequences {in}∞n=1 and {jn}∞n=1 of integers, such that xin ∈ ([ajn , bjn ] ×

{ajn}) ∪ A, where A = {(t, t) ∈ [0, 1] × [0, 1] | t ∈ [0, 1]}, for each positive
integer n. Since lim

n→∞
(bn − an) = 0, it follows that x0 ∈ A and therefore

x0 ∈ G(an, bn)
∞
n=1.

Therefore by Theorem 2.3 it follows that for any sequence {(an, bn)}∞n=1

satisfying

1. an < bn for each positive integer n,

2. ai 6= aj whenever i 6= j,

3. lim
n→∞

(bn − an) = 0,

there is a surjective u.s.c. function f(an,bn)∞n=1
: [0, 1] → 2[0,1] such that its

graph Γ(f(an,bn)∞n=1
) equals to G(an, bn)

∞
n=1, since G(an, bn)

∞
n=1 is a closed

subset of [0, 1]× [0, 1] by Theorem 3.11, and since

π1(G(ai, bi)
n
i=1) = π2(G(ai, bi)

n
i=1) = [0, 1].

Definition 3.12. Let {(an, bn)}∞n=1 be any sequence in [0, 1] × [0, 1], such
that

1. an < bn for each positive integer n,

2. ai 6= aj whenever i 6= j,

3. lim
n→∞

(bn − an) = 0.

Then f(an,bn)∞n=1
is called the comb function with respect to {(an, bn)}∞n=1.

We also say that f : [0, 1] → 2[0,1] is a comb function, if f is the comb
function with respect to some sequence {(an, bn)}∞n=1 in [0, 1] × [0, 1] satis-
fying (1), (2), and (3).

Theorem 3.13. Let f : [0, 1]→ 2[0,1] be the comb function with respect to
the sequence {(an, bn)}∞n=1. Then

lim←−{[0, 1], f}
∞
k=1 = Cl

(
∞⋃

n=1

Dn

)

.

Proof. Obviously, since lim←−{[0, 1], f}
∞
k=1 is closed in

∏∞
n=1[0, 1],

lim←−{[0, 1], f}
∞
k=1 ⊇ Cl

(
∞⋃

n=1

Dn

)

.
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Ważewski’s universal dendrite as an inverse limit 17

Next we show that

lim←−{[0, 1], f}
∞
k=1 ⊆ Cl

(
∞⋃

n=1

Dn

)

.

Let x ∈ lim←−{[0, 1], f}
∞
k=1 \

⋃∞
n=1Dn. Obviously x is of the form

x = (ai1 , ai2 , ai3 , . . .),

where {ain | n = 1, 2, 3, . . .} is an infinite subset of {an | n = 1, 2, 3, . . .}.
Take any open ball U = B(x, ε) in

∏∞
n=1[0, 1] with respect to the metric

D. Let m be a positive integer such that 1
2m

< ε. Then

(ai1 , ai2 , . . . , aim−1
, a∞im) ∈ U ∩Dim .

In the above proof we noticed that any x ∈ lim←−{[0, 1], f}
∞
k=1 \

⋃∞
n=1Dn is

of the form x = (ai1 , ai2 , ai3 , . . .), where {ain | n = 1, 2, 3, . . .} is an infinite
subset of {an | n = 1, 2, 3, . . .}. We can make this statement more precise
taking into account the definitions of inverse limits and comb functions as
follows:

Remark 3.14. Let f : [0, 1] → 2[0,1] be the comb function with respect to
the sequence {(an, bn)}∞n=1. Any point x ∈ lim←−{[0, 1], f}

∞
k=1 \

⋃∞
n=1Dn is of

the form

(ak1i1 , a
k2
i2
, ak3i3 , . . .),

where for each ℓ it holds that kℓ > 0 and aiℓ < aiℓ+1
≤ biℓ .

In Examples 3.15 and 3.16 we show that there are comb functions f ,
such that the inverse limits lim←−{[0, 1], f}

∞
k=1 are not dendrites.

Example 3.15. Let (a1, b1) = (1
2
, 1) and let for each positive integer n ≥ 2,

(an, bn) = (1
2
− 1

n+1
, 1
2
+ 1

n+1
). We show that lim←−{[0, 1], f(an,bn)

∞

n=1
}∞k=1 is not

locally connected and therefore it is not a dendrite. Let

x0 = (
1

2
,
1

2
, 1∞) ∈ lim←−{[0, 1], f(an,bn)

∞

n=1
}∞k=1

and ε = min{d(x0, K), 1
23·6
} > 0, where K = {(t∞) | t ∈ [0, 1]}. Let r ≤ ε

and y = (y1, y2, y3, . . .) ∈ B(x0, r) ∩ lim←−{[0, 1], f(an,bn)
∞

n=1
}∞k=1 be arbitrarily

chosen. Then, since r > D(x0, y) ≥
1−y3
23

, it follows that y3 > 1 − 23r.Pr
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18 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič
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Figure 6: The graph of the comb function from Example 3.15

K

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

.
.
.

