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0  INTRODUCTION

Generally, a kinematically redundant manipulator has 
more DOFs than those required in performing a given 
task, which can exploit the redundancy to achieve 
second goals with little influence on the end-effector 
(EE). At present, the redundant manipulators have 
attracted considerable interest and been increasingly 
applied to modern productions and civilian fields.

To solve the inverse kinematics (IK) problem of 
a robotic manipulator is to obtain a set of actuated 
joint values to move the manipulator to a desired 
position and orientation in Cartesian space [1], and 
is a common basis of dynamic analysis and control 
system design [2]. Due to the residual redundancy, 
however, the underdetermined Jacobian matrix of a 
redundant manipulator admits infinite joint positions 
corresponding to a given posture of EE. Therefore, the 
problem of kinematic redundancy resolution becomes 
the basic and prerequisite issue [3] and [4]. To this end, 
multiple control strategies have been obtained to the 
IK resolution as the redundant manipulator has more 

degrees-of-freedom (DOFs) over several decades, 
such as the pseudo-inverse (PI) method, the extended 
Jacobian matrix (EJM) method, and geometric 
methods for special structures, apart from the weighted 
least-norm (WLN) and the gradient projection method 
(GPM) [5] and [6]. Note that the WLN method and 
the GPM method are the most frequently used ones, 
but both methods are seriously flawed. In WLN, the 
major limitation is that it can only be used to constrain 
joint position limits effectively and dampen joint 
motion to exceed the limit without backing away 
from it. Meanwhile, the scalar factor in GPM for the 
performance criterion is often selected empirically, 
which may incur the poor performance of subtasks. 
Furthermore, a novel solution [7] and [8] to the 
kinematic analysis of a single-loop reconfigurable 7R 
(R: revolute joints) mechanism is given based on the 
algorithm of IK about a general serial 6R manipulator 
but neglects the advantages of redundancy in the 7R 
manipulator. 

On account of the hierarchical control structure 
applied by GPM considering multiple constraints-
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based performance criteria, excellent works have 
been conducted to avoid or alleviate the difficulty 
of inaccurate coefficients for performance criteria. 
A nested GPM [9] and [10] is used to provide fixed 
scalar weighted value for each performance criterion 
intuitively. Owing to the lack of adaptability to the 
changing situations using the fixed weighted values, 
a redundancy-based approach [11] is presented for 
GPM to eliminate the negative effect by iteratively 
solving a system of linear equations. Another way 
is an improved coefficient matrix [12] to calculate 
the coefficients of criteria by the magnitudes of the 
least-norm solution and the homogeneous solution of 
GPM. Moreover, a motion optimization measure [13] 
is designed to adjust self-motion coefficients in real 
time of multiple performance criteria for optimizing 
redundant robot trajectories using GPM. Additionally, 
to satisfy joint position limits as a performance 
criterion effectively, an extended vision of GPM [6] 
is proposed that refers to the principles of WLN and 
GPM. 

However, the existing techniques still do not 
perfectly solve the problem of  rational coefficients 
determinations for performance criteria in the original 
GPM method. They identify these coefficients 
by using extensive simulations inefficiently and/
or increase the computation burden in algorithm 
unconsciously. Therefore, the self-adjusting 
coefficients of constraints-based performance criteria 
are the prerequisite for redundant robot manipulation 
using the GPM method with high efficiency.

Motivated by the availability of avoiding joint 
position limits of the WLN method and the extensibility 
of constraining multiple criteria of the GPM method, 
a novel GPM method, WGPM, is proposed in 
this paper to resolve IK problems of redundant 
manipulators considering multiple performance 
criteria. Novelties and specific contributions in this 
work are that in order to eliminate the limitation of 
the WLN method, a clamping weighted matrix and a 
repulsive potential field are introduced to force joints 
back away from joint position limits while not only 
blocking them at limits. In terms of selecting proper 
scalar factors for different performance criteria in 
the proposed weighted gradient projection method 
(WGPM), a technique of determining continuous 
scalar coefficients is presented based on respective 
normalizations of criteria but not on empiricism, 
which can maintain the performances of subtasks in 
the WGPM method. In order to regulate the subtasks 
and avoid conflicts between them, a hierarchy-
based resolution on the proposed WGPM method is 

presented in which priorities of performance criteria 
are organized in descending order. 

This paper is outlined as follows: Section 
1 briefly reviews IK formulations of redundant 
manipulators, and the WGPM method is proposed in 
Section 2. To verify and assess the proposed method, 
results and discussion of simulations and experiments 
are performed compared to the WLN method and the 
GPM method, respectively, in Section 3. Finally, the 
conclusive remarks are shown in Section 4.

1  PROBLEM FORMULATION

In kinematic control, x R∈ m  denotes the main task 
velocity of a manipulator, and θθ ∈Rn  denotes the 
corresponding joint velocities. The relation between 
them is expressed as follows:

	 

x J= ( ) ,θθ θθ 	 (1)

where J R( )θθ ∈ ×m n  is the Jacobian matrix. For 
redundant manipulators, if rank(J) keeps constant as 
m and m < n, J becomes an underdetermined one, and 
the resolution of Eq. (1) is infinite corresponding to a 
given task velocity. 

