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Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex is ad-
jacent to a vertex in S. A fundamental problem in total domination theory in graphs is to
determine which graphs have two disjoint total dominating sets. In this paper, we solve
this problem by providing a constructive characterization of the graphs that have two dis-
joint total dominating sets. Our characterization gives an entirely new description of graphs
with two disjoint total dominating sets and places them in another context, developing them
from four base graphs and applies a sequence of operations from seventeen operations that
are independent and necessary to produce all such graphs. We show that every graph with
two disjoint total dominating sets can be constructed using this method.
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1 Introduction
A dominating set of a graphG is a set S of vertices ofG such that every vertex not in S has
a neighbor in S, where two vertices are neighbors if they are adjacent. A total dominating
set of a graph G with no isolated vertex is a set S of vertices such that every vertex in
G has a neighbor in S. Domination and its variations in graphs are now well studied.
The literature on this subject has been surveyed and detailed in the two books by Haynes,
Hedetniemi, and Slater [6, 7]. For a recent book on total domination in graphs we refer the
reader to [13]. A survey of total domination in graphs can also be found in [9].

A classical result in domination theory, due to Ore [14] in 1962, is that every graph with
no isolated vertex has two disjoint dominating sets. However, it is not the case that every
graph with no isolated vertex can be partitioned into a dominating set and a total dominating
set. Henning and Southey [11] showed that every connected graph with minimum degree
at least two that is not a cycle on five vertices has a disjoint dominating set and a total
dominating set. Further, in [12] they present a constructive characterization of connected
graphs of order at least 4 that have a disjoint dominating set and a total dominating set.
Disjoint dominating and total dominating sets in graphs are studied further, for example,
in [10]. A characterization of graphs with disjoint dominating and paired-dominating sets
is characterized in [15].

It remains, however, an outstanding problem to determine which graphs have two dis-
joint total dominating sets. Zelinka [16] in 1989 showed that no minimum degree condi-
tion in a graph is sufficient to guarantee that there exist two disjoint total dominating sets
in the graph. Heggernes and Telle [8] showed that the decision problem to decide for a
given graph G if it has two disjoint total dominating sets is NP-complete, even for bipartite
graphs. Sufficient conditions for a graph to have two disjoint total dominating sets were
obtained by Delgado, Desormeaux, and Haynes [4], but the authors in [4] were not able to
characterize such graphs. Cubic graphs that have two disjoint total dominating sets were
recently studied by Desormeaux, Henning and Haynes [5]. In particular, they show that
cubic graphs that are 5-chordal or claw-free (we do not define these concepts here) can be
partitioned into two total dominating sets.

The total domatic number tdom(G) ofG is the maximum number of disjoint total dom-
inating sets [3]. This can also be considered as a coloring of the vertices such that every
vertex has a neighbor of every color (and has been called the coupon coloring problem [2]).
Recent work on the total domatic number can be found, for example, in [1, 5]. The funda-
mental problem in total domination theory in graphs of determining which graphs have two
disjoint total dominating sets can be phrased as follows: Determine which graphs G satisfy
tdom(G) ≥ 2. We call a graph a TDP-graph (standing for “total dominating partitionable
graph”) if its vertex set can be partitioned into two total dominating sets; that is, a graph G
is a TDP-graph if and only if tdom(G) ≥ 2.

In this paper, we provide a constructive characterization of the graphs that have two
disjoint total dominating sets, or, equivalently, a characterization of the TDP-graphs. We
describe a procedure to build TDP-graphs in terms of a 2-coloring of the vertices that indi-
cate the role each vertex plays in the sets associated with the two disjoint total dominating
sets. We show that the resulting family we construct, starting from four initial base graphs
and applying one of seventeen operations to extend graphs in the family to larger graphs, is
precisely the class of all TDP-graphs.

Our characterization provides a method for creating the TDP-graphs using a finite set
of precise operations. The construction places the TDP-graphs in another context, devel-
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oping them from four base graphs and applying a sequence of operations from seventeen
operations that are independent and necessary to produce a TDP-graph; that is, we show
that this method produces precisely the family of TDP-graphs in that every graph generated
by this method/algorithm is a TDP-graph and further every TDP-graph can be constructed
in this way.

We remark that this procedure does not solve the decision problem to decide if a given
graph has two disjoint total dominating sets in polynomial time. If one follows the steps
in the proof of Section 4, one does indeed obtain an algorithm for this decision problem.
However, this algorithm is far from polynomial time complexity. In particular, the first
step of this algorithm is to discard some edges in order to obtain so-called sparse TDP-
graph. Unfortunately, the proof does not provide those edges and this already spoils the
time complexity.

1.1 Notation

For notation and graph theory terminology we generally follow [13]. All graphs in this
paper are finite and simple, without loops or multiple edges. The order of a graph G
is denoted by n(G) = |V (G)|, and the size of G by m(G) = |E(G)|. We denote the
degree of a vertex v in the graph G by dG(v). The maximum (minimum) degree among
the vertices of G is denoted by ∆(G) (δ(G), respectively). The open neighborhood of v
is NG(v) = {u ∈ V (G) | uv ∈ E(G)}. For a set S ⊆ V (G), its open neighborhood is
the set NG(S) =

⋃
v∈S NG(v). For subsets X and Y of vertices of G, we denote the set

of edges with one end in X and the other end in Y by [X,Y ]. For a set S ⊆ V (G), the
subgraph induced by S is denoted by G[S]. Further, the subgraph of G obtained from G
by deleting all vertices in S and all edges incident with vertices in S is denoted by G− S;
that is, G− S = G[V (G) \ S]. If S = {v}, we simply denote G− {v} by G− v.