.
.
.

..
.

..
.

..
.

..
.

..
.

..
.

......
......

U

X
0

Figure 7: The continuum from Example 3.15

Therefore y3 > 1 − 23r > 1 − 23

6·23
= 5

6
and hence yi = y3 for each i ≥ 3.

Furthermore y2 ∈ f(y3) = {
1
2
, y3}. If y2 = y3 then

D(x0, y) ≥
y2 −

1
2

22
>

5
6
− 1

2

22
=

1

12
> r,

a contradiction. Therefore y2 = 1
2

and hence y1 ∈ f(1
2
). Clearly there is a

positive integer n, such that y1 = an and
1

2
−an

2
= x1−y1

2
< r.

Therefore for each r ≤ ε, y ∈ B(x0, r) if and only if there is a positive
integer n, such that y = (an,

1
2
, t∞), where

1

2
−an

2
< r and t > 1− 23r.

Therefore for each r ≤ ε the intersection B(x0, r)∩lim←−{[0, 1], f(an,bn)
∞

n=1
}∞k=1Pr
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Ważewski’s universal dendrite as an inverse limit 19

is the union of countably many mutually disjoint intervals

{(an,
1

2
, t∞) | t ∈ (1− 23r, 1]},

where
1

2
−an

2
< r. See Fig. 7.

Example 3.16. Let (a1, b1) = (1
2
, 1) and let for each positive integer n ≥ 2,

(an, bn) = (1
2
− 1

n
, 1
2
). A similar argument as in Example 3.15 shows that the

..
.

Figure 8: The graph of the comb function in Example 3.16

inverse limit lim←−{[0, 1], f(an,bn)∞n=1
}∞k=1 is not locally connected and therefore

it is not a dendrite.

In Theorem 3.20 we prove that under rather weak additional assump-
tions the inverse limit of a comb function is a dendrite. Essentially, the
conditions say that the only comb functions for which the inverse limits
are not dendrites are similar to those from Examples 3.15 and 3.16. Be-
fore stating and proving the theorem we introduce the necessary notion of
admissible sequences and prove a few lemmas.

Definition 3.17. The sequence {(an, bn)}∞n=1 in [0, 1] × [0, 1] is admissible
if for each positive integer n there is a positive integer µ(n) ≥ n, such that
for each m ≥ µ(n) it holds that if am < an, then bm < an.

Lemma 3.18. Let f : [0, 1] → 2[0,1] be any comb function with respect to
a sequence {(an, bn)}∞n=1, and let

x = (ak1i1 , a
k2
i2
, ak3i3 , . . . , a

kj
ij
, t∞) ∈ Dn,Pr
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20 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

j ≥ 0, i1, i2, i3, . . . , ij ≤ n, ai1 < ai2 < · · · < aij , k1, k2, . . . , kj > 0, and
t ∈ [aij , bij ]. Let fℓ be the functions defined in Definition 3.8. Then for each

y ∈ Cl(
⋃

k≥n

(fn ◦ fn+1 ◦ . . . ◦ fk)
−1(x))

and for each i ≤ k1+k2+k3+ . . .+kj +1 it holds that pi(x) = pi(y) (where
x and y are interpreted as elements of Π∞

n=1[0, 1]).

Proof. By induction on k − n we prove the following claim:
For each

y ∈ (fn ◦ fn+1 ◦ . . . ◦ fk)
−1(x)

and for each i ≤ k1 + k2 + k3 + . . .+ kj + 1 it holds that pi(x) = pi(y).
For k−n = 0 the statement holds true by Lemma 3.9 (part (1) for j > 0

and part (2) for j = 0).
Let k − n = ℓ and assume that the claim is true for ℓ− 1. Since

(fn ◦ fn+1 ◦ . . . ◦ fk)
−1(x) =

⋃

z∈(fn◦fn+1◦...◦fk−1)−1(x)

f−1
k (z)

for any y ∈ (fn◦fn+1◦. . .◦fk)
−1(x) we choose z ∈ (fn◦fn+1◦. . .◦fk−1)

−1(x)

such that y ∈ f−1
k (z). By the induction assumption pi(x) = pi(z) for each

i ≤ k1+k2+k3+ . . .+kj +1 and by Lemma 3.9 pi(y) = pi(z) again for each
i ≤ k1 + k2 + k3 + . . .+ kj + 1. This completes the proof since the limits of
sequences of points with the required property have the property.

We will also need the following lemma about point preimages.