By using the PI method, the joint velocity θθ  can 
have a least-norm solution

	 

θθ = J x+ ,	 (2)

where J + denotes the Moore-Penrose inverse of J, 
J + = J T (J J T)−1. Obviously, the PI method does not 
exhaust redundancy to perform optimization research 
for subtasks.

The IK solution, however, cannot always be 
derived in a straightforward manner as Eq. (2) due 
to an inherent singularity problem [14]. In order to 
handle singularities, the IK solution of a redundant 
manipulator in singular configurations is achieved 
by utilizing the damped least-squares (DLS) method 
[15], which has a compromised product between the 
accuracy of main task motion and the continuities of 
joint velocities. The DLS method is formally given as:

	 J x J J IT T 2( )

= + ρ n θθ ,	 (3)

where I Rn ∈
n  is an identity matrix, and ρ ≥ 0 is the 

damping factor. A small value of ρ leads to accurate 
solutions but low robustness to occurrences of singular 
and near-singular configurations of the manipulator 
and vice versa. ρ is usually determined by the 
following equation:

	 ρ ρ
σ
ε

2

max
min 2= max ( ( ) )0 1 02, ,−







≥ 	 (4)



Strojniški vestnik - Journal of Mechanical Engineering 64(2018)7-8, 475-487

477A Weighted Gradient Projection Method for Inverse Kinematics of Redundant Manipulators Considering Multiple Performance Criteria  

where ρmax is at the user’s disposal to suitably shape 
the solution in the neighbourhood of a singularity. ε 
is the size of the singular region. σmin is the minimum 
of singularity values from the singular value 
decomposition (SVD) technique on J.

Performance criteria play an important role in 
control that determines the application potential of 
redundant manipulators [16] and improves kinematics 
and dynamics performance [17]. Following the 
consideration, therefore, the motion of the subtask 
should be appropriately selected based on the criterion 
with the primary task unaffected, which can be 
described by GPM:

	 

θθ θθ= ∇+J x P H+ k ( ). 	 (5)

The first item on the right of Eq. (5) is the least-
norm solution for the primary task, and the second 
item is the homogeneous solution for self-motion that  
is orthogonal to the former in the null space 
P = In − J + J. ∇H ( )θθ  is the gradient vector of 
performance criterion ∇H ( )θθ  as a subtask, which is 
expressed as:

	 ∇ =
∂
∂

∂
∂

∂
∂









H ( ) ( ) ( ) ( )
T

θθ
H H Hθ
θ

θ
θ

θ
θ1 2

, , , .

n

	 (6)

k is the scalar coefficient. It should be taken positive if  
∇H ( )θθ  is to be maximized, and negative if ∇H ( )θθ  is 
to be minimized. As noted in the previous section, 
choosing a satisfactory coefficient is non-trivial. If k is 
too small, the capability for avoiding the constraint is 
weakened. If k is too large, violating the constraint 
and causing oscillation during execution is probable.

As an alternative, the WLN method is expressed 
as follows:

	 J JWw =
−
1

2 , 	 (7)

	  θθ θθw =W
1

2 , 	 (8)

	 

 θθ = =W J x W J JW J x
− + − − −
1

2 1 1 1

w
T T( ) , 	 (9)

where Jw and θθw  are defined as the weighted Jacobian 
matrix and the weighted joint velocity, respectively.  
W R∈ ×n n  is the positive and diagonal weighted 
matrix, and its ith diagonal element is defined by:

	 w
else

i =
∂
∂

∆
∂
∂

≥








1 0

1

+
H H

i i

( ) ( )θ
θ

θ
θ , 	 (10)

where ∆
∂
∂
H ( )θ
θi

 is the change rate of 
∂
∂
H ( )θ
θi

 [18].

The WLN method is proposed to only keep joint 
motion inside a physical range based on a performance 
criterion:

	 H
i

n

( )
( )

( )( )

max min

max min

θ
θ θ

θ θ θ θ
=

=
∑ i i

i i i i

−
− −

2

1 4
,	 (11)

where θimax and θimin are the upper and lower limits of 
the joint position θi.

In Fig. 1, when θi is gradually close to the 

neighbouring positive or negative limit, 
∂
∂
H ( )θ
θi

→ ∞, 

this is, wi → ∞. Therefore from Eq. (9), θi  is repressed 
to zero, and the ith joint motion is stopped at limit and 
has no competence to withdraw the joint from its 
limit.

Both GPM and WLN are possible to risk 
singularities when the manipulator configuration is ill-
conditioned. Combining the DLS method defined in 
Eq. (3), GPM could be rewritten as:

	 

θθ θθ= + − ∇J x I J J Ha ak+ +( ) ( ),n 	 (12)

	 J J JJ Ia
+ = T T 2( + )−1ρ m . 	 (13)

WLN could be redefined by:

	 

θθ =W J JW J I x− − −+1 T 1 T 2 1( ) ,ρ m 	 (14)
where I Rm

m∈  is an identity matrix.

