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Editors in Chief

iii





Contents

Hamilton cycles in primitive vertex-transitive graphs of order a product of
two primes – the case PSL(2, q2) acting on cosets of PGL(2, q)
Shaofei Du, Klavdija Kutnar, Dragan Marušič . . . . . . . . . . . . . . . . 1
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Abstract

A step forward is made in a long standing Lovász problem regarding hamiltonicity of
vertex-transitive graphs by showing that every connected vertex-transitive graph of order a
product of two primes arising from the group action of the projective special linear group
PSL(2, q2) on cosets of its subgroup isomorphic to the projective general linear group
PGL(2, q) contains a Hamilton cycle.
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1 Introduction
In 1969, Lovász [20] asked if there exists a finite, connected vertex-transitive graph without
a Hamilton path, that is, a simple path going through all vertices of the graph. To this
date no such graph is known to exist. Intriguingly, with the exception of K2, only four
connected vertex-transitive graphs that do not have a Hamilton cycle are known to exist.
These four graphs are the Petersen graph, the Coxeter graph and the two graphs obtained
from them by replacing each vertex by a triangle. The fact that none of these four graphs
is a Cayley graph has led to a folklore conjecture that every Cayley graph is hamiltonian
(see [1, 8, 9, 11, 12, 16, 22, 32, 37] and the survey paper [6] for the current status of this
conjecture).

Coming back to the general class of vertex-transitive graphs, the existence of Hamilton
paths, and in some cases also Hamilton cycles, in connected vertex-transitive graphs has
been shown for graphs of particular orders, such as, kp, k ≤ 6, pj , j ≤ 5 and 2p2 (see
[5, 15, 17, 18, 23, 24, 26, 27, 38] and the survey paper [16]). (Throughout this paper p will
always denote a prime number.) Further, some partial results have been obtained for graphs
of order pq, q < p a prime [2, 25]. The main obstacle to obtaining a complete solution lies
in graphs with a primitive automorphism group having no imprimitive subgroup. It is the
object of this paper to move a step closer to resolving Lovász question for vertex-transitive
graphs of order a product of two primes by showing existence of Hamilton cycles in graphs
arising from the action of PSL(2, q2) on cosets of its subgroup isomorphic to PGL(2, q)
(see Theorem 3.2). The strategy used in the proof is introduced in Section 3. In the next
section we fix the terminology and notation, and gather same useful results and tools.

2 Terminology, notation and some useful results
2.1 Basic definitions and notation

Throughout this paper graphs are finite, simple and undirected, and groups are finite. Fur-
thermore, a multigraph is a generalization of a graph in which we allow multiedges and
loops. Given a graph X we let V (X) and E(X) be the vertex set and the edge set of X ,
respectively. For adjacent vertices u, v ∈ V (X) we write u ∼ v and denote the correspond-
ing edge by uv. Let U and W be disjoint subsets of V (X). The subgraph of X induced by
U will be denoted by X〈U〉. Similarly, we let X[U,W ] denote the bipartite subgraph of X
induced by the edges having one endvertex in U and the other endvertex in W .

Given a transitive group G acting on a set V , we say that a partition B of V is G-
invariant if the elements of G permute the parts, the socalled blocks of B, setwise. If the
trivial partitions {V } and {{v} : v ∈ V } are the only G-invariant partitions of V , then G
is primitive, and is imprimitive otherwise.

A graph X is vertex-transitive if its automorphism group, denoted by AutX , acts tran-
sitively on V (X). A vertex-transitive graph is said to be primitive if every transitive sub-
group of its automorphism group is primitive, and is said to be imprimitive otherwise.

A graph containing a Hamilton cycle will be sometimes referred as a hamiltonian graph.

2.2 Generalized orbital graphs

In this subsection we recall the orbital graph construction which is used throughout
the rest of the paper. A permutation group G on a set V induces the action of G on
V × V . The corresponding orbits are called orbitals. An orbital is said to be self-paired if
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it simultaneously contains or does not contain ordered pairs (x, y) and (y, x), for x, y ∈ V .
For an arbitrary union O of orbitals (having empty intersection with the diagonal D =
{(x, x) : x ∈ V }), the generalized orbital (di)graph X(V,O) of the action of G on V with
respect to O is a simple (di)graph with vertex set V and edge set O. (For simplicity rea-
sons we will refer to any such (di)graph as an orbital (di)graph of G.) It is an (undirected)
graph if and only ifO coincides with its symmetric closure, that is, O has the property that
(x, y) ∈ O implies (y, x) ∈ O. Further, the generalized orbital graph X(V,O) is said to
be a basic orbital graph if O is a single orbital or a union of a single orbital and its sym-
metric closure. Note that the orbital graph X(V,O) is vertex-transitive if and only if G is
transitive on V , that the diagonal D is always an orbital provided G acts transitively on V ,
and that its complement, V × V −D is an orbital if and only if G is doubly transitive.

Every vertex-transitive (di)graph admitting a transitive group of automorphismsG with
the corresponding vertex stabilizer H can be constructed as an orbital (di)graph of the
action of the group G on the coset space G/H . The orbitals of the action of G on G/H are
in 1-1 correspondence with the orbits of the action of H on G/H , called suborbits of G.
A suborbit corresponding to a self-paired orbital is said to be self-paired. When presenting
the (generalized) orbital (di)graphX(G/H,O) with the corresponding (union) of suborbits
S the (di)graph X(G/H,O) is denoted by X(G,H,S).

2.3 Semiregular automorphisms and quotient (multi)graphs

Let m ≥ 1 and n ≥ 2 be integers. An automorphism ρ of a graph X is called (m,n)-
semiregular (in short, semiregular) if as a permutation on V (X) it has a cycle decomposi-
tion consisting of m cycles of length n. The question whether all vertex-transitive graphs
admit a semiregular automorphism is one of famous open problems in algebraic graph the-
ory (see, for example, [3, 4, 7, 10, 21]). Let P be the set of orbits of ρ, that is, the orbits of
the cyclic subgroup 〈ρ〉 generated by ρ. Let A,B ∈ P . By d(A) and d(A,B) we denote
the valency of X〈A〉 and X[A,B], respectively. (Note that the graph X[A,B] is regular.)
We let the quotient graph corresponding to P be the graph XP whose vertex set equals P
with A,B ∈ P adjacent if there exist vertices a ∈ A and b ∈ B, such that a ∼ b in X . We
let the quotient multigraph corresponding to ρ be the multigraph Xρ whose vertex set is P
and in which A,B ∈ P are joined by d(A,B) edges. Note that the quotient graph XP is
precisely the underlying graph of Xρ.

2.4 Useful number theory facts

For a prime power r a finite field of order r will be denoted by Fr, with the subscript
r being omitted whenever the order of the field is clear from the context. As usual, set
F ∗ = F \ {0}. Set S∗ = {a2 : a ∈ F ∗} and N∗ = F ∗ \ S∗. The elements of S∗ and N∗

will be called squares and non-squares, respectively. The following basic number-theoretic
results will be needed.

Proposition 2.1 ([35, Theorem 21.2]). Let F be a finite field of odd prime order p. Then
−1 ∈ S∗ if p ≡ 1 (mod 4), and −1 ∈ N∗ if p ≡ 3 (mod 4).

Proposition 2.2 ([35, Theorem 21.4]). Let F be a finite field of odd prime order p. Then
2 ∈ S∗ if p ≡ 1, 7 (mod 8), and 2 ∈ N∗ if p ≡ 3, 5 (mod 8).
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Proposition 2.3 ([29, p. 167]). Let F be a finite field of odd prime order p. Then

|(S∗ + 1) ∩ (−S∗)| =

{
(p− 5)/4, if p ≡ 1 (mod 4),

(p+ 1)/4, if p ≡ 3 (mod 4).

In particular, if p ≡ 1 (mod 4) then |S∗ ∩ (S∗ + 1)| = (p − 5)/4, |N∗ ∩ (N∗ + 1)| =
(p− 1)/4, and |S∗ ∩ (N∗ + 1)| = |S∗ ∩ (N∗ − 1)| = (p− 1)/4.

Using Proposition 2.3 the following result may be easily deduced.

Proposition 2.4. Let F be a finite field of odd prime order p. Then for any k ∈ F ∗, the
equation x2 + y2 = k has p − 1 solutions if p ≡ 1 (mod 4), and p + 1 solutions if
p ≡ 3 (mod 4).

3 Vertex-transitive graphs of order pq
Vertex-transitive graphs whose order is a product of two different odd primes p and q, where
p > q can be conveniently split into three mutually disjoint classes. The first class consists
of graphs admitting an imprimitive subgroup of automorphisms with blocks of size p – it
coincides with (q, p)-metacirculants [2]. The second class consists of graphs admitting an
imprimitive subgroup of automorphisms with blocks of size q but no imprimitive subgroup
of automorphisms with blocks of size p – it coincides with the class of socalled Fermat
graphs, which are certain q-fold covers of Kp where p is a Fermat prime [28]. The third
class consists of vertex-transitive graphs with no imprimitive subgroup of automorphisms.
Following [31, Theorem 2.1] the theorem below gives a complete classification of con-
nected vertex-transitive graphs of order pq (see also [33, 34]). We would like to remark,
however, that there is an additional family of primitive graphs of order 91 = 7 · 13 that
was not covered neither in [31] nor in [34]. This is due to a missing case in Liebeck-Saxl’s
table [19] of primitive group actions of degree mp, m < p. This missing case consists of
primitive groups of degree 91 = 7 · 13 with socle PSL(2, 13) acting on cosets of A4. In
the classification theorem below this missing case is included in Row 7 of Table 1.

Theorem 3.1 ([31, Theorem 2.1]). A connected vertex-transitive graph of order pq, where
p and q are odd primes and p > q, must be one of the following:

(i) a metacirculant,

(ii) a Fermat graph,

(iii) a generalized orbital graph associated with one of the groups in Table 1.

The existence of Hamilton cycles in graphs given in Theorem 3.1(i) and (ii) was proved,
respectively, in [2] and [25]. It is the aim of this paper to make the next step towards proving
the existence of Hamilton cycles in every connected vertex-transitive of order a product of
two primes with the exception of the Petersen graph, by showing existence of Hamilton
cycles in graphs arising from Row 5 of Table 1.

Theorem 3.2. Vertex-transitive graphs arising from the action of PSL(2, q2) on PGL(2, q)
given in Row 5 of Table 1 are hamiltonian.
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Table 1: Primitive groups of degree pq without imprimitive subgroups and with non-
isomorphic generalized orbital graphs.

Row socG (p, q) Action Comment

1 PΩε(2d, 2) (2d − ε, 2d−1 + ε) singular ε = +1 : d Fermat prime
1-spaces ε = −1 : d− 1 Mersenne prime

2 M22 (11, 7) see Atlas
3 A7 (7, 5) triples
4 PSL(2, 61) (61, 31) cosets of

A5

5 PSL(2, q2) ( q
2+1
2 , q) cosets of q ≥ 5

PGL(2, q)

6 PSL(2, p) (p, p+1
2 ) cosets of p ≡ 1 (mod 4)

Dp−1 p ≥ 13

7 PSL(2, 13) (13, 7) cosets of missing in [19]
A4

The existence of Hamilton cycles needs to be proved for all connected generalized or-
bital graphs arising from these actions. Recall that a generalized orbital graph is a union of
basic orbital graphs. Since the considered action is primitive and hence the corresponding
basic orbital graphs are connected, it suffices to prove the existence of Hamilton cycles
solely in basic orbital graphs of this action. This is done in Section 4. The method used is
for the most part based on the socalled lifting cycle technique [1, 16, 22]. Lifts of Hamilton
cycles from quotient graphs which themselves have a Hamilton cycle are always possible,
for example, when the quotienting is done relative to a semiregular automorphism of prime
order and when the corresponding quotient multigraph has two adjacent orbits joined by
a double edge contained in a Hamilton cycle. This double edge gives us the possibility to
conveniently “change direction” so as to get a walk in the quotient that lifts to a full cycle
above. By [21, Theorem 3.4] a vertex-transitive graph of order pq, q < p primes, contains
a (q, p)-semiregular automorphism. The lifting cycle technique, however, can only be ap-
plied provided appropriate Hamilton cycles can be found in the corresponding quotients. It
so happens that graphs arising from Row 5 of Table 1 also admit (p, q)-semiregular auto-
morphisms, and it is with respect to these automorphisms that the lifting cycle technique
is applied. In constructing Hamilton cycles, the corresponding quotients have proved to
be easier to work with than the quotients obtained from (q, p)-semiregular automorphisms.
Namely, as one would expect, it is precisely the existence of Hamilton cycles in the quo-
tients that represents the hardest obstacle one needs to overcome in order to assure the
existence of Hamilton cycles in the graphs in question. In this respect the well-known
Jackson theorem will be useful.

Proposition 3.3 (Jackson Theorem [13, Theorem 6]). Every 2-connected regular graph of
order n and valency at least n/3 contains a Hamilton cycle.

It will be useful to introduce the following terminology. Let X be a graph that admits
an (m,n)-semiregular automorphism ρ. Let P = {S1, S2, . . . , Sm} be the set of orbits
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of ρ, and let π : X → XP be the corresponding projection of X to its quotient XP . For
a (possibly closed) path W = Si1Si2 · · ·Sik in XP we let the lift of W be the set of all
paths in X that project to W . The proof of following lemma is straightforward and is just
a reformulation of [26, Lemma 5].

Lemma 3.4. Let X be a graph admitting an (m, p)-semiregular automorphism ρ, where
p is a prime. Let C be a cycle of length k in the quotient graph XP , where P is the set of
orbits of ρ. Then, the lift of C either contains a cycle of length kp or it consists of p disjoint
k-cycles. In the latter case we have d(S, S′) = 1 for every edge SS′ of C.

