THE NORMALIZATION OF RELATIONAL DATABASE

UDK 681.3.06 PROLOG:519.24

INFORMATICA 3/1988

Tatjana Welzer

ivan Rozman

Jozsef Gyorkds
University of Maribor

After a brief presentation of base and some definitions neded,
the aim of the article is to deal with the normalization of
relational database.The implementation of normalization process
will Dbe shown by PROLOG, the fifth generation language. The
ascendancy of this language over the languages of the fourth
generation is that the program is not defined as a sequence of
steps but as a discription of relations between objects. This
enables a loglical conclusion in questions that are put in
various ways. The built-in database of PROLOG will be exploited

as well.

Po kratki predstavitvi relacijske baze in definicij, ki jih
rotrebujemo v nadaljevanju, bomo v &lanku predstavili proces

normalizacije

relacijske baze
normalizaclije bomeo predstavili

podatkov. Izvedbo

s PROLOG-om,

procesa
Jezikom pete

generacije. Prednost tega Jjezika pred jeziki &etrte generacije

Je v tenm,

temved kot opis relacij med

da program ne definiramo kot =zaporedje korakov,
objekti, kar omogoia logiéno

sklepanje ob razlié¢no zastavljenih vprasanjih. Prav tako pa
bomo izkoristili tudi PROLOG-ovo vgrajeno bazo podatkov.

1.9 IRTRODUCTION

One of the most important modules for varlous
computer applications is database. The database
can be a hierarchical database,” a network
database or a relational database. The latter
is more and more often used instead of the
first two databases and is asuccessfully gaining
ground on all fields off application. Its
advantage is above all in its simple and user
friendly transfer from the paper to the
computer. BSuccessful work with the relational
database can be ensured only by a thoughtful
formulation of base. Because of its
extensiveness this formulation should be aided
by a corresponding tool.

2.9 BELATIONAL DATABASE

Relational database is a temporally variable

multitude of relations /ALAGB4 /.
R(Al1,A2,....,An) is the relation over
multitudes D1,D2,...,Dn if the submultitude of
Descartes product is as follows:

Rg {Dl xD2x ... xDn}
D1,D2,....,Dn mean the domains of attributes.
The attributes Al1,A2,...,An denote the

structure of the relation which 1is called
relational schema.

2.1.0 RELATIORAL ALGEBRA

Relational algebra is a simple formal language
which enables data wmanipulation /CODDT3/.
Relational algebra consists of operations over

multitudes (union, intersection and
difference) and special operation
(projection, selection, Join and division). For

our further work, operation of projection is of
main importance.

There is the following relatlion:
R(Al1,A2,...,An). X 1is a submultitude of the
multitude of attributes’ X @ {Al,A2,...,An}, Y
is the complement {Al1,AZ2,...,An}/ X. The
relation R(A1,A2,...,An) can be written as

follows: R(X,Y). The operation of projection of
the relation R according to attributes X is
marked as follows: R[X] and defined:

R(X] = {x] Iy : (x,¥) e R(X)Y) }
2.2.8 LOGICAL DEPENDENCES
2.2.1 FONCTIORAL DEPENDENCE

There is relation R(AL,A2,...,An) and
submultitudes of the multitude of attributes
X & {A1,A2,...,An} and Y @ {A1,A2,...,An}.

R{XY] denotes the projection of the relation R
according to attributes from X and Y. The

functional dependence X --> Y exists if and
only if it is valid for R[XY] in every moment
;?;? there is a functional dependence R[X] -->
The functional dependence X --> Y is said to be
complete if for every real submultitude X
(X’ @ X) it is valid that X’ -/-> Y. If it 1is
valid that X' =--> Y +then the functional
dependence X --> Y becames a partial functional

dependence.
2.2.2 KKY

R(A1,A2,...,An) forms a relation. X which is a
submultitude of the multitude of attributes 1is

sald to be the key of the relation R 1f and
only- if the following two conditions are
fulfilled:
(1) X determines functionally all
attributes of the relation R,
X -->Ail for i =1,...n.
(i) no real submultitude of the
multitude X possesses +this
characteristic, for X' g X
X' =/-> A is wvalid 1<j<n.
If such X g {A1,A2,...,An} does not exist, that
is valid X --> Ai, for i = 1,...,n, then the
key of the given relation is a complete

multitude of attributes Al,A2,...,An.