Fig. 1.  Weighted value for the ith joint position in WLN

2  FORMULATION OF WGPM

2.1 Progressive Clamping Weighted Matrix

We add an activation buffer, i.e., a band of width Ω, 
before a joint position limit, so that a whole joint 
motion interval is divided into three parts, as depicted 
in Fig. 2. 
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Fig. 2.  Weighted value for the ith joint position in WGPM

Hence, a progressive clamping weighted matrix 
is defined by:

	 Ec i n= =diag , , ,( ( )),e ,c θi 1 2 	 (15)

where the element ec(θi) is governed by:

	 e

g

c ( ) =

−
−

θ

θ θ
θ θ

θ θ θ

θ θi

i i

i i
i i i

i i

Ω ( )tmin

tmin min

min tmin

tmin

≤ ≤

< <1 θθ
θ θ
θ θ

θ θ θ

i

i i

i i
i i i

tmax

tmax

max tmax

tmax max( )

,

gΩ
−
−

≤ ≤














	 (16)

where θitmax, θitmin are the upper and lower damping 
thresholds before θimax and θimin, respectively, and  
θitmax = (1–Ω) θimax+Ω θimin, θitmax = (1–Ω) θimin+Ω θimax. 
gΩ(●) is a transitional function for the weighted factor 
varying from one to zero:

	 g
dΩ ( ) tanhd

d
d=

−
[ ]1

2

1

2

1

1

1
0 1− ( − ), ∈ , .	 (17)

Based on the control technique in Eq. (16), 
an activation buffer is successfully taken into 
consideration that ensures the continuity and 
boundedness of the clamping weighted factor. In other 
words, when the joint motion runs in the flexible 
interval, the weighted value remains constant as one. 
While the joint goes towards the progressive interval 
from the flexible interval, the technique enables the 
weighted value to decrease uninterruptedly from 
one until zero, restricted at the joint position limit. 
Therefore, the continuous clamping weighted factor 
defined in Eq. (16) discards any unnecessary change 
of weighted value in the flexible region, in comparison 
to Eq. (10).

2.2  Repulsive Potential Field

Similar to the framework of WLN, the clamping 
control in this paper is designed

	 

θθ = ⊕E xEc J c
,	 (18)

where JEc = JEc is a weighted Jacobian matrix based 
on Ec and J E J JE E JEc c c c

⊕ = T T 1( )−  .
When Ec = In, Eq. (18) is equal to Eq. (2). While 

ec(θi)→0, we find it does not push θi from the position 
limit but blocks any motion beyond the limit. 
However, referring to the potential field methods 
applied to avoid obstacles in IK resolutions of 
redundant manipulators [19], we define a repulsive 
task JBkTr to force θi back far from its limit that is 
depended on the joint positions and orthogonal to the 
primary task by means of being projected onto the 
weighted null space PEc

⊕ . Therefore, a novel control 
scheme is represented as:

	 θθ = ⊕ ⊕E J x P J TE E Bc rc c k
 − ,	 (19)

where P I J J J I EE E E Bc c c kn n c
⊕ ⊕= − = −.  indicates the 

weighted constraint Jacobian matrix for the repulsive 
task. Tr = diag(tr(θi)) is the repulsive force, whose 
element tr(θi) is designed by:

    t

t

r

r

( ) =

−
−

θ

θ θ
θ θ

θ θ θ

θ θi

i i

i i
i i i

i i

tmin

tmin min

max min tmin

tmin

≤ ≤

<0 <<

≤ ≤














θ
θ θ
θ θ

θ θ θ

i

i i

i i
i i i

tmax

tmax

max tmax

max tmax max

−
−

tr

,, 	 (20)

trmax denotes the maximum potential field force. The 
closer to the limit it is, the stronger the repulsive 
potential force is.

When joints are all located within the flexible 
interval, JBk = 0, Eq. (19) acts as Eq. (2). While a joint 
remains in the progressive interval, JBk ≠ 0, the 
clamping and repulsive potential force are activated 
and withdraw the joint motion away from limit as far 
as possible. While the joint θi reaches its limit, 
ec(θi) → 0, the clamping term is disabled but tr(θi) 
becomes greatest and to push the joint motion away 
from its limit plays a dominant role in controlling. 
However, since P J TE Bc k r

⊕  is a homogeneous solution, 
therefore, the main task of the manipulator is not 
affected.

Note that the manipulator could degenerate when 
it enters the singular region. According to the DLS 
method, Eq. (19) is arranged in the form:

	 

θθ = ⊕ ⊕E J x P J TE E B
E E

c rc

c

c

c

k

, ,ρ ρ− , 	 (21)
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where JE
E

c

c⊕ ,ρ , PE
E

c

c⊕ ,ρ  are reproduced from JEc

⊕  and  
PEc

⊕  based on the DLS method. The damping factor 
ρEc is derived from Eq. (4) by substituting JEc for J.

2.3  Continuous Scalar Coefficient

Eq. (21) is defined to improve the redundant 
manipulator performance of avoiding joint position 
limits. However, when the manipulator is executing 
tasks under the complicated conditions of multiple 
constraints, Eq. (21), thus, cannot generate feasible 
joint velocity. Therefore, pertinent performance 
criteria for the joint motion have to be considered.

To solve such a problem generally requires 
compiling multiple criteria as a sum over weighted 
subtasks’ quadratic functions, and a trade-off of the 
main task and subtasks is performed by the manual 
tuning of the weights [20], which is often expressed 
as:

	 φ = k j
j

s

j∇
=
∑
1

H , 	 (22)

where kj is the fixed scalar factor for the jth 
performance criterion Hj, and is selected empirically. 
s indicates the total number of performance criteria.

