ELEKTROTEHNISKI VESTNIK 78(1-2): 36—41, 2011
ENGLISH EDITION

Measuring Time in Sportin
Domain-Specific Language

Iztok Fister ml., Iztok Fister

Competitions with the
asyTime

University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, 2000 Maribor,

Slovenija
email: iztok.fister @uni-mb.si

Abstract. Measuring time in mass sporting competitions is unthinkable manually today because of their long
duration and unreliability. Besides, automatic timing devices based on the RFID technology have become
cheaper. However, these devices cannot operate stand-alone. To work efficiently, they need a computer timing

system for monitoring results. Such system should be capable of processing the incoming events, encoding and

assigning results to a individual competitor, sorting results according to the achieved time and printing them.

In this paper, a domain-specific language named EasyTime will be defined. It enables controlling an agent by
writing events to a database. Using the agent, the number of measuring devices can be reduced. Also, EasyTime
is of a universal type that can be applied to many different sporting competitions.

Key words: domain specific language, parser, BNF notation, code generation, time measuring, RFID technology

1 INTRODUCTION

Not long ago, time in sporting competitions was mea-
sured manually by timekeepers. The measured time was
assigned to the starting number of competitors who
were arranged according to the final result and the
competitor’s category. With the arrival of the Radio
Frequency Identification technology (RFID) [8], the cost
of the measurement technology (like ChampionChip [7]
and RFID Race Timing System [8]) was reduced. It thus
became accessible to a wider class of users, e.g. sport
clubs, organizers of sporting competitions etc. They then
began to compete with the existing monopolies (Timing
Ljubljana [9]) by measuring results in smaller sporting
competitions.

Besides the measuring technology in a sporting com-
petition, a flexible computer timer system is also needed
allowing measuring of various sporting competitions
with an arbitrary number of measuring places, online
time tracking, printing result lists and ensuring relia-
bility and security. Flexibility of such a system can be
increased by using the domain-specific language (DSL)
EasyTime.

The domain-specific languages[1] are suitable for the
application domain and have definite advantages over
general-purpose languages in a specific domain. First of
all, these advantages are expressed in a higher expressive
power and, therefore, higher productivity, ease of use
(even for domain experts that are not programmers),
easier verification and optimization. EasyTime is used

Received 4 October 2010
Accepted 10 February 2011

to configure agents to write an event that arises in
a measuring device into a database. Thus, agents are
crucial elements of the timing system. When carefully
configured, the number of the necessary devices can be
decreased.

The structure of the rest of the paper is as follows.
In Section 2, problems of time measuring in sporting
competitions are described. The focus will primarily be
on the triathlon competitions which are the hardest to
be efficiently measured because of the three different
disciplines involved. In Section 3, EasyTime is presented
in detail. Section 4 describes performance of a program
written in EasyTime. The paper ends with a short
analysis of the performed work and plans for the future
work.

2 MEASURING TIME IN SPORTING
COMPETITIONS

In practice, the measuring time in sporting competi-
tions can be measured manually (classically or with
a computer timer) or automatically (by using a mea-
suring device). The computer timer is an application
that runs usually on a workstation (portable computer)
and measures the real time. Through this, a processor
tact is exploited. The processor tact is the velocity with
which the processor executes computer instructions.
The computer timer enables tracking events that are
triggered by a competitor crossing over the measuring
place (MP) similarly to a measuring device. However,
in that case, the event is triggered by an operator on the
computer pressing the appropriate key on the keyboard.

MEASURING TIME IN SPORTING COMPETITIONS WITH THE DOMAIN-SPECIFIC LANGUAGE EASYTIME 37

The operator generates events in a form of triples
(#, M P, TIMFE), where # denotes the starting number
of the competitor, M P the measuring place at which
the event takes places, and T/M E the timestamp that
is generated by the device at the moment of triggering
and represents the number of seconds since 1.1.1970 at
0:0:0.

Today, the measuring devices are usually based on the
RFID technology [8]. Thus, identification is performed
by electro-magnetic wave motions within range of radio
frequencies that are radiated by antenna fields. The
measuring devices consist of:

« RFID tag readers,
e primary memory,

« LCD display, and
« numeric keyboard.

