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0  INTRODUCTION

In recent years, the parallel mechanism has found 
extensive applications as the table or spindle of 
machine tools. Stiffness and appropriate vibration 
behavior are among the primary requirements for 
precision machining. This requires a thorough 
understanding of the dynamics of the mechanism. The 
purpose of the present study is to partially meet this 
need and fill the gap existing in the literature in this 
respect.

The control of vibration in the machine tools with 
the aim of improving their performance has been the 
focus of much research in the literature. Dohner et 
al. [1] have proposed a finite element method (FEM) 
model to analyse chatter in the spindle of a milling 
machine set on a hexapod platform. In their model, in 
order to effectively control the chatter, flexible parts 
were added to the borders of the spindle. However, 
the analytical vibration relations of the hexapod was 
not given. Thus, their results could not be generalized 
to hexapods used as a machine table. Studies to 
examine vibrations of hexapods with applications in 
vibration isolation have been carried out. Hardage 
and Wiens [2] presented the results of a review of a 
mini-modal in a Hexel Tornado 2000, where they 
discussed flexibility modeling using finite elements. 
Their investigation suggested that characteristics of 
resonant frequency and stiffness are dependent on the 
configuration of the machine. Hardage [3] has studied 
the structural dynamics of parallel kinematic machine 

tools (PKMs). In another work, Wiens and Hardage 
[4] have developed a methodology to identify the 
parameters of the structural dynamics of PKMs. 
They derived the analytical model for the simulation 
of the vibration response and modal parameters 
for a PKM. The accuracy of the model was verified 
through experimental modal analysis. Ting et al. [5] 
have derived a dynamic model for a Stewart platform-
type computer numerical control (CNC) machine by 
means of the Euler-Lagrange approach. The average 
type force model for the end milling process has 
also been included in the dynamic model. In their 
research, an appropriate estimator gain was designed 
for the parameter adaptation law, which is useful for 
the estimation of the cutting parameters. Mukherjee 
et al. [6] have studied the analysis of dynamics and 
vibration of a flexible Stewart platform. In their 
research, the dynamic equations were derived through 
the Newton-Euler approach and a dynamic stability 
index was developed and validated. Hong et al. [7] 
derived the vibration model of a parallel machine tool. 
In their model, the pods of the parallel mechanism 
were considered as spring-damper systems. They 
performed stability analysis through a combination 
of the regenerative cutting dynamics model and 
the vibration model. Mahboubkhah et al. [8] and 
[9] investigated the free vibrations and the range of 
natural frequencies of the machine tool’s hexapod 
table using different configurations and two different 
analytical methods. According to their work, in the 
first method, the mass of the pods is ignored and, in 
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the second one, the mass of the pods is taken into 
account in the calculation of the natural frequencies of 
the platform. Pedrammehr et al. [10] have investigated 
free vibrations, natural frequencies and mode shapes 
of the hexapod table using different configurations 
and two different analytical methods. They also 
investigated the factors influencing the dynamic 
features of the hexapod table.

In the present study, the time variable sinusoid 
force with specified frequency and amplitude 
has been assumed to be the external force acting 
on the platform and the forced vibration of the 
moving platform has been examined analytically. 
The resonance frequencies and range of vibrations 
of the platform have been calculated. To validate 
the analytical method, the forced vibration of the 
platform is examined by FEM simulation using the 
harmonic analysis in ANSYS Workbench. Resonance 
frequencies and the vibrations of the platform in 
different directions have been obtained for different 
configurations of the mechanism. Theoretical and 
FEM results are close to each other, exhibiting similar 
trends in changes. To closely investigate the forced 
vibration as the result of machining on the hexapod 
table, milling forces are modeled analytically and 
forced vibrations of the platform have been studied 
under different conditions of roughing and finishing 
in both up milling and down milling operations. After 
calculating the resonance frequencies and the range 
vibrations of the platform, proper configurations of 
the platform are presented in order to avoid dynamic 
instability in different machining operations.

1  VIBRATION MODEL OF THE HEXAPOD TABLE

A schematic view of the hexapod table is shown in 
Fig. 1. The table is installed on the workshop floor 
into a rigid foundation.

The hexapod under investigation consists of 
a moving platform, a stationary platform, and six 
similar pods with changing lengths connecting the 
two aforementioned platforms to each other. The pods 
are connected to the upper moving platform through 
spherical joints and to the lower stationary platform 
through universal joints.