Lemma 3.19. Let f : [0, 1] → 2[0,1] be the comb function with respect to
any admissible sequence {(an, bn)}∞n=1. For each ε > 0 there is a positive
integer k such that

diam(
⋃

n≥k

(fk ◦ fk+1 ◦ . . . ◦ fn)
−1(p)) < ε

for each p ∈ Dk, where maps fn are defined as in Definition 3.8.

Proof. Let ε > 0 and m be a positive integer such that 1
2m−1 < ε. Also let

n0 > m be any positive integer such that for each n ≥ n0, it holds that
bn − an < ε

m
. For each positive integer ℓ, let µ(ℓ) be a positive integer such

that for each n ≥ µ(ℓ) it holds that if an < aℓ, then bn < aℓ (here we use
the admissibility of the sequence {(an, bn)}∞n=1).
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Ważewski’s universal dendrite as an inverse limit 21

k0 = max{n0, µ(1), µ(2), µ(3), . . . , µ(n0)},
k1 = max{n0, µ(1), µ(2), µ(3), . . . , µ(k0)},
k2 = max{n0, µ(1), µ(2), µ(3), . . . , µ(k1)},

...
km = max{n0, µ(1), µ(2), µ(3), . . . , µ(km−1)}.
Then we show that

k = max{n0, µ(1), µ(2), µ(3), . . . , µ(km)}

is a positive integer, such that

diam(
⋃

n≥k

(fk ◦ fk+1 ◦ . . . ◦ fn)
−1(p)) < ε

for each p ∈ Dk.
Take any p ∈ Dk. Then by Remark 3.6 (1) p is either of the form p = (t∞),

t ∈ [0, 1], or of the form p = (p1, p2, p3, . . . , pj, t
∞), where pj = as for some

s ≤ k and t ∈ (as, bs].
Clearly, it holds that

diam(
⋃

n≥k

(fk ◦ fk+1 ◦ . . . ◦ fn)
−1(p)) ≤ diam(

⋃

n≥k

(fk ◦ fk+1 ◦ . . . ◦ fn)
−1(t∞))

since

(fk ◦ fk+1 ◦ . . . ◦ fn)
−1((p1, p2, p3, . . . , pj, t

∞)) =

{(p1, p2, p3, . . . , pj, x1, x2, x3, . . .) | (x1, x2, x3, . . .) ∈ (fk◦fk+1◦. . .◦fn)
−1(t∞)}.

If t 6= ai for all i > k, then
⋃

n≥k(fk ◦ fk+1 ◦ . . . fn)
−1(t∞) = {(t∞)} and

therefore diam(
⋃

n≥k(fk ◦ fk+1 ◦ . . . fn)
−1(t∞)) = 0.

If t = ai for some i > k, then we shall prove that

diam(
⋃

n≥k

(fk ◦ fk+1 ◦ . . . ◦ fn)
−1(t∞)) < ε

by proving that

D(y, (t∞)) = D(y, (a∞i )) <
ε

2

for arbitrary y = (y1, y2, y3, . . . , ym, . . .) ∈
⋃

n≥k(fk ◦ fk+1 ◦ . . . ◦ fn)
−1(t∞).

Since y1 = t = ai by Lemma 3.18 (and therefore y1−ai
2

= 0), and since
y1 ≤ y2 ≤ y3 ≤ . . ., it follows that

D(y, (a∞i )) ≤ sup{
y2 − ai

22
,
y3 − ai

23
, . . . ,

ym − ai
2m

,
1

2m+1
}.
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22 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

Let j ∈ {2, 3, 4, . . . ,m} be arbitrary. We show that

yj − ai
2j

<
ε

2
.

First we show that for each s ∈ {2, 3, 4, . . . , j} there is a positive integer
ℓ > n0 such that ys, ys−1 ∈ [aℓ, bℓ].

For s = 2, the claim is true since y2 ∈ [ai, bi], y1 = ai, and i > k ≥ n0.
If y2 /∈ {an | n = 1, 2, 3, . . .}, then y2 = y3 = y4 = · · · and therefore for

each s ∈ {3, 4, 5, . . . , j}, ys = ys−1 = y2 ∈ [ai, bi].
In the rest of the proof we consider the case y2 = ai0 for some positive

integer i0. If i0 ≤ km, then µ(i0) ∈ {n0, µ(1), µ(2), µ(3), . . . , µ(km)} and
therefore µ(i0) ≤ k. Since k < i, it follows that µ(i0) < i. Therefore from
y2 = ai0 > ai it follows that ai0 > bi and this contradicts the fact that
ai0 = y2 ∈ [ai, bi]. So in this case i0 > km ≥ n0 and the claim for s = 3