The distance between two vertices u and v in G, denoted dG(u, v), is the minimum
length of a (u, v)-path inG. ByWuv we denote the set of all vertices ofG which are closer
to u than to v; that is,Wuv = {w | dG(w, u) < dG(w, v)}. Symmetrically,Wvu is defined.
A block of a graph G is a maximal connected subgraph of G which has no cut-vertex of
its own. A block containing exactly one cut-vertex of G is called an end-block. It is well
known that any two different blocks of a graph have at most one vertex in common, namely
a cut-vertex. Furthermore, a connected graph with at least one cut-vertex has at least two
end-blocks. Let X denote the set of cut-vertices of a connected graph G and let Y denote
the set of its blocks. The block graph of G is a bipartite graph with partite sets X and Y
in which a vertex x ∈ X is adjacent to a vertex y ∈ Y if x is a vertex of the block y. It is
well-known that the block graph of any connected graph is a tree.

A walk is a finite, alternating sequence of vertices and edges in which each edge of the
sequence joins the vertex that precedes it in the sequence to the vertex that follows it in
the sequence. A non-backtracking walk is a walk with the additional constraint that no two
consecutive edges on the walk are repeated.

Let u be a cut-vertex of a graph G. Let H1 and H2 be two vertex disjoint subgraphs
of G − u that contain all the components of G − u, where each of H1 and H2 contain at
least one component of G−u. We call H1 and H2 the associated subgraphs of G−u. For
i ∈ [2], we denote by Hu

i the subgraph of G induced by V (Hi) ∪ {u}. Further, the vertex
in Hu

1 named u we rename u′, and the vertex in Hu
2 named u we rename u′′ in order to

distinguish between u, u′ and u′′. We use the standard notation [k] = {1, . . . , k}.
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2 The graph family G
In this section, we construct a graph family G such that every graph in the family has two
disjoint total dominating sets. First, we define a 2-coloring of a graph G as a partition S =
(SR, SB) of V (G). The color of a vertex v, denoted color(v), is the letter X ∈ {R,B}
such that v ∈ SX , where “R” and “B” here stand for red and blue, respectively. Thus, our
2-coloring of G is a coloring of the vertices of G, one color to each vertex, using the colors
red and blue. We denote by X the letter X ∈ {R,B} \ {X}, and we call X the color
different from X . Thus, if X = R, then X = B while if X = B, then X = R. We denote
by (G,S) a graph G with a given 2-coloring S. Our aim is to describe a procedure to build
TDP-graphs in terms of 2-colorings. For i ∈ [4], by a 2-colored Gi, we shall mean the
graph Gi and its associated 2-coloring shown in Figure 1. Further, we call each 2-colored
Gi a 2-colored base graph.

X X

XX

(a) G1

X

X

X X
X

X

(b) G2

X

X

X
X

X

X

X

(c) G3

X

X

X

X

X X
X

X

X

X

(d) G4

Figure 1: The four 2-colored base graphs G1, G2, G3, G4.

Let G be the minimum family of 2-colored graphs that:

(i) contains the four 2-colored base graphs; and

(ii) is closed under the seventeen operations O1 through to O17 listed below, which ex-
tend a 2-colored graph (G′, S′) to a new 2-colored graph (G,S).

In Figures 2 – 7, the vertices of G′ are colored black and the new vertices of G are colored
white for illustrative purposes, even though the actual colors of the vertices are indicated
by the letters X and X .

Operation O1: (G,S) is obtained from (G′, S′) by adding an edge between two nonadja-
cent vertices of the same color. See the upper diagram of Figure 2.

Operation O2: (G,S) is obtained from (G′, S′) by adding an edge between two nonadja-
cent vertices of different color. See the lower diagram of Figure 2.

G′O1:
X

X

7→
X

X

G′O2:
X

X

7→
X

X

Figure 2: The operations O1 and O2.
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Operation O3: If u and v are distinct vertices of different color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding a new vertex of any color adjacent to both u and v. See
the left diagram in the upper part of Figure 3.

Operation O4: If u and v are distinct vertices of the same color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding adjacent vertices x and y and edges ux and vy with
color(x) = color(y) 6= color(u). See the middle diagram in the upper part of Figure 3.

Operation O5: If u and v are distinct vertices of different color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding adjacent vertices x and y and edges ux and vy with
color(x) = color(u) 6= color(y). See the right diagram in the upper part of Figure 3.

Operation O6: If u and v are distinct vertices of the same color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding a path xyz with color(y) = color(z) 6= color(x) =
color(u) and adding edges ux and vz. See the left diagram in the lower part of Figure 3.

Operation O7: If u and v are distinct vertices of the same color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding a path xyzw and edges ux and vw with color(x) =
color(w) = color(u) 6= color(y) = color(z). See the middle diagram in the lower part of
Figure 3.

G′O3:
X

X

X/X G′O4:
X X

XX
G′O5:

X X

XX

G′O6:
X X

X
XX

G′O7:
X

X

X

X

X
X

G′O8:
X

X X

XX
X

Figure 3: The operations O3 –O8.

Operation O8: If u and v are distinct vertices of different color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding a path xyzw and edges ux and vw with color(x) =
color(y) = color(v) 6= color(z) = color(w). See the right diagram in the lower part of
Figure 3.

OperationO9: If u and v are adjacent vertices of different color from (G′, S′), then (G,S)
is obtained from (G′, S′) by subdividing uv with four consecutive vertices x, y, z, w where
x is adjacent to u and color(u) = color(z) = color(w) 6= color(x) = color(y). See the
upper diagram of Figure 4.

OperationO10: If u and v are adjacent vertices of the same color from (G′, S′), then (G,S)
is obtained from (G′, S′) by subdividing uv with four consecutive vertices x, y, z, w where
x is adjacent to u and color(u) = color(x) = color(w) 6= color(y) = color(z). See the
lower diagram of Figure 4.

Operation O11: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′) by
adding an edge xy together with the edges vx and vy where color(x) = color(y) 6=
color(v). See the left diagram of Figure 5.

Operation O12: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′) by
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G′O9:
X

X

7→
X

X X

XX
X

G′O10:
X

X

7→
X

X X

XX
X

Figure 4: The operations O9 and O10.

adding a path xyz together with the edges vx and vz where color(x) = color(y) 6=
color(z) = color(v). See the middle diagram of Figure 5.