The hexapod table under study was developed 
for a three-axis CNC milling machine. The physical 
specifications of the hexapod are presented in 
Appendix 1.

The vibration model proposed by the authors for 
the table is illustrated in Fig. 2.

To describe the motion of the upper platform as 
the end effecter, two coordinate systems have been 

used. The moving platform frame {P} is attached to 
the geometrical center of the moving platform. The 
location and orientation of the moving platform frame 
{P}, is specified according to the base frame {W}, 
which is attached to the geometrical center of the 
stationary platform.

Fig. 1. Schematic view of the milling machines’ hexapod table

Fig. 2.  Vibration model of the hexapod table

In the vibration model of the table, pods and 
joints are taken to be flexible. Joints are frictionless 
and with negligible rotational damping. It is assumed 
that the moving platform is rigid in order to withstand 
deflection under the payload.

The flexible model of the manipulator is shown 
in Fig. 2 (only one pod is depicted). The parameters 
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shown in this figure are as follows: mp, mu, md and 
mb are, respectively, the total mass of the moving 
platform (including payload), the mass of upper 
part of pods, the mass of lower part of pods and the 
mass of the base platform. Ip is the inertia tensor 
of the moving platform and the payload in the base 
frame. lpi, lui, ldi and lbi are the displacements of the 
moving platform, upper and lower parts of the pods, 
and base along ith pod’s extensional axis (i = 1 to 6 
for six pods), respectively. Csi, Cui, Cai, Cdi and Cuni 
are, respectively, the damping coefficients of the 
spherical joints, the upper part of pods, the sliding 
joints, the lower part of pods, and the universal 
joints. Ksi, Kui, Kai, Kdi and Kuni are also the stiffness 
coefficients of the spherical joints, the upper part of 
pods, the sliding joints, the lower part of pods, and the 
universal joints, respectively. The total damping and 
stiffness coefficient of the upper joints of the platform, 
CTi and KTi, can also be theoretically obtained by a 
series combination of damper’s and spring’s rules [8], 
respectively. Details for Ip and theoretical CTi and KTi 
are given in the Appendix 2.

2  EQUIVALENT STIFFNESS AND  
DAMPING COEFFICIENTS OF THE TABLE

In the given model, the pod is linked in the bottom to 
the fixed platform, moves with the moving platform 
in the upper part and bears part of the mass of the 

platform, where the elastic elements are fixed at one 
end and at the other end bear the vibrational forces. 
So, modal testing by assuming the pod as a one-end 
post is close to the real situation; this is carried out 
by linking the pod form at the bottom to the base and 
agitating the pod from the upper part (Fig. 3).

According to Fig. 3, the modal test for one pod 
of the hexapod table is carried out for three situations: 
fully limited, semi-open and fully open. To do the 
experiment, a pod of the hexapod table, a piezoelectric 
accelerometer (type 4507, B&K Inc.) and a shaker 
(type 4809, B&K Inc.) are used.

Considering the special boundary condition of the 
mechanism with fixed degrees of freedom (DOFs) in 
earth connection of the structure, the pod is fixed at 
the bottom and the shaker is adjusted and suspended 
from the upper part in the ball screw direction and 
linked through a push rod to the upper part of the 
platform. A force sensor is located in the upper part of 
the pod in series with the alternate forces exerted by 
oscillator. An accelerometer is also linked to the upper 
part of the pod in the direction of its axis.

The force is exerted in a periodic random 
manner on the pod to agitate all vibration modes. 
The experiments are conducted to find the natural 
frequencies of length and stiffness of the pods. Thus, 
accelerometers are always located in the direction 
of longitudinal agitation of the pods and as a result, 
longitudinal accelerations and forces are measured. 

Fig. 3.  Modal analysis of the pod in a one-end-engaged situation: a) pod in the fully limited situation, b) pod in the semi-open situation, c) 
pod in a fully open situation
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Force exertion is carried out alternately, in the range 
lower than 1 N, and at a starting frequency from 0 to 
6.4 kHz on the pods. These forces are adjusted such 
that the accelerometer can measure the responses. 
If the force exerted is rather high, the sensor will 
be agitated and moved so that it will not measure 
correctly. Thus, the abovementioned force should be 
adjusted to an optimum level.

