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ABSTRACT: Dataflow architecture is accepted as the architecturs for future
cosputers because (it can’ explait potentialy all the parallelise in a
progras. This architecture is assused to execute dataflov graphs. The

nodes in the dataflow graphs

represent asynchronous tasks. The arcs

connecting nodes represent cosaunication paths for the aessages (tokens)
generated by nodes or suplied fros the external environasnt. Each node is
executed (fired) when the required input becoses available. The dataflow

arhitecture proposals can be

classified as static and dynamic

architectures. 1In a static architecture the nodes of a progras graph are
loaded into asemory before the computation tegins and at aost one instance

of a node is enabled for ¢iring

a time. A4 dynamit architecture

facillitates the firing of several instances of a node at a time and these

nodes can be created at runtiae.’

We have developed program language DFL],

sisulator for the sisulation dataflos cospuler agdels and theis key
sechanisas, iaproved hardeare, software and set of instructions nesded to
support an efficient fault-tolarant datqfln- cosputer,

1 INTRODUCTION

Over the last few years data flow cosputer
architectures have been proposed and sose computers have
been built. A simple data flow execution sodel is based
en a “"pure* data flow program organisation: with an
instruction being enabled when all its input tokens are
available. Each instruction wmay have any nuaber of
inputs and any nuasber of outputs. Discyssing the
U-interpreter, Arvind and Gpstelow suggest that eaxiauva
parallelisa tan only be extracted from a program if an

. arc is allowed to carry more than a single token - a

praocess achieved by carrying a label with each token
that identifies the context qf that particular token
(ARVI 82). Packet coasunication machine organisation
and high level cosputer language with exploiting
inherent parallelisa in data. flow graph is the wsost
significant for the data flow architecture. We have
developed program language DFL1 {XOX 84) and simulator
for the sisulation of five various data flow computer
aodels, which are suited for todays technolagy. During
the sisulation, sisultaneous execution of a data {low
‘prograa in distinct units ' (token transaission and
satching, foraing activities) and some ieportant
statistical paraseters (i.e. an  input streas, a
business period, an idle period, 3 service tiese ...} are
observed (DJST 84, 2uUM 85-1, 2UM 835-2, 0JST B4, O0JST
87-2).

2 DESCRIPTION OF MORELS

Dur scdels are based on the packet coesunication
sachine organisation with token satching and cansist of
an input section, wesory sections, a global store,
pracessor sections, an output section and units for

comaunication amaong sections, The input section
decosposes the data flow progras and supports semory
sections with input data. Me have used two

decoaposition aethods:

- Each instruction into its own wsemary section. 14
there are aore instructions than aespry sections,
then scre instructians are stored in one memory
section. [Instructions are randomly distributed.

- Each block into its own semory section. 14 there
are aore blocks than aemory sections, then more
blocks are stored in one memory section.

The semory section matches tokens into sets of
tokens. MWhen all of its input tokens having the saae
context are available, it forms activity {(executable
instruction which cansists of a set of tokens with the
same context and a copy of instruction} is $oraed and
sent into an processor section. The processar sectian
executes the activity and sends output results into
asaary sectians. The "output section collects final
results of computation. The global stoee is used to
prevent deadlock of the systea. Coasunication units
(networks, husses) transait sessages (tokens, sats of
takens, activities). They use post office
intercannaction perinciple for transaission sessages.
Coasunication wunits in our sisulatian are sisulated is
delay units,
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Figure 1:The model 1
The aadel 1 uses two networkst  one  for

transaitting activities and gne for transmitting data.
[t has separate aeaory sections and separate processor
sections. The mesory section consists of an input FIFO



queue, a wmatching store, an iastruction store, an
assoclative logic and an output FIFD queue. The
processar section conaists of an input FIFD Qqueue,a
processor, an ocutput FIFD queue. This configuration is
not suitable for super-systess, because networks cause
tooc such delay time in transmitting eessages. An
advantage of this sodel is asvtonomic work of units, The
aondel is suitable for small systeas and faor a subsystes
of a large systes.