2.3.0 NORMAL FORMS

on the. Joins of
in which 1logical
account /DATE88/.

Normal forms are rules
attributes into relations
dependences are taken into
Taking these rules into consideration the
iregularities (anomalisms) of data input,
deleting and updating are avoid.

2.3.1 THE FIRST ROEMAL FORM

The relation R is in the first normal form 1if
and only if the values in the domains are
atomic for every attribute A in the relation R.

2.3.2 THE SECOHD NORMAL FORM

Let X be ‘the multitude of all attributes

R(Al1,A2,...,An), which are not a part of the
key of +the relation R. It is said that the
relation R 1s in the second normal form if and
only if each attribute from X is completely
functionally dependend on each key of +the
relation R(A1,A2,...,An). '

If the relation R(A1,A2,...,An) is not in the
second normal form, then their exists a
decomposition of the relation R(A1,A2,...,An)

into a multitude of relations which are in the
second normal form. The relations obtained in
this way can be united again into a previous
relation by means of the operation of natural

Join. .
There is the relation R(A1,A2,...,An) which
does not exist in the second normal form. The
relation R can be recorded equivalently in the
form R(X,Y,2). In this case X means a multitude
of key attributes and Y means a multitude of

non-key attributes. X --> Y forms a partial
functional dependence. The multitude Z covers
all the remaining attributes of the relation
R(A1,A2,...,An) which exist neither in the
multitude X nor in the multitude Y.

The multitude X can be shown by X = X'X'’. Then
it is wvalid: X' --> Y. It is a complete

functional dependence.

I1f the relation R(X,Y,Z) is supplanted by the
projection R{XZ] and R[X’Y], then the

13

projection R[X’'Y] is in the second normal form
because X' --> Y forms full functional
dependence. It should be found in which normal
form the projection R[XZ] exists and, if
necessary, this projection should be decomposed
in the same way as R(X,Y,Z). The procedure \is
final because after each decomposition of
relation the relations with 1less number of
attributes are obtained.

The preQious statements can be confirmed by the
following demonstration:

R[X'Y] *x’ R[XZ2] = R[X’Y] *x' R[X'X'’'Z] =

= R{X'YX’’Z] = R(X’X’'’YZ] = R[XYZ] = R(X,Y,Z)
3.8 APPLICATION OF PROLOG IN THE

RORMALIZATIOR PROCES
3.1 NOTATION OF RELATION IN PROLOG

The description of structured of individual
relations is presented by a relational schenma.
To model our relational schema the structured
analaysis tools of DeMarco /DEMA78/ and Gane
and Sarson /GANR789/ (data flowcharts, data
dictionary, data store) were used. The result
of modeling is the relational schemas wich are
used _for data storage by the relational
database managemant system. The relation (the
relational schema filled up with data) exits,
depending on the cholice of method in the first
normal form or unnormalized.

The tables obtained were inrespective of their
normal form, stored, in the form of PROLOG
structure. PROLOG’s built-in database ensures a
basic mechanism for data storage and data
access. The notation of relation, that 1is of
the whole relational base i3 a simple one. The
data obtained from a relation are record in the
form of PROLOG’s . facts, consisting of
predicates and attributes. The name of relation
is written in predicate; the values of
attributes obtained from relational scheme are
written 1n attributes. After the input of all
data into the relational schema we can see that
there is a record on the screen of the terminal
which is5 equivalent to the record on the paper.
This means that copying the relation from the
paper to the screen is 1:1 (one-to-one).

3.2 IMPLEMENTATION OF 'PROJECTION
BY MEANS OF PROLOG

The table into which the required columms were
translated and in which the redundant 1lines
were deleted i3 +the result of operation’
projection. . 4

The presented relations are described by
of PROLOG and 4in this. way the

implementing a projection of suitable
is designed.

means
pProgram
relation

* Program Projection *

projection(List_of_solutions,Solutions):-
find_equal(List_of_solutions,Solutions).

find_equal([],()).

find_equal([H!T],Soclutions): -
member(H,T), . .
find_equal(H,Solutions).

find_equal([H|T],Solutions):~
not_memeber(H,T),

write(T),

nl,

find_equal(T, {H!Solutions]).
member (X, []):-!.
memeber(X,[_!Y]):- memeber(X,Y).

not_memeber(X,[]J):-!.

not_memeber(X,[Y!Z2]):- X \== Y,
not_memeber(X,2).

findall(X,H,_):- asserta(found(mark)),
call(H)},
asserta(found(X)),
fail.
findall(_,_,L):- collect found([1,M),
]
L =M.
collect_found(S,L):- getnext(X),
1

collect_found([X|S],L).
collect_found(L,L).

getnext(X):- retract(found(X)),
]

i.\== mark.
In the working version of the program
Projection the implementation of the operation
is released by the predicate findall and

projection.