The signal of the accelerometer and the shaker 
force are collected and analysed using a pulse system 
(type 3560, B&K Inc.). Using the Fast Fourier 
Transform (FFT) algorithm, the frequency response 
functions (FRFs) of the mechanism were extracted. 
Using STAR software, the results were analysed 
for different situations of the pod. The force and 
acceleration curves as frequency are given for each 
measurement and their ratio are used to calculate 
the stiffness. The results of the modal test are shown 
in the Fig. 4 as acceleration and dynamic stiffness 
curves of the pods for all situations under study. Curve 
fitting is utilized to calculate modal parameters such 
as frequency, damping and mode shape [11]. In this 
paper, the local single degree of freedom (SDOF) 
category of curve fit is employed to obtain the modal 
parameters of pods.

Once the FRF curves are obtained, damping ratio 
and natural frequency can be calculated easily using 
star software.

As the largest value of the force is located at the 
resonance point, static stiffness, KSt, can be calculated 
from the function below [12]:

	 K F XSt Dyn Dyn= 2 ζ , 	 (1)
where FDyn denotes the exerted force, XDyn the 
displacement of the element in the direction of the 
force in dynamic situation and ζ denotes the damping 
ratio.

Table 1.  Acceleration and dynamic stiffness for all situations in 
modal test

Situation  
of pod

Natural freq. 
[Hz]

Damping 
ratio ζ

Stiffness KTi 
[N/m]

Damping CTi 
[Ns/m]

Completely 
closed pod

2546 0.033 2.50e8 1031

Semi-open 
pod

2466 0.037 1.46e8 726

Completely 
open pod

2368 0.027 1.05e8 366

KDyn ( )ω ω= 
 is defined at the resonance point as the 

following:

	 K F XDyn Dyn Dyn( ) .ω ω= =


	 (2)

Fig. 4.  Acceleration and dynamic stiffness for all situations in the modal test
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According to Eqs. (1) and (2), KSt is calculated as 
the following:

	 K KSt Dyn= =( ) .ω ω ζ

2 	 (3)

  

Fig. 5.  Mode of vibration in a one-end-fixed situation; a) pod in a 
fully limited situation, b) pod in a semi-open situation, c) pod in a 

fully open situation

Modal parameters of one of the pods of the 
hexapod table, namely, natural frequency, dumping 
ratio and static stiffness are calculated from modal test 
results for all situations and are given in Table 1. In 
order to corroborate the results, a three dimensional 
model of the pod has been extracted in Solidworks, 
and the natural frequencies of the pod in three 
different conditions of completely closed, semi-open 
and completely open are also obtained using FEM 
modal analysis under ANSYS. It should be noted that 
the frequencies using FEM are noticeable by the mode 
shapes for each condition. Fig. 5 illustrates the mode 
shapes of vibration for a completely closed pod with a 
natural frequency of 2671 Hz, a semi-open pod with 
natural frequency of 2516 Hz and a completely open 
pod with a natural frequency of 2453 Hz. It is clear 

that the results for the experimental modal test are 
close to the results obtained by FEM.

3  VIBRATION EQUATION OF THE TABLE

Considering the equivalent stiffness and damping 
forces of the moving platform, the free-body diagram 
of the moving platform is illustrated in Fig. 6.

Fig. 6.  Free-body diagram of the moving platform

In Fig. 6, uT  and θθT  are the linear and angular 
acceleration, respectively, of the platform expressed in 
frame {W}; Fmac and Mmac, the harmonic machining 
force and moment vectors in local coordinate frame 
{P} being arbitrarily exerted to the moving platform, 
respectively. The force and moment can be expressed 
in {W} by the rotation transformation, R. Details for 
R are given in Appendix 2. The gravity and coriolis 
forces are negligible in vibration analysis and have 
been ignored.

FCi and FKi are the total stiffness and damping 
forces, respectively, exerted on the platform and can 
be obtained as follows:

	 F lCi Ti TiC= ∆∆ , 	 (4)

	 F lKi Ti TiK= ∆∆ , 	 (5)

in which F lCi Ti TiC= ∆∆ , and F lKi Ti TiK= ∆∆ , are the absolute velocity and 
displacement of the junction along the ith pod’s 
axis. Considering J–1 as an inverse Jacobian matrix 
(Appendix 2), F lCi Ti TiC= ∆∆ , and F lKi Ti TiK= ∆∆ ,  can be expressed in terms 
of the linear velocity and displacement increments of 
the geometric center of the moving platform in the 
reference coordinate frame ( uT , θθT  and uT, θT), as 
follows:

	 ∆


I = J
u− 









1 T

Tθθ
, 	 (6)