Here can be several antenna fields connected to the
device. These fields represent a particular measuring
place. Competitors trigger events by crossing over the
antenna field with passive RFID tags that bear their
identification numbers. These numbers are unique and
different from the starting numbers. The event on the
measuring device is represented in a quadruple form
(#,RFID,MP, TIME), where the RFID identifica-
tion number is also added to the triplet. The accuracy
of those measuring devices is usually limited to 1/10
second that is enough for the propositions of the referee
associations.

The measuring devices and workstations with an
installed computer timer that represent the measuring
places in the timing system can be connected to a local-
area network (LAN). With these devices we commu-
nicate via a control program, i.e. an agent that runs
on a database server. The agent gets connected with
the measuring device via a suitable TCP/IP socket that
supports an appropriate TCP/IP protocol. The measuring
devices usually support the protocol Telnet that is easy
to implement and enables a text stream-oriented com-
munication. The agent communicates with the manual
timer via a file transfer protocol.

2.1 An Example: Measuring Time in a Triathlon

Special requirements appear in triathlon competitions
where there are three disciplines to be dealt with in one
competition. Therefore, we will focus on that problem
in this paper.

The first triathlon competition was performed in the
USA in 1975. The competition is regarded today as
an olympic discipline in which the competitor starts
with swimming, then rides a bicycle and finishes with
running. All the three activities are performed sequen-
tially and continuously. For the summary time, delays
in both transitions are added. In the first transition,
the competitor goes from swimming to bicycling, while
in the second transition, he/she moves from bicycling

to running. Today, there are many kinds of triathlon
competitions. They are distinguished according to the
length of particular courses. Normally, organizers use
circular courses of shorter lengths (laps) over which
competitors need to pass multiple times. However, this
makes measuring considerably more difficult, since the
number of laps also needs to be counted.

As seen from Fig. 1, the measuring time in triathlon
competitions is divided into nine control points (CP).
Control points are locations on the course where or-
ganizers need to track the measured time that can be
intermediate or finish. In Fig. 1, we are dealing with
a double ultra triathlon (7.6 kilometers of swimming,
360 kilometers of bicycling and 84 kilometers of run-
ning), where the length of the swimming course is 380
meters (or 20 laps), the bicycle course is 3.4 kilometers
(or 105 laps) and the running course is 1.5 kilometers
(or 55 laps).

The summary time of a triathlon competition consists
of five final times (the swimming time SWIM (CP2), the
first transition time TA1 (CP3), the bicycling time BIKE
(CP5), the second transition time TA2 (CP6) and running
time RUN (CP8)) as well as three intermediate times (the
intermediate swimming time (CP1), the intermediate
bicycling time (CP4) and the intermediate running time
(CP7)). With the intermediate times, the number of laps
ROUND_z and achieved time INTER_x are measured.
Here, z = 1,2, 3 denotes a particular course.

Suppose that a measuring device with two measuring
places (MP3 and MP4) is available for the measurement
in Fig. 1 and the competition is performed at one
location. In such case, the last crossing over the MP3 can
indicate the CP5 time, the first crossing over the MP4
the CP7 time and the last crossing over the MP4 the
final result (CP8). The measuring places MP1 and MP2
are measured manually by the computer timer. Finally,
the number of measuring points can be reduced by three
if the timing system and the control points are appro-
priately set up. Thus, 162 events for each competitor
can be measured with one measuring device (or 87.5%).
Moreover, the measurement technology for measuring
swimming in sees and lakes still being expensive and
thus still being measured by referees manually, almost
98% of all events at such competition can be measured.

3 DSL EASYTIME

With EasyTime, various measurements need to be de-
scribed. This is made with the timing system. More-
over, reduction in the number of measuring devices is
expected when using more complex measuring time.
EasyTime enables describing the rules for controlling the
agent before the event registering at a measuring place
is recorded into the database. However, each program
written in EasyTime needs to be compiled before an
execution. Compiling consists of:

38

.f'

ETAHT

ﬁ@f@

MP1

CP.'!-

MP2

Figure 1. Definition of control points in the triathlon competition

« syntax analysis and
e code generation.