However, the units and magnitudes of multiple 
criteria may differ from each other so that the 
assignation of kj for each criterion through experience 
can allow critical limitations in terms of balancing 
the strengths of the criteria in control. Therefore, 
normalization is required to obtain the same magnitude 
of each criterion for assigning an appropriate scalar 
factor. Since the fixed scalar factors are not applicable 
to any configurations of the manipulator, in this paper, 
the continuous scalar factor kj(Hnj) is redefined based 
on its normalization:

	 k j ( ) = ( ),H Hnj nj± f 	 (23)

where ± f (●) denotes a continuous function, and 
its sign is selected positively if the performance 
criterion is to be maximized and vice versa. Hnj is the 
normalized value of the criterion Hj.

For avoiding unnecessary optimizations of 
criteria when the configuration of the manipulator is 
in its most balanced state, hence, analogous to Eq. 
(16), the maximum and minimum normalized 
thresholds, Hnj

Mt  and Hnj
mt , are defined as:

	 H H Hnj
M

nj
M

nj
mt 1= ( − ) +λ λ , 	 (24)

	 H H Hnj
m

nj
m

nj
Mt ,= (1− ) +λ λ 	 (25)

where Hnj
M  and Hnj

m  indicate the upper and lower 
boundaries of Hnj, respectively. λ controls the 
bandwidth between H Hnj

M
nj

t t( )m   and H Hnj
M

nj
m( ).

To obtain a continuous scalar factor, the 
continuous function f (●) is expressed as follows:

f a b c d
nj
m

nj
m

nj nj nj nj
m

nj

n

( ) = + + +H
H H H

H H H H H H
H

nj

nj

nj
M

1

0

3 2

≤ ≤
< <

t

t t

jj nj
M

nj
MH Ht

,

≤ ≤









(26)

where

a

b

nj nj nj nj nj nj

nj

= −

=

2

3 3

3

3 2 2 3( ) ( ) ( ) ( )
,

t t t t t tH H H H H H

H

m m− + −M m M M

mm

m m

H
H H H H H H

t t

t t t t t t( ) ( ) ( ) ( )
,

+

− + −

3

3 33 2 2 3

nj

nj nj nj nj nj nj

M

M m M M

cc nj nj

nj nj nj nj nj nj

= −
6

3 33 2 2

H H
H H H H H H

m

m m

t t

t t t t t( ) ( ) ( ) (

M

M m M− + − MM

M M

M

t

t t t

t t t

)
,

( ) ( )

( ) ( )

3

2 3

3 2

3

3 3
d nj nj nj

nj nj nj n

=
H H H

H H H H

m

m m

−

− + jj nj nj
m M Mt t t( ) ( )H H

.
2 3−

In Fig. 3, it is obvious that the curve is 
monotonously decreasing and continuous. When 
kj → 1, the influence of the jth performance criterion 
becomes increasingly evident in the resolution of 
IK for the redundant manipulator. Conversely, when 
kj → 0, the criterion is increasingly deprived of the IK 
resolution.

Fig. 3.  A scalar coefficient for the corresponding performance 
criterion by calculation

2.4  Normalizing Criteria

Before normalization, the type and optimal value 
distribution of the performance criterion should be 
considered and analysed. For simplicity, assume a 
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performance criterion is optimized by maximization 
or minimization in this paper.

For instance, in the case of avoiding collisions, 
the distance between EE and an obstacle is often 
defined as a performance criterion, which is supposed 
to maximize the distance but to oppose a small one, 
especially tending to the distance of zero.

Taking the avoidance of joint position limits 
defined as Eq. (11) as another example, the optimal 
value for each joint is equal to one as the joint position 
is in the middle of its limit, while the value becomes 
infinite when the joint goes towards the limit. Thus, 
the distribution of optimal value of avoiding joint 
position limits is the opposite of the case of avoiding 
collisions.

Consequently, distributions of optimal values vary 
from different performance criteria. For normalizing 
these individuals, we assume normalization for 
a criterion conforms to the following principle 
illustrated in Fig. 4.

To normalize the criteria similar to collisions 
avoidance, an exponential function is defined to 
normalize this kind of criteria

	 N∞( ) =1− ( − ),H a Hj c jexp 	 (27)

where N∞(∞) = 1 denotes the optimal normalized 
value far away from the predefined threshold ac, 
and N∞(ac) = 0 indicates the manipulator is in the 
configurations that are restrained strictly.

On contrary, to normalize the criteria analogous 
to avoidance of the joint position limits where the 

optimal value tends to a constant value bc rather than 
infinite, we define another an exponential function for 
normalizations of these performance criteria

	 N H Hc ( ) ( ),j c jb= −exp 	 (28)

where Nc(bc) = 1 shows the optimal configuration of 
the manipulator without poor performances, e.g., 
Hj = ∞ far greater than bc, correspondingly, Nc(∞) = 0. 

Based on the principles defined in Fig. 4, the same 
closed-range of normalized results can be obtained 
with the optimum to be one and the inferior to be zero, 
despite different properties of different performance 
criteria.