4 Actions of PSL(2, q2)

The following group-theoretic result due to Manning will be needed in the proof of Theo-
rem 3.2.

Proposition 4.1 ([36, Theorem 3.6’]). Let G be a transitive group on Ω and let H = Gα
for some α ∈ Ω. Suppose that K ≤ G and at least one G-conjugate of K is con-
tained in H . Suppose further that the set of G-conjugates of K which are contained in
H form t conjugacy classes under H with representatives K1,K2, . . . ,Kt. Then K fixes∑t
i=1 |NG(Ki) : NH(Ki)| points of Ω.

Let Fq2 = Fq(α), where α2 = θ for F ∗q = 〈θ〉. Let G = PSL(2, q2), where q ≥ 5
is an odd prime. For simplicity reasons we refer to the elements of G as matrices; this
should cause no confusion. Then G has two conjugacy classes of subgroups isomorphic
to PGL(2, q), with the corresponding representatives H and H ′. Since each element in
PGL(2, q2) \ PSL(2, q2) interchanges these two classes, it suffices to consider the action
of G on the set H of right cosets of H in G. The degree of this action is pq, where
p = (q2 + 1)/2. Without loss of generality let

H =

{
1√
|A|

A : A =

[
a b
c d

]
, a, b, c, d ∈ Fq

}
≤ G,

and

H ′ = Hg where g =

[
1 0
0 β

]
,

where β ∈ F ∗q2 \ (F ∗q2)2. Let

Q =

〈[
1 β
0 1

]〉
and Q1 =

〈[
1 1
0 1

]〉
.

Then Q ≤ H ′ and Q ∩H = 1. Moreover, we have the following result.

Lemma 4.2. The action of Q on H is semiregular. Furthermore, the action of its normal-
izer NG(Q) onH has q+1

2 orbits of length q and one orbit of length q2(q−1)
2 .

Proof. We first prove that the action of Q on H is semiregular. Suppose on the contrary
that there exists g ∈ G such that HgQ = Hg. Then HgQg−1 = H , and so gQg−1 ≤ H .
But this contradicts the choice of Q. Hence Q is semiregular onH.
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One can see that

N = NG(Q) =

{[
a b
0 a−1

]
: a ∈ 〈α〉, b ∈ Fq2

}
∼= Z2

q o Zq−1.

We now compute the orbits ofN in its action onH, by analyzing subgroups ofN conjugate
in G to subgroups of H . (Note that there is only one conjugacy class of subgroups in G
isomorphic to N .) Observe that a subgroup of N is isomorphic to one of the following
groups: Z2

q , Z2
q o Zq−1, Z2

q o Zl, where 2 ≤ l < q − 1, Zq , Zq o Zq−1, Zq o Zl, where
2 ≤ l < q − 1, and Zl, where l divides q − 1. Since Q is semiregular on H no subgroup
of N containing Q fixes a coset in H (that is, no subgroup of N containing Q is conjugate
to a subgroup of H). Further, there exists unique subgroup of order q2 in N , which clearly
contains Q, and so this subgroup cannot fix a coset in H as well. Therefore, we only need
to consider subgroups of N isomorphic to Zq o Zl and Zl, where l divides q − 1.

The group N contains q + 1 conjugacy classes of maximal subgroups isomorphic to
Zq oZq−1, which are divided into two G-conjugate subsets of equal size, with the respec-
tive representatives:

K =

{[
a b
0 a−1

]
: a ∈ 〈α〉, b ∈ Fq

}
and I =

{[
a bβ
0 a−1

]
: a ∈ 〈α〉, b ∈ Fq

}
,

where K is contained in H and I is not. Let Ki = Kg be a subgroup of N conjugate to
K. Since H has only one conjugacy class of subgroups isomorphic to K, we have t = 1
(for the meaning of t, see Proposition 4.1). Since NG(K) = NH(K) = K, it therefore
follows from Proposition 4.1 that Ki fixes only the coset Hg. In view of maximality of Ki

in N , the N -orbit of Hg on H is of length |N |/|Ki| = q. Since the G-conjugates of K in
N form q+1

2 different conjugacy classes inside N , we can conclude that N has q+1
2 orbits

of length q.
Let K0 be the subgroup of order q in K. Since |NG(K0) : NH(K0)| = |N : K| = q,

any Kg
0 ≤ N fixes q cosets, which form the N -orbit containing Hg (see the the previous

paragraph). Let K1 be a subgroup of K isomorphic to Zq o Zl, where l
∣∣ q − 1 and

l 6∈ {1, q − 1}. One may check that any Kg
1 ≤ N has the same fixed cosets as K (and so

it is a subgroup of a coset stabilizer in N ). Consequently N does not have orbits of length
q · q−1l for 1 ≤ l < q−1. Further, for any subgroupK2 ≤ K ofH isomorphic to Zl, where
l divides q − 1 and l ≥ 3, the fact that |NG(K2) : NH(K2)| = |Dq2−1 : D2(q−1)| = q+1

2 ,
implies thatK2 fixes q+1

2 cosets. These cosets are clearly contained in the above q+1
2 orbits

of N of length q, and consequently N does not have orbits of length q−1
l .

We have therefore shown that the only other possible stabilizers are Z2 and Z1. Since
|H| = q(q2 + 1)/2 and since the length of an orbit of N onH with coset stabilizer isomor-
phic to Z2 or to Z1 equals, respectively, q

2(q−1)
2 and q2(q − 1), we have

q(q2 + 1)

2
= q

q + 1

2
+ a

q2(q − 1)

2
+ bq2(q − 1), (4.1)

where a is the number of orbits of N on H with coset stabilizer isomorphic to Z2 and b is
the number of orbits of N on H on which N acts regularly. The equation (4.1) simplifies
to q2 = q+aq(q−1)+2bq(q−1), which clearly has a = 1 and b = 0 as the only possible
solution. This completes the proof of Lemma 4.2.
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Lemma 4.2 will play an essential part in our construction of Hamilton cycles in basic
orbital graphs arising from the action of PSL(2, q2) on cosets of PGL(2, q) given in Row 5
of Table 1. The strategy goes as follows. Let X be such an orbital graph. By Lemma 4.2,
the action of the normalizer N = NG(Q) on the quotient graph XQ with respect to the
orbits Q of a semiregular subgroup Q consists of one large orbit of length q(q − 1)/2 and
(q + 1)/2 isolated fixed points. We will show the existence of a Hamilton cycle in X by
first showing that the subgraph of XQ induced on the large orbit has at most two connected
components and that each component contains a Hamilton cycle with double edges in the
corresponding quotient multigraph. If there is only one component then its Hamilton cycle
is modified to a Hamilton cycle in XQ by choosing in an arbitrary manner (q+ 1)/2 edges
and replacing them by 2-paths having as central vertices the (q+ 1)/2 isolated fixed points
of N in XQ. By Lemma 3.4, this cycle lifts to a Hamilton cycle in X . Such 2-paths indeed
exist because every isolated fixed point has to be adjacent to every vertex in the large orbit
(see Lemma 4.5). If the subgraph of XQ induced on the large orbit has two components
with corresponding Hamilton cycles C0 and C1, then a Hamilton cycle in X is constructed
by first constructing a Hamilton cycle in XQ in the following way. We use two isolated
fixed points to modify these two cycles C0 and C1 into a cycle of length q2(q−1)/2+2 by
replacing an edge in C0 and an edge in C1 by two 2-paths each having one endvertex in C0

and the other in C1, whereas the central vertices are the above two isolated fixed points. In
order to produce the desired Hamilton cycle in XQ the remaining isolated fixed points are
attached to this cycle in the same manner as in the case of one component. By Lemma 3.4,
this cycle lifts to a Hamilton cycle in X . Formal proofs are given in Propositions 4.7
and 4.8.

It follows from the previous paragraph that we only need to prove that the subgraph of
XQ induced on the large orbit ofN contains a Hamilton cycle with at least one double edge
in the corresponding multigraph or two components each of which contains a Hamilton
cycle with double edges in the corresponding multigraph. For this purpose we now proceed
with the analysis of the structure of basic orbital graphs (and corresponding suborbits)
arising from the action of PSL(2, q2) on cosets of PGL(2, q) given in Row 5 of Table 1.
We apply the approach taken in [34] where the computation of suborbits is done using
the fact that PSL(2, q2) ∼= PΩ−(4, q) and that the action of PSL(2, q2) on the cosets of
PGL(2, q) is equivalent to the induced action of PΩ−(4, q) on nonsingular 1-dimensional
vector subspaces 〈v〉 such that Q(v) = 1, where Q is the associated quadratic form. For
the sake of completeness, we give a more detailed description of this action together with a
short explanation of the isomorphism PSL(2, q2) ∼= PΩ−(4, q) (see [14, p. 45] for details).

Let φ ∈ Aut(Fq2) be the Frobenius automorphism of Fq2 defined by the rule φ(a) =
aq , a ∈ Fq2 . (Note that φ is an involution.) Let W = 〈w1,w2〉 = F 2

q2 be a natural
SL(2, q2)-module. Then SL(2, q2) acts on W in a natural way. In particular, the action of

g =

[
a b
c d

]
∈ SL(2, q2) on W is given by

w1g = aw1 + bw2,

w2g = cw1 + dw2.

Let W be an SL(2, q2)-module with the underlying space W and the action of SL(2, q2)
defined by the rule w ∗ g = wgφ, where g = (aij) ∈ SL(2, q2) and gφ = (φ(aij)ij) =
(aqij). One can now see that the action · : W ⊗W × SL(2, q2) → W ⊗W defined by the
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rule
(w ⊗w′) · g = wg ⊗w′ ∗ g = wg ⊗w′gφ

is an action of SL(2, q2) on the 4-dimensional space W ⊗W (that is, on a tensor product
of W and W ). The kernel of this action equals Z(SL(2, q2)), and thus this is in fact a
4-dimensional representation of G = PSL(2, q2) (an embedding of G into GL(4, q2)).
Further, the set B = {v1,v2,v3,v4}, where v1 = w1 ⊗ w1, v2 = w2 ⊗ w2, v3 =
w1 ⊗w2 + w2 ⊗w1, v4 = α(w1 ⊗w2 −w2 ⊗w1), is a basis for W ⊗W over Fq2 .

Since G fixes the 4-dimensional space V = spanFq
(B) over Fq it can be viewed as

a subgroup of GL(4, q). A non-degenerate symplectic form f of W and W defined by
f(w1,w2) = −f(w2,w1) = 1 and f(w1,w1) = f(w2,w2) = 0 is fixed by SL(2, q2). It
follows that G fixes a non-degenerate symmetric bilinear form of W ⊗W defined by the
rule

(w′1 ⊗w′2,w
′′
1 ⊗w′′2 ) = f(w′1,w

′′
1 )f(w′2,w

′′
2 ).

Then we have

((vi,vj))4×4 =


0 1 0 0
1 0 0 0
0 0 −2 0
0 0 0 2θ

 ,

and so for x =
∑4
i=1 xivi ∈ V and y =

∑4
i=1 yivi ∈ V the symmetric form (x,y) and

the associated quadratic form Q are given by the rules

(x,y) = x2y1 + x1y2 − 2x3y3 + 2θx4y4 and

Q(x) =
1

2
(x,x) = x1x2 − x23 + θx24.

By computation it follows that Q has q2 + 1 singular 1-dimensional subspaces of V . As
for the remaining q(q2 + 1) nonsingular 1-dimensional subspaces, G has two orbits {〈v〉 :
Q(v) = 1,v ∈ V } and {〈v〉 : Q(v) ∈ F ∗q \ S∗,v ∈ V }. Since these two representations
of G are equivalent, we set Ω to be the first of these two orbits. Then the action of G on
H is equivalent to the action of G on Ω. By comparing their orders, we get PSL(2, q2) ∼=
PΩ−(4, q). The following result characterizing suborbits of the action ofG on the cosets of
PGL(2, q) in the context of the action of PΩ−(4, q) on Ω was proved in [34] (see also [30]).

Proposition 4.3 ([34, Lemma 4.1]). For any 〈v〉 ∈ Ω where Q(v) = 1, the nontrivial
suborbits of the action of G on Ω (that is, the orbits of G〈v〉) are the sets S±λ = {〈x〉 ∈
Ω : (x,v) = ±2λ,Q(x) = 1}, where λ ∈ Fq , and

(i) |S0| = q(q∓1)
2 for q ≡ ±1 (mod 4);

(ii) |S±1| = q2 − 1;

(iii) |S±λ| = q(q + 1) for λ2 − 1 ∈ N∗;

(iv) |S±λ| = q(q − 1) for λ2 − 1 ∈ S∗.

Moreover, all the suborbits are self-paired.
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Let X = X(G,H,Sλ) be the basic orbital graph associated with Sλ, and take

ρ =

[
1 1
0 1

]
∈ G.

For k ∈ Fq we have

v1ρ
k = v1 + k2v2 + kv3,

v2ρ
k = v2,

v3ρ
k = 2kv2 + v3,

v4ρ
k = v4,

and so ρk maps the vector x =
∑4
i=1 xivi ∈ V to

xρk = x1v1 + (k2x1 + x2 + 2kx3)v2 + (kx1 + x3)v3 + x4v4.

Identifying x with (x1, x2, x3, x4) we have xρk = (x1, k
2x1 + x2 + 2kx3, kx1 + x3, x4).

One can check that for k 6= 0 we have 〈xρk〉 6= 〈x〉, and thus ρ is (p, q)-semiregular. Let
Q = 〈ρ〉, and letQ be the set of orbits of Q. These orbits will be referred to as blocks. The
set Ω decomposes into two subsets each of which is a union of blocks from Q:

I = 〈(0, 0, x3, x4)〉Q = {〈(0, 2kx3, x3, x4)〉 : k ∈ Fq},
where − x23 + θx24 = 1.