Syntax analysis is performed by a syntax analyzer (also
parser) that the program written in EasyTime compiles
into an intermediate code. From this code, a code-
generator generates an executable code for a virtual
machine and stores it in a database. The database table in
which the code is stored is named the rule table because
this code contains rules for controlling the agents. In the
rest of the paper, the characteristics of the parser and
code generator are presented in detail.

3.1 The Parser

Before developing a parser, a syntax for EasyTime
needs to be defined. The syntax is a set of rules in
which the structure of correct statements (grammar)
is defined [6]. The syntax of EasyTime is presented
in syntax diagrams in Fig. 2. The syntax diagrams
are the most suitable form for writing parsers. It has
the same expressive power as the BNF (Backus Naur
Form) notation [4], i.e. a notation technique suitable for
context-free grammars. The parser was developed in the
programming language C/C++ [3].

Table 1. Names of variables in the table RESULTS

Variable Description

ROUND_1 | Number of laps of swimming
INTER_1 Intermediate time 1 (CP1)
SWIM Finish time of swimming (CP2)
TRANS_1 | Transition time 1 (CP3)
ROUND_2 | Number of laps of bicycling
INTER_2 Intermediate time 2 (CP4)
BIKE Finish time of bicycling (CP5)
TRANS_2 | Transition time 2 (CP6)
ROUND_3 | Number of laps of running
INTER_3 Intermediate time 3 (CP7)
RUN Final time of triathlon (CP8)

The EasyTime program consists of definitions of:
« agents,

e variables, and

e measuring places.

FISTER ML., FISTER

%

P
% A
FIMNISH

TA2

ﬁfﬁ dxoNd

CP4

| mP3 MP4

The definition of agents described with the statement
Agents is represented in the syntactic diagram with
the same name in Fig. 2. Variables denoting the names
of columns in the database (RESULTS table) and rep-
resenting the control points can be seen in Table 1.
However, these needs to be defined before using them
in the Measuring — Places statement that defines the
valid rules for a particular measuring place. The rules
are in the form of (Predicate)::=(Operation). Note that
in EasyTime character $ is set before the name of a
variable.

For example, the definition of agents in EasyTime
describes the measuring time in Fig. 1 as presented in
Program 1, where the first agent saves the results of the
manually measured time in the directory /home/DC?2
and the second agent automatically obtains data from the
measuring device with the IP address 192.168.225.100
via the UDP protocol on port 9999.

Program 1 Definition of agents

I: AGENTS {
2: {1,MANUAL,*/home/DC2/res.ets”}
3: {2,AUTO,“192.168.225.100/UDP/9999”’} }

Program 2 Definition of measuring places

1: MM[1] =:= AGNT[1] {

2 { (TRUE) ::= UPD $SWIM }

3 { (TRUE) := DEC $ROUND_I } }

4: MM[2] ::= AGNT[1] {

5. { (TRUE) ::= UPD $TRANS_1 } }

6: MM[3] ::= AGNT[2] {

7. { (TRUE) ::= UPD $INTER_2 }

8 { (TRUE) := DEC $ROUND_2 }

9. { (ROUND_2 == 0) ::= UPD $BIKE } }
10: MM[4] ::= AGNT[2] {

1t: { (TRUE) := UPD $INTER_3 }

122 { (ROUND_3 == 55) ::= UPD $TRANS_2 }}
13 { (TRUE) ::= DEC $ROUND_3 }

4. { (ROUND_3 == 0) := UPD $RUN } }

MEASURING TIME IN SPORTING COMPETITIONS WITH THE DOMAIN-SPECIFIC LANGUAGE EASYTIME 39

Program DSL
> II Agents I Variables |—-—[Measuring_Places I—'
Agents
Variables
{(UPDATE) 0 Var | (1)

Measuring_Places

(8- O~} DB (D - O D (B - O~

Agent_Type
——(O—Num}—O—>@anva)—()—[stringl—(D——
Rule
Predicate s s
~\1} +(TRUE)} L\l/ -
|—» S @—T
®
®
S,
Operation
+(UPD) ® [var}
| (DEC } T
String
@ ["Var | Yy .
Var
{LETTE y {LETTER} +
{ DIGIT)=
{ Vg
=)
Num
T { DIGIT }—