2.5  Resolution of WGPM

Therefore, we can obtain a novel GPM method, 
WGPM, considering multiple criteria, which is 
presented as:

  θθ = + ∇⊕ ⊕

=
∑E J x P J T HE E B

E E
c j nj j

j

s

c

c

c

c k H, ,ρ ρ− ( ( ) ).
k r

1
	 (29)

In complicated circumstances, the criteria may 
be numerous, and their priority may be varied [20]. 
Specifically, if some performance criteria are activated 
simultaneously, criteria exhibit irregularities that 
affect the redundancy resolution of the manipulator. 
To regulate multiple criteria and improve the stability 
of the WGPM method, we set different priorities for 
criteria through weighted null space. Thus, Eq. (29) is 
rewritten as a hierarchy-based resolution:

Fig. 4.  A principle utilized to normalize different performance criteria
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

θθ = ×

+
−

∇

⊕ ⊕

=
∑

E J x P

J T E H

E E

B

E E
c

j
j

s

c

c

c

c

c

k j
s

, ,ρ ρ−

( ( ) ( )
k r nj jH

1

1
exp )), 	 (30)

where the defined clamping weighted matrix Ec 
dominates other criteria, and priorities decrease as the 
number of subtasks increases.

When Ec = In, the repulsive potential field is 
inactive, but other performance criteria are active. 
However, when Ec ≠ In, the repulsive potential field is 
activated to repel joints from their position limits, and 
the impacts of other performance criteria are reduced 
but not eliminated. Therefore, besides the main task, 
the priority of avoiding joint position limits is higher 
than any other criteria in the proposed hierarchical 
task-level regulation. As the joint motion reaches the 
singular region ε, the manipulator has to encounter 
a singularity, ρEc > 0. Then Eq. (30) is nothing but 
the solution of the following damped least-squares 
problem:

	 min




 

θθ
θθ θθ( + ).x J EE− −2

2 1
2

ρ
c c 	 (31)

Obviously, Eq. (30) is a compromise product 
between the feasibility of joint velocities and 
deviations of main tasks. That is to say, when Ec → 0, 
the least-norm solution in Eq. (30), E J xE

E
c c

c⊕ →,ρ
 0 , 

and the homogeneous solution 

− ( ( ) ( ) )P J T E H P J TE B E B
E E

c

c

c

c

k
k j

sj
j

s

c r
⊕

=

⊕+
−

∇ → −∑, ,ρ ρ

k r nj jH
1

1
exp

can no longer take effect in the weighted null space  
PE

E

c

c⊕ ,ρ  due to the existence of ρEc, and change the task 
priority to make optimization of avoiding joint 
position limits have higher priority than the main task 
motion.

3  RESULTS AND DISCUSSION

Simulations and experiments are constructed to 
demonstrate the effectiveness and practicability of 
the proposed WGPM method for IK resolutions 
of redundant manipulators. In this work, a 7-DOF 
redundant manipulator is taken as an analysis 
object, shown in Fig. 5. The D-H parameters of 
the manipulator with the allowable limits for joint 
positions and joint velocities are listed in Table 
1, where m2 = –0.2975, m3 = –0.3555, l1 = 0.45, 
m4 = –0.293, l2 = 0.4, m5 = 0.255, m6 = 0.197, 
m7 = 0.104.

To improve motion precision, the closed-loop 
algorithm is introduced that is expressed as:

	  x x E= d e+κ , 	 (32)

where xd  is the desired trajectory. κ is the positive 
feedback gain, and is set to 80. Ee ∈  R6×1 indicates 
the tracking error between the desired and actual 
trajectory

	 E
P P

n n s s a ae
d=
−

× + × + ×










0 5. d d d( )
, 	 (33)

Pd ∈  R3×1, P ∈  R3×1 are the vectors of the desired 
and actual position of EE, and Rd = (nd, sd, ad) ∈  R3×3, 
R = (n, s, a) ∈  R3×3, express the rotation matrices for 
the desired and actual orientations of EE, respectively.

a)         b) 
Fig. 5.  A 7-DOF redundant manipulator;  
a) kinematic model, b) physical prototype

Table 1.  D-H parameters and joint limits

i αi–1
[°]

ai–1
[m]

di
[m]

θi
[°]

θimin ~ θimax
[°]

νimax
[°/s]

1 0 0 0 q1 –160 ~ 160 55

2 90 0 m2 q2 –33 ~ 150 55

3 90 0 m3 q3 –165 ~ 80 55

4 0 l1 m4 q4 –180 ~ 40 55

5 0 l2 m5 q5 –150 ~ 150 65

6 90 0 m6 q6 –180 ~ 180 65

7 90 0 m7 q7 –180 ~ 180 65

Furthermore, the simulations in the paper are 
implemented with the aid of the Matlab R2016a tool, 
and in the experiment, a computer with Intel Core i3 
@ 1.8 GHz processor & 2 GB RAM as the control 
platform and the LabVIEW 2016 as the operation 
software are utilized to control servo joints connected 
in the manipulator with a sampling time of 0.005 s.