Operation O13: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′) by
adding a path xyzw together with the edges vx and vw where color(x) = color(w) =
color(v) 6= color(y) = color(z). See the right diagram of Figure 5.

G′O11:
X

X
X G′O12: X

X

X

X

G′O13: X

X X

XX

Figure 5: The operations O11, O12 and O13.

Operation O14: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′)
by adding a 3-cycle, xyzx, together with the edge vx where color(x) = color(v) 6=
color(y) = color(z). See the left diagram of Figure 6.

Operation O15: If v is a vertex from (G′, S′) of any color, then (G,S) is obtained from
(G′, S′) by adding a 4-cycle, xyzwx, together with the edge vxwhere color(x) = color(y) 6=
color(z) = color(w). See the middle diagram of Figure 6, where the notation X/X means
that the vertex can have any color.

Operation O16: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′) by
adding a 5-cycle, xyzwtx, together with the edge vx where color(x) = color(y) =
color(t) 6= color(z) = color(w) = color(v). See the right diagram of Figure 6.

G′O14: X
X

X

X

G′O15: X/X
X

X
X

X

G′O16: X
X

X X

XX

Figure 6: The operations O14, O15 and O16.

Operation O17: If u is a cut-vertex from (G′, S′) with associated subgraphs Hu
1 and Hu

2 ,
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and in NHu
1

(u′) there exists a vertex of the same color as u and in NHu
2

(u′′) there exists a
vertex of different color as u, then (G,S) is obtained from Hu

1 and Hu
2 by adding a new

vertex v and the edges u′v and vu′′. The color of all vertices from Hu
1 remains the same

as in G′, color(v) = color(u′′) 6= color(u′) = color(u) and the color of all vertices from
Hu

2 is exchanged with respect to their color in G′. See the diagram of Figure 7, where
the notation A means that the color of all vertices from the set A in (G′, S′) is changed
in (G,S).

G′

O17:
A

X

u
X X

7→ A

X
X

X

X X

u′ v u′′

Figure 7: The operation O17.

We remark that, by definition, all operations O3 to O17 produce new vertices. Further,
exactly one new vertex created in each of the operations O14 to O16 has degree 3, and all
other new vertices created using operations O3 to O17 have degree 2 in G. In operations
O11 to O13, if the selected vertex v from (G′, S′) is a cut-vertex of G′ it is also a cut-
vertex in G, while if v is not a cut-vertex of G′ it becomes a cut-vertex in G. Moreover all
operations from O14 to O17 produce new cut vertices. In this sense all operations, except
O1 and O2, can be viewed as base operations which build the sparse skeleton of TDP-
graphs, while O1 and O2 fill this skeleton with additional edges. This is also the main idea
of the proof. First to discard all edges which are there by one of the operations O1 and O2,
and then study the resulting vertices of degree two.

Lemma 2.1. If (G,S) ∈ G for some 2-coloring S = (SR, SB), then G is a TDP-graph.
Further, S = (SR, SB) is a partition of V (G) into two total dominating sets of G.

Proof. We proceed by induction on the number, k ≥ 0, of operations O1 through O17

used to construct a 2-colored graph (G,S) ∈ G. If k = 0, then (G,S) is one of the four
2-colored base graphs illustrated in Figure 1, and one can readily observe that G is a TDP-
graph and S = (SR, SB) is a partition of V (G) into two total dominating sets of G. This
establishes the base case. Let k ≥ 1 and suppose that every 2-colored graph (G′, S′) ∈ G
that can be constructed using fewer than k operations satisfies the desired result.

Let (G,S) ∈ G be a 2-colored graph that can be built from one of the 2-colored base
graphs by a sequence of k operations O1 –O17. Let Oj be the last operation of that se-
quence where j ∈ [17], and let (G′, S′) be the graph obtained from the same 2-colored
base graph with the same sequence as that used to construct (G,S) but without applying
the last operationOj . Thus, (G′, S′) ∈ G can be constructed using fewer than k operations.

By the induction hypothesis, the graph G′ is a TDP-graph and S′ = (S′A, S
′
B) is a

partition of V (G′) into two total dominating sets of G′. If j ∈ [2], then S = S′ and G is
a TDP-graph since no new vertices were added. For 3 ≤ j ≤ 17 it is a simple exercise
to check from the color of the new vertices added to (G′, S′) when forming (G,S) that
the operation Oj yields two disjoint total domination sets, namely SR and SB . Thus, G
is a TDP-graph, and S = (SR, SB) is a partition of V (G) into two total dominating sets
of G.
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3 Main result
Our main result is to provide a constructive characterization of the graphs that have two
disjoint total dominating sets, or, equivalently, a characterization of the TDP-graphs.

We prove that the class of all TDP-graphs is precisely the family G constructed in
Section 2. A proof of Theorem 3.1 is given in Section 4.

Theorem 3.1. A graph G is a TDP-graph if and only if every component of (G,S) is in G
for some 2-coloring S. Further, if (G,S) ∈ G, then S = (SR, SB) is a partition of V (G)
into two total dominating sets of G.

4 Proof of Theorem 3.1
The sufficiency follows from Lemma 2.1. To prove the necessity, let G be a TDP-graph
and let S = (SR, SB) be a partition of V (G) into two total dominating sets of G. We
show that (G,S) ∈ G by induction on m = |E(G)|. Since G is a TDP-graph, we note that
δ(G) ≥ 2, G has order n ≥ 4, and m ≥ 4. If m = 4, then necessarily G ∼= C4, and (G,S)
is the 2-colored base graph G1, and so (G,S) ∈ G. This establishes the base case. Let
m ≥ 5 and assume that every TDP-graph G′ of size less than m where S′ = (S′R, S

′
B) is a

partition of V (G′) into two total dominating sets satisfies (G′, S′) ∈ G.
Let G be a TDP-graph of order n and size m, and let S = (SR, SB) be a partition of

V (G) into two total dominating sets of G. If G is disconnected, we apply the inductive
hypothesis to each component of G to produce the desired result. Hence, we may assume
that G is connected.