L = 〈(x1, x2, 0, x4)〉Q = {〈(x1, k2x1 + x2, kx1, x4)〉 : k ∈ Fq},
where x1 6= 0 and x1x2 + θx24 = 1.

Note that the subset I contains q(q+1)
2 vertices which form q+1

2 blocks, and the subset L
contains q2(q−1)

2 vertices which form q(q−1)
2 blocks. By IQ and LQ, we denote, respec-

tively, the set of blocks in I and L; that is, Q = IQ ∪ LQ.

Remark 4.4. Recall that

N = NG(Q) =

〈[
a b
0 a−1

]
: a ∈ 〈α〉, b ∈ Fq2

〉
.

One may check directly that IQ consists precisely of the orbits of N of length q and that L
is the orbit of N of length q2(q−1)

2 .

In the next lemma we observe that X〈L〉 and X〈L〉Q are vertex-transitive and show
that the bipartite subgraph of XQ induced by IQ and LQ is a complete bipartite graph.

Lemma 4.5. With the above notation, the following hold:

(i) The induced subgraphX〈L〉 and the quotient graphX〈L〉Q are both vertex-transitive.

(ii) For 〈x〉Q ∈ IQ and 〈y〉Q ∈ LQ we have

d(〈x〉Q, 〈y〉Q) =

{
1, if λ = 0,

2, if λ 6= 0.
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Proof. By Remark 4.4, N is transitive on L, and so the induced subgraph X〈L〉 and the
quotient graph X〈L〉Q are both vertex transitive, and thus (i) holds.

To prove (ii), take two arbitrary blocks 〈x〉Q ∈ IQ where x = (0, 0, x3, x4) and
〈y〉Q ∈ LQ where y = (y1, y2, 0, y4). Then y1 6= 0 and x3 6= 0, and 〈x〉 ∼ 〈yρk〉 if and
only if

(x,yρk) = ((0, 0, x3, x4), (y1, k
2y1 + y2, ky1, y4)) = ±2λ,

that is, if and only if

−2x3ky1 + 2θx4y4 = ±2λ. (4.2)

From (4.2) we get that k = θx4y4∓λ
x3y1

and so for given 〈x〉 and 〈y〉we have a unique solution
for k if λ = 0 and two solutions if λ 6= 0. It follows that for 〈x〉Q ∈ IQ and 〈y〉Q ∈ LQ
we have d(〈x〉Q, 〈y〉Q) = 1 or 2, depending on whether λ = 0 or λ 6= 0, completing part
(ii) of Lemma 4.5.

In what follows, we divide the proof into two cases depending on whether λ = 0 or
λ 6= 0.

4.1 Case S0

Let

ε =

{
2, if q ≡ 1, 3 (mod 8),

0, if q ≡ 5, 7 (mod 8).

The following lemma gives us the number of edges inside a block and between two
blocks from LQ for the orbital graph X(G,H,S0).

Lemma 4.6. Let X = X(G,H,S0). Then for 〈x〉Q ∈ LQ the following hold:

(i) d(〈x〉Q) = ε,

(ii) d(〈x〉Q, 〈y〉Q) = 1 for q+1
2 blocks 〈y〉Q ∈ LQ,

(iii) d(〈x〉Q, 〈y〉Q) = 2 for 1
4 (q2−3q−2(ε+ 1)) blocks 〈y〉Q ∈ LQ if q ≡ 1 (mod 4),

and for 1
4 (q2 − q − 2(ε+ 1)) blocks 〈y〉Q ∈ LQ if q ≡ 3 (mod 4).

Proof. Fix a block 〈x〉Q ∈ LQ where x = (1, 1, 0, 0). For any 〈y〉Q ∈ LQ, where
y = (y1, y2, 0, y4) with y1 6= 0, we have 〈x〉 ∼ 〈y〉ρk if and only if (k2 + 1)y1 + y2 = 0,
and therefore, since y1y2 + θy24 = 1, if and only if

k2 = −y−21 + θ(y−11 y4)2 − 1. (4.3)

It follows from (4.3) that 〈x〉 is adjacent to one vertex in the block 〈y〉Q ∈ LQ if k = 0
and to two vertices in this block if k 6= 0. Clearly, k = 0 if and only if

θy24 = 1 + y21 . (4.4)

Proposition 2.4 implies that (4.4) has q+1 solutions for (y1, y4), and therefore since 〈y〉 =
〈−y〉 we have a total of q+1

2 choices for 〈y〉. This implies that d(〈x〉Q, 〈y〉Q) = 1 for q+1
2

blocks 〈y〉Q ∈ LQ, proving part (ii).



12 Ars Math. Contemp. 19 (2020) 1–15

To prove part (i), take y = ±x = ±(1, 1, 0, 0). Then, by (4.3), there are edges inside
the block 〈x〉Q if and only if k2 = −2. This equation has solutions if and only if q ≡
1, 3 (mod 8) (see Propositions 2.1 and 2.2), and thus the induced subgraph X〈〈x〉Q〉 is a
q-cycle for q ≡ 1, 3 (mod 8) and a totally disconnected graph qK1 if q ≡ 5, 7 (mod 8).

Finally, to prove part (iii) let m be the number of blocks 〈y〉Q ∈ LQ for which
d(〈x〉Q, 〈y〉Q) = 2. Suppose first that q ≡ 1 (mod 4). Then, combining together the
facts that X is of valency 1

2q(q− 1), that d(〈x〉Q) = ε and that 〈x〉 is adjacent to 1
2 (q+ 1)

vertices in the set I and to exactly one vertex from q+1
2 blocks in LQ, we have

m =
1

2

(
1

2
q(q − 1)− q + 1

2
− q + 1

2
− ε
)

=
1

4
(q2 − 3q − 2(1 + ε)).

Suppose now that q ≡ 3 (mod 4). Then, replacing the valency of X in the above
computation with 1

2q(q + 1) we obtain, as desired, that m = 1
4 (q2 − q − 2(1 + ε)).

We are now ready to prove existence of a Hamilton cycle in X(G,H,S0).

Proposition 4.7. The graph X = X(G,H,S0) is hamiltonian.

Proof. Let X〈L〉′ be the graph obtained from X〈L〉 by deleting the edges between any
two blocks B1, B2 ∈ LQ for which d(B1, B2) = 1 (see Lemma 4.6(ii)). By Lemma 4.5,
X〈L〉Q is vertex-transitive, and consequently one can see that also X〈L〉′Q is vertex-
transitive.

If q ≡ 1 (mod 4) then Lemma 4.6(iii) implies that X〈L〉′Q is of valency m = 1
4 (q2 −

3q− 2(1 + ε)). If, however, q ≡ 3 (mod 4) then Lemma 4.6(iii) implies that X〈L〉′Q is of
valencym = 1

4 (q2−q−2(1+ε)). If q = 5 then ε = 0 andm = 1
4 (q2−3q−2(1+ε)) = 2.

If q ≥ 7 then using the facts that q2 − 7q − 6(1 + ε) ≥ 0 for q ≡ 1 (mod 4) and that
q2 − q − 6(1 + ε) ≥ 0 for q ≡ 3 (mod 4) one can see that

m =
1

4
(q2 − (2± 1)q − 2(1 + ε)) ≥ 1

3

q(q − 1)

2
=

1

3
|LQ|.

Suppose first that X〈L〉′Q is connected. If q = 5, then X〈L〉′Q is just a cycle C. For
q ≥ 7, by Proposition 3.3, X〈L〉′Q admits a Hamilton cycle, say C again. Clearly C is
also a Hamilton cycle of X〈L〉Q. Form C a Hamilton cycle in XQ can be constructed
by choosing arbitrarily (q + 1)/2 edges and replacing them by 2-paths having as central
vertices the (q + 1)/2 isolated fixed points of N in XQ. By Lemma 3.4, this lifts to a
Hamilton cycle in X .

Next, suppose that X〈L〉′Q is disconnected. For q = 5, since X〈L〉′Q is a vertex tran-
sitive graph of order 10 and degree 2, it must be a union of two 5-cycles. For q ≥ 7, since
m ≥ 1

3 |LQ|, it follows that X〈L〉′Q has just two components. By Proposition 3.3, each
component admits a Hamilton cycle. Take a respective Hamilton path for each component,
say U = U1U2 · · ·Ul, and U ′ = U ′1U

′
2 · · ·U ′l , where l = q(q−1)

4 . Choose any two isolated
fixed points W1 and W2 and construct the cycle D = W1UW2U ′W1. Choose arbitrarily
(q + 1)/2 − 2 edges in U ∪ U ′ and replace them by 2-paths having as central vertices the
remaining (q+1)/2−2 isolated fixed points. Then we get a Hamilton cycle inXQ, which,
by Lemma 3.4, lifts to a Hamilton cycle in X .
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4.2 Case Sλ with λ 6= 0

Proposition 4.8. The graph X = X(G,H,S±λ), where λ 6= 0, is hamiltonian.

Proof. As in the proof of Lemma 4.6, fix a block 〈x〉Q ∈ LQ where x = (1, 1, 0, 0). For
any 〈y〉Q ∈ LQ where y = (y1, y2, 0, y4) with y1 6= 0, we have yρk = (y1, k

2y1 +
y2, ky1, y4), and so 〈x〉 ∼ 〈yρk〉 if and only if (k2 + 1)y1 + y2 = ±2λ, which implies,
since y1y2 + θy24 = 1, that k2 = ±2λy−11 − y

−2
1 + θ(y−11 y4)2− 1. It follows that there are

at most four solutions for k. Hence each vertex in L is adjacent to at most four vertices in
each block from LQ (including the block containing this vertex).

Let m be the valency of X〈L〉Q. Since, by Proposition 4.3, the valency of X is, re-
spectively, q2 − 1, q2 − q and q2 + q, we get that m ≥ 1

3 |LP | =
1
3
q(q−1)

2 provided

m ≥ 1

4
((q2 − j)− (q + 1)− 4) =

1

4
(q2 − q − j − 5) ≥ 1

3

q(q − 1)

2
,

where j ∈ {1, q,−q} for q ≥ 7 and j ∈ {1,−q} for q = 5. One can check that this
inequality holds for all q ≥ 5. We can therefore conclude that X〈L〉Q, which is vertex-
transitive by Lemma 4.5, has at most two connected components. The rest of the argument
follows word by word from the argument given in the proof of Proposition 4.7, since, by
Lemma 4.5, d(〈x〉Q, 〈y〉Q) = 2, for any 〈x〉Q ∈ IQ and 〈y〉Q ∈ LQ.

5 Proof of Theorem 3.2
Proof of Theorem 3.2. Let X be a connected vertex-transitive graph of order pq, where q
and p = (q2+1)/2 are primes, arising the action given in Row 5 of Table 1. As explained in
Section 3, we can assume that X is a basic orbital graph arising from a group action given
in Row 5 of Table 1, and thus it admits a Hamilton cycle by Propositions 4.7 and 4.8.
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Abstract

An (n3) configuration is an incidence structure equivalent to a linear hypergraph on
n vertices which is both 3-regular and 3-uniform. We investigate a variant in which one
constraint, say 3-regularity, is present, and we allow exactly one line to have size four,
exactly one line to have size two, and all other lines to have size three. In particular, we
study planar (Euclidean or projective) representations, settling the existence question and
adapting Steinitz’ theorem for this setting.

Keywords: Geometric configurations, incidence structures.
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1 Introduction
A geometric (nr,mk) configuration is a set of n points and m lines in the Euclidean (or
projective) plane such that every line contains exactly k points (uniformity) and every point
is incident with exactly r lines (regularity). Grünbaum’s book [3] is an excellent reference
for the major results on this topic, including many variations.

Our study here is a variation in which uniformity (or, dually, regularity) is mildly re-
laxed; see also [1] and [4, §6.8] for prior investigations in this direction.

An incidence structure is a triple (P,L, ι), where P is a set of points, L is a set of lines,
and ι ⊆ P × L is a relation called incidence. Here, we assume P is finite, say |P | = n,
and no two different lines are incident with the same set of points. In this case, we may
identify L with a set system on P . Equivalently, the points and lines can be regarded as
vertices and edges, respectively, of a (finite) hypergraph. A point-line incidence structure is
an incidence structure in which any two different points are incident with at most one line.
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†Corresponding author. Research supported by NSERC grant number 312595–2017.
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(Under this assumption, the associated hypergraph is called linear.) We make the standard
assumption in this setting that each line is incident with at least two points.

A point-line incidence structure in which all lines have the same number of points and
all points are incident with the same number of lines is called a (combinatorial) configura-
tion. As before, the abbreviation (nr,mk) represents that there are n points, each incident
with exactly r lines, andm lines, each incident with exactly k points. In alternate language,
such an incidence structure is then an r-regular, k-uniform linear hypergraph on n vertices
and m edges. Counting incidences in two ways, one has nr = mk. In either the geometric
or combinatorial setting, notation in the case n = m (hence k = r) is simplified to (nk)
configuration.

Examples 1.1. The complete graph K4 is a (43, 62) configuration, also known as a ‘quad-
rangle’. The Desargues’ configuration is a (103) configuration. The Fano plane is a (73)
configuration. The quadrangle and Desargues’ configuration are geometric, whereas the
Fano plane is not.

A point-line incidence structure is geometric if it can be realized with points and lines
in the plane, with the usual notion of incidence.