3.1  Numerical Simulations of Clamping and Repulsive 
Force

As a validation of the proposed clamping and repulsive 
potential field, we only consider the avoidance of joint 
position limits as a subtask in redundancy resolution 
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of the manipulator. Therefore, scalar factors in Eq. 
(30) for other criteria are set to zero manually. For 
comparisons, the WLN method defined in Eq. (14) is 
provided as well.
WLN:

	 

θθ =W J JWJ I x E− −( + ) ( + ),1 T T 2

6

1ρ κd e 	 (34)

WGPM:

	 

θθ = ⊕ ⊕E J x E J J TE E B
E E

c e rc

c

c

c

k

,
d

,ρ ρκ( + ) − , 	 (35)

where ρ and ρEc are damping factors of WLN 
and WGPM reduced from Eq. (4) where ε = 0.02, 
ρmax = 0.02, and σmin are the minimum singular values 
of Jw and JEc, respectively.

In simulations, we control the manipulator to 
track a straight-line path whose position is interpolated 
with the modified trapezoidal function and orientation 
expressed as Euler angles is planned with the five-
order polynomial function. The initial posture of EE is

Ps = [0.3174,  –0.2065,  0.6469] [m],
Os = [–90,  90,  90] [degree],

and terminal posture is
Pf = [0.37,  0.0068,  0.1707] [m]
Of = [–1.0036,  94.9841, –116.8194] [degree].
It is noted that the specified path is beyond the 

reachability of the redundant manipulator, and the 
fourth joint position in the terminal posture is close to 
its limit deliberately. 

Simulation results of the WLN method are shown 
in Fig. 6. It is found that WLN comes to suffer from 
singularity at t = 0.14 s in Fig. 6c.

However, with the assistance of the DLS 
method, the continuity of joint velocity in Fig. 
6b is still ensured at the expense of deviation of 
tracking trajectory, i.e., the WLN method obtains the 
maximum position error at t = 0.28 s in Fig. 6d. Fig. 
6a depicts the normalized joint position expressed as 
(2θi – θimax – θimin) / (θimax – θimin). Obviously, the fourth 
joint position is damped at limit due to the effect of 
the penalty function defined in Eq. (11), yielding an 
increasing weighted factor for the fourth joint shown 
in Fig. 6e.

Fig. 7 illustrates the simulation results of the 
proposed WGPM method. To force joints back away 
from their position limits effectively, the width of the 
progressive buffer, Ω, is set to 0.25, and the maximum 
potential field force, trmax, is equal to π. From Fig. 7d, 
singularity resulted from WGPM occurs later than that 
from WLN, and as observed in Fig. 7a, the fourth joint 
position is restrained into the specified range but not 
violate the limit compared to that in WLN. The 
fundamental cause for this lies in the action of the 
repulsive potential field JBkTr in the WGPM control 
where a large velocity is obtained based on the 
clamping weighted factors in Fig. 7f and projected 
onto the weighted null space PE

E

c

c⊕ ,ρ  with opposite 
direction, as shown in Fig. 7c, exploited to push the 
fourth joint away from the limit. Meanwhile, the 
seventh joint is effectively kept away from its position 
limit in comparison with that in the WLN method.

a)   b)    c) 

d)   e) 
Fig. 6.  Simulation results of the WLN method; a) normalized joint position, b) normalized joint velocity, c) damping factor,  

d) state error including position errors and orientation errors, and e) weighted factor
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Table 2.  The maximum simulation results of state errors

WLN WGPM Percentage [%]
MaxΔx [m] –0.1031 –0.0963 6.6
MaxΔy [m] –0.0209 –0.0212 –1.44
MaxΔz [m] –0.0162 –0.01 38.27
MaxΔα [rad] 0.0072 0.0057 20.83
MaxΔβ [rad] 0.0192 0.0147 23.44
MaxΔγ [rad] –0.0256 –0.0233 8.98
Running time [s] 0.2337 0.1832 21.61

Table 2 briefly shows the maximum simulation 
results of state errors generated from WLN and 
WGPM. It is found that except along the direction of 
the Y-axis, the proposed WGPM method significantly 
increases the motion accuracy compared to the WLN 
method, which reduces position errors by 6.6  %, 
38.27 % along the X and Z axes, and orientation errors 
by 20.83 %, 23.44 %, and 8.98 %. Meanwhile, since 
the WGPM method only performs optimizations when 
the joint position steps into the defined progressive 
interval while the WLN method optimizes the joint 
position throughout the whole interval, WGPM avoids 
the unneeded optimization procedure and improves 
the computational efficiency by 21.61 %.

Consequently, the simulation results indicate that 
the efficiency of the proposed WGPM method with 
clamping weighted matrix and repulsive potential 
field is superior to the traditional WLN method. 

However, from Figs. 6b and 7b, except the third joint 
and the fourth joint, other joint velocities exceed their 
limits shown as normalizations, which is not admitted 
to appear in the physical control of manipulator. 
Thus, the problem will be resolved in the following 
experiment and the performance of the proposed 
WGPM method with multiple criteria will be verified.