Our general strategy in what follows is to reduce the graph G to a TDP-graph G′ of
size less than m, apply the inductive hypothesis to G′ to show that (G′, S′) ∈ G, and then
reconstruct the graph (G,S) from (G′, S′) by applying one of the operationsOx, x ∈ [17],
to show that (G,S) ∈ G. We state this formally, since we will frequently use the following
statement.

Statement 4.1. If G′ is a TDP-graph of size less than m, where S′ = (S′R, S
′
B) is a

partition of V (G′) into two total dominating sets, and (G,S) can be constructed from
(G′, S′) by applying one of the operations Ox, where x ∈ [17], then (G,S) ∈ G.

We define three graphsGR, GB andGRB associated with the graphG and the partition
S = (SR, SB). Let GR and GB be the subgraphs of G induced by the sets SR and SB ,
respectively, and so GR = G[SR] and GB = G[SB ]. Let GRB be the (spanning) subgraph
of G with V (GRB) = V (G) and E(GRB) = E(G) \ (E(GR) ∪ E(GB)).

Claim 4.2. If some component of GR, GB or GRB is not a star, then (G,S) ∈ G.

Proof. Suppose that there exists a component, C, of GR, GB or GRB which is not a star.
If C contains a cycle v1 . . . vkv1, k ≥ 3, then G can be obtained from G′ = G − v1v2
by either applying operation O1 in the case when C is a component of GR or GB or by
applying operationO2 in the case when C is a component of GRB . If C contains no cycle,
then C is a tree different from a star. Therefore, there exists a path u1u2u3u4 in C and G
can be obtained fromG′ = G−u2u3 by either applying operationO1 in the case whenC is
a component of GR or GB or by applying operationO2 in the case when C is a component
of GRB . In all cases, since S = (SR, SB) is a partition of V (G) into two total dominating
sets of G, the same partition S′ = S = (SR, SB) is a partition of V (G′) into two total
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dominating sets of G′. By the inductive hypothesis, (G′, S′) ∈ G. We can obtain G from
the same 2-colored base graph as G′ and the same sequence of operations from O1 –O17

used to construct (G′, S′) by adding at the end of this sequence the operation O1 or O2.
Hence (G,S) ∈ G.

By Claim 4.2, we may assume that every component of GR, GB or GRB is a star, for
otherwise the desired result follows. We call the resulting graph G a sparse TDP-graph
with associated partition S = (SR, SB).

We now partition the sets SR and SB in two different ways depending on the role that
the vertices in SR and SB , respectively, play in the graphs GR, GB and GRB . First, let
SR = R1 ∪R2 ∪R3 and SB = B1 ∪B2 ∪B3 where

R1 = {v ∈ SR | dGR
(v) ≥ 2}

R2 = {v ∈ SR \R1 | NG(v) ∩R1 6= ∅}
R3 = SR \ (R1 ∪R2)

and

B1 = {v ∈ SB | dGB
(v) ≥ 2}

B2 = {v ∈ SB \B1 | NG(v) ∩B1 6= ∅}
B3 = SB \ (B1 ∪B2).

Next, we define a partition of V (G) = V (GRB) as the union of the two partitions
SR = R1B ∪R2B ∪R3B and SB = RB1 ∪RB2 ∪RB3 where

R1B = {v ∈ SR | dGRB
(v) ≥ 2}

R2B = {v ∈ SR \R1B | v has a neighbor in GRB that belongs to RB1}
R3B = SR \ (R1B ∪R2B)

and

RB1 = {v ∈ SB | dGRB
(v) ≥ 2}

RB2 = {v ∈ SB \RB1 | v has a neighbor in GRB that belongs to R1B}
RB3 = SB \ (RB1 ∪RB2).

We note that every vertex in R3 has degree 1 in GR, and every vertex in R3B has
degree 1 in GRB . Analogously, every vertex in B3 and RB3 has degree 1 in GB and GRB ,
respectively. In particular, vertices from R3 ∩ R3B and from B3 ∩ RB3 have degree 2 in
G. Further, the neighbor of a vertex from R3 in GR belongs to R3, and, analogously, the
neighbor of a vertex from B3 in GB belongs to B3. We proceed further with the following
series of structural properties of the graph G.

Claim 4.3. δ(G) = 2.

Proof. Recall that G is a sparse TDP-graph with associated partition S = (SR, SB). Thus,
SR and SB are disjoint total dominating sets of G which form a partition of V (G). Every
vertex v ∈ V (G) has at least one neighbor in SR and at least one neighbor in SB . Hence,
δ(G) ≥ 2. Suppose, to the contrary, that δ(G) > 2.
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Suppose thatR1B 6= ∅ and let v ∈ R1B. Let v1, . . . , vk, where k ≥ 2, be the neighbors
of v in GRB . By Claim 4.2 and the definition of the set RB2, we note that for each i ∈ [k],
vi ∈ RB2 and the vertex v is the only neighbor of vi that belongs to the set SR. Further,
since dG(vi) > 2, the vertex vi has at least two neighbors in SB . By Claim 4.2, every
component of the graph GB is a star, implying that no two neighbors of v are adjacent
or have a common neighbor in GB . Further, every neighbor of vi in G different from v
belongs to the set B2, and has the vertex vi as its only neighbor in GB . Thus, the set B2

contains at least 2k vertices at distance 2 from v in G.
For i ∈ [k], let wi denote an arbitrary neighbor of vi in GB , and so wi ∈ B2. Since

dG(wi) > 2 and wi has only one neighbor in SB , namely the vertex vi, we note that
wi ∈ RB1 and therefore wi has at least two neighbors in R2B. By Claim 4.2 and the
definition of the set R2B, we note that every neighbor of wi different from vi belongs to
the set R2B. Further, each such neighbor of wi has exactly one neighbor that belongs to
the set SB , namely the vertex wi, and therefore has at least two neighbors in SR by the
minimum degree condition. By Claim 4.2, every component of the graph GR is a star, and
therefore two distinct vertices of degree at least 2 in GR belong to different components of
GR. This implies that this subset R2B of vertices in SR contains at least 4k vertices.