	 ∆l J
u

=










−1 T

Tθθ
. 	 (7)
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Considering the free body diagram of the moving 
platform illustrated in Fig. 6, the force equilibrium 
(Newton) equation and the moment equilibrium 
(Euler) equation for the geometric center of the 
moving platform can be written as follows:

	 m F Fp T i Ci
i

i Ki
i

macu n n RF+ + = −
= =
∑ ∑
1

6

1

6

, 	 (8)

	

I q n q n

R M r F

p T i i Ci
i

i i Ki
i

mac mac

F Fθθ + × + × =

= − + ×
= =
∑ ∑
1

6

1

6

( ). 	 (9)

where ni and qi are respectively the unit vector 
along the ith pod axis and the position vector of the 
ith platform connection point in frame {W}. r is the 
position vector of the mass centre of the moving 
platform and payload in frame {W}. Details for r are 
given in Appendix 2.

Substituting Eqs. (4) and (5) into Eqs. (8) and (9) 
and then coupling these equations yields:

	

mp

p

T

T
T

T

T

T

I
I

u
J C J

u

J K J

3 0
0


















 +









 +

+

− −

− −







θθ θθ
T 1

T 11 u RF
R M r F

T

T

mac

mac macθθ








 = − + ×









( )
. 	 (10)

where I3 is the 3×3 identity matrix; KT is a 6×6 
diametric matrix whose elements are the equivalent 
stiffness coefficient, KTi; CT is also a 6×6 diametric 
matrix whose elements are the equivalent damping 
coefficient, CTi.

The coupled vibration equation of the platform 
can be expressed in compact form as:

	 M
u

C
u

K
u

FV V V V.







T

T

T

T

T

Tθθ θθ θθ








 +









 +









 = 	 (11)

4  FORCED VIBRATION OF THE TABLE  
USING AN ANALYTICAL APPROACH AND FEM

To investigate the forced vibration of the table, the 
external force on the platform has been assumed to be 
a sinusoid force [12]; thus, Eq. (11) can be rephrased 
as follows:

    M
u

C
u

K
u

FV V V V sin (







T

T

T

T

T

T

t
θθ θθ θθ








 +









 +









 = ω ), 	 (12)

where ω is the frequency related to the sinusoid force 
and moment.

Fig. 7.  The discretized model of the manipulator

The vibration of the moving platform can, 
ultimately, be analysed using the above equation 
when its matrix coefficients are specified. The 
resonance frequencies and vibrations of the platform 
in the linear and rotational directions (i.e. uT and 
θT) are obtained using a programme written in 
MATLAB. The programme developed in the present 
work uses the MATLAB routine ODE45, which is 
based on the 4th and 5th order Runge-Kutta formulas 
with adaptive step-size, for solving the system of 
differential equations. In order to verify the results, 
the resonance frequencies and the vibrations of the 
platform are also obtained using the Full Solution 
Method in FEM harmonic analysis. For this purpose, 
a three-dimensional model of the hexapod table was 
developed in Solidworks. The pods are neglected in 
the CAD model.

The model is exported to the ANSYS Workbench 
and the equivalent damping and stiffness of the pods 
(i.e. CTi and KTi) are applied instead of the pods; the 
necessary input data as material properties are also 
applied, afterwards elements of the model executed 
using Solid element. The model has 12589 elements 
and 23208 nodes. In the case of a model with a 
maximum payload, a cubic part with a maximum 
mass is modelled on the moving platform; this model 
has 12884 elements and 23770 nodes.

Afterwards, the relevant boundary conditions 
are applied to the foundation connection of the 
manipulator and harmonic analysis was then carried 
out to obtain the harmonic response of the platform. 
The discretized model in the ANSYS Workbench with 
the relevant boundary conditions and external forces 
acting on the moving platform are shown in Fig. 7.
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Fig. 8.  Vibrations of the moving platform obtained using an 
analytical approach and FEM

The forced vibration of the platform has been 
examined using an analytical approach and FEM for 
a configuration of the mechanism where pods are 
completely open and the moving platform is in its 
upmost position, disoriented and without payload. In 
this simulation the amplitudes of the external moment 
have been assumed to be zero and the external force 
have been presumed to be Fext= [500 N  500 N  500 N]T 

and for the simulation.
As a result of the analytical and FEM simulation, 

the ratio of the response amplitude to the base 
excitation amplitude against the base excitation 
frequency are shown in Fig. 8 as the amplitude of the 
displacements and rotations of the moving platform 

in the frequency domain and in x, y and z directions. 
There are some lower peaks in the diagrams, and these 
peaks are generally due to some important resonance 
frequencies in other directions. For instance, the 
first lower peak in the figure for vibrations in the 
z-direction is at 112 Hz which directly shows the 
effect of vibrations in the x direction. The vibrations 
in the x direction (3.8e-3) are considerably higher 
than vibrations in the z direction (1.25e-5). Therefore, 
these vibrations may be visible in harmonic analysis 
of vibrations in the z direction.