2.2 MHNodels Connected In Clusters
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Figure 2:Models connected in clusters

Models 2,3,4,5 are very sisilar. Sections «of

sodels are connected in clusters.
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Figure 31 The clustsr of acdel 2
Figure 4: The clustar of aodel 3
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2.2.1 Model 2

The meacry section and the processor are associated
in one elesent {(figure 3). The mesory section satches
tokens into sets of tokens, foras and executes
activities. Output tokens which dan‘t have their own
instructions in the cluster are transmitted into butput
FIFD queue. Other tokens are satched in tha cluster.
Higher speed of forsing and executing activities is the
advantage of this aocdel. There is na additional
transaitting betwen mesory section and processor. This
aodel is very syitable for ssall and sediua systeas if
the adequate decosposition sethod is used.

2.2.2 HNodel 3

The processor and the assory section are separated
(figure 43, 1§ the oprocessor is idis and ths semory
section hasn’t any activities, it can receive activities
fraa other cluysters. I the semcry section has
activities and the processor isn‘t idle, activities are
transaitted inta the output FIFC queue. The global
network transaits it to the idle processor section.

2.2.3} Models 4 And 5

Hodels 4 and T are sisilar to wmode}l 3,
cluster they have one or sore pracessors. The aemory
logic establishes which processer is idle and adresses
the activity to it. Model 4 is slightly better than
aodel %, because it needs less tise for writing in FIFD
queues. .
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3 SIMULATION RESULTS

99 different paraseters can be varied in our
sisulation but it is reasonable to vary just sose of
thea. Constant values are given to all others. Qur
aodels are sisulated with four prograss, the blocks of
which are coaposed of data flow graphs shown on figures
7:8,%,10. Prograa blocks are independent and they have
no cosspn flow of data tokens.

Figure ¢

Figure 19

All data flow graphs have 13 instructions. Eraphs
shown on Figurea 7 and 8§ have sany inherent parallelise
and nead sany input data tokens. The graph shown on
Figure 8 consists of instructions /, which are sxecuted

38 timses slower than instructions +. Such an
instruction delays the execution aof Following
instructions. The graph with few inherent parallelisas

is shown an Figure %¥. On Figure i1F the graph with sany
inherent parallelisas and three input data tokens is
shawn. Each instruction {in the graph shown on Figure
18, has one input operand and ane constant. This
increases the speedup of firing enablad instructiaons.
How are algorithas influenced to our sodels is described
and evaluated.

Our sisulation is executed with these constant input

paraaeters:

- an instruction + is executed in 2 cycles

an instruction / is executed in 50 cycles

aatching ons token in & set of tokens is executed

in ! cycle

- activity forming is exscuted in 1 cycle

FIFO queues have J eleaents

- writting er reading tise to FIFO queues is
negleable

= a network can transait an infinite nuaber af
aessages

- blocks of program are independent

- a model 1 has 5 aemory sections

I |
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In the file of input paraseters we have varied the

folloning paraseters:

= the selection of systea { 1 - § )

- the decosposition method

- the delay tiae in transaitting aessages theough the
network (#, 1, 2 cycles}

= the capacity of aesory section and a capacity of
global store

= the input algoritha

The prograe consists of an equal nusber of blocks
and mesory sections.

We have reduced the nusber of observed output
paraseters to the winisus following ones: a prograa
execution tise reguested {or execution of 248
instructions, an average number of busy processors, an
utitization of processors, an average number of busy
agaory logic in amsory sections, an average aunber of
sets of tokens, which are aatched in seanry section, an
utilizatian of a wsatching stere, an average nuaber of
sete of tokens, which are satched in global store, and
an utilization of a glabal store.