follows, since y3, y2 ∈ [ai0 , bi0 ].
If y3 /∈ {an | n = 1, 2, 3, . . .}, then y3 = y4 = y5 = · · · and therefore for

each s ∈ {4, 5, 6, . . . , j}, ys = ys−1 = y3 ∈ [ai0 , bi0 ].
In the rest of the proof we consider the case y3 = ai1 for some positive

integer i1. If i1 ≤ km−1, then µ(i1) ∈ {n0, µ(1), µ(2), µ(3), . . . , µ(km−1)} and
therefore µ(i1) ≤ km. Since km < i0, it follows that µ(i1) < i0. Therefore
from y3 = ai1 > ai0 it follows that ai1 > bi0 and this contradicts the fact
that ai1 = y3 ∈ [ai0 , bi0 ]. So in this case i1 > km−1 ≥ n0 and the claim
follows for s = 4 since y4, y3 ∈ [ai1 , bi1 ].

Repeating this reasoning m times proves that for each s ∈ {2, 3, 4, . . . , j}

there is a positive integer ℓ > n0 such that ys, ys−1 ∈ [aℓ, bℓ].
It follows that

d(yj, ai) ≤ d(yj, yj−1) + . . .+ d(y3, y2) + d(y2, ai) ≤ (j − 1)
ε

m
< ε,

since ys, ys−1 ∈ [aℓ, bℓ] for each s, for some ℓ > n0. Therefore yj−ai
2m

< ε
2
.

Theorem 3.20. Let f : [0, 1]→ 2[0,1] be the comb function with respect to
any admissible sequence {(an, bn)}∞n=1. Then lim←−{[0, 1], f}

∞
k=1 is a dendrite.

Proof. We show that lim←−{[0, 1], f}
∞
k=1 is homeomorphic to the inverse limit

of an inverse sequence of dendrites with monotone bonding functions, which
is by [20, Theorem 10.36, p. 180] a dendrite, and therefore lim←−{[0, 1], f}

∞
k=1

is a dendrite, too.
More specifically we prove that lim←−{[0, 1], f}

∞
k=1 is homeomorphic to

lim←−{Dn, fn}
∞
n=1, where fn : Dn+1 → Dn is the mapping defined in Defi-

nition 3.8 and that each fn is monotone.Pr
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Ważewski’s universal dendrite as an inverse limit 23

For fixed x = (x1, x2, x3, . . . , xm, a
∞
n+1), xm 6= an+1, and fixed k, let

Bk(x) = {(x1, x2, x3, . . . , xm, a
k
n+1, t

∞), t ∈ [an+1, bn+1]}.

Then each

S(x) =
∞⋃

k=1

Bk(x),

is the star with the center x and beams Bk(x), k = 1, 2, 3, . . .

Using Remark 3.6 we see that

1. f−1
n (x) = {x} for each x ∈ Dn \ Cl(Dn+1 \Dn), and

2. f−1
n (x) is the star S(x) for each x ∈ Dn ∩ Cl(Dn+1 \Dn).

Therefore fn : Dn+1 → Dn is monotone for each n and by [20, Theorem
10.36, p. 180]

lim←−{Dn, fn}
∞
n=1

is a dendrite.
Next we show that by

F (x1, x2, x3, . . .) = lim
n→∞

xn

a homeomorphism

F : lim←−{Dn, fn}
∞
n=1 → lim←−{[0, 1], f}

∞
n=1

is defined.

1. First we show that F : lim←−{Dn, fn}
∞
n=1 → lim←−{[0, 1], f}

∞
n=1 is a well

defined function. Take any point (x1, x2, x3, . . .) in lim←−{Dn, fn}
∞
n=1 ⊆

Π∞
i=1Di. If there is a positive integer n0, such that xn = xn0

for each
n ≥ n0, then lim

n→∞
xn = xn0

and xn0
∈ Dn0

⊆ lim←−{[0, 1], f}
∞
n=1. There-

fore F (x1, x2, x3, . . .) ∈ lim←−{[0, 1], f}
∞
n=1. If there is no such n0, then let

i1 < i2 < i3 < . . . be the sequence of all such integers that xin 6= xin+1

for each n. Then xin+1
= xin+1 ∈ f−1

in
(xin), where f−1

in
(xin) is the star

S(xin) ⊆ Din+1 with center xin . Therefore xin is of the form

xin = (y1, y2, y3, . . . , ymn
, a∞in+1).

Similarly, xin+1
is of the form

xin+1
= (z1, z2, z3, . . . , zmn+1

, a∞in+2).Pr
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24 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

Since xin+1
∈ S(xin), it follows that mn < mn+1 and yi = zi for each

i = 1, . . . ,mn. From mn < mn+1 for each n, it follows that mn ≥ n

for each n. Therefore D(xin , xin+1
) ≤ 1

2mn
≤ 1

2n
. It follows that the

sequence {xn}
∞
n=1 is a Cauchy sequence in Cl (

⋃∞
n=1Dn) and hence by

Theorem 3.13 it converges to a point in lim←−{[0, 1], f}
∞
n=1.