Table 2.  Different configurations of the moving platform

Configuration 
number

Centre position 
of the moving 

platform

Centre position 
of the moving 

platform X, Y, Z 
[mm]

Mass of the 
platform and the 

payload  
[kg]

1 Bottommost 
Position

0, 0, 710 40.6
2 0, 0, 710 90.6
3 Middle  

position
0, 0, 820 40.6

4 0, 0, 820 90.6
5 Upmost 

position
0, 0, 930 40.6

6 0, 0, 930 90.6

In general, the reason for the extra lower peaks 
predicted by FEM may attributed to the FEM harmonic 
analysis in the ANSYS Workbench program. In this 
analysis all the vibrational properties of the system 
are taken into account and a complete vibration model 
of  the system is used to obtain resonance frequencies 
and displacements, whereas in the analytical model 
written in MATLAB, a reduced model is applied.

CTi and KTi, are greatly influenced by the variation 
in the position and orientation of the moving platform. 
Total mass and inertia of the moving platform, mp 
and Ip, could also be affected by the impact of the 
variation in the weight and shape, respectively, of the 
dead weight installed on it.

Depending on the configuration of the platform, 
natural and resonance frequencies will vary 
significantly. Therefore, six different configurations 
have been selected in the vicinity of the workspace to 
specify variations in the resonance frequencies of the 
moving platform (see Table 2).

The results of the analytical approach and FEM 
for the resonance frequencies of the moving platform 
in different configurations are reported in Table 3. 
In Table 3, six resonance frequencies are presented 
for six linear and rotational directions. According 
to this table, the results of both methods are highly 
consistent. This can be better visualized from the 
comparative diagrams in Fig. 9.
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Table 3.  Resonance frequencies of the platform (in Hz) obtained 
using an analytical approach and FEM

Configurations (Table 1) 1 2 3 4 5 6
Frequency 
along x axis

Analytical 218 146 147 98 111 75
FEM 211 156 147 104 112 81

Frequency 
along y axis

Analytical 218 146 147 98 111 75
FEM 213 157 148 105 113 81

Frequency 
along z axis

Analytical 356 314 239 211 181 160
FEM 358 303 246 200 187 152

Frequency 
around x axis

Analytical 838 557 665 431 570 369
FEM 729 523 619 426 557 374

Frequency 
around y axis

Analytical 859 573 699 444 599 380
FEM 732 528 621 428 597 377

Frequency 
around z axis

Analytical 912 604 707 469 605 403
FEM 856 546 634 456 602 385

The least resonance frequencies occur in the 
configuration in which the moving platform with 
the most payloads is in the upmost border of the 
workspace (configuration six of Table 2). This is 
the configuration where the length of the pods is 
at a maximum, i.e. they have the lowest stiffness 
coefficients.

With a decrease in the equivalent stiffness of 
the pods and an increase in the mass, the natural 
frequencies of the table will be diminished. On 

the other hand, upon reduction in the length of the 
pods in the lower position of the moving platform, 
their equivalent stiffness will be increased. This 
phenomenon and the decrease in the mass of the 
payload on the platform are two factors leading to an 
increase in natural frequencies. Thus, it is obvious that 
the factors influencing natural frequencies will also 
significantly influence the resonance frequencies of 
the moving platform. It is accepted that changes in the 
payload on the platform and the position (especially 
in direction z) will induce more changes in total mass 
and stiffness matrices in the vibration equation of the 
platform, and consequently the natural frequencies 
and the resonance frequencies of the moving platform 
will be affected.

The results of both the analytical approach and 
FEM are obtained for the range of the maximum 
vibrations in different directions and in each of the 
configurations of Table 2 and are presented in Table 4.

Another observation is that changes in the 
magnitude of the external force and moment do not 
cause any change in the resonance frequencies of the 
moving platform. It is obvious that these changes are 
directly related to the change in the amplitude of the 
vibrations.