Consider a point-line incidence structure with ni points of degree ri, i = 1, . . . , s, and
mj lines of size kj , j = 1, . . . , t. As before, counting incidences yields the relation

s∑
i=1

niri =

t∑
j=1

mjkj . (1.1)

The signature of such a point-line incidence structure is the pair of polynomials (f(x),
g(y)), where f(x) =

∑s
i=1 nix

ri and g(y) =
∑t

j=1mjy
kj . Note that (1.1) can be rewrit-

ten as f ′(1) = g′(1).
In particular, an (nr,mk) configuration has signature (nxr,myk). As an example with

mixed line sizes, deleting one point from the Fano plane results in a point-line incidence
structure with signature (6x3, 3y2 + 4y3). For another example, placing an extra point
on one line of the Desargues’ configuration results in a point-line incidence structure with
signature (x+ 10x3, 4y + 9y3).

We are interested here in point-line incidence structures which are ‘approximately’
configurations of type (n3). As some motivation and context, Borowski and Pilaud [1]
use point-line incidence structures with signature (ax3 + bx4, cy3 + dy4) to produce the
first known examples of (n4) configurations for n = 37 and 43. In a different direction,
Dumnicki et al. [2] study line arrangements in projective planes with maximum number of
points of degree 3.

In this note, our focus is on structures with the specific signature

(nx3, y2 + (n− 2)y3 + y4) = (nx3, ny3 + y2(1− y)2),

and in particular their geometric realizations. These are very nearly (n3) configurations,
but with a minimal change to the signature. Our main result is that point-line incidence
structures with such signatures exist if and only if n ≥ 9, and in fact there is one with
a geometric representation in each case. This is shown in Section 2. On the other hand,
not all structures with our signature are geometric. We observe that Steinitz’ theorem on
representing (n3) configurations with at most one curved line assumes a stronger form in
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our setting, essentially characterizing which of our structures are realizable via their bipar-
tite incidence graph. This is covered in Section 3. We conclude with a few extra remarks,
including a connection to ‘fuzzy’ configurations, in which some points are replaced by
intervals.

2 Existence
Our first result easily settles the existence question for the abstract combinatorial case.

Theorem 2.1. There exists a (combinatorial) point-line incidence structure having signa-
ture (nx3, ny3 + y2(1− y)2) if and only if n ≥ 9.

Proof. Suppose there exists such an incidence structure. Consider line L = {p1, . . . , p4}
of size four. Each point pi is incident with exactly two other lines. These 8 additional
lines are distinct, by linearity and the fact that pi, pj are already together on L for each
1 ≤ i < j ≤ 4. It follows that the configuration has at least 9 lines, and so n ≥ 9.

Conversely, suppose n ≥ 9. Let L denote the set of translates of {0, 1, 3}modulo n−1.
Then ({0, 1, . . . , n − 2},L) is an ((n − 1)3) configuration. Add a new point∞ and take
the adjusted family of lines

L′ := L \ {{0, 1, 3}, {4, 5, 7}} ∪ {{0, 1, 3,∞}, {4,∞}, {5, 7,∞}}.

It is simple to check that ({0, 1, . . . , n− 2,∞},L′) is a point-line incidence structure with
the desired signature.

We turn now to the geometric case. The line adjustments used in the proof of Theo-
rem 2.1 cannot be applied to an arbitrary geometric ((n − 1)3) configuration. Moreover,
the Mobiüs-Kantor (83) configuration does not admit a geometric realization. To this end,
we start with an example on 9 points.

Example 2.2. Figure 1 shows a (geometric) point-line incidence structure with signature
(9x3, y2 + 7y3 + y4) given as (a) a projective realization with one point at infinity and
(b) a Euclidean realization. The lines of size 2 and 4 are highlighted. The dual incidence
structure, in which there is exactly one point of degree 2 and one point of degree 4, is drawn
in (c).

(a) Projective (b) Euclidean (c) The dual

Figure 1: A point-line incidence structure with signature (9x3, y2 + 7y3 + y4).

Here, it is helpful to cite a result which is used (very mildly) below, and (more crucially)
for our structural considerations in Section 3. This result, due to Steinitz, roughly says that
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configurations of type (n3) are ‘nearly’ geometric. However, the reader is encouraged
to see Grünbaum’s discussion [3, §2.6] of ‘unwanted incidences’, which in certain cases
cannot be avoided.

Theorem 2.3 (Steinitz [5]; see also [3]). For every combinatorial (n3) configuration, there
is a representation of all but at most one of its incidences by points and lines in the plane.

This result, in combination with with Example 2.2 and the existence of combinato-
rial (n3) configurations for n ≥ 7, allows us to adapt the argument in Theorem 2.1 to a
geometric one.

Theorem 2.4. For each n ≥ 9, there exists a point-line incidence structure having signa-
ture (nx3, ny3 + y2(1− y)2) with incidences represented as points and lines in the plane.

Proof. First, we consider values n ≥ 14. Take disjoint configurations (P,L) and (Q,H)
of types (73) and ((n − 7)3), respectively. Apply Steinitz’ theorem to each. Assume
that {p1, p2, p3} ∈ L, yet line p1p2 in the first Steinitz embedding does not contain p3.
Similarly, suppose {q1, q2, q3} ∈ H where q3 need not be placed on line q1q2. If it is not,
we align the drawings in the plane such that line p1p2 coincides with line q1q2, creating a
line of size four. We finish by including the additional line p3q3. If the latter configuration
has a geometric realization (which we may assume for n ≥ 16), we can simply place the
drawings so that p3 is on lines q1q2q3, and include p1p2 as an additional line. In either case,
we have a geometric point-line configuration with the desired signature.

Figure 2: Examples for n = 10, . . . , 13.

For the cases 9 ≤ n ≤ 13, we use direct examples. The case n = 9 is shown in
Example 2.2; the other values are shown in Figure 2. Note that projective points are used
in some cases, as indicated with arrows on parallel (Eudlidean) lines.

Example 2.5. As an illustration of the proof technique, Figure 3 shows how two Fano
planes with missing incidences can be aligned to produce an example in the case n = 14.

3 Structure
In Theorem 2.4, we merely proved the existence of one incidence structure with signature
(nx3, ny3 + y2(1− y)2) having a geometric representation. It is easy to build (combinato-
rial) such incidence structures which are non-geometric using a similar method.

Proposition 3.1. For each n ≥ 14, there exists a point-line incidence structure having
signature (nx3, ny3 + y2(1− y)2) and with no planar representation.
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Figure 3: A compound example with n = 14 points.

Proof. Take disjoint configurations (P,L) and (Q,H) of types (73) and ((n − 7)3), re-
spectively. Consider the configuration (P ∪ Q,K), where K is formed from the lines of
L ∪ H by replacing lines {p1, p2, p3} ∈ L and {q1, q2, q3} ∈ H with {p1, p2, p3, q4} and
{q2, q3}. This incidence structure has the desired signature. It is non-geometric, since its
‘restriction’ to P is the Fano plane, which has no realization in the plane.

Given an incidence structure (P,L, ι), its Levi graph is the bipartite graph with vertex
partition (P,L) and edge set {{p, L} : (p, L) ∈ ι}. It is easy to see that the Levi graph of a
linear incidence structure has girth at least six. Steinitz’ argument for obtaining geometric
representations essentially works by iteratively removing vertices of lowest degree in the
Levi graph, and then drawing the corresponding objects (as needed) in reverse.

We can use the Levi graph to test when a combinatorial point-line incidence structure
of our signature has a geometric representation.

Theorem 3.2. A point-line incidence structure with signature (nx3, ny3+y2(1−y)2) has
a geometric realization if and only if its Levi graph contains no cut-edge whose removal
leaves a 3-regular component whose corresponding configuration is non-geometric.

Proof. Necessity of the condition is obvious.
For sufficiency, consider the Levi graph of a structure of the given type. Remove the

unique vertex of degree 2, and iteratively remove a vertex of degree less than 3 until there
are no more such vertices. Either we succeed in eliminating all vertices of the graph, or
some 3-regular subgraph is left over. In the latter case, note that the last vertex removed
corresponds to one of the points on the line of size four.

If all vertices are eliminated, simply reverse the list of deletions and follow Steinitz’
argument. Since vertices get ‘added back’ with degree at most two, we obtain a sequence
of instructions of one of the following types: placing a new point, drawing a new line,
placing a point on an existing line, drawing a line through an existing point, placing a point
on the intersection of two existing lines, and drawing a line through a pair of existing points.
Each instruction can be carried out in the plane, and we have the desired representation.

Suppose a nonempty 3-regular graph remains after removing vertices. By our assump-
tion, it is the Levi graph of an (n3) configuration which admits a geometric representation.
Carry out the instructions as above to reverse vertex deletions, ensuring to begin by placing
a new point on the cut-vertex to create a line of size four. This again produces a represen-
tation of incidences in the plane.
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As a simple consequence, we may successfully carry out Steinitz’ procedure in this
setting provided the vertex of degree four in the Levi graph is incident with no cut-edge.

4 Discussion

A general method which we have found often works for the explicit construction of geo-
metric ‘approximate’ configurations can be loosely described as ‘moving incidences’. It
is usually not possible to simply move a point onto an existing line. But, sometimes, a
configuration can be perturbed slightly to achieve this. (In doing so, some care must be
taken to avoid unwanted incidences.) Our hope is that such a process can be systematically
described, producing a wide assortment of perturbations of known configurations. If done
in sufficient generality, such a process might handle other types beyond our simple case
study of (nx3, ny3 + y2(1− y)2).

p
I

Figure 4: ‘Fuzzy’ modification of a (103) configuration.

One possible way this can succeed is through the intermediate step of a ‘fuzzy’ realiza-
tion, which we loosely define as a collection of intervals (possibly points) and lines so that
all incidences are represented in the usual way. In this setting, an interval is deemed incident
with a line if it intersects that line. Consider the example (103) configuration shown on the
left of Figure 4. To construct the incidence structure with signature (10x3, y2 + 8y3 + y4)
on the right, one point p is replaced by an abstract point represented geometrically by an
interval I incident with two of the lines that went through p. If it is possible to shrink the
interval I to a geometric point, maintaining other incidences, then the resulting configu-
ration is geometric. This latter step is possible in the case of the fuzzy realization on the
right of Figure 4, and in a few other cases we considered. We feel an interesting question
is identifying sufficient conditions for when such interval-eliminating perturbation can be
carried out in general.

We have not attempted any enumeration or classification work for structures with the
signature (nx3, ny3 + y2(1 − y)2). But such work may offer some insight into a partial
correspondence with, say, geometric ((n− 1)3) configurations.
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Texts, Birkhäuser, New York, 2013, doi:10.1007/978-0-8176-8364-1.
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Abstract

Lucas cubes are special subgraphs of Fibonacci cubes. For small dimensions, their
domination numbers are obtained by direct search or integer linear programming. For
larger dimensions some bounds on these numbers are given. In this work, we present the
exact values of total domination number of small dimensional Lucas cubes and present
optimization problems obtained from the degree information of Lucas cubes, whose solu-
tions give better lower bounds on the domination numbers and total domination numbers
of Lucas cubes.

Keywords: Lucas cube, Fibonacci cube, domination number, total domination number, integer linear
programming.
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1 Introduction
Fibonacci cubes and Lucas cubes are special subgraphs of the hypercube graph, which are
introduced as an alternative model for interconnection networks [6, 11]. The structural and
enumerative properties of these graphs are considered from various point of view in the
literature [2, 6, 7, 8, 9, 10, 11, 15].

Let Qn denote the hypercube of dimension n ≥ 1. It is the graph with vertex set
represented by all binary strings of length n and two vertices in Qn are adjacent if they
differ in one coordinate. For convenience Q0 = K1. Fibonacci strings of length n are
defined as the binary strings b1b2 . . . bn such that bi ·bi+1 = 0 for all i = 0, 1, . . . , n−1, that
is, binary strings of length n not containing two consecutive 1s. Using this representation
n dimensional Fibonacci cube Γn is defined as the subgraph of Qn induced by the vertices
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whose string representations are Fibonacci strings. Lucas strings of length n are defined
as the Fibonacci strings b1b2 . . . bn such that b1 · bn = 0. Similar to the Fibonacci cubes n
dimensional Lucas cube Λn is defined as the subgraph of Γn induced by the vertices whose
string representations are Lucas strings.

Let G = (V,E) be a graph with vertex set V and edge set E. D ⊆ V is called a
dominating set of G if every vertex in V either belongs to D or is adjacent to some vertex
in D. Then the domination number γ(G) of G is defined as the minimum cardinality of
a dominating set of the graph G. Similarly, D ⊆ V is called a total dominating set of a
graph G without isolated vertex if every vertex in V is adjacent to some vertex in D and
the total domination number γt(G) of G is defined as the minimum cardinality of a total
dominating set of G. The domination numbers of Γn and Λn are first considered in [2, 12].
Using integer linear programming, domination numbers of Γn and Λn are considered in [7]
and total domination number of Γn is considered in [1]. Furthermore, upper bounds and
lower bounds on γ(Γn), γt(Γn), γ(Λn) are obtained in [1, 2, 13] and they are improved for
Γn in [14].

In this work, we present optimization problems obtained from the degree information of
Lucas cubes, whose solutions give better lower bounds on the domination numbers and total
domination numbers of Lucas cubes. Our aim is to improve the known results on γ(Λn) and
present new results on γt(Λn). Furthermore, we introduce the up-down degree polynomials
for Λn containing the degree information of all vertices V (Λn) in more detail. Using these
polynomials we define optimization problems whose solutions give lower bound on γ(Λn)
and γt(Λn).