By the minimum degree condition, these vertices inR2B also belong toR1 and each of
them has at least two neighbors in R2. Further, analogously as before, no two such vertices
are the same, implying that this subset of R2 contains at least 8k − 1 vertices distinct from
v, all of which belong to the set R1B, noting that one of these vertices may possibly be
the vertex v. By repeating this process for all these vertices we see that we have an infinite
process with infinite growth, which is not possible in a finite graph G. Therefore, the set
R1B = ∅. Analogously, the set RB1 = ∅. Therefore, R2B and RB2 are also empty.

We now consider a vertex v ∈ R3B. By Claim 4.2, every component of the graphGRB

is a star, implying that the vertex v has exactly one neighbor in SB and, by the minimum
degree condition, at least two neighbors in SR. Thus, v ∈ R1 and each neighbor of v in
SR belong to R2. Further, by Claim 4.2, each such neighbor of v in R2 has degree 1 in GR

and, therefore, by the minimum degree condition, has at least two neighbors in SB . Thus,
every neighbor of v inR2 belongs to the setR1B, contradicting our earlier observation that
the set R1B is an empty set. This completes the proof of Claim 4.3.

By Claim 4.3, every sparse TDP-graph has minimum degree 2. In particular, δ(G) = 2.
Let D = {v ∈ V (G) | dG(v) = 2}.

Claim 4.4. If a vertex in D is a cut-vertex of G, then (G,S) ∈ G.

Proof. Suppose that a vertex in D is a cut-vertex of G. Suppose firstly that D contains two
adjacent vertices, x and y, that are both cut-vertices ofG, and let e = xy. LetCx andCy be
the components ofG−ewhich contain x and y, respectively. Further, let x′ be the neighbor
of x in Cx and let y′ be the neighbor of y in Cy . We have two possibilities with respect to
the color of the vertices x, x′, y, y′. Either color(x′) = color(x) 6= color(y) = color(y′)
or color(x′) = color(y′) 6= color(x) = color(y). In both cases, let G′ be the graph
obtained from G−{x, y} by adding the edge x′y′, and changing the color of all vertices in
V (Cy) \ {y} while retaining the color of all vertices in V (Cx) \ {x}. Let S′ = (S′R, S

′
B)

be the resulting partition of V (G′). We note that G′ is a TDP-graph, where S′ = (S′R, S
′
B)

is a partition of V (G′) into two total dominating sets and that x′ and y′ are cut vertices of
G′. If x and x′ have the same color in G, then we use Statement 4.1 with the operationO17
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and the cut vertex y′ to show that (G,S) ∈ G, while if x and x′ have different color in G,
we use Statement 4.1 with the operation O17 and the cut vertex x′.

Thus, we may assume that no two adjacent vertices of D are both cut-vertices of G.
Let v be a cut-vertex of G that belongs to D with neighbors u′ and u′′. Without loss of
generality we may assume that color(v) = color(u′′) 6= color(u′). Let Cu′ and Cu′′ be the
components ofG−v containing u′ and u′′, respectively. Since S = (SR, SB) is a partition
of V (G) into two total dominating sets of G, there exists a neighbor of u′ in Cu′ of the
same color as u′ and a neighbor of u′′ in Cu′′ whose color is different from that of u′′. Let
G′ be the graph obtained from G − v by identifying the vertices u′ and u′′ into one new
vertex u, and joining u to every neighbor of u′ and u′′. Further, we assign to u the same
color as that of u′, while we change the color of all vertices in V (Cu′′) \ {u′′} and retain
the color of all vertices in V (Cu′) \ {u′}. Let S′ = (S′R, S

′
B) be the resulting partition of

V (G′). We note that G′ is a TDP-graph, where S′ = (S′R, S
′
B) is a partition of V (G′) into

two total dominating sets. We now use Statement 4.1 with the operation O17 to show that
(G,S) ∈ G, where Hu

1 = Cu′ and Hu
2 = Cu′′ .

By Claim 4.4, we may assume that no vertex in D is a cut-vertex of G, for otherwise
the desired result follows. We note that every vertex in D has one neighbor in SR and one
neighbor in SB . Further, every component in G[D] is a path or a cycle.

Claim 4.5. Let C be a component of G[D]. If C is a cycle or if C is a path of order at
least 5 or if C is a path of order 4 and the ends of C do not have a common neighbor, then
(G,S) ∈ G.

Proof. Suppose that C is a cycle. Since G is a connected TDP-graph, this implies that
G ∼= Cn where n ≡ 0 (mod 4). In this case, G can be obtained from the 2-colored
base graph G1 by repeated applications of operation O9 (or operation O10). Hence, we
may assume that C is a path, for otherwise the desired result follows. Let C be the path
x1 . . . xk, where k ≥ 4. Let u be the neighbor of x1 not on C. If k ≥ 5, let v = x5,
while if k = 4, let v be the neighbor of x4 not on C. By assumption, u 6= v. Let
X = {x1, x2, x3, x4}.

Suppose first that color(u) = color(x1), implying that color(x2) = color(x3) 6=
color(x4) = color(v) = color(x1). If u and v are adjacent in G, let G′ = G − X . In
this case, the graph G′ is a TDP-graph and we use Statement 4.1 with the operation O7 to
show that (G,S) ∈ G. If u and v are not adjacent in G, let G′ be obtained from G−X by
adding the edge uv. Once again, the graph G′ is a TDP-graph. We use Statement 4.1 with
the operation O10 to show that (G,S) ∈ G.

Suppose next that color(u) 6= color(x1), implying that color(x2) = color(v) 6=
color(x3) = color(x4) = color(u). If u and v are adjacent in G, let G′ = G − X .
In this case, the graph G′ is a TDP-graph and we use Statement 4.1 with the operation O8

to show that (G,S) ∈ G. If u and v are not adjacent in G, let G′ be obtained from G−X
by adding the edge uv. Once again, the graph G′ is a TDP-graph. We use Statement 4.1
with the operation O9 to show that (G,S) ∈ G.