Fig. 9.  Comparison between the results of the analytical approach and FEM for vibrations of the platform

Table 4.  Range of maximum vibrations of the platform (in mm) for different configurations of the table obtained using the analytical approach 
and FEM

Max vibration 
along X

Max vibration 
along Y

Max vibration 
along Z

Max vibration 
along X

Max vibration 
along Y

Max vibration along Z

Analytical
8.57e-4  

to 2.94e-3
8.67e-4

to 2.97e-3
3.18e-5

to 1.62e-4
8.10e-5

to 2.93e-4
6.24e-6 to 
1.91e-5

1.64e-5 to 2.97e-4

FEM
7.80e-4

to 3.78e-3
7.53e-4

to 3.34e-3
3.86e-5

to 2.15e-4
7.63e-5

to 3.93e-4
5.34e-6 to 
2.02e-5

2.06e-5 to 3.64e-4
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5  FORCED VIBRATION OF THE TABLE  
UNDER MACHINING FORCES

Forced vibrations have a strong impact on the 
machining process when one or more of the 
frequencies of the cyclic shock and varying cutting 
force are equal or close to one or more of the natural 
frequencies of the machining system [13].

To this end, it seems vital to devise a 
comprehensive model with the capability of exactly 
predicting the machining process, depending on the 
exact modelling process of the machining forces. 
Thus, in order to closely examine the forced vibration 
as a result of the machining process on the hexapod 
table under study, milling forces have been modelled 
taking into account the range of changes in forces and 
different milling operations (up and down).

In essence, determining the forced vibration 
of the platform and examining its forced response 
under harmonic milling forces plays a crucial role in 
eliminating resonance.

The relationship between the direction of tool 
rotation and feed defines the two types of milling 
operations: up milling and down milling [14] and 
[15]. Considering the end milling process model (Fig. 
10), the magnitude of forces and moments during 
milling are comparable. In this study, forces and 
moments during milling have been modelled using 
force equations presented in [16] using a code written 
in MATLAB.

As mentioned in reference [16], tangential Ft(φ), 
radial Fr(φ) and axial Fa(φ) components of cutting 

forces can be expressed as a function of varying uncut 
chip area ah(φ); yielding:

	 Ft(φ) = Kt ah(φ) ,	 (13)

	 Fr(φ) = Kr ah(φ) ,	 (14)

	 Fa(φ) = Ka ah(φ) ,	 (15)

where Kt, Kr and Ka are the cutting force coefficients 
contributed by the shearing action in the tangential, 
radial and axial directions, respectively; φ is the 
instantaneous angle of immersion. a is the edge 
contact length (axial depth of cut) and h(φ) is the time 
dependent chip thickness variation.

Chip thickness can be expressed as:

	 h(φ) = fz sin (φ) ,	 (16)

in which fz is the feed per tooth [mm/rev-tooth].
Considering Fig. 10, horizontal Fx (φ), normal  

Fy (φ) and axial Fz (φ) components of cutting forces 
can be derived as:

	 Fx (φ) = – Ft (φ) cos (φ) – Fr (φ) sin (φ),	 (17)

	 Fy (φ) = – Ft (φ) sin (φ) – Fr (φ) cos (φ),	 (18)

	 Fz (φ) = Fa (φ) ,	 (19)

The instantaneous cutting torque, Tc (φ), can be 
obtained as:

	 Tc (φ) = Ft (φ) D/2 ,	 (20)

where D is the diameter of the milling cutter.

Fig. 10.  Geometry of the milling process with cutting force components on the tooth

Table 5.  Range of the resonance frequencies of the platform (in Hz) for different configurations of the manipulator and different cutting 
conditions

Resonance freq. 
along x

Resonance freq. 
along y

Resonance freq. 
along z

Resonance freq. 
around x

Resonance freq. 
around y

Resonance freq. 
around z

Min 74 72 388 380 358 156
Max 178 175 748 712 665 278
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Considering the spindle speed, n [rpm], and the 
number of teeth on cutter, Z, tooth passing frequency, f 
[Hz], can be obtained as:

	 f = nZ / 60 .	 (21)

In this study, milling forces and moments have 
been presumed to be the external forces and moments 
acting on the moving platform; therefore, the 
external force and moment vectors can be defined as  
Fmac = [Fx (φ)  Fy (φ)  Fz (φ)]T and Mmac = [0  0  Tc (φ)]T, 
respectively.

In this way, forced vibrations of the platform as 
the result of milling forces can be examined, since 
the mass, damping, stiffness and force matrices in Eq. 
(11) are known.