2 Preliminaries
For n ≥ 2 we will use the fundamental decomposition of Γn (see, [8]):

Γn = 0Γn−1 + 10Γn−2, (2.1)

where Γ0 = Q0 and Γ1 = Q1. Here note that 0Γn−1 is the subgraph of Γn induced by
the vertices that start with 0 and Γn−2 is the subgraph of Γn induced by the vertices that
start with 10. Furthermore, 0Γn−1 has a subgraph isomorphic to 00Γn−2, and there exists
a perfect matching between 00Γn−2 and 10Γn−2. Similar to this decomposition for n ≥ 3
Lucas cubes can be written as

Λn = 0Γn−1 + 10Γn−30, (2.2)

where 10Γn−30 is the subgraph of Λn induced by the vertices that start with 10 and end
with 0. Here, there exists a perfect matching between 10Γn−30 and 00Γn−30 ⊂ 0Γn−1.
By convention, Λ1 = Γ0 and Λ2 = Γ2.

The number of vertices of the Γn is fn+2, where fn are the Fibonacci numbers defined
as f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2. Similarly, the number of vertices
of the Λn is Ln, where Ln are the Lucas numbers defined as L0 = 2, L1 = 1 and Ln =
Ln−1 + Ln−2 for n ≥ 2.

Let x, y be two binary strings of length n. Then the Hamming distance between x and
y, dH(x, y) is the number of coordinates in which they differ. The Hamming weight of x,
w(x) is the number of nonzero coordinates in x. Note that Hamming distance is the usual
graph distance in Qn.

In Figure 1 we present small dimensional Lucas cubes and a minimal total dominating
set with circled vertices for 2 ≤ n ≤ 5.
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Figure 1: Lucas cubes and their minimal total dominating sets for 2 ≤ n ≤ 5.

3 Integer linear programming for domination numbers
In this section, we describe a linear programming problem used in [7] for finding the domi-
nation number of Γn and Λn. A similar approach is used in [1] for finding the total domina-
tion number of Γn. The main difficulty for these methods are the number of variables and
the number of constraints which are equal to the number of vertices in Γn and Λn. Using
this approach we obtain the total domination number of Λn for n ≤ 12.

LetN(v) denote the set of vertices adjacent to v andN [v] = N(v)∪{v}. Suppose each
vertex v ∈ V (Λn) is associated with a binary variable xv . The problems of determining
γ(Λn) and γt(Λn) can be expressed as a problem of minimizing the objective function∑

v∈V (Λn)

xv (3.1)

subject to the following constraints for every v ∈ V (Λn):∑
a∈N [v]

xa ≥ 1 (for domination number),

∑
a∈N(v)

xa ≥ 1 (for total domination number).

The value of the objective function gives γ(Λn) and γt(Λn) respectively. Note that this
problem has Ln variables and Ln constraints. In [7] γ(Λn) is obtained up to n = 11 and
for larger values of n as the number of variables increases no results are presented.

We implemented the integer linear programming problem (3.1) using CPLEX in NEOS
Server [3, 4, 5] for n ≤ 12 and obtain the values of γt(Λn) for n ≤ 12 and obtain the
estimates 49 ≤ γ(Λ12) ≤ 54 (takes approximately 2 hours). We collect the known values
of γ(Λn) for n ≤ 11 (see, [7]) and the new values of γt(Λn) that we obtained from (3.1)
for n ≤ 12 in Table 1.

The fundamental decompositions (2.1) and (2.2) of Γn and Λn are used to obtain the
following relations between γ(Λn) and γ(Γn). The main idea in the proof is to partition
the set of vertices into disjoint subsets.
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Table 1: Values of γ(Λn) and γt(Λn) for n ≤ 12.

n 2 3 4 5 6 7 8 9 10 11 12

|V (Λn)| 3 4 7 11 18 29 47 76 123 199 322

γ(Λn) 1 1 3 4 5 7 11 16 23 35
γt(Λn) 2 2 3 4 7 9 13 19 27 41 58

Proposition 3.1 ([2, Proposition 3.1]). Let n ≥ 4, then

(i) γ(Λn) ≤ γ(Γn−1) + γ(Γn−3),

(ii) γ(Λn) ≤ γ(Γn) ≤ γ(Λn) + γ(Γn−4).

Using a similar idea we obtain the following result.

Proposition 3.2. Let n ≥ 4, then

(i) γt(Λn) ≤ γt(Γn−1) + γt(Γn−3),

(ii) γt(Λn) ≤ γt(Γn) ≤ γt(Λn) + γt(Γn−4).

Proof. The proof mimics the proof of [2, Proposition 3.1].
(i): The vertices of Λn can be partitioned into vertices that start with 0 and vertices that

start with 1. The subgraphs induced by these vertices are isomorphic to Γn−1 and Γn−3

respectively, hence we infer that γt(Λn) ≤ γt(Γn−1) + γt(Γn−3).
(ii): Let DT be a minimal total dominating set of Γn and set

D′T = {α | α is a Lucas string from DT } ∪ {0α0 | 1α1 ∈ DT }.

Note that |D′T | ≤ |DT | and a vertex of the form 1α1 dominates two Lucas vertices of
the form 0α1 and 1α0. Since these two vertices are dominated by 0α0, we say that D′T
is a dominating set of Λn. Then we need to show that it is also a total dominating set.
We know that every vertex in v ∈ V (Λn) ⊆ V (Γn) is adjacent to some vertex β ∈ DT .
Then if β ∈ D′T we are done. Otherwise, β must be of the form 1α1 ∈ DT . In this case
v ∈ V (Λn) must be of the form 1α0 or 0α1, which means that v is also adjacent to a
vertex of the form 0α0 ∈ D′T . It follows that γt(Λn) ≤ γt(Γn). On the other hand, a
total dominating set of Λn dominates all vertices of Γn but the vertices of the form 10α01
where the subgraph induced by these vertices is isomorphic to Γn−4. Hence we have
γt(Γn) ≤ γt(Λn) + γt(Γn−4).

Considering the vertices of high degrees a lower bound on γ(Λn) is obtained in [2,
Theorem 3.5] as γ(Λn) ≥ dLn−2n

n−3 e where n ≥ 7. Combining this result with the fact that
γt(Λn) ≥ γ(Λn) we have the following lower bound on γt(Λn).

Proposition 3.3. For any n ≥ 7, we have

γt(Λn) ≥ γ(Λn) ≥
⌈
Ln − 2n

n− 3

⌉
.
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4 Up-down degree enumerator polynomial
In this section we present the up-down degree enumerator polynomial for Λn similar to the
one for Γn given in [14]. Using this polynomial we write optimization problems whose
solutions give lower bounds on γ(Λn) and γt(Λn).

By the definition of the edge set E(Λn), (v, v′) ∈ E(Λn) if and only if the number of
different coordinates of v and v′ is 1, that is, the Hamming distance dH(v, v′) = 1. Here
we have at most two kinds of neighbor v′ for a vertex in v ∈ V (Λn), whose weights can
take the values w(v) ± 1. If w(v′) = w(v) + 1 we call v′ is an up neighbor of v and
if w(v′) = w(v) − 1 we call v′ is a down neighbor of v. We denote the number of up
neighbors of v by u and the number of down neighbors of v by d which is equal to the
w(v) by the definition of Λn. Note that if the degree of v is k then we have u = k − d.
For each fixed v ∈ V (Λn) having degree k = deg(v), we write a monomial xuyd where
d = w(v) is the Hamming weight of v and u is k − d. We call the polynomial

PΛn
(x, y) =

∑
v∈V (Λn)

xdeg(v)−w(v)yw(v) =
∑

v∈V (Λn)

xuyd

as the up-down degree enumerator polynomial of Λn.
We need the following useful result given in [10] to obtain the recursive structure of

PΛn
(x, y). Let `n,k,w be the number of vertices in Λn of degree k and weight w.

Theorem 4.1 ([10, Theorem 5.2]). For all n, k, w such that n ≥ 2, 1 ≤ k ≤ n and
0 ≤ w ≤ n,

`n,k,w =

(
w − 1

2w + k − n

)(
n− 2w

k − w

)
+ 2

(
w

2w + k − n

)(
n− 2w − 1

k − w

)
.

Let `′n,u,d be the number of vertices in Λn whose number of up neighbors are u and
number of down neighbors are d. Setting k = u+ d and w = d in Theorem 4.1 we have

`′n,u,d =

(
d− 1

3d+ u− n

)(
n− 2d

u

)
+ 2

(
d

3d+ u− n

)(
n− 2d− 1

u

)
. (4.1)

Then using (4.1) we can write the up-down degree enumerator polynomial of Λn as

PΛn
(x, y) =

∑
u,d

`′n,u,d x
uyd, (4.2)

where 0 ≤ u, d ≤ n. Furthermore, using (4.1) and (4.2) we obtain the following recursive
relation which is very useful to calculate PΛn(x, y).

Theorem 4.2. Let PΛn
(x, y) be the up-down degree enumerator polynomial of Λn. Then

for n ≥ 5 we have

PΛn(x, y) = xPΛn−1(x, y) + yPΛn−2(x, y) + (y − xy)PΛn−3(x, y), (4.3)

where

PΛ2(x, y) = x2 + 2y, PΛ3(x, y) = x3 + 3y and PΛ4(x, y) = x4 + 4xy + 2y2.
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Proof. The initial conditions are clear from the definition of Λn. For fixed integers 1 ≤
u < n and 2 ≤ d < bn2 c, the coefficient of the monomial xuyd in the right hand side of
the equation (4.3) is the sum of `′n−1,u−1,d coming from xPΛn−1

(x, y), `′n−2,u,d−1 coming
from yPΛn−2

(x, y), `′n−3,u,d−1 coming from yPΛn−3
(x, y) and −`′n−3,u−1,d−1 coming

from −xyPΛn−3(x, y). Then we need to show that

`′n,u,d = `′n−1,u−1,d + `′n−2,u,d−1 + `′n−3,u,d−1 − `′n−3,u−1,d−1.

By setting X = 3d+ u− n and Y = n− 2d in (4.1) and using the binomial identities(
m

k

)
=
m

k

(
m− 1

k − 1

)
=
m+ 1− k

k

(
m

k − 1

)
=

m

m− k

(
m− 1

k

)
we have

`′n−1,u−1,d + `′n−2,u,d−1 + `′n−3,u,d−1 − `′n−3,u−1,d−1

=

(
d− 1

X

)(
Y − 1

u− 1

)
+ 2

(
d

X

)(
Y − 2

u− 1

)
+

(
d− 2

X − 1

)(
Y

u

)
+ 2

(
d− 1

X − 1

)(
Y − 1

u

)
+

(
d− 2

X

)(
Y − 1

u

)
+ 2

(
d− 1

X

)(
Y − 2

u

)
−
(
d− 2

X − 1

)(
Y − 1

u− 1

)
+ 2

(
d− 1

X − 1

)(
Y − 2

u− 1

)
=

(
d− 1

X

)(
Y

u

)[
u

Y
+

X

d− 1
+
d− 1−X
d− 1

· Y − u
Y

− X

d− 1
· u
Y

]
+ 2

(
d

X

)(
Y − 1

u

)[
u

Y − 1
+
X

d
+
d−X
d
· Y − 1− u

Y − 1
− X

d
· u

Y − 1

]
=

(
d− 1

X

)(
Y

u

)
+ 2

(
d

X

)(
Y − 1

u

)
= `′n,u,d.

In particular, the case d = 0 corresponds to the all 0 vertex in Λn and we have `′n,n,0 = 1,
which means that the coefficient of the terms xny0 in both sides of (4.3) are 1. Similarly,
the case u = 0 corresponds to the vertices in Λn whose weights are bn2 c and we have (see,
Remark 5.1)

`′n,0,bn2 c
=

{
n if n is odd,
2 if n is even.

Then one can easily see that the coefficient of the terms x0yb
n
2 c in both sides of (4.3) are

equal to each other. The only remaining particular case is d = 1. For PΛn
(x, y) this case

corresponds to the vertices in Λn whose weights are 1. We know that there are n such
vertices in Λn and their number of up neighbors are n − 3. That is, the coefficient of the
term xn−3y in PΛn

(x, y) is n. On the other hand the coefficient of the term xn−3y is n− 1
in xPΛn−1

(x, y); 0 in yPΛn−2
(x, y) and 1 in (y − xy)PΛn−3

(x, y) respectively. Hence the
coefficient of the terms xuyd in both sides of (4.3) are equal to each other for all cases.
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Remark 4.3. The recursive relation for the up-down degree enumerator polynomial of Λn

in Theorem 4.2 is the same with the recursive relation for the up-down degree enumerator
polynomial of Γn, which is proved using the fundamental decomposition Γn = 0Γn−1 +
10Γn−2. The only differences are the initial polynomials. For the proof we directly used
the degree information of Λn obtained in [10], since Λn do not have a decomposition like
0Λn−1 + 10Λn−2.

5 Lower bounds on domination numbers using optimization problems
In this section, we present optimization problems giving lower bounds on γ(Λn) and
γt(Λn), whose number of variables and number of constraints are fewer than the general
optimization problem described in Section 3.

We use the up-down degree enumerator polynomial PΛn
(x, y) to construct an optimiza-

tion problem, which is similar to the optimization problem given in [14]. Let D and DT

be a dominating set and a total dominating set of Λn respectively. Let vD ∈ D
(
vD ∈ DT

respectively
)

and xuyd be its corresponding monomial in PΛn
(x, y). Then vD dominates

u distinct vertices v ∈ V (Λn) having weight w(v) = w(vD) + 1 and d distinct vertices
v ∈ V (Λn) having weight w(v) = w(vD) − 1. Note that for all vD ∈ D

(
vD ∈ DT

respectively
)

some of the vertices of Λn may be dominated more than one times. Note
that for every vertex v ∈ V (Λn) there must exist at least one vertex vD ∈ N [v] ∩ DT

with w(vD) = w(v) ∓ 1 or vD = v for the dominating set D and vD ∈ N(v) ∩DT with
w(vD) = w(v)∓ 1 for the total dominating set DT .