By Claim 4.5, we may assume that every component of G[D] is a path-component
of order at most 4, and that the ends of a path-component of G[D] of order 4 have a
common neighbor in G. In what follows we adopt the following notation. Let P be a
path-component of G[D], and so P ∼= Pk for some k ∈ [4]. Let P be the path x1 . . . xk,
and let u and v be the vertices in G that do not belong to P and are adjacent to x1 and xk,
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respectively. We call u and v the vertices in G − V (P ) associated with the path P . By
assumption, if k = 4, then u = v. We note that if k = 1, then u 6= v. We define next a
good path-component.

Definition 4.6. A path-component P of G[D] is a good path-component if P ∼= Pk where
k ∈ [3], and both u and v have neighbors of both colors in the graph G− = G − V (P ),
where u and v are the vertices in G− associated with P .

Claim 4.7. If G[D] contains a good path-component, then (G,S) ∈ G.

Proof. Suppose that G[D] contains a good path-component, P : x1 . . . xk. By definition,
k ∈ [3]. Suppose that k = 1. Since P is a good path-component, the graph G′ = G − x1
is a TDP-graph. Furthermore, color(u) 6= color(v) since G is a TDP-graph. We now use
Statement 4.1 with the operation O3 to show that (G,S) ∈ G.

Suppose that k = 2. Suppose that color(x1) = color(x2). Then, color(u) 6= color(x1)
and either u = v or u 6= v and color(u) = color(v). In both cases, since P is a good path-
component, the graph G′ = G − V (P ) is a TDP-graph. If u = v, we use Statement 4.1
with the operationO11 to show that (G,S) ∈ G, while if u 6= v, we use Statement 4.1 with
the operation O4 to show that (G,S) ∈ G. Suppose that color(x1) 6= color(x2). Then,
color(u) = color(x1) and color(v) = color(x2). Since P is a good path-component, the
graph G′ = G− V (P ) is a TDP-graph, and we use Statement 4.1 with the operationO5 to
show that (G,S) ∈ G.

Suppose that k = 3. Without loss of generality we may assume that color(x1) 6=
color(x2) = color(x3), implying that color(u) = color(x1) and either u = v or u 6= v
and color(u) = color(v). Since P is a good path-component, the graph G′ = G − V (P )
is a TDP-graph. If u = v, we use Statement 4.1 with the operation O12 to show that
(G,S) ∈ G, while if u 6= v, we use Statement 4.1 with the operation O6 to show that
(G,S) ∈ G.

By Claim 4.7, we may assume that G contains no good path-component, for otherwise
the desired result follows. We define next an end-block path component of G[D].

Definition 4.8. A path-component P of G[D] with associated vertices u and v is an end-
block path component of G[D] if u = v.

We are now in a position to present the following property of non-backtracking walks
in the graph G.

Claim 4.9. Suppose that W : w1w2 . . . wk is a non-backtracking walk in G and no vertex
of W belongs to an end-block path component of G[D]. If w2 is not the only neighbor of
w1 in G whose color is color(w2), then wi−1 is the only neighbor of wi in G whose color
is color(wi−1) for all i ∈ [k] \ {1}.

Proof. Since W is a non-backtracking walk in G, we note that no two consecutive edges
onW are equal; that is, wi−1 6= wi+1 for all i ∈ [k−1]\{1}. Suppose, to the contrary, that
the claim is false. Let ` ≥ 2 be the smallest integer such that the vertex w` has a neighbor
different from w`−1 of the same color as w`−1.

Claim 4.9.1. ` ≥ 3.
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Proof. Renaming colors if necessary, we may assume that color(w1) = X . By suppo-
sition, at least one neighbor, say v1, of w1 different from w2 has the same color as w2.
Suppose firstly that color(w2) = X . By supposition, color(v1) = X . If w2 has a neighbor,
z2 say, different from w1, of color X , then either v1 = z2, in which case v1w1w2v1 is a 3-
cycle in GX , or v1 6= z2, in which case v1w1w2z2 is a path P4 in GX . Both cases produce
a contradiction. Suppose secondly that color(w2) = X . By supposition, color(v1) = X .
If w2 has a neighbor, z2 say, different from w1, of color X , then v1w1w2z2 is a path P4

in GRB , a contradiction. We deduce, therefore, that w1 is the only neighbor of w2 whose
color is color(w1). Hence, ` ≥ 3.

By Claim 4.9.1, we have that ` ≥ 3. Renaming colors if necessary, we may assume that
color(w`−1) = X . By supposition, the vertex w` has a neighbor, v`+1 say, different from
w`−1 of the same color asw`−1; that is, color(v`+1) = X . Further sinceG is a TPD-graph,
the vertex w` has a neighbor of color X .

Claim 4.9.2. dG(w`−1) = 2.

Proof. Suppose that dG(w`−1) ≥ 3. Let v` be a neighbor of w`−1 different from w`−2
and w`. Suppose that color(w`−2) = X . By the minimality of `, the vertex w`−2 is the
only neighbor of w`−1 whose color is color(w`−2); that is, all neighbors of w`−1 differ-
ent from w`−2 must have color X . In particular, color(v`) = color(w`) = X . Hence,
v`w`−1w`v`+1 is a path P4 in GRB , a contradiction. Hence, color(w`−2) = X . Thus,
all neighbors of w`−1 different from w`−2 must have color X . In particular, color(v`) =
color(w`) = X . If v` = v`+1, then v`w`−1w`v` is a 3-cycle in GX , a contradiction. If
v` 6= v`+1, then v`w`−1w`v`+1 is a path P4 in GX , a contradiction.