6  CASE STUDY

Assuming the following parameters for each condition 
of roughing and finishing of the workpiece (material: 
Ti6Al4V) with an end mill cutter with three flutes and 
20 mm diameter:
roughing: ae = 20 mm, a = 4 mm, fz = 0.15 mm,
finishing: ae = 20 mm, a = 1 mm, fz = 0.10 mm,
where ae is the radial depth of cut.

Considering the spindle speed as 200 to 20000 
rpm, tooth passing frequency is calculated using Eq. 
(21) and vibrations of the moving platform in the 
frequency domain of 10 to 1000 Hz, corresponding 
to the cutting speed of the spindle in all conditions of 
roughing and finishing for both up and down milling 
operations and for the configurations mentioned in 
Table 2 have been analysed.

The findings of the analytical approach are given 
in Table 5 for the range of the resonance frequencies 
of the platform for different configurations of the 
manipulator and different cutting conditions.

The range of the maximum vibration amplitudes 
of the moving platform as a result of the milling 
forces has been examined, considering the different 
milling operations and the different configurations of 
the platform mentioned in Table 2. Table 6 lists the 
results of the simulation.

In the present investigation, the lowest vibrations 
in all directions occur in the configuration in which 
the centre of the moving platform is located in the 
bottommost position of the workspace and up milling 
forces are applied in finishing. On the other hand, 
with the centre of the platform in the upper position 
and during roughing, more vibrations will occur.

For example, the amplitude of vibrations and the 
resonance frequencies of these forces for the upmost 
position of the disoriented moving platform have been 
investigated against the base excitation frequency 
and for the minimum and maximum payload on 
it. The results of the simulation are illustrated in 
Figs. 11 and 12 for different cutting conditions. Fig. 
11 illustrates the amplitude of the vibrations and 
resonance frequencies for the upmost position of the 
disoriented moving platform under up milling and for 
two different machining strategies of roughing and 
finishing. Fig. 12 also presents the results obtained by 
analytical simulation as the amplitude of vibrations 
and resonance frequencies for the upmost position 
of the disoriented moving platform under down 
milling and for two different machining conditions of 
roughing and finishing.

Considering the results of the displacements of 
the moving platform as the result of different milling 
forces, one can infer that the range of displacement of 
the moving platform is proportionate to the applied 
force on it. Therefore, all effective parameters 
changing the cutting forces including cutting and 
geometrical parameters will influence the amplitudes 
of the vibrations of the moving platform. For instance, 
increasing the feed rate, depth of cut and number 
of teeth of the cutter causes an increase in cutting 
force parameters [17] and [18]. Thus, an increase in 
these factors leads to enhancement of vibrations of 
the platform under machining forces. It is also to be 
noted that increasing the spindle speed will decrease 
the coefficients of the cutting forces and therefore the 
cutting force and amplitudes of the vibrations of the 
platform will be decreased.

Table 6.  Range of vibrations of the platform (m for displacements and rad for rotations) for different configurations of manipulator and 
different cutting conditions

Vibration along x Vibration along y Vibration along z Vibration around x Vibration around y Vibration around z 

Up 
milling

Roughing 9.96e-5 to 4.53e-4 1.21e-4 to 5.93e-4 9.55e-6 to 3.71e-5 9.30e-5 to 2.93e-4 5.27e-6 to 2.01e-5 1.64e-4 to 2.97e-3
Finishing 1.76e-5 to 8.03e-5 2.48e-5 to 1.34e-4 9.35e-7 to 6.87e-6 1.55e-5 to 4.47e-5 1.20e-6 to 3.17e-6 3.12e-5 t0 6.71e-4

Down 
milling

Roughing 1.99e-5 to 1.37e-4 1.84e-4 to 9.01e-4 5.40e-6 to 3.48e-5 1.26e-4 to 3.93e-4 3.95e-5 to 1.38e-4 1.82e-4 to 3.14e-4
Finishing 4.04e-6 to 2.71e-5 3.03e-5 to 1.49e-4 9.51e-7 to 6.25e-5 2.13e-5 to 6.48e-5 6.76e-6 to 2.11e-5 3.24e-5 to 6.59e-4
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Fig. 11. Vibrations of the moving platform in different directions and in different up milling operation: a) roughing, b) finishing