3.2  Experimental Verification with Multiple Criteria

As the joint velocity violates its limit in the above 
simulations, joint velocity commands may lose effect 
when large instantaneous task velocity is requested, 
causing significant velocity saturations [21]. 
Analogous to the criterion of avoiding joint position 
limits expressed as Eq. (11), the performance criterion 
of avoiding joint velocity limits is defined as: 

	 G i( ) =
( )

( )( )


 

   

θ
θ θ

θ θ θ θ
i i

i i i ii

max min

max min

,
−

− −=
∑

2

1

7

4
	 (36)

where θimax  (expressed as νimax in Table 1),  
 θ θi i=min max−  are the maximum and minimum of the 

ith joint velocity, respectively. This also complies with 
the principle of normalizing a performance criterion 
defined in Fig. 4.

The experiment focuses on the realization of 
the main tasks under the joint limit constraints such 
as joint position limits and joint velocity limits. The 
comparison with the conventional GPM method is 

a)   b)   c)

d)   e)   f) 
Fig. 7.  Simulation results of the proposed WGPM method; a) normalized joint position, b) normalized joint velocity,  

c) projected velocity produced from the repulsive potential field, d) damping factor, e) state error including position errors and orientation 
errors, and f) weighted factor composing the clamping matrix
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devised to validate the superiority of the proposed 
WGPM method in this case. Therefore, combining 
Eqs. (11), (12) and (36), the conventional GPM 
method with fixed scalar factors for multiple criteria 
is written as:

	 





θθ

θθ θθ

=

∇ ∇

J x E

I J J H G
a d e

a H Gk k

+

+

( + ) +

( − )( ( ) + ( )),

κ

7

	 (37)

where kH, kG are the fixed scalar coefficients to 
regulate the projected velocities of avoiding joint 
position limits and joint velocity limits and are set 
to -0.1 and -0.05 by trial and error, respectively. 
Since abs(kH) > abs(kG), the priority of avoiding joint 
position limits is higher than that of avoiding joint 
velocity limits.

The proposed WGPM method with the 
performance criterion of avoiding joint velocity limits 
described as Eq. (36) is expressed as:

	



θθ = + +

∇

⊕ ⊕E J x E P J T

E G
E E B

E E
c d e

c

c

c

c

c

k

, ,

nG

ρ ρκ( ) − (

( ) (0 ) ),
k r

exp 	 (38)

where the bandwidth for defining thresholds in 
normalization, λ, is set to 0.3.

The overview of the experimental setup is shown 
in Fig. 8, which mainly consists of the PC LabVIEW 
program, the motion control card and the redundant 
manipulator. These three parts communicate with each 
other to deliver the target and actual joint position 
by means of PCI and EtherCAT, and the traditional 
GPM method and the proposed WGPM method are 
embedded in the PC LabVIEW program to generate 
the target joint position. Moreover, the initial and 
terminal postures for manipulator in experiments are 
set as reference, and the terminal posture is also out 
of the manipulator’s reachability, which is shown in 
Fig. 9. The trajectory is planned as a straight-line path 
of round-trip, i.e., Ps → Pf → Ps. Besides, the values of 
other parameters remain unchanged, as defined in the 
previous simulations.
Initial posture:

Ps = [0.4063,  –0.238,  0.5969] [m],
Os = [–80.8661,  92.267,  79.244] [degree].

Terminal posture:
Pf = [0.5917,  –0.2083,  0.104] [m]
Of = [–92.1895,  125.3982, 43.4023] [degree].

Fig. 8.  Experimental setup

a)   b) 
Fig. 9.  Initial posture and terminal posture of the manipulator as 

reference; a) initial posture, and b) terminal posture

Fig. 10 illustrates the experimental results of 
the conventional GPM method. Seen from Fig. 10a, 
the second joint is approaching its position limit at  
t = 1.932 s that leads to a singularity and motion 
deviation inevitably depicted in Figs. 10e and f, 
respectively. Since the influence of performance 
criterion of avoiding joint position limits defined in 
Eq. (11) is projected onto the null space shown in 
Fig. 10c, the second joint position limit is not violated 
with the smallest projected velocity by virtue of the 
advantage of redundancy. 

However, it is noted that when tracking the 
large joint command velocities, extreme vibration 
chatter occurs at t = 1.428 s shown in Fig. 10b. Eq. 
(37) defines a behaviour composed of main task and 
subtasks where the priority of avoidance of joint 
position limits is higher than that of avoidance of joint 
velocity limits but lower than the main task. Therefore, 
the projected velocities for avoiding joint velocity 
limits, depicted in Fig. 10d, are smaller than those for 
avoiding joint position limits even if the criterion of 
avoiding joint velocity limits is activated. Hence, the 
regulation between the main task and avoidances of 
joint position limits and joint velocity limits by the 
conventional GPM method failed.