?-findall({chosen_atributesx],
name_of_relation*(all_atributes*)},Solutions))
projection(Solutions,M).

In the relation chosen all possible solutions
are loocked for, first. Then in the 1liat of
solutions (List_of_solutions) all redundant
lines are excluded so that equal records
(find_equal) are looked for which are not
placed (not_member) on the 1list of final
solutions (Solutions).

3.3.9 CHECKING THE RELATION IN THE LIGBHT

OF ITS NORMAL FORM
3.3.1 UNNORMALIZED RELATIORS

According to the definition from Chapter 2.3.1,
the relation exists in the first normal form if
and only if the values in domains are atomic.
That is the values in the domain are not 1lists
or 3sets of values or composite values., 1In
practice such records are found very often. If
there is an unnormalized relation over wich we
want to perform certain operations, then the
relation should be translated into the first
normal form.

For the normalization of such an unnormalized
table the following is required:

- to check the existence of redundant lines and
to exclude then,

- to find out whether the values of individual

attributes in the domain are recorded as
multitudes or lists. If such records exist,
they should be translated into a

corresponding form.

The program of record in PROLOG is based on
checking the elements in the structure of 1list
into which the previously written relation has
been translated. When the number of elements in
individual 1lists is found out, the paralel
lying elements are joined into lines which are
then transmited to the screen of the terminal
in their normalized form.

* In the operation chosen_atributes,
name_of_relation and all_atributes ars
substituted with the real names of atributes

and relation.

14

* Program Normalization %

normalization(A):-
normalization(A):-

A == tab,!.
nonvar(A),

A \== tabdb,

A=.. X,

write(A),
write(’'.’),

nl,

change(X),
read(Al),
normalization(.Al).
normalization(A):- read(Al),
normalization(Al).

change([H|{Taill):- P = H

split(P,Tail,List_of_goals).

gplit(P,Tail,List_of_goals):-

count_arg(Tail,N),

count_el_arg(Tail,K),

[HiT)=Tail,

Join_rest((HIT]},N,1,8,K,1,List_of_goals),

form_goals(P,G,List_of_goals).

count_arg({},-1). .

count_arg([GiT),N) :- count_arg(T,N1),
N is N1 + 1,

count_el_arg((H,[H1![]3iT],1).
count_el_arg((H, (H1:X1iT]},K}:~
count_el_arg({H,X!T],K1),

K is K1 + 1.

Join_rest(_,_,_,8,K,M,81) :- M2 is K + 1,
M2 = M,
reverse_l1ist(S,0},
81=0,!.

Join_rest(Tail,N,N1,List_of_goals,¥K,M,S1) :~
join_el(Tail,[],N,N1,M,S),

Ml is M + 1,
Join_rest(Tall,N,1,[S|List_of_goals],K,M1,S1).

form_goals{_,_,[]) - }.
form_goals(P,H,[B1!T1])) :-
reverse_list(H1,H2),

X =,.[P,H,H2),

tab(39),

write(P),
write(’(’),write(H),copy(G2),write(’).’),
nl,

form_goals(P,G,R1).

copy([])) - !
copy([GIR]) :- write(’,’),
write(B),
copy(T).
Join_el(L1,L2,N,N1 M,List) :- N2 48 N + 1,
N2 = N1,
List = L2,!

join_el ({H!T],T1,N,N1 ,M,8) :-

append_link(T,N1,M,T2),

N2 is N1 + 1,

Join_el([{H|T],[T2|T1]},N,N2,M,8).

append_link(T,N1,M,X) :- n_link(N1,T,Arg),
n_link(M,Arg,.X).

n_link(1,[B!T],C)
n_link(N,(HIT],C)
n_link(N1,T,C).

reverse_list((},(]).

reverse_list([(H|T},L) :- reverse_list(T,L1),
append (L1, (G].L).

append([]),L,L).

append([H!RT,L,[H!IT11) :- append(T,L,T1).