By Claim 4.9.2, the vertex w`−1 has degree 2 in G; that is, w`−1 ∈ D. By supposition,
the vertex w1 has at least two neighbors whose color is color(w2) and at least one vertex
whose color is different from color(w2). In particular, the vertex w1 has degree at least 3 in
G. Let p ≥ 1 be the largest integer such that dG(wp) ≥ 3 and p ≤ `−2. Possibly, p = `−2.
We now consider the path P : wp+1 . . . w`−1 and note that P is a path-component in G[D].
If wp = w`, then P is an end-block path component ofG[D], contradicting the supposition
that no vertex of W belongs to an end-block path component of G[D]. Hence, wp 6= w`

and the vertices wp and w` associated with the path-component P in G[D] are distinct
vertices.

We now consider the graph G− = G − V (P ). By our earlier observations, the vertex
w` has neighbors of both colors in G−. If p = 1, then the vertex wp has neighbors of
both colors in G−. If p ≥ 2, then by the minimality of ` the vertex wp once again has
neighbors of both colors in G−. Thus the path P is a good-path component, contradicting
our earlier assumption that G contains no good path-component. This completes the proof
of Claim 4.9.

Claim 4.10. If G contains a cycle that is not an end-block of G, then (G,S) ∈ G.

Proof. Assume that some cycle C in G is not an end-block in G. Let P be a path-
component of G[D] with associated vertices u and v. Suppose firstly that u = v. Thus,
P is an end-block path component of G[D] and CP = G[V (P ) ∪ {u}] is a cycle in G.
Further, CP is an end-block of G with u as its cut-vertex in G. Suppose that dG(u) ≥ 4.
We now consider the graph G− = G− V (P ). By our earlier assumptions, no vertex in D
is a cut-vertex of G, implying that G− is a connected graph.
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Claim 4.10.1. The vertex u has neighbors of both colors in G−.

Proof. Suppose, to the contrary, that all neighbors of u in G− have the same color. By
supposition, there is a cycle C in G− that contains no vertex that belongs to an end-block
component of G[D]. Hence there exists a non-backtracking walk W : w1w2 . . . wk in G
that starts at the vertex u, proceeds from u toC, goes all the way aroundC, and then returns
to u, without entering any end-block path component of G[D]. We note that k ≥ 3 and that
w1 = wk = u. By our supposition that all neighbors of u in G− have the same color, the
vertex w2 is not the only neighbor of w1 in G whose color is color(w2). By Claim 4.9, the
vertex wk−1 is the only neighbor of wk in G whose color is color(wk−1). This contradicts
our supposition that all neighbors of u in G− have the same color.

By Claim 4.10.1, the vertex u has neighbors of both colors in G−. Since G is a TDP-
graph, this implies that the graphG− is a TDP-graph. Hence, we can use Statement 4.1 with
the operation O11 or O12 or O13, depending on the length of P , to show that (G,S) ∈ G.
We may therefore assume that dG(u) = 3 (and still u = v), for otherwise (G,S) ∈ G,
as desired. Thus, the vertex u has degree 1 in G−. Let x be the neighbor of u in G−.
By our earlier assumptions, no vertex in D is a cut-vertex of G. In particular, the cut-
vertex x does not belong to D, and so dG(x) ≥ 3. We now consider the (connected) graph
G−u = G− − u obtained from G− by deleting the vertex u. Using analogous arguments as
in the proof of Claim 4.10.1, the vertex x has neighbors of both colors in G−u . Hence, we
can use Statement 4.1 with the operation O14 or O15 or O16, depending on the length of
P , to show that (G,S) ∈ G.

Suppose next that u 6= v. Using analogous arguments as in the proof of Claim 4.10.1,
the vertices u and v each have neighbors of both colors in G−u . Thus the path P is a
good-path component, contradicting our earlier assumption that G contains no good path-
component. This completes the proof of Claim 4.10.

By Claim 4.10, we may assume that every cycle inG is an end-block ofG, for otherwise
(G,S) ∈ G as desired. Every block ofG that is not an end-block is a copy ofK2 consisting
of a single edge. By our earlier assumptions, every cycle in G has length 3, 4 or 5. Let
T− be the graph obtained from G by deleting all vertices that belong to an end-block path
component of G[D]. By our earlier assumptions, the graph T− is a tree. In particular,
every vertex of T− is a cut-vertex of G. By our earlier assumptions, no vertex in D is a
cut-vertex of G, implying that every vertex of D belongs to an end-block path component
of G[D]. Hence, every vertex of D belongs to an end-block of G.

Claim 4.11. If two cycles of G intersect, then (G,S) ∈ G.

Proof. Suppose that two different cycles C1 and C2 of G intersect. Since every cycle in G
is an end-block of G, these two cycles intersect in exactly one common vertex, v say.

Claim 4.11.1. If G contains exactly one cut-vertex, then (G,S) is a 2-colored base
graph G3.

Proof. Suppose that G contains exactly one cut-vertex. Since the cut-vertices of G are
precisely the vertices in the tree T−, this implies that V (T−) = {v}. Thus, every block
of G is an end-block that contains the vertex u. Let C1 be the cycle vv1v2 . . . vk−1v and
let color(v) = X , where k ∈ {3, 4, 5}. If k = 3, then color(v1) = color(v2) = X . If
k = 4, then color(v2) = X and, renaming v1 and v3, if necessary, we may assume that
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color(v1) = X and color(v3) = X . If k = 5, then color(v2) = color(v3) = X and
color(v1) = color(v4) = X .

Suppose thatG contains an end-block, C say, that is a 4-cycle. If C ′ is an arbitrary end-
block different from C, then C ′ − v is a good path-component of G[D], a contradiction.
Hence, no end-block of G is a 4-cycle.

Thus, since G is a TDP-graph, at least one end-block is a 3-cycle and at least one end-
block is a 5-cycle. Renaming the end-blocks if necessary, we may assume that C1 is a
3-cycle and C2 is a 5-cycle. These two cycles, together with their associated 2-colorings
described above, form the 2-colored base graph G3. If G contains at least three blocks
and C ′ is an arbitrary end-block different from C1 and C2, then C ′ − v is a good path-
component of G[D], a contradiction. Hence, G contains exactly two end-blocks, implying
that (G,S) is the 2-colored base graph G3.