The fallowing abbreviations are used in diagraas:

UP - the utilization of procassors ()

ON - the delay time in transaitting eessages through the

network (cyclas)

NP - nusber af processors

TE - the progras execution tise (cycles)

slgorithe shown on Figure 7

algoritha shown on Figure 8
9
1

algoritha shown on Figure
algorltha shown on Figure 18

For the sodel 1 the decospposition wmethod “‘wach
instruction into its own aesory section® is bettes than
"each block into its own sesory section®™ , so we have
nade diagrass which evaluate the model i, only for this
sethod. For asodels 2,3,4 we have aade diagraas only for
*each block into its oun assmory section® decosposition
sethod because this sethad is better.

‘The progras exscution time dependent on the delay time
in tranamitting sessages through the natwork
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The utllization ol processora dependent on the delay
time in transsitticg seseages through the network
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The algoritha shawn on Figure iF is the fastest one
(it has a eaxiaus degree of inherent paralleiiss and a
ainisus nuaber of input datal. Proportions in executing
time of progras and an utilization of units are changed
by increasing the delay tiwe in the transeission through
the netwark. An executing time of program is dependent
an an inherent paralleiisa of algorithm znd a nuabee of
input data needed far the execution of this algoritha.
The executing time of algoriths is decreased tp some
lisit and then it keeps constant value (all inherent
parallelisas are used), if the nuaber of asnory sections
or the nusber of processor sections are increased or
delay tise in transaission through the comaunication
units is decreased. Owing to the Fact that the
processor section and the mesory section of sodel 2 fors
one eleaent, execution time of model ? is almoust twice
4s lang coapared to model 3; but its advantage is the
best utilization of units., Because delays of reading
and writing into FIFO gqueues were not considerad, the
results of sodels 4 and S are identical. With this
considerations we have found that mode! 4 is hetter than
sodel 3. The biggest average nusber of sets of tokens
in tha eemary section is in the algoritha shown on
Figure %, bescause instruction / delays the execution of
following instructions, On model 1 we have siaulated
the deadlock of a systea. 1§ matching stores are full,
then other tokens sust satch in the global store. This
causes bad wutilization of anits in & sodel (a lot of
tiae is wasted for comeunication betwen semory sections
and the global store). ke have sisulated the deadlock
with decressing capacity of satching stores. & good
decoaposition wmethod can prevent deadlock or had
utilization af a systes,

4 FAULT TOLERANT DATAFLON COMPUTER

Results af sisulation and our knowledge about
dataflow cosputers are shown that there are aany
prohleas to be solved. In the design of an actual
dataflow cosputer the sain probleas are:

- constructicn aof a large and fast matching memory at
& reasonsble cost,

construction and aanageaent of a structure aspory,
network construction,

interryption, error and excaption handling,
insfficiency dus to insufficient parallelise,
‘developing efficient conteol, partitioning and
scheduling algorithas.

)

We have developed key aschanisss, ieproved
hardware, softmare and set of instructions needed to
support an sfficlient fault-tolerant dataflow cosputer
{0J8T B7-1, QJST 47-3).

Praposed  dataflonm architectures are very
inefficient on regular structurss becauss aqf ¢ine
granularity of theie operations, When data is
structured (vectors, satrices, records) the contral and
data flow is very regular and predictable and there i3
na need to pay high overhead for scheduling. These
architectures don’t have aechanisas for interruption,
error and exception handling, & sechanisa which
reassigns nodes to another unit if faults have been
detected, a sechanisa which stops sending tokens to the
faulty processor and a sechanisa which destroying
read/urite requests in sesory after fault. Contents of
data buffer in the output port of the fail ‘processor are
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figure 14t Processing Elesent of FTDFM

In our cosputer nmodel (figures 12,13,14)  the
coabination of control flow, data flow and demand driven
dre used, MWe adapt to the granularity of the data
structure and treate large structures as one cbject. MNe
reduce scheduling overhead by combining together as many
scalar operatiaons as possible and executing thea as aons



abject.