7 CONCLUSION AND DISCUSSIONS

In the present study, forced vibrations of the hexapod 
table were examined using two methods, analytical and 
finite elements. Considering a sample sinusoid force 
acting on the platform, the resonance frequencies and 
the range of vibrations of the platform were calculated 
based on a programme written in MATLAB. In 

order to verify the results of the analytical approach, 
harmonic analysis of the table was carried out in 
ANSYS Workbench under the same conditions. It 
was found that the results of both methods exhibit 
a satisfactory level of consistency. In this study, 
examination of the results of the analytical approach 
and FEM indicated that the mechanism of the case 
study can be calculated in terms of the characteristics 
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Fig. 12.  Vibrations of the moving platform in different directions and in different down milling operations: a) roughing, b) finishing

of the external forces. Therefore, the resonance 
frequencies and the vibrations of the moving platform 
can be obtained for any periodic external force when 
the mass, damping and stiffness matrices are available. 
Forced vibrations of the moving platform were 
examined in different configurations and at different 
resonance frequencies and the range of platform 
vibrations for different machining operations were 
calculated in the present study. Determination of the 
resonance frequencies and the range of the vibrations 

of the platform as a result of the machining forces is 
the best method for defining conditions conducive to 
resonance. Thus, with a careful choice of machining 
parameters, conditions conducive to chatter in the 
milling process can be avoided.

According to the investigations, the lowest 
resonance frequencies occur in a configuration in 
which the moving platform is in the upmost position 
with the maximum payload on it. On the other hand, 
maximum vibrations of the moving platform are found 

0

0

0
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for the same configuration when up milling forces 
are applied during the roughing process. Therefore, 
in order to avoid dynamic instability during the 
machining process in upper positions, higher cutting 
speed and lower cutting force are recommended and 
hence, upper positions of the platform will be the most 
proper position for high speed machining. Finishing 
is carried out at high cutting speeds with a lower feed 
rate and depth of cut. Thus, machining forces exerted 
on the platform will have a small magnitude under 
finishing conditions. It can be concluded that upper 
positions of the platform are the best positions for the 
finishing process. To produce an appropriate surface 
finish in upper positions of the moving platform, 
down milling would be the best option.

Shortening the length of the pods in lower 
positions of the moving platform together with 
decreasing the payload mass are two factors 
contributing to the increase in the resonance 
frequencies of the hexapod table. Therefore, the lower 
positions of the platform will help the mechanism 
withstand high machining forces. In lower positions 
of the platform, the vibrations as the result of these 
forces would be at a minimum. Therefore, in the lower 
positions of the platform, machining at lower cutting 
speeds would be possible and these positions would 
be appropriate for roughing. Furthermore, in order to 
decrease shocks by roughing in the lower positions, 
up milling would be the most appropriate method.

8 APPENDIX 1

The physical specifications of the test manipulator are 
as follows:
Radius of the moving platform 	 175 mm;
Radius of the base 	 400 mm;
Angular distance between  
   two adjacent spherical joints 	 30˚;
Angular distance between  
   two adjacent universal joints 	 14˚;
Minimum length of each pod 	 760.2 mm;
Maximum length of each pod 	 968.9 mm;
Minimum mass of moving  
   platform together with payload	 40.6 kg;
Maximum mass of moving  
   platform together with payload	 90.6 kg;
Maximum course in 	 x axis = ±130 mm, 
   in 	 y axis = ±130 mm, 
   and in	 z axis = 220 mm.

9 APPENDIX 2

Considering PIp as the inertia tensor of the moving 
platform and the payload in frame {P}, the inertia 
tensor of the moving platform and the payload in 
base frame, Ip, can be obtained using the parallel axes 
theorem [19] and [20], which yields:

	 I R Ip p p

y z x y x z

x y x z y z

x z y z x

m
r r r r r r
r r r r r r
r r r r r

= +
+ − −

− + −
− − +
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2 2

2 2

2 rry
2
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


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



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


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








RT ,

where R is the rotation 3×3 matrix, representing the 
rotation of the frame {P} related to frame {W}, and 
can be obtained by:

	
R =

− + +
+

C C S C C S S S S C S C
S C C C S S

z y z x z y x z x z y x

z y z x z

θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θθ θ θ θ θ θ θ
θ θ θ θ θ

y x z x z y x
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− +
−














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
, 	

in which Cθx = cos (θx) and Sθx = sin (θx) and the 
vector r = [rx  ry  rz]T is the position vector of the mass 
centre of the moving platform and the payload in 
frame {W} and can be obtained by:

	 r = Rro,

in which ro is the position vector of the mass centre 
of the moving platform and the payload in frame {P}.

The inverse Jacobian matrix can be expressed as:

	 J
n q n

n q n

− =
×

×















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1
1 1 1

6 6 6

T T

T T

( )

( )
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