Now we write the up-down degree enumerator polynomial of Λn (see, 4.2) as

PΛn
(x, y) =

∑
u,d

cudx
uyd, (5.1)

where cud = `′n,u,d. For each pair (u, d) in the monomials of the up-down degree enumera-
tor polynomial PΛn

(x, y) we associate an integer variable zud which counts the number of
vertices in D or DT having d down neighbors and u up neighbors. For any fixed value of
d, the number of vertices having weight d gives the bounds 0 ≤ zud ≤ cud . Our aim is to
minimize |D| for domination number and to minimize |DT | for total domination number.
Hence our objective function is to minimize∑

u,d

zud .

To dominate all the vertices having a fixed weight d such that 1 ≤ d ≤ bn2 c − 1 we must
have the following constraints rd for domination number and r′d for the total domination
number.

rd :
∑
u

(
u · zud−1 + zud + (d+ 1) · zud+1

)
≥
∑
u

cud

r′d :
∑
u

(
u · zud−1 + (d+ 1) · zud+1

)
≥
∑
u

cud

since any vertex corresponding to the monomial xuyd−1 can dominate u distinct vertices
(u up neighbors) having weight d and any vertex corresponding to the monomial xu

′
yd+1
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can dominate d+ 1 distinct vertices (d+ 1 down neighbors) having weight d. By the same
argument, for d = 0 we must have

r0 :
∑
u

zu0 + zu1 ≥
∑
u

cu0 = 1 and r′0 :
∑
u

zu1 ≥
∑
u

cu0

and for d = bn2 c we must have

rbn2 c :
∑
u

u · zubn2 c−1 + zubn2 c
≥
∑
u

cubn2 c
=

{
n if n is odd,
2 if n is even.

r′bn2 c
:

∑
u

u · zubn2 c−1 ≥
∑
u

cubn2 c
=

{
n if n is odd,
2 if n is even.

Now subject to the above constraints r0, . . . , rbn2 c (constraints r′0, . . . , r
′
bn2 c

) the value of
the objective function will be a lower bound on γ(Λn) (γt(Λn), respectively).

Remark 5.1. The number of vertices of Λn having weight d is equal to the right hand side
of the above constraints rd and r′d. By setting k = u+ d and w = d in [10, Corollary 5.3]
we have ∑

u

cud =

n−d∑
u=0

`′n,u,d =

(
n− d
d

)
+

(
n− d− 1

n− 2d

)
.

Remark 5.2. The number of variables zud in our optimization problem is equal to the
number of monomials in PΛn

(x, y). Assume that n is even. By the string representation of
the vertices in Λn we have n−3d ≤ u ≤ n−2d−1. The bounds come from the maximum
number of the sub-strings 010 and 10 in the representation of the vertices. That is, u can
take n− 2d− 1− (n− 3d) + 1 = d distinct values when d ranges from 1 up to bn3 c and u
can take n− 2d distinct values when n

3 + 1 ≤ d < bn2 c. Furthermore, u can take only one
values for d = 0 and d = bn2 c. Therefore, the number of variables zud becomes

2 +

bn3 c∑
d=1

d+

bn2 c−1∑
d=bn3 c+1

(n− 2d)

which is equal to

2 +
3

2

⌊n
3

⌋(⌊n
3

⌋
+ 1− 2n

3

)
+
⌊n

2

⌋(
n−

⌊n
2

⌋
+ 1
)
− n. (5.2)

For n ≥ 2 this sequence starts as 2, 2, 3, 3, 5, 5, 7, 8, 10, 11, 14, 15, 18, 20, 23, 25, 29, . . .
Note that in (3.1) the number of variables is Ln, which exhibit exponential growth. In our
case, if we omit the floor functions in (5.2) then the number of variables zud is approximately
equals to 2 + n2

12 .

For n = 12 we illustrate our optimization problem as follows. First we obtainPΛ12
(x, y)
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by using the recursion in Theorem 4.2 as

PΛ12
(x, y) = 2y6+

12y5x+ 24y5+

12y4x3 + 54y4x2 + 36y4x+ 3y4+

12y3x5 + 60y3x4 + 40y3x3+

12y2x7 + 42y2x6+

12yx9+

x12

Then using PΛ12
(x, y) we have the corresponding optimization problem:

Objective function:

minimize : z12
0 + z9

1 + z7
2 + z6

2 + z5
3 + z4

3 + z3
3 + z3

4 + z2
4 + z1

4 + z0
4 + z1

5 + z0
5 + z0

6 ;

Constraints for γ(Λ12):

r6 : z1
5 + z0

6 ≥ 2;

r5 : 3z3
4 + 2z2

4 + z1
4 + z1

5 + z0
5 + 6z0

6 ≥ 36;

r4 : 5z5
3 + 4z4

3 + 3z3
3 + z3

4 + z2
4 + z1

4 + z0
4 + 5z1

5 + 5z0
5 ≥ 105;

r3 : 7z7
2 + 6z6

2 + z5
3 + z4

3 + z2
3 + 4z3

4 + 4z2
4 + 4z1

4 + 4z0
4 ≥ 112;

r2 : 9z9
1 + z7

2 + z6
2 + 3z5

3 + 3z4
3 + 3z3

3 ≥ 54;

r1 : 12z12
0 + z9

1 + 2z7
2 + 2z6

2 ≥ 12;

r0 : z12
0 + z9

1 ≥ 1;

Constraints for γt(Λ12):

r′6 : z1
5 ≥ 2;

r′5 : 3z3
4 + 2z2

4 + z1
4 + 6z0

6 ≥ 36;

r′4 : 5z5
3 + 4z4

3 + 3z3
3 + 5z1

5 + 5z0
5 ≥ 105;

r′3 : 7z7
2 + 6z6

2 + 4z3
4 + 4z2

4 + 4z1
4 + 4z0

4 ≥ 112;

r′2 : 9z9
1 + 3z5

3 + 3z4
3 + 3z3

3 ≥ 54;

r′1 : 12z12
0 + 2z7

2 + 2z6
2 ≥ 12;

r′0 : z9
1 ≥ 1;

Bounds:

z12
0 ≤ 1; z9

1 ≤ 12; z7
2 ≤ 12; z6

2 ≤ 42; z5
3 ≤ 12; z4

3 ≤ 60; z3
3 ≤ 40;

z3
4 ≤ 12; z2

4 ≤ 54; z1
4 ≤ 36; z0

4 ≤ 3; z1
5 ≤ 12; z0

5 ≤ 24; z0
6 ≤ 2.

Depending on the constraints rd and r′d (d = 0, 1, . . . , 6) the value of the objective
function gives a lower bound on γ(Λ12) and γt(Λ12) respectively. The above problem has
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only 14 variables and 7 constraints (instead of having L12 = 322 variables and 322 con-
straints as in (3.1)). To find lower bounds on γ(Λn) and γt(Λn) one can use the up-down
degree enumerator polynomial PΛn

(x, y) of Λn in Theorem 4.2 and one can write an op-
timization problem having fewer number of variables zud (see Remark 5.2) and bn2 c + 1
constraints rd or r′d. The solutions of the optimization problems give lower bounds on
γ(Λn) and γt(Λn). It is easy to see that the number of variables and the number of con-
straints in our optimization problems are very smaller than the ones in the optimization
problem (3.1).

For illustration we implemented the above integer linear programming problem using
CPLEX in NEOS Server [3, 4, 5] for 12 ≤ n ≤ 26 and immediately (less than 0.02
seconds) obtain the lower bounds on γ(Λn) and γt(Λn) presented in Table 2 and Table 3
(better than the ones in Proposition 3.3). Note that for n = 26, the number of variables
in our optimization problem is 58 by Remark 5.2 and the number of constraints is 14, on
the other hand, these numbers are equal to L26 = 271443 for the general optimization
problem (3.1). In addition, the upper bounds in these tables are obtained by Proposition 3.1
and Proposition 3.2 by using the upper bounds on the values of γ(Γn) and γt(Γn) given in
[14] for n ≥ 14.

Table 2: Current best bounds on γ(Λn), 12 ≤ n ≤ 26.

n γ(Λn) n γ(Λn) n γ(Λn)

12 49∗ – 54 17 310 – 555 22 2686 – 6140
13 61∗ – 86 18 471 – 895 23 4184 – 9935
14 89 – 132 19 725 – 1450 24 6519 – 16075
15 134 – 215 20 1114 – 2345 25 10163 – 26010
16 203 – 340 21 1724 – 3795 26 15835 – 42085

Table 3: Current best bounds on γt(Λn), 12 ≤ n ≤ 26.

n γt(Λn) n γt(Λn) n γt(Λn)

12 58∗ 17 340 – 567 22 2893 – 6140
13 77∗ – 95 18 514 – 909 23 4490 – 9935
14 101 – 145 19 787 – 1450 24 6974 – 16075
15 151 – 231 20 1205 – 2345 25 10839 – 26010
16 225 – 362 21 1862 – 3795 26 16838 – 42085

Remark 5.3. It is shown in [1, 7] that γ(Γ9) = 17, γ(Γ10) = 25, 54 ≤ γ(Γ12) ≤ 61 and
78 ≤ γ(Γ13) ≤ 93 (shown in [14]). Substituting these results in Proposition 3.1 we obtain
the bounds for n = 13 in Table 2.

Similarly, it is shown in [1, 7] that γt(Γ9) = 20, γt(Γ10) = 30, γt(Γ12) = 65 and
97 ≤ γt(Γ13) ≤ 101. Substituting these results in Proposition 3.2 we obtain the bounds
for n = 13 in Table 3.

Note that our optimization problems obtained from up-down degree enumerator poly-
nomial give γ(Λ12) ≥ 39, γt(Λ12) ≥ 45 and γ(Λ13) ≥ 59, γt(Λ13) ≥ 68. Furthermore,
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using (3.1) we obtain that 49 ≤ γ(Λ12) ≤ 54 and γt(Λ12) = 58. For these reasons we put
a ∗ to the lower bounds for the cases n = 12 and n = 13 in Table 2 and Table 3.
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Abstract

Cobordism of virtual string links on n strands is a combinatorial generalization of link
cobordism. There exists a bijection between virtual string links on n strands up to cobor-
disms and elements of the direct product of n(n−1) copies of the integers. This paper also
shows that virtual string links up to unwelded equivalence are classified by those groups.
Finally, the related theory of welded string link cobordism is defined herein and shown to
be trivial for string links with one component.

Keywords: Virtual links, string links, cobordism, concordance, welded knots.
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1 Introduction
Virtual knot theory, as understood from [9], is a combinatorial extension of classical knot
theory. When picturing oriented knots as diagrams in the plane, crossings are vertices
of a planar, oriented, tetra-valent graph with a cyclic orientation of the edges and a dis-
tinguished over-crossing pair. Removing the planarity requirement on such graphs yields
virtual knot diagrams, whose equivalence classes up to the appropriate (generalized) Reide-
meister moves are called virtual knots. Similarly, by understanding a classical string link as
an equivalence class of diagrams, one defines a virtual string link. The goal of this paper is
to relate three generalizations of concepts from classical knot theory through the following
result:
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Theorem 1.1. Let L1 and L2 be virtual string link diagrams. Then, the following are
equivalent:

(1) L1 is cobordant to L2;

(2) L1 is unwelded equivalent to L2;

(3) The pairwise virtual linking number of the components of L1 equal those of L2.

The first classification, string link cobordism, is a generalization of the notion of virtual
link cobordism introduced by Carter, Kamada, and Saito in [5]. It relies on an interpretation
of virtually knotted objects as curves in thickened surfaces, but yields the same theory as
the one that is exposed below.

The second classification has been studied under many other names, notably as fused
isotopy and the equivalence between statements (2) and (3) is a generalization of Theorem 2
of [7] and of Theorem 8 in [12]. This result appears as Theorem 4 in [10] (where the
word unrestricted is synonymous to unwelded) and as Proposition 3.6 in [2]. Both of
these papers offer view on unwelded equivalence which unfortunately lacks an intrinsic
topological interpretation.

My new contribution is relating cobordance with the pairwise linking number. This
paper is structured as follows: relevant definitions are given in Section 2, results and topo-
logical notions needed to prove the main theorem appear in Section 3, followed by its
proof in Section 4. Finally, Section 5 is contains partial results on welded string links up to
concordance.

2 Vocabulary
From now on, fix n ≥ 1 to be an integer, and let I = [0, 1] denote the closed unit interval.

2.1 Virtual string links

Classical string links were defined in [8] as a self-concordance of n points in D2 × I ,
where D2 is the closed unit disk in the plane. This abstract and succinct definition contains
all the details needed to understand these objects, but it does not allow a straightforward
generalization to virtual string links.

Following the approach to virtual knot theory from [9], let a virtual string link diagram
be a diagram consisting of n smooth curves, oriented from ( i

n+1 , 0) to ( i
n+1 , 1), with i =

1, 2, . . . , n, such that singularities are at most a finite number of transverse double points,
decorated in one of the ways depicted in Figure 1. The classical Reidemeister moves,
as shown in Figure 2 can be applied to string link diagrams and generate the expected
equivalence classes.

Figure 1: Positive, negative, and virtual crossings in planar diagrams.
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Therefore, virtual string links, to be generalizations of virtual pure braids need to be
defined combinatorially. While one could do this process using any knot presentation,
the following will only use planar and Gauss diagrams. Virtual string links are then the
equivalence class generated by such a diagram, up to the extended Reidemeister moves
from [9] and planar isotopies.