3.3.2.0 STATING THE SECOND NORMAL FORM

In Chapter 2.3.2 we pointed out that in
inputting, deleting and updating irregularities
can occur if normal forms are not taken into
account. An irregular input can prevent to add

new lines i1f all the values for attributes are
not known. In deleting the lines the
information on certain attributes can be lost
while +the updating of one attribute value
requires a change in all relations where this
attribute appears.
3.3.2.1 BTATING THE LOCAL AND PARCIAL
FUNCTIONAL DEPENDENCE
According to the definition in chapter 2.2.1,
"the existence of functional dependence is
stated by checking the values of attributes
that form the multitudes X and Y, between which-
we would 1like to shate the existence of
functional dependence (X --> Y). It 1s wvalid
that for each value x, x ¢ X there is exactly
one y, y e Y.
To state the functional existence by means of

PROLOG the program Projection is used first +to

design the relation R[XY]. Then in this
relation the condition R{X] --> R[Y], according
to chapter 2.2.1 is fulfilled. By means of a
modified predicate find_equal from the program
Projection equal x’'s are searched. If they
exists then the value of belonging y’'s we can
conclude +to state the existence of functional
dependence.

According to Chapter 2.2.1 the functional

dependence can be a full or a partial one. To
state this characterictic the multitude

atribute X should be decomposed into real
submultitudes (X', X'’, X'’’,.,...). Then the
existence of partial dependence between the
real submultitudes (X', X'’, X’’’,...) and the
multitude of attributes Y should be checked

according to the procedure described.

A rule to decompose the list (multitude X) into
sub-1list or elements (real submultitudes of the

multitude X) should be added to the program in
PROLOG.
3.3.3 NORMALIZATION OF RELATION INTO

THE SECOND NORMAL FORM
The relation which was found out that it was
not in the secon normal form should be

decomposed into several tables that would meet
the condition on second normal form.

According to the definition in Chapter
the relation R(A1,A2,..
two tables

2.3.2,
.»An) is decomposed into
R[XZ] and R[X'Y]) which form the

result of the projection. The relation R[X’Y]
exists 1in the second normal form because the
following condition should be met: X' --> Y
forms full functional dependence.

To normalize +the relation into the second
normal form given programs for projection and

full functional dependence are used.

To check the relation according to its third
normal form similar stepts (required for the
third normal form) should be carried out.

4.¢ CORCLUSION

The described process of normalization
PROLOG 1is performed by IJS PROLOG on the

frame computer VAX 88¢@. The local information
system of research group was chosen as a
model. The data on research group members,
their activities, working results and the tools
used by the member are recorded.

in
main

15%

The fifth .generation language PROLOG
chosen because of 1its simple copying
relation into the structure of PROLOG’s
and definition of rules (records
which implemented certain actions
normalization process.

was
of
facts
of program)
within the

To bring the application nearer to the circle
of potential users (also to those possessing no
knowledge how to program) the application will
be transfered to a Personal Computer by means
of operation system DOS (TURBO PROLOG Borland,

Inc. will be used). In this development phase,

the application offers above all an aid for

good design of relational database which

provides the existence of successfull

information system.

5.8 LITERATURE

COOD78 E.F.Codd: A Relational Model of Data

- for Large Shared Data Banks,
Communication of the ACM, Volume 13,
No.:6, June 1979

CLOC84 W.F.Clocshin, C.S.Mellish: Programming

‘in Prolog, Springer-Verlag, Berlin 1984

DEYI84 Deyi Li: A Prolog Database OSystem,
Research Studies Press LTD, 1984

DATE8S C.J.Date: Database: A Primer, Addison-
Wesley Publishing Company, 1983

DATES88 C.J.Date: An Introduction to Database
Systems, Volume 1, Addison - Wesley
Publishing Company, 1986

KELL87 R.Keller: Expert System Technology
Development and Appplication, Yourdon
Press, Prentice-Hall Company Englewood
Cliffs, NJ 1987

MARCB6 C.Marcus: Prolog Programming, Addison-
Wesley Publishing Company, 1986

WAHSB6 B.W.Wah, Guo-Jie Li: Tutorial:
Computers for Artifical Intelligence
Applications, IEEE 1986