2. We show that F is continuous.

Take any x = (x1, x2, x3, . . .) ∈ lim←−{Dn, fn}
∞
n=1 and any ε > 0. Choose

a positive integer k (given by Lemma 3.19), such that

diam(
⋃

n≥k

(fk ◦ fk+1 ◦ . . . ◦ fn)
−1(p)) < ε

for each p ∈ Dk.

Let B = {z ∈ lim←−{[0, 1], f}
∞
n=1 | d(z, F (x)) < ε} and let

V = P−1
k (B ∩Dk),

where Pk : lim←−{Dn, fn}
∞
n=1 → Dk is the projection map to the k-th

factor. Since B∩Dk is open in Dk, V is open in lim←−{Dn, fn}
∞
n=1. Since

x ∈ lim←−{Dn, fn}
∞
n=1 and xk ∈ Dk, it follows from the definition of F

that F (x) ∈ Cl(
⋃

n≥k(fk ◦ fk+1 ◦ . . . ◦ fn)
−1(xk)). From the definition

of functions fj it follows that xk ∈ Cl(
⋃

n≥k(fk ◦fk+1 ◦ . . .◦fn)
−1(xk)).

Therefore d(xk, F (x)) < ε, hence xk ∈ B. It follows that xk ∈ B ∩Dk

and thus x ∈ V . Let y = (y1, y2, y3, . . .) ∈ V . It follows that yk ∈ B,
and therefore d(yk, F (x)) < ε. Since F (y), yk ∈ Cl(

⋃

n≥k(fk ◦ fk+1 ◦

. . . ◦ fn)
−1(yk)), it follows that d(yk, F (y)) < ε. Hence,

d(F (x), F (y)) ≤ d(F (x), yk) + d(yk, F (y)) < 2ε.

Therefore F is continuous.

3. We show that F is a surjection. Let

y = (y1, y2, y3, . . .) ∈ lim←−{[0, 1], f}
∞
n=1

be arbitrarily chosen. We define a sequence {xn}
∞
n=1, such that

(a) for each n, xn ∈ Dn,

(b) for each n, fn(xn+1) = xn,

(c) limn→∞ xn = y.Pr
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Ważewski’s universal dendrite as an inverse limit 25

If y 6∈ Dn for each n, then by Remark 3.14 y is of the form y =

(ak1i1 , a
k2
i2
, ak3i3 , . . .), where for each ℓ, it holds that aiℓ < aiℓ+1

≤ biℓ and
that kℓ is a positive integer. In this case we define

xn = (ak1i1 , a
k2
i2
, ak3i3 , . . . , a

km
im
, a∞im+1

),

where iℓ ≤ n for each ℓ = 1, 2, 3, . . . ,m, and im+1 > n. If y ∈ Dm for
some m, then define xn = y for n ≥ m and xn = (fn ◦ · · · ◦ fm−1)(y)

for n < m.

Obviously the sequence {xn}
∞
n=1 satisfies (a), (b) and (c) and therefore

F (x1, x2, x3, . . .) = y.

4. Finally we show that F is an injection. Let x = (x1, x2, x3, . . .) and
y = (y1, y2, y3, . . .) be any points in lim←−{Dn, fn}

∞
n=1, such that x 6= y.

Let k be a positive integer such that xk 6= yk. Since xk, yk ∈ Dk, it
follows that

xk = (aq1i1 , a
q2
i2
, aq3i3 , . . . , a

qj
ij
, t∞)

and
yk = (ar1ℓ1 , a

r2
ℓ2
, ar3ℓ3 , . . . , a

rm
ℓm
, s∞),

where i1, i2, . . . , ij, ℓ1, ℓ2, . . . , ℓm ≤ k, t ∈ (aij , bij ] and s ∈ (aℓm , bℓm ],
by Remark 3.6 (1). Let q = q1+q2+q3+. . .+qj, r = r1+r2+r3+. . .+rm.
Assume that q ≤ r. Also, let n be the smallest integer such that
pn(xk) 6= pn(yk). If n ≤ q then for each z1 ∈ Cl(

⋃

i≥k(fk ◦ fk+1 ◦ . . . ◦

fi)
−1(xk)) and each z2 ∈ Cl(

⋃

i≥k(fk ◦fk+1 ◦ . . .◦fi)
−1(yk)) by Lemma

3.18 it follows that pn(z1) = pn(xk) and pn(z2) = pn(yk), and therefore

D(z1, z2) ≥
d(pn(xk), pn(yk))

2n
.