Given such a planar diagram, one can create its associated Gauss diagram by drawing
the n intervals and connecting the pre-images of a classical crossing by an arrow oriented
from the overcrossing component to the undercrossing one, decorated by signs using the
convention shown in Figure 1. The writhe function of a crossing c, w(c), takes value +1 or
−1 if c is positive or negative respectively. The writhe is not defined for virtual crossings.

Figure 2: Reidemeister moves on planar and Gauss diagrams.

Alternatively, a virtual string link Gauss diagram can be constructed abstractly, by
drawing a finite number of signed oriented chords with distinct endpoints on the interior
of n intervals. As with virtual knots and links, it is immediate that any such Gauss dia-
gram can be realized as a virtual string link planar diagram. Gauss diagrams admit their
own version of Reidemeister moves, which are the same for classical and virtual SL1 since
Reidemeister moves which involve virtual crossings leave the Gauss diagram unchanged.
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In this paper, “Reidemeister moves” is used to mean simultaneously the classical moves
on planar diagrams, their extended version, and the analogous moves on Gauss diagrams.
Figure 2 shows the equivalence between the two approaches, and therefore a virtual string
link can be defined strictly from the Gauss diagrams.

2.2 Notation

Following [3], the set of classical string links on n strands is denoted uSLn. Its virtual
extension is vSLn, while the welded version, vSLn/(f1) is wSLn. Finally,
vSLn/(f1, f2) =: uwSLn are unwelded string links on n strands. The moves f1 and
f2 are discussed in more details in Section 2.4.

Each of those sets is closed under an ordered, binary operation, concatenation. It is
written using the # operator, following the notation for connected sum in uSL1, which
corresponds to classical long knots, and to carry on the analogy, diagrams are drawn such
that the strands connect vertical intervals from left to right. Given two string link diagrams
on n strands, D1 and D2, the string link D1 #D2 is represented a diagram obtained by
connected the end of the ith strand of D1 to the beginning of the ith strand of D2. For
Gauss diagrams, the concatenation, as seen in Figure 11, is represented by joining the pre-
images of the strands together.

Because moves can be applied to each part of D1 #D2 independently, the result of con-
catenation is independent of the choice of diagrams. Moreover, the operation is associative,
thus makes the sets of string links into monoids.

2.3 Virtual cobordims

A cobordism between two virtual knot diagrams K0 and K1 is a finite sequence of Rei-
demeister moves, births and deaths of closed unknotted components, and oriented saddle
moves, as pictured in Figure 3. By closed unknotted component, we mean a closed circle
that is an unknot as understood in the context of classical link theory. This restriction to
the kind of components that can be created (during a birth) or removed (during a death)
will be preserved for cobordisms of string link. Diagrammatic cobordism are generalized
to string links from [5], with the added restriction that the abstract surface with corners
described by the cobordism of an n-component virtual string link must have precisely n
connected components. This corresponds to the topological restriction that is imposed on
link cobordisms. As with other cases of cobordism, the genus can be computed by using
the formula

(si − bi + di)/2,

where si is the number of saddle moves in the cobordism that involve the ith component,
bi the number of birthed unknots that get saddled to it and di the number of deaths related
to the component.

Given a virtual string link diagram D on n strands, the cobordism class it generates
is B(D), and the set of all such classes is vSLnB. Similarly, the restriction to classical
diagrams is uSLnB.

For classical knots, a cobordism between K0,K1 ⊂ R3 is called a concordance if it
is realized by an annulus S1 × [0, 1] ⊂ R3 × I where its boundary component S1 × {i}
represents Ki. For long knots, the cobording surface is R × [0, 1], and a simple truncated
example is in Figure 4. The set of diagrams that are concordant to some classical string
link D is C(D), an element uSLnC, the n-strand classical string link concordance group
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Figure 3: The saddle move on a planar and on a Gauss diagram.

(with the inverse of an planar diagram being its vertical mirror image). Using the abstract
definition of genus above, a concordance between two virtual string link diagrams on n
strands consists of a series of extended Reidemeister moves, births, deaths and saddles,
such that the genus of the cobordism on each component is 0. The quotient by concordance
of vSLn is denoted vSLnC, and called the n-strand virtual string link concordance group
(see Proposition 5.2). As with cobordism, all quotients of vSLn can be factored by con-
cordance equivalence, and there are many questions about the maps between those groups.
It is known from [4] that uSL1C embeds in vSL1C, but it is an open problem whether this
continues to hold for n > 1 i.e. is the natural map uSLnC → vSLnC one-to-one?

Figure 4: Concordance between a standard long unknot and one with a kink.

While round classical knots up to concordance form a group, round virtual knots do not
have a well-defined concatenation, hence the appropriate virtual concordance group uses
long virtual knots and agrees with vSL1C. This motivates the study of the problem above.

2.4 Forbidden moves

On planar diagrams, forbidden moves are the tempting operations that appear similar to a
third Reidemeister move and would allow a strand to slide either over (f1) or under (f2) a
virtual crossing. On Gauss diagrams, the difference between those operations and the other
moves is more evident as the forbidden moves allow certain arrow endpoints to commute
without compensating for it elsewhere in the link, as depicted in Figure 5.



42 Ars Math. Contemp. 19 (2020) 37–49

Figure 5: Forbidden moves of planar and Gauss diagrams.
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The first forbidden move has appeared, and been allowed, in the literature long before
virtual knot theory was ever popular. Keeping with the notation introduced in [6], the
objects defined up to Reidemeister moves and the first forbidden move are called welded.
That paper is focused on welded braids, and proves that the welded pure braid groups are
not trivial, and distinct from the classical pure braid groups. Further allowing the second
forbidden move yields unwelded objects. In particular, all knots are trivial as unwelded
knots, as shown in [11] and references therein. The main theorem of this paper is proved
in Section 4.2 following Nelson’s approach.

Let vSLnB denote the monoid whose elements are equivalence classes of virtual string
link diagrams on n components up to cobordisms and whose operation is concatenation.
The monoids wSLnB and uwSLnB are defined similarly by allowing one and both forbid-
den moves respectively.

3 Fundamental results
The classical linking between two components of a classical link was first defined as an
integral over the paths of a representative of the link and it admits combinatorial formulas
that compute it from a planar or Gauss diagram. Using the un-normalization version,

ulk(L(1), L(2)) =
∑

c∈L(1)∩L(2)

w(c),

where L(i) are components of a link L, c a crossing, an w(c) the sign of c.
If L is a classical knot, then this “usual” linking number is even, and often normalized

by multiplication by a factor of 1
2 . For virtual link, the symmetry that this relies on needs

not hold and the ordered linking numbers are different. Let

lk(L(1), L(2)) =
∑

c : L(1)→L(2)

w(c)

be the linking number of L(1) over L(2), that is, the sum of the writhes of the cross-
ings where L(1) goes over L(2). The notation L(1) → L(2) reflects that the arrows that
are counted in the Gauss diagram point from L(1) to L(2). Then, ulk(L(1), L(2)) =
ulk(L(2), L(1)) = lk(L(1), L(2)) + lk(L(2), L(1)).

These definitions can be used verbatim for components of virtual string links.

Lemma 3.1. The linking numbers between components of a virtual link or virtual string
link are invariant under the forbidden moves and cobordisms.

Proof. Let L and L′ differ by a single forbidden move. Let L(1) and L(2) be compo-
nents of L, and L′(i), i = 1, 2, be the corresponding components in L′. Since forbid-
den moves change neither the number nor the sign of arrows between any two compo-
nents, lk(L(1), L(2)) = lk(L′(1), L

′
(2)). For cobordisms, first notice that the corresponding

claim also holds for the first and third Reidemeister moves. For the second Reidemeis-
ter move, assume that L′ is obtained from L by canceling a pair of arrows from L(1) to
L(2). Then, those arrows contribute +1 and−1 respectively to lk(L(1), L(2)) and therefore
lk(L(1), L(2)) = lk(L′(1), L

′
(2)). Finally, the restrictions on the death, birth, and saddle

moves make it so that the order of the endpoints of arrows can be changed, but the compo-
nent on which they lie is preserved. Therefore, pairwise linking numbers are invariants of
uwSLn and vSLnB.
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Proposition 4.9 in [5] shows that cobordism classes of virtual links are completely
classified by pairwise virtual linking numbers. Any virtual string link can be mapped to
an oriented virtual link with the same number of components by connecting the endpoints
of each strand together without creating new crossings. This operation is called the closure.
It immediately follows from the main theorem that the closure on vSLnB is an injection
onto cobordism classes of virtual links with n components.

Lemma 3.2. Forbidden moves can be realized by cobordisms.

Proof. Consider chords c and d in a Gauss diagram such that they have adjacent endpoints.
Then, by using two saddle moves, these endpoints can be first exiled to some small closed
component, and then reintroduced to their original location with the opposite order. Such a
cobordism realizes both the first and the second forbidden move, and any other move which
commutes arrows.

Additivity of the linking numbers under concatenation is immediate from its definition.
This is where the third classification from Theorem 1.1 comes from. Let LKn : uwSLn →
Zn(n−1) be the map that takes an unwelded string link L to the ordered list of its link-
ing numbers, (lk(L(1), L(2)), lk(L(1), L(3)), . . . , lk(L(n−1), L(n)). In particular, there is
standard form for any unwelded string link which displays exactly the crossings which
contribute to lk(L(i), L(j)) in lexicographic order on ij. This is illustrated in Figure 6, with
the sign of the crossing replaced by the signed number of parallel arrows with that sign.
Conversely, given any list w of n(n − 1) integers, there is a unique unwelded string W
such that LKn(W ) = w, using that standard form. Combining Lemmas 3.1 and 3.2, this
discussion also holds for LKn : vSLnB → Zn(n−1).

Figure 6: The standard form of an unwelded string link.

Proposition 3.3. The monoids vSLnB, wSLnB, and uwSLnB are isomorphic for all n ≥
1, and vSL1B has exactly one element.

Proof. First notice that vSLnB � wSLnB � uwSLnB, since each monoid is obtained
from the previous one by allowing one more move. By Lemma 3.2, uwSLnB � vSLnB,
and thus all those maps are isomorphisms.

For the second part of the statement, it suffices to show that any arrow in a one-
component string link Gauss diagram D can be erased using a cobordism and classical
Reidemeister moves.

This is done by creating a saddle parallel to the crossing such that its head and foot are
adjacent. Then, it can be removed using a single RM 1 and the saddled off component can
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be reconnected to its original component of the link with a saddle more. Since D has only
one component, every arrow can be canceled that way, and D is cobordant to the empty
Gauss diagram on one long component. Thus, vSL1B is isomorphic to {1}.

4 Proof of the theorem
The main step is to show that the endpoints of any two adjacent chords on the Gauss dia-
gram can be commuted using unwelded equivalences or using cobordisms. The proof could
equivalently be illustrated with planar diagrams, but the simplicity of the standard form can
be lost in the sea of virtual crossings that is required to realize it.

4.1 Standard form with cobordisms

Let D be a virtual string link diagram. By Lemma 3.2 the endpoints on each strand com-
mute with each other. Thus, self-crossings can be isolated and removed, while the rest of
the diagram can be organized to be in standard form, by canceling parallel arrows with
opposite signs as needed.

4.2 Standard form with forbidden moves

This argument is a generalization of the proof that forbidden moves unknot virtual knots
as it appears in [11]. The first and second forbidden moves on planar diagrams admit
many orientations which give all possible choices of signs to the pairs of chords depicted
in Figure 7. Thus, any two adjacent arrowheads or arrowfeet on a component of a string
link Gauss diagram can commute.

Figure 7: Pairs of crossings which commute with forbidden moves.

There are four different choices of signs that can occur in this situation. Two of them
are depicted in Figure 8. The other cases can be obtained from these by applying various
symmetries to the diagrams and changes of orientation of the strings.

It follows that the order of arrows on each component is irrelevant to the unwelded
string link represented by a Gauss diagram. As with cobordisms, placing any self-crossing
as an isolated crossing allows them to be canceled and the rest of the link can be put
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Figure 8: Commuting crossings using both forbidden moves.

in standard form, which is uniquely determined by the n(n − 1) pairwise virtual linking
numbers.

5 Welded knot concordance
As an attempt to reach a midpoint between unwelded equivalence and cobordism, say that
two virtual string link diagrams are welded concordant if one can be obtained from the
other by a sequence of generalized Reidemeister moves, first forbidden moves, and genus
0 cobordisms. The welded moves are allowed to happen at any point of the cobordism.

The Tube map was defined on virtual knot diagrams by Satoh in [13], and gives a topo-
logical setting in which to interpret the first forbidden move, which is then more accurately
called the overcrossings commute move, by mapping a planar knot diagram to a ribbon
knotted torus in four dimensional space. Consider the Tube of each diagram appearing in a
concordance movie between welded knots. The birth and death of unknotted components
correspond respectively to creating and filling a ribbon (un)knotted torus. A proposed ge-
ometric realization of the saddle move is seen in Figure 9. The Tube map of welded string
links is defined in [1] while a concordance theory for ribbon knotted surfaces which agrees
with welded concordance has yet to be studied.

Figure 9: The saddle move realized on a ribbon knotted surface.

In the case of one component string links, Theorem 5.1 shows that allowing the first
forbidden move trivializes the virtual knot concordance group, which is surprising, consid-
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ering the well-known results that classical knots inject into welded knots.

Theorem 5.1. Any long welded knot is concordant to the unknot.

Proof. Again, this is shown by putting an arbitrary Gauss diagram D0 with k crossings
into the standard form using the allowed moves.

Let D1 be the diagram obtained by adding an isolated crossing of opposite sign, point-
ing near the arrowhead of every crossing of D0. This is shown in Figure 10. Then, using
saddle moves, each pair of arrowheads can be isolated to its own closed component. The
resulting diagram is D2. Since the long component of D2 contains only overcrossings and
this is a welded link, they can be commuted such that the pairs of crossings have adjacent
feet. This is diagram D3 of Figure 10.