By Claim 4.11.1, we may assume thatG contains at least two cut-vertices, for otherwise
(G,S) ∈ G as desired. As observed earlier, the cut-vertices of G are precisely the vertices
in the tree T−. Let x be a neighbor of v in T−. Renaming the cycle C1 and C2 and the
vertex x if necessary, we may assume without loss of generality that the vertex v has a
neighbor, y say, in C1 such that color(x) 6= color(y). We now consider the graph G− =
G−(V (C2)\{v}). SinceG is a TDP-graph, this implies that the graphG− is a TDP-graph.
Hence, we can use Statement 4.1 with the operation O11 or O12 or O13, depending on the
length of C2, to show that (G,S) ∈ G.

By Claim 4.11, we may assume that no two cycles ofG intersect, for otherwise (G,S) ∈
G as desired. The tree T− therefore contains at least two vertices. Further, every leaf in T−

has degree 3 in G and belongs to exactly one end-block of G. Let p1p2 . . . pk be a longest
path in T−. Necessarily, p1 and pk are both leaves in T−. Since T− contains no vertex
of D, we note that every vertex in T− has degree at least 3 in G. Let C1 and Ck be the
end-blocks in G that contain p1 and pk, respectively.

Claim 4.12. If k ∈ {2, 3}, then (G,S) ∈ G.

Proof. Suppose firstly that k = 2. In this case, G is obtained from the two cycles C1

and C2 by adding the edge p1p2. If C1 is a 4-cycle, then the cycle C1 together with its
associated 2-coloring is the 2-colored base graph G1. Starting with this 2-colored base
graph G1, we can use Statement 4.1 with the operation O14 or O15 or O16, depending on
the length of C2, to show that (G,S) ∈ G. Analogously, if C2 is a 4-cycle, (G,S) ∈ G.
Hence, we may assume that neither C1 nor C2 is a 4-cycle. With this assumption, if C1 is
a 3-cycle, then C2 is also a 3-cycle noting that G is a TDP-graph. In this case, (G,S) is the
2-colored base graph G2. If C1 is a 5-cycle, then C2 is also a 5-cycle. In this case, (G,S)
is the 2-colored base graph G4. Hence if k = 2, then (G,S) ∈ G.

Suppose secondly that k = 3. We now consider the (connected) graph G− = G −
V (C1). We note that the vertex p2 has degree at least 2 inG−. If the vertex p2 has neighbors
of both colors in G−, then G− is a TPD-graph. In this case, we can use Statement 4.1 with
the operation O14 or O15 or O16, depending on the length of C1, to show that (G,S) ∈ G.
Hence we may assume that all neighbors of p2 inG− have the same color which is different
to color(p1) (noting that G is a TPD-graph). This implies that the vertex p2 has neighbors
of both colors in the graph G− V (C2), and once again we can use Statement 4.1 with the
operationO14 orO15 orO16, depending on the length of C2, to show that (G,S) ∈ G.
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By Claim 4.12, we may assume that k ≥ 4, for otherwise (G,S) ∈ G as desired. We
now consider the (connected) graph G− = G − V (C1). If the vertex p2 has neighbors
of both colors in G−, then as in the proof of Claim 4.12 we can use Statement 4.1 with
the operation O14 or O15 or O16, depending on the length of C1, to show that (G,S) ∈ G.
Hence we may assume that all neighbors of p2 inG− have the same color. We now consider
the walk p2p3 . . . pk. By assumption, p3 is not the only neighbor of p2 in G whose color
is color(p3). By Claim 4.9, the vertex pk−2 is the only neighbor of pk−1 in G whose color
is color(pk−2). This implies that the vertex pk−1 has neighbors of both colors in the graph
G − V (C2). Hence, G − V (C2) is a TPD-graph and we can use Statement 4.1 with the
operation O14 or O15 or O16, depending on the length of C2, to show that (G,S) ∈ G.
This completes the proof of Theorem 3.1.

5 Closing remarks
We remark that although our characterization in Theorem 3.1 solves a long-standing prob-
lem in the theory of total domination in graphs which has been open for several decades,
it remains a challenging problem to determine in polynomial time if a given graph is a
TDP-graph even for some special graph classes. Our method cannot be used to decide if
a given graph G is a TDP-graph in polynomial time. The reason for that is that we have
no specified vertex partition together with G. Indeed, recognizing this class of graphs is
known to be NP-complete (see [8]). However, we nonetheless believe that our construc-
tive proof gives valuable insights into the problem and gives an entirely new description of
TDP-graphs, placing them in another context.

We close with a short discussion about the independence of operations O1 to O17 in
the class G. For this purpose, we will construct small graphs in G from our 2-colored base
graphs that cannot be built by any other construction in G, thereby showing that operation
Oi is independent for each i ∈ [17]. The independence of these seventeen operations used
to build graphs in the family G show that none of them are redundant, and all are needed in
the construction.

• Apply operation O2 on G1 (to obtain the graph K4 − e).
• Apply operationO3 onG1 to obtain the house graph; that is, the graph obtained from

a 5-cycle by adding an edge.

• Apply operation O1 once and operation O2 three times on the house graph to ob-
tain K5.

• Apply operation O4 to two nonadjacent vertices of degree 2 on G2.

• The independence of operation Ox, where x ∈ {5, 6, 11, 12, 13, 14, 15, 16}, can be
seen by applying Ox once on G1.

• The independence of operation Ox, where x ∈ {7, 10}, can be seen by applying Ox

once on adjacent vertices of degree 3 in G2.

• The independence of operation Ox, where x ∈ {8, 9}, can be seen by applying Ox

once on adjacent vertices of degree 3 in G4.

• Apply operation O17 once on the cut-vertex of G3.

Hence, all seventeen operations are independent. Further, our proof of Theorem 3.1
shows that all seventeen operations are necessary to give our characterization of TDP-
graphs.
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