Hierarchical decoaposition aeethod {ARVI B3} are
used. - This wsethod is based on the concept of resource
bounded graphs (RBGs). The RBE is a progras frageant
for which a bound on the resource requiresent of the
fragasnt can be derived at compile time as a sisple
function of a collection of parallelisa paraseters. A
progras is viewed as a collection of RBEs. :

The execution of a prograa can be represented by a

trae of task invocations { figure 11). This aethod yse

“breaadh-first partitioning algoriths until sufficient

‘parallelism is generated and then it use depth-first

partitioning algorithe. With depth-first partitioning
algoriths deadlork are avoided.

Qur systea is a dynamic architecture for task level
dataflow with facilities to support node reassignaent
when processors fail. It uses tagging schese sleilae to
the MIT dynamic architecture. [t have thres
hierarchical levels. The purpose of using three
hierarchical levels is to exscute prograss efficiently
by utilizing principles of locality. Each hierarchical
level have an instruction . stare, a block tahle, a
structure stors and a control unit. The insteuction
store holds copies of the instructions which are
sxecuted in this level. The structure store holds input
data structures (DS) of RBE which are executed in this
level. The hlock table contains adresses of units where
RBEs- are executed. The control unit adresses RBGs and
its D3 to units in this level and generates block table,
1f hardware faults occur in one of the units, control
unit reassigns R3Gs and its DS to healthy units. With
this sechanisa we achieve that only the RBE and their DS
which is assigned in the faulty unit aust be reexecuted.
Control unit also delstes ABGs and DS when the
computations af them are finished. 1t also controls the
asount of available asaory and the utilization of units.
If deadlock is occured the control unit reassigns RBEs,
its sets of tokens and DS fros too busy units to idle
units.

Our proposed sodel has high bandwidth (HBI and  low
bandwidth (LB) coasunication paths. HB paths are
intended for ¢{ranssaiting RBGs, D5, activities and
tekens betwen units. The LB paths are intended for
transsaiting status, diagnostics, control and
seasureaent inforsation. Cur sadel has 1/0
instructions, instructions which are executed in
exception condition, instryctions laeplesenting the
special operators for dynasicaly creating instances of
node resulting froa recursive nodes in dataflow graphs,
loop and streass, table-oriented instructions (for
readind an entry, writing into an entry and sodifying
parts of an entry), structure-oriented instructions ifor
selecting an elesent #roe a structure, appending an
elesent to a structure and testing for esptiness),
string weanipulation instructions (to search #or a
substring and a lenght of a string to cospare strings,
and concatenate strings), streas oriented instructions,
fized-point instructions, lagical/shift instructioens,
floating-point instructions, ccepound instructions lior
reducing token aavesent).

3 CONCLUSION

Today a vast collection of single-board computers
are available which offers raughly 1 MIPS at low cost:
these are touted as building blocks for sultiprocessors.
Can. datatlow asachines cospete? It is not clear if a
single dataflow processor can achieve the performance of
a von Neusann processor at the sase hardware cost. The
dataflom instruction-scheduling mechaniss is clearly
sore cosplex than incresenting a progras counter. Aa
enginesring effort substantially beyond any of the
current dataflow projects is required to make fair
coaparison. The SIENA-L (SHIMN 854) project is an
important step in this direction. The question becoses
aore interesting when we consider sachines with sultiple
processors, where the dataflow scheduling sechanisa
yields significant benefits. The dataflow apperoach can
be viewed as an extrese solutions to the semory latency

probles - the procesaor never waits for resppnses fros
aeanryt it continues processing other instructions.
Instructions are scheduled based on the availability of
data, so aesory responses are siaply routed along with
the tokens producad by processors. It is our belief,
that dataflow architectures together with isproved
hardware, software, set of instructions needed to
support an efficient fault tolerant dataflow cosputer
and with powerfull high level functional languages, will

. show the prograsaing generality, performance and cost

effectiveness nedded to aake parallel aachines widely
applicable.
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