Figure 2. Sintax of DSL EasyTime

The rules for measuring places given in Fig. 1 are
determined in EasyTime with the source code presented
in Program 2. Each measuring place is denoted with
its identification number and connected with an ap-
propriate agent. The rules for the measuring place 4,
for example, determine that the event generated by a
measuring device at first updates the intermediate time of
running INTER_3. In such case, the competitor crosses
over the measuring place for the first time (predicate
ROUND_3==55) and the time of the second transition
TRANS_2 is updated. Then, a decrementing number of
laps ROUND_3 follows. Finally, the agent announces
the final result when the competitor is in the last lap
(predicate ROUND_3==0) and, obviously, the variable
RUN is updated.

3.2 The Code Generator

The code generator [5] is performed if the syntax
analysis has been successfully completed. When the
program fails, the parser provides error messages and

stops. The code generator generates the code for each
measuring place separately. The generated code is saved
in the database. The code generator is developed in the
programming language C/C++ as well.

The architecture of the process for which the code is
generated needs to be defined before generation takes
place. The compiled EasyTime program is executed on
a virtual machine. In line with the process paralleliza-
tion (multi-threading), the virtual machine is for each
measuring place defined separately. The architecture of
the virtual machine (Fig. 3) is simple. It only consists
of a program segment, stack, data segment, instruction
counter, and program and status registers. The gener-
ated code is loaded into the program segment. On the
stack, arithmetical-logical operations are executed. The
data segment consists of variables from the database.
The instruction counter points to the instruction in the
program segment that is currently interpreted. The data
register (REG-A) holds the timestamp of the event that

40

is treated by the agent. The status register (REG-S) holds
the status of predicates in a binary form (TRULE if
z==1or FALSE if z == 0).

Inst.counter Prog.segment Stack Data segment

| o1 ocofurp| 0s | oo | oo oo| ROUND 1
oifea o8 |55 | o 01| INTER 1

REG-A oz|[Nz [DA | 00 | o2 oz[_swim
event ozjurp] o7 00 | o3 03] TRANS 1
04| ROUND_2

05| INTER 2

06 BIKE

07| TRANS 2
REG-5 ex| ROUND 3
@ oa| _INTER 3
z MAX-1 1 SP] 10 RUN

Figure 3. Architecture of the virtual machine

The program instructions loaded into the program seg-
ment of a particular virtual machine from the database
are defined as a triple (op,pl,p2), where op denotes
an operation code, and pl and p2 are parameters (vari-
able or constant). An instruction set consists of logical
instructions EQ and NEQ, operations UPD, DEC and
STOP, and branch instruction JNZ. The logical instruc-
tions affect the setup of the status register that controls
interpretation of the branch instruction.

The code generator generates the code from the
data structures that are built by the parser. In practice,
the code is only generated from a data structure built
from the Measuring_Places statement. The names of
variables assembled in the table are translated into their
addresses in the data segment. The addresses appear in
instructions as parameters. The data structure built from
the Agents statement is designed for the configuration
of a particular agent before its execution. An example of
a code generated (in a symbolic form) from the source
code (Program 1) determining the rules of the agent
controlling MP3 is presented in Table 2.

Table 2. The program code for the measuring place 3

IC OPC. P1 P2

00 UPD 5 0
0l DEC 4 0
02 EQ 4 0
03 INZ 5 0
04 UPD 6 O
05 STOP 0 0

From the example given in Table 2, it can be seen
that the generated code is optimized because from three
lines of a source code six lines of the executable code are
obtained. As each instruction recorded in the database
is four bytes long (the operation code, two parameters
and delimiter ’;’), the size of the compiled program is
not critical for the database.

FISTER ML., FISTER

4 OPERATION OF THE AGENT

The agent that is controlled with the EasyTime program
can process the following events:

« batch: manual mode of operation (MANUAL),
« online: automatic mode of operation (AUTO).