Since
F (x) ∈ Cl(

⋃

i≥k

(fk ◦ fk+1 ◦ . . . ◦ fi)
−1(xk))

and
F (y) ∈ Cl(

⋃

i≥k

(fk ◦ fk+1 ◦ . . . ◦ fi)
−1(yk))

it follows that F (x) 6= F (y).

If n > q, then yk is of the form

yk = (aq1i1 , a
q2
i2
, aq3i3 , . . . , a

qj
ij
, apij , a

rj+1

ℓj+1
, a

rj+2

ℓj+2
, a

rj+3

ℓj+3
, . . . , armℓm , s

∞),

since r ≥ q.Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

9,
 J

an
u

ar
y 

27
, 2

01
2



26 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

We consider several cases.

Case 1. If p ≥ 1, then n = q + 1, since pq+1(xk) = t and pq+1(yk) =

aij , and by Lemma 3.18 pn(F (x)) = pn(xk) = t 6= aij = pn(yk) =

pn(F (y)), hence F (x) 6= F (y).

Case 2. If p+ rj+1 + rj+2 + rj+3 + . . .+ rm = 0, then n = q+1 and by
Lemma 3.18 pn(F (x)) = pn(xk) = t 6= s = pn(yk) = pn(F (y)), hence
F (x) 6= F (y).

Case 3. If p = 0 and rj+1 + rj+2 + rj+3 + . . .+ rm > 0 and if there is a
positive integer i ≤ k such that t = ai, then F (x) = xk and n ≤ r+1,
and it follows that pn(F (x)) = pn(xk) 6= pn(yk) = pn(F (y)), where the
last equality follows by Lemma 3.18.

Case 4. If p = 0 and rj+1 + rj+2 + rj+3 + . . . + rm > 0 and if there
is a positive integer i > k such that t = ai, then n = q + 1 since
pq+1(yk) = alj+1

and lj+1 ≤ k, while pq+1(xk) = t = ai, i > k. There-
fore pn(F (x)) = pn(xk) = ai 6= alj+1

= pn(yk) = pn(F (y)), by Lemma
3.18.

Case 5. If p = 0 and rj+1 + rj+2 + rj+3 + . . .+ rm > 0 and if t 6= ai for
each positive integer i, then F (x) = xk and n = q+1 < r+1, and we
continue as in Case 3.

Since F : lim←−{Kn, fn}
∞
n=1 → lim←−{[0, 1], f}

∞
n=1 is a continuous bijection from

a compact space onto a metric space, it is by [19, Theorem 5.6, p. 167] a
homeomorphism.

4 Ważewski’s universal dendrite as an inverse

limit with one bonding function

The following example shows that the conditions of Theorem 3.20 are not
sufficient to guaranty that the corresponding inverse limit is homeomorphic
to Ważewski’s universal dendrite.

Example 4.1. Let for each positive integer n, (an, bn) = (1− 1
22n

, 1− 1
22n+1 ).

By Theorem 3.20, lim←−{[0, 1], f(an,bn)∞n=1
}∞k=1 is a dendrite. Since an < bn <

an+1 for each positive integer n, using Lemma 4.4 and Remark 3.6 (3), we
see that x ∈ lim←−{[0, 1], f(an,bn)

∞

n=1
}∞k=1 is a ramification point if and only

if there is a positive integer m, such that x = (a∞m ). Therefore the set of
all ramification points is not dense in lim←−{[0, 1], f(an,bn)

∞

n=1
}∞k=1. Hence, byPr
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Ważewski’s universal dendrite as an inverse limit 27

Theorem 2.2, lim←−{[0, 1], f(an,bn)∞n=1
}∞k=1 is not homeomorphic to Ważewski’s

universal dendrite.

In Theorem 4.5 we show that with the additional condition that the
set {an | n = 1, 2, 3, . . .} is dense in [0, 1], it follows that the inverse limit
lim←−{[0, 1], f}

∞
k=1 is homeomorphic to Ważewski’s universal dendrite. In The-

orem 4.6 we show that in fact this additional condition characterizes inverse
limits lim←−{[0, 1], f}

∞
k=1 that are homeomorphic to Ważewski’s universal den-

drite.
First we prove the following lemmas.

Lemma 4.2. Let f : [0, 1]→ 2[0,1] be any comb function with respect to an
admissible sequence {(an, bn)}∞n=1. Let

y ∈ lim←−{[0, 1], f}
∞
k=1 \

∞⋃

n=1

Dn

be arbitrarily chosen. Then for each x ∈
⋃∞

n=1Dn the uniquely determined
arc L from x to y satisfies the condition

L \ {y} ⊆
∞⋃

n=1

Dn.