The experimental results of the proposed 
WGPM method are summarized as shown in Fig. 
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Fig. 10.  Experiment results of the conventional GPM method with avoiding joint position limits and joint velocity limits;  

a) normalized joint position, b) normalized joint velocity, c) projected velocity produced from the performance criterion of avoiding joint 
position limits, d) projected velocity produced from the performance criterion of avoiding joint velocity limits, e) damping factor, and  

f) state error including position errors and orientation errors

a)   b)   c) 

d)   e)   f) 

g)   h) 
Fig. 11.  Experiment results of the proposed WGPM method with avoiding joint position limits and joint velocity limits; a) normalized joint 

position, b) normalized joint velocity, c) projected velocity produced from the performance criterion of avoiding joint position limits,  
d) projected velocity produced from the performance criterion of avoiding joint velocity limits, e) damping factor, f) scalar coefficient of 
avoiding joint velocity limits, g) weighted factor from clamping matrix, and h) state error including position errors and orientation errors
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11. Similarly, from Fig. 11a, the second joint is also 
close to its limit at t = 1.89 s, and the corresponding 
weighted factor decreases to 0.933 in Fig. 11g 
according to the clamping weighted matrix operator 
with the appearance of singular configurations of the 
manipulator during t = 1.33 s to 2.38 s. Remarkably, 
in the singular time shown in Fig. 11e, because the 
clamping matrix is not equal to an identity matrix, the 
repulsive potential field is activated to suppress the 
second joint velocity and repel it from its position limit 
effectively with a large opposite projected velocity, 
which passes through the weighted null space depicted 
in Fig. 11c. More significantly, however, from Figs. 
10c and 11c, due to the different constructions of 
projected velocities for avoiding joint position limits 
between WGPM and GPM, the direction of the second 
joint projected velocity in WGPM is opposite to that 
in GPM.

From Fig. 11f, adopting the proposed continuous 
scalar coefficient theory, the coefficient for 
performance criterion of avoiding joint velocity 
limits is continuously documented dependent on the 
real-time joint velocities. Therefore, the projected 
velocities for avoiding joint velocity limits, shown 
in Fig. 11d, exist accompanied by the variation of 
the scalar coefficient and effectively restrain the joint 
velocity into a reasonable limit so as to protect and 
maintain the continuity of joint velocity. As such, 
the scheme to avoid joint velocity limits can play a 
positive effect on limiting joint velocities expressed 
as the normalizations depicted in Fig. 11b without 
any vibrations. Specifically, the scalar coefficient for 
avoiding joint velocity limits is automatically adjusted 
in WGPM while it is assigned a small constant value 
in GPM. Therefore, in Fig. 11d, two strong groups 
of projected velocities exist to avoid the second, the 
fourth and the fifth joint velocity violating their limits 
in the WGPM control while only an effective group, as 
shown in Fig. 10d, is produced from the conventional 
GPM control to constrain the first, the second, the 
third, and the sixth joint velocities.

The motion accuracies of the manipulator in 
experiments based on the traditional GPM method 
and the proposed WGPM method are demonstrated in 
Table 3. Obviously, the WGPM method has, compared 
to the GPM method, a potential advantage to enhance 
the kinematic performance of redundant manipulator 
that reduces errors by 6.27 %, 24.08 % and 45.33 
% in position and by 44.81 %, 20.96 %, 12.04 % in 
orientation, respectively. Furthermore, as discussed 
previously, WGPM optimizes joint velocities in 
accordance with the clamping weighted matrix for 
avowing joint position limits and the continuous scalar 

coefficient for avoiding joint velocity limits while 
GPM does that all the time. Therefore, the proposed 
WGPM method could save time, i.e., decreasing 
16.29 % of the time the GPM method consumed in the 
experiment. 

Table 3.  The maximum experimental results of state errors

GPM WGPM Percentage [%]

MaxΔx [m] –0.0287 –0.0269 6.27

MaxΔy [m] 0.049 0.0372 24.08

MaxΔz [m] 0.1425 0.0779 45.33

MaxΔα [rad] 0.0694 0.0383 44.81

MaxΔβ [rad] –0.1422 –0.1124 20.96

MaxΔγ [rad] 0.0781 0.0687 12.04

Running time [s] 3.948 3.305 16.29

Consequently, the main task with continuous joint 
positions and joint velocities is completed by means 
of the proposed WGPM method in which joint motion 
is subject to different performance criteria sufficiently, 
while the traditional GPM method is invalid.

4  CONCLUSIONS

The simulations and experiments in the paper are 
conducted to prove the validation and efficiency of the 
proposed WGPM method with multiple performance 
criteria. The results are concluded as follows:
1.	 Tracking the singular trajectory in simulations, 

the fourth joint and the seventh joint are 
successfully driven from joint position limits 
owing to exploitations of the proposed WGPM 
method, while they are arrested at limits using the 
WLN method that cannot repel them from limits. 
However, both methods violate joint velocity 
limits without taking into consideration the 
corresponding performance criterion.

2.	 The joint position limits and joint velocity 
limits are added to the experiments. In terms 
of guaranteeing the joint position limits, GPM 
performs as well as WGPM. In contrast, the 
regulation of avoiding joint velocity limits works 
barely satisfactory by using GPM that leads 
to a vibration chatter due to the unreasonable 
arrangement of fixed weights for multiple criteria. 
Contrarily, the hierarchical WGPM control 
effectively regulates the joint velocities far away 
limits based on the continuous scalar coefficient. 

3.	 By analyses and comparisons of the simulation 
and experimental results, the hierarchical task-
level regulation between the main task and 
subtasks in the proposed WGPM method is the 
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primary factor influence on improving kinematic 
motion prevision and saving time compared to 
the traditional WLN and GPM methods.
The paper provides a novel resolution to the IK 

problems of a redundant manipulator with multiple 
constraints. Future work will focus on the kinematical 
control of a redundant dual-arm manipulator.
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