In batch processing, events assembled in a text file
are read and written in an appropriate database by the
agent. Typically, events captured with computer timers
are batch-processed. In this processing mode, the agent
checks every second if the file configured in the agent
table exists or not. In case that it exists, batch processing
begins. At the end of processing, the file is archived and
then deleted. Online processing is event-oriented, i.e.
each event registered by the measuring device is pro-
cessed in time. The executing environment introduced
by the compiled program written in EasyTime for the
measuring time in the triathlon competition as illustrated
in Fig. 1, is presented in Fig. 4.

RULES RESULTS RUNNERS
I
| | |

T M VM VM

1 2 3 4

r MP32 | MP4 —I

- ®
MP1 MP2

Measuring device

Figure 4. Executing environment of the EasyTime program

In both processing modes, the agent operates with
the following database tables: rules (RULES), com-
petitors (RUNNERS) and results (RESULTS). When
the agent starts, initialization of the virtual machine for
each measuring place is executed. Initialization consists
of loading the program code from the rule database
table. The code is loaded only once. At the same time,
variables in the data segment are initialized. Recording
the event processed by the agent can be divided into the
following phases:

« reconstruction of the event: the competitor is iden-
tified either over the starting number (#) of RFID
tag (Fig. 4), while the appropriate virtual machine is
determined according to the measuring place MP
and the data register is loaded by the timestamp
TIME,

o reading of the results: from the database table
RESULTS, the current results of the competitor
triggering the event are read,

« mapping of the results: the current results of the
competitor are mapped to the data segment of a
particular virtual machine,

MEASURING TIME IN SPORTING COMPETITIONS WITH THE DOMAIN-SPECIFIC LANGUAGE EASYTIME 41

e code interpretation: the instruction counter is set
to zero and the program that was loaded into the
program segment starts to execute, and

o recording of the results: the results from the data
segment of a particular virtual machine are written
to the database table RESULTS.

The program in a particular virtual machine is inter-
preted sequentially, i.e. instruction by instruction, until
the instruction STOP is detected.

5 CONCLUSION

When developing universal software for the measuring
time in sporting competitions the problem of flexibility
in the timing system is often encountered. To cope with
the issue, the domain specific language EasyTime was
developed enabling rapid adaptation of a timing system
to the demands of various sporting competitions. To
monitor a new competition, modifications to the source
program written in EasyTime need to be compiled and
the agent needs to be restarted. As a result, the agent is
ready to run in a completely new environment. Using
EasyTime in practice shows that organizers can no
longer employ specialized and expensive companies to
measure time in sporting competitions. However, for
large sporting competitions, configuration of the timing
system can be simplified. Our future work will be
towards upgrading EasyTime with a domain-specific
modeling language further simplify the configuration
process of the timing system.

REFERENCES

[1] M. Mernik, J. Heering, A. Sloane: When and how to develop
domain-specific languages, 2005, ACM computing surveys, vol.
37, no. 4, pp. 316-344

[2] K. Finkenzeller: RFID Handbook, 2010, John Willey, Chichester,
UK

[3] N. Wirth: Algorithms + Data Structures = Programs, 1978,
Prentice Hall PTR, Upper Saddle River, NJ, USA

[4] A.V. Aho, J.D. Ullman: The theory of parsing, translation, and
compiling (Volume I: Parsing), 1972, Prentice Hall PTR, Upper
Saddle River, NJ, USA

[5] A.V. Aho, J.D. Ullman: The theory of parsing, translation, and
compiling (Volume II: Compiling), 1972, Prentice Hall PTR,
Upper Saddle River, NJ, USA

[6] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers: Princi-
ples, Techniques, and Tools with Gradiance, 2007, Prentice Hall
PTR, Upper Saddle River, NJ, USA

[7]1 ChampionChip2010, http://www.championchip.com

[8] RFIDTechnology2010, http://www.rfidtiming.com

[9] Timing2010, http://www.timingljubljana.si

Iztok Fister ml. is a student of the third-year of Computer science
and information technologies at the Faculty of Electrical Engineering
and Computer Science, University of Maribor.

Iztok Fister graduated in computer science from the University of
Ljubljana in 1983. He received his Ph.D. degree from the Faculty of
Electrical Engineering and Computer Science, University of Maribor,
in 2007. He works as an assistant in the Computer Architecture
and Languages Laboratory at the same faculty. His research interests
include program languages, operational researches and evolutionary
algorithms.