Proof. By Remark 3.14 y is of the form y = (ak1i1 , a
k2
i2
, ak3i3 , . . .), where aiℓ <

aiℓ+1
≤ biℓ for each ℓ. We use the same sequence {xn}

∞
n=1 as in the proof of

surjectivity of F in the proof of Theorem 3.20, i.e.

xn = (ak1i1 , a
k2
i2
, ak3i3 , . . . , a

km
im
, a∞im+1

) ∈ Dn,

where iℓ ≤ n for each ℓ = 1, 2, 3, . . . ,m, and im+1 > n. Since Dn+1 is a
dendrite, there is a unique arc [xn, xn+1] from xn to xn+1 in Dn+1 if xn 6=

xn+1. If xn = xn+1 let [xn, xn+1] denote {xn}. Then A =
⋃∞

n=1[xn, xn+1] ∪

{y} is an arc from x1 to y, since [xn, xn+1] \ {xn} ∈ Dn+1 \ Dn and since
limn→∞ xn = y, as shown in the abovementioned proof of Theorem 3.20.
Obviously

A \ {y} ⊆
∞⋃

n=1

Dn.

Next, take the unique arc B from x1 to x in
⋃∞

n=1Dn (the existence of
such an arc follows from the fact that there is an integer m such that x1, x ∈

Dm). Then Cl((A\B)∪(B\A)) is an arc from x to y in lim←−{[0, 1], f(ai,bi)
∞

i=1
}∞k=1.Pr
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28 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

Since lim←−{[0, 1], f(ai,bi)
∞

i=1
}∞k=1 is a dendrite, it follows that Cl((A \B)∪ (B \

A)) = L. Obviously

L \ {y} = Cl((A \B) ∪ (B \ A)) \ {y} ⊆
∞⋃

n=1

Dn.

Lemma 4.3. Let f : [0, 1]→ 2[0,1] be any comb function with respect to an
admissible sequence {(an, bn)}∞n=1. Then each

y ∈ lim←−{[0, 1], f}
∞
k=1 \

∞⋃

n=1

Dn

is an endpoint of lim←−{[0, 1], f}
∞
k=1 (and hence it is not a ramification point).

Proof. Assuming that y is not an endpoint, using Lemma 4.2, one easily
gets a simple closed curve in lim←−{[0, 1], f}

∞
k=1. This contradicts the fact that

lim←−{[0, 1], f}
∞
k=1 is a dendrite by Theorem 3.20.

Lemma 4.4. Let f : [0, 1]→ 2[0,1] be any comb function with respect to an
admissible sequence {(an, bn)}∞n=1. Let x ∈ lim←−{[0, 1], f}

∞
k=1. The following

statements are equivalent.

1. x is a ramification point in lim←−{[0, 1], f}
∞
k=1.

2. x is a ramification point in Dn for some positive integer n.

Proof. It is obvious that if there is a positive integer n, such that x is a
ramification point in Dn, then x is a ramification point in lim←−{[0, 1], f}

∞
k=1

(since Dn ⊆ lim←−{[0, 1], f}
∞
k=1). Suppose that x is a ramification point in

lim←−{[0, 1], f}
∞
k=1. Since no point of

lim←−{[0, 1], f}
∞
k=1 \

∞⋃

n=1

Dn

is a ramification point in lim←−{[0, 1], f}
∞
k=1, by Lemma 4.3, it follows that

x ∈ Dn0
for some positive integer n0. Let [x, xi], i = 1, 2, 3, be any three

arcs in lim←−{[0, 1], f}
∞
k=1, such that [x, x1] ∪ [x, x2] ∪ [x, x3] is a simple triod.

Without loss of generality we may assume that xi ∈
⋃∞

n=1Dn, i = 1, 2, 3,
since if xi /∈

⋃∞
n=1Dn, we may replace [x, xi] by [x, yi], where yi ∈ (x, xi),

by Lemma 4.2. For each i = 1, 2, 3 let ni be a positive integer such that
xi ∈ Dni

. Let n = max{n0, n1, n2, n3}. Obviously[x, x1]∪ [x, x2]∪ [x, x3] is a
simple triod in Dn and therefore x is a ramification point in Dn.Pr
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Ważewski’s universal dendrite as an inverse limit 29

Theorem 4.5. Let f : [0, 1]→ 2[0,1] be any comb function with respect to
an admissible sequence {(an, bn)}∞n=1 such that the set {an | n = 1, 2, 3, . . .}

is dense in [0, 1]. Then lim←−{[0, 1], f}
∞
k=1 is homeomorphic to Ważewski’s uni-

versal dendrite.

Proof. By Theorem 3.20, D = lim←−{[0, 1], f}
∞
k=1 is a dendrite. We show that

the set of ramification points of D is dense in D and that each ramification
point of D is of infinite order in D, and therefore by Theorem 2.2 D is
homeomorphic to Ważewski’s universal dendrite.

Let y = (y1, y2, y3, . . .) ∈ D be arbitrarily chosen, such that y is not a
ramification point. We show that there is a sequence of ramification points
{zn}

∞
n=1 in D, such that lim

n→∞
zn = y.

If y ∈ Dn for some positive integer n, then by Remark 3.6 (1), (3) (taking
into account that by Lemma 4.4 y is not a ramification point in Dℓ for each
ℓ) there are a positive integer m and a real number t ∈ [0, 1]\{a1, a2, a3, . . .},
such that

y = (y1, y2, y3, . . . , ym−1, t
∞),

where ym−1 = ak for some k ≤ n, and t ∈ (ak, bk]. Since the set {an | n =

1, 2, 3, . . .} is dense in [0, 1], there is a strictly increasing sequence {in}∞n=1

of positive integers, such that lim
n→∞

ain = t and ain ∈ (ak, bk]. Therefore

{(y1, y2, y3, . . . , ym−1, a
∞
in
)}∞n=1

is a sequence of ramification points in D, which converges to y.
If y ∈ D \

⋃∞
n=1Dn, then by Remark 3.14

y = (ak1i1 , a
k2
i2
, ak3i3 , . . .),

where for each ℓ it holds that kℓ > 0 and aiℓ < aiℓ+1
≤ biℓ . Then the sequence

{zn}
∞
n=1, where

zn = (ak1i1 , a
k2
i2
, ak3i3 , . . . , a

kn−1

in−1
, a∞in )

for each n, is a sequence of ramification points in D, which converges to y.
Next we show that each of the ramification points is of infinite order in

D. Let x ∈ D be any ramification point. Then by Lemma 4.4 and Remark
3.6 (3) there are positive integers m and j, such that pk(x) = aj for each
positive integer k ≥ m. Without loss of generality we may assume that
pk(x) 6= aj for each k < m.

Since
x ∈ f−1

j−1(x) ⊂ D

and f−1
j−1(x) is a star with the center x by Lemma 3.10, it follows that x is

of infinite order in D.Pr
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30 I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič

Theorem 4.6. Let f : [0, 1]→ 2[0,1] be any comb function with respect to an
admissible sequence {(an, bn)}∞n=1. Then lim←−{[0, 1], f}

∞
k=1 is homeomorphic

to Ważewski’s universal dendrite if and only if the set {an | n = 1, 2, 3, . . .}

is dense in [0, 1].

Proof. Taking Theorem 4.5 into account it suffices to prove that if the set
{an | n = 1, 2, 3, . . .} is not dense in [0, 1], then lim←−{[0, 1], f}

∞
k=1 is not

homeomorphic to Ważewski’s universal dendrite. If there is an interval J =

(aj, ak) ⊆ [0, 1] containing no an, let t =
aj+ak

2
and δ =

ak−aj
2

. For any
ramification point x of lim←−{[0, 1], f}

∞
k=1 D(x, (t∞)) ≥ d(p1(x),t)

2
> δ, since

p1(x) = an for some n. Therefore the open ball in lim←−{[0, 1], f}
∞
k=1 centered

at (t∞) with the radius δ contains no ramification points and hence by
Theorem 2.2 lim←−{[0, 1], f}

∞
k=1 is not homeomorphic to Ważewski’s universal

dendrite.

Theorem 4.7. There is a comb function f such that lim←−{[0, 1], f}
∞
k=1 is

homeomorphic to Ważewski’s universal dendrite.

Proof. Let {an | n ∈ N} be any dense subset of (0, 1). Inductively we define
sequence {bn}∞n=1 in such a way that {(an, bn)}∞n=1 would be admissible which
would by Theorem 4.5 guaranty that lim←−{[0, 1], f}

∞
k=1 is homeomorphic to

Ważewski’s universal dendrite. For each positive integer n, let

bn =
1

2
(an +min{1, ai | i < n, ai > an}) .

First we show that limn→∞(bn − an) = 0. Let ε > 0 be arbitrary; choose
a positive integer k such that 1

k
< ε. For each j ≤ k choose ij, such that

aij ∈ ( j−1
k
, j

k
), and let n0 = max{ij | j = 1, 2, 3, . . . , k}. For any n > n0 let

a < b be two consecutive elements of the set {0, 1, aij | j = 1, 2, 3, . . . , k}

such that an ∈ (a, b). Then bn − an ≤
an+b
2
− an = b−an

2
< b−a

2
< ε.

Since for each positive integer n for each m ≥ n it holds that if am < an,
then bm < 1

2
(am + an) < an, it follows that the sequence {(an, bn)}∞n=1 is

admissible.
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