Figure 10: Gauss diagram where the long component contains only undercrossings, and
the n closed components each have one positive and one negative overcrossing.

The second Reidemeister move allows to cancel each of the pairs, and finally, deaths
delete the closed components. Since there were k saddle moves and the same number of
deaths, this is a genus 0 cobordism to the unknot.

For completeness, let’s mention that as for classical knots, the concordance inverse of
a welded string link is obtained by taking mirror images. Proposition 5.2 should be self-
evident and it is presented here using Gauss diagram language.

Proposition 5.2. Let S be a string link Gauss diagram with n components. Let −S denote
the diagram obtained by changing the direction of each core component and the sign of
each arrow. Then, S#−S = −S#S = Un ∈ wSLnC.

Proof. Since −(−S) = S, it suffices to prove the second equality. Enumerate the chords
of S as c1, c2, . . . , ck such that the first crossing in the diagram is from c1, the one after
that from c2, and so on. Denote by −ci the mirror image of ci in −S. Then, the innermost
pair of crossings is (−c1, c1). Using a saddle move which connects the arcs on the outside
of the far endpoints of ±c1 to each other, that pair of crossings can be canceled using a
second Reidemeister move. Figure 11 shows how crossings pair up with their inverses in
the Gauss diagram.

Repeat this as needed (at most k − 1 times) creating round components, and removing
them with deaths as needed until the diagram is empty.



48 Ars Math. Contemp. 19 (2020) 37–49

Figure 11: A virtual string link diagram concatenated to its concordance inverse. Dashed
curves show the saddle moves needed to trivialize it.

As a corollary, wSLnC is also a group for any n.
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Abstract

In this article, we focus on association schemes with some properties derived from
the orbitals of a transitive permutation group G with a one-point stabilizer H satisfying
H < NG(H) < NG(NG(H)) E G and |NG(NG(H))| = p3 where p is a prime. By
a corollary of our main result we obtain some inequality which corresponds to the fact
|G : NG(NG(H))| ≤ p+ 1.
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1 Introduction
Let G be a finite group with a subgroup H which satisfies

H < NG(H) < NG(NG(H)) EG and |NG(NG(H))| = p3 (1.1)

where p is a prime. In this article we focus on association schemes axiom-zing some
properties derived from the orbitals of the action of G on G/H .

We shall recall some terminologies to show that the definition of coherent configura-
tions is derived from properties of the binary relations obtained from a permutation group.
Let G be a permutation group of a finite set Ω. Then G acts on Ω × Ω by its entry-wise
action, i.e.,

(α, β)x := (αx, βx) for α, β ∈ Ω and x ∈ G.

We denote the set of orbits of the action of G on Ω × Ω by Inv(G), which satisfies the
following conditions:
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(i) The diagonal relation 1Ω is a union of elements of Inv(G);

(ii) For each s ∈ Inv(G) we have s∗ ∈ Inv(G) where s∗ := {(α, β) | (β, α) ∈ s};
(iii) For all s, t, u ∈ Inv(G) we have σsσt =

∑
u∈S c

u
stσu for cust ∈ N uniquely deter-

mined by s, t, uwhere σu is the adjacency matrix of u, i.e., (σu)α,β = 1 if (α, β) ∈ u
and (σu)α,β = 0 if (α, β) 6∈ u.

A coherent configuration is a pair (Ω, S) of a finite set Ω and a partition S of Ω×Ω which
satisfies the conditions obtained from the above by replacing Inv(G) by S. We say that a
coherent configuration (Ω, S) is schurian if S = Inv(G) for some permutation group G
of Ω, and it is homogeneous or an association scheme if 1Ω ∈ S (see [2] and [3] for its
background).

Suppose that G has a subgroup H which satisfies (1.1). Then |H| = p, |NG(H)| = p2

and for each g ∈ G we have the following:

(i) |HgH|/|H| ∈ {1, p} and |NG(H)gNG(H)|/|NG(H)| ∈ {1, p};
(ii) |HgH|/|H| = 1 if and only if g ∈ NG(H);

(iii) |NG(H)gNG(H)|/|NG(H)| = 1 if and only if g ∈ NG(NG(H));

(iv) NG(NG(H)) is the smallest normal subgroup of G containing H .

Since G acts faithfully and transitively on the set of right cosets of H in G by its right
multiplication, it induces a schurian association scheme (Ω, S) where Ω = {Hx | x ∈ G}
and S = Inv(G) such that, for each s ∈ S we have the following:

(i) ns ∈ {1, p} where ns := c1Ω
ss∗ ;

(ii) Oθ(S) forms a group of order p where Oθ(S) := {s ∈ S | ns = 1};
(iii) Oθ(S) = {s ∈ S | ss∗s = s} where Oθ(S) is the thin residue of S (see Section 2,

[9] or [10] for its definition).

The following is our main result:

Theorem 1.1. Let (Ω, S) be an association scheme with Oθ(S) < Oθ(S) such that ns ∈
{1, p} for each s ∈ S and nOθ(S) = p2 where p is a prime. Then |Ω| ≤ p2(p+ 1).

In [4] they give a criterion on association schemes whose thin residue Oθ(S) induces
the subschemes isomorphic to either

Cp2 , Cp × Cp or Cp o Cp.

Here we denote (G, Inv(G)) by G when G acts on itself by its right multiplication and we
denote the wreath product of one scheme (∆, U) by another scheme (Γ, V ) by (∆, U) o
(Γ, V ), i.e.,

(∆, U) o (Γ, V ) := (∆× Γ, {1Γ ⊗ u | u ∈ U} ∪ {v ⊗ U | v ∈ V \ {1Γ}})

where

1Γ ⊗ u := {((δ1, γ), (δ2, γ)) | (δ1, δ2) ∈ u, γ ∈ Γ} and
v ⊗ U := {((δ1, γ1), (δ2, γ2)) | δ1, δ2 ∈ ∆, (γ1, γ2) ∈ v}.
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For the case of Oθ(S) ' Cp2 we can apply the main result in [7] to conclude that (Ω, S)
is schurian. For the case of Oθ(S) ' Cp×Cp we can say that |Ω| ≤ p2(p2 + p+ 1) under
the assumption that ns = p for each s ∈ S \Oθ(S). For the case of Oθ(S) ' Cp o Cp we
had no progression for the last five years.

In [6] all association schemes of degree 27 are classified by computational enumeration,
and there are three pairs of non-isomorphic association schemes with Oθ(S) ' C3 o C3

which are algebraic isomorphic. These examples had given an impression that we need
some complicated combinatorial argument to enumerate p-schemes (Ω, S) with Oθ(S) '
Cp o Cp and {ns | s ∈ S \ Oθ(S)} = {p}. The following reduces our argument to the
p-schemes of degree p3 where an association scheme (Ω, S) is called a p-scheme if |s| is a
power of p for each s ∈ S:

Corollary 1.2. For each p-scheme (Ω, S) with Oθ(S) ' Cp o Cp, if ns = p for each
s ∈ S \Oθ(S), then |Ω| = p3.

In the proof of Theorem 1.1 the theory of coherent configurations plays an important
role through the thin residue extension which is a way of construction of coherent configu-
rations from association schemes (see [5, Theorem 2.1] or [8]) . The following is the kernel
of our paper:

Theorem 1.3. For each coherent configuration (Ω, S) whose fibers are isomorphic to Cp o
Cp, if |s| = p3 for each s ∈ S with σsσs = 0, then either |Ω| ≤ p2(p+ 1) or ss∗s = s for
each s ∈ S.

In Section 2 we prepare necessary terminologies on coherent configurations. In Sec-
tion 3 we prove our main results.

2 Preliminaries
Throughout this section, we assume that (Ω, S) is a coherent configuration. An element of
Ω and an element of S are called a point and a basis relation, respectively. Furthermore,
|Ω| and |S| are called the degree and rank of (Ω, S), respectively. For all α, β ∈ Ω the
unique element in S containing (α, β) is denoted by r(α, β). For s ∈ S and α ∈ Ω we set

αs := {β ∈ Ω | (α, β) ∈ s}.

A subset ∆ of Ω is called a fiber of (Ω, S) if 1∆ ∈ S. For each s ∈ S, there exists a
unique pair (∆,Γ) of fibers such that s ⊆ ∆× Γ. For fibers ∆,Γ of (Ω, S) we denote the
set of s ∈ S with s ⊆ ∆ × Γ by S∆,Γ, and we set S∆ := S∆,∆. It is easily verified that
(∆, S∆) is a homogeneous coherent configuration. Now we define the complex product on
the power set of S as follows: For all subsets T and U of S we set

TU := {s ∈ S | cstu > 0 for some t ∈ T and u ∈ U}

where the singleton {t} in the complex product is written without its parenthesis.
The following equations are frequently used without any mention:

Lemma 2.1. Let (Ω, S) be a coherent configuration. Then we have the following:

(i) For all r, s ∈ S, if rs 6= ∅, then nrns =
∑
t∈S c

t
rsnt;

(ii) For all r, s, t ∈ S we have |t|ct∗rs = |r|cr∗st = |s|cs∗tr ;
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(iii) For all r, s ∈ S we have |{t ∈ S | t ∈ rs}| ≤ gcd(nr, ns).

For T ⊆ S∆,Γ we set
nT :=

∑
t∈T

nt.

Here we mention closed subsets, their subschemes and factor scheme according to the
terminologies given in [10]. Let (Ω, S) be an association scheme and T ⊆ S. We say that
a non-empty subset T of S is closed if TT ∗ ⊆ T where

T ∗ := {t∗ | t ∈ T},

equivalently
⋃
t∈T t is an equivalence relation on Ω whose equivalence classes are

{αT | α ∈ Ω}

where αT := {β ∈ Ω | (α, β) ∈ t for some t ∈ T}. Let T be a closed subset of S and
α ∈ Ω. It is well-known (see [9]) that

(Ω, S)αT := (αT, {t ∩ (αT × αT ) | t ∈ T})

is an association scheme, called the subscheme of (Ω, S) induced by αT , and that

(Ω, S)T := (Ω/T, S//T )

is also an association scheme where

Ω/T := {αT | α ∈ Ω}, S//T = {sT | s ∈ S} and

sT := {(αT, βT ) | (γ, δ) ∈ s for some (γ, δ) ∈ αT × βT},

which is called the factor scheme of (Ω, S) over T .
We say that a closed subset T is thin if nt = 1 for each t ∈ T , and Oθ(S) is called the

thin radical of S, and the smallest closed subset T such that S//T is thin is called the thin
residue of S, which is denoted by Oθ(S).

3 Proof of the main theorem
Let (Ω, S) be a coherent configuration whose distinct fibers are Ω1,Ω2, . . . ,Ωm. For all
integers i, j with 1 ≤ i, j ≤ m we set

Sij := SΩi,Ωj and Si := Sii.

Throughout this section we assume that (Ωi, Si) ' Cp o Cp for i = 1, 2, . . . ,m where
p is a prime and Cp o Cp is a unique non-thin p-scheme of degree p2 up to isomorphism.

For s ∈ S we say that s is regular if ss∗s = {s} and we denote by R the set of regular
elements in S.

Lemma 3.1. For each regular element s ∈ Sij with ns = p we have

σsσs∗ = p(
∑
t∈Oθ(Si)

σt) and σs∗σs = p(
∑
t∈Oθ(Sj)

σt).

In particular, ss∗ = Oθ(Si) and s∗s = Oθ(Sj).
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Proof. Notice that {1Ωi} ( ss∗ ⊂ Si and ts = {s} for each t ∈ ss∗. Since {t ∈ Si |
ts = {s}} is a closed subset of valency at most ns, it follows from (Ωi, Si) ' Cp oCp that
ss∗ = Oθ(Si), and hence for each t ∈ ss∗

ctss∗ = csstns∗/nt∗ = p.

This implies that σsσs∗ = p(
∑
t∈Oθ(Si)

σt). By the symmetric argument we have σs∗σs =

p(
∑
t∈Oθ(Sj)

σt).

Lemma 3.2. For each non-regular element s ∈ Sij with ns = p we have

σsσs∗ = pσ1Ωi
+
∑
u∈Si\Oθ(Si)

σu and σs∗σs = pσ1Ωj
+

∑
u∈Sj\Oθ(Sj)

σu.

Proof. Notice that {t ∈ Si | ts = {s}} = {1Ωi}, otherwise, s is regular or ns = p2, a
contradiction. This implies that the singletons ts with t ∈ Oθ(Si) are distinct elements of
valency p. Since

p2 = |Ωj | =
∑
s∈Sij

ns ≥
∑

t∈Oθ(Si)

nts = p+ p+ · · ·+ p = p2,

it follows that Oθ(Si)s = Sij .
We claim that Si \Oθ(Si) ⊆ ss∗. Let u ∈ Si \Oθ(Si). Then there exists t ∈ Oθ(Si)

such that u ∈ tss∗ since u ∈ Sijs∗ = Oθ(Si)ss
∗. This implies that u = t∗u ⊆ t∗(tss∗) =

ss∗.
By the claim with p2 = nsns∗ =

∑
t∈Si css∗tnt and css∗1Ωi

= ns = p we have the
first statement, and the second statement is obtained by the symmetric argument.

For the remainder of this section we assume that ns = p for each s ∈
⋃
i 6=j Sij .

Lemma 3.3. The set
⋃
s∈R s is an equivalence relation on Ω.

Proof. Since 1Ωi ∈ Si ⊆ R for i = 1, 2, . . . ,m,
⋃
s∈R s is reflexive. Since ss∗s = {s} is

equivalent to s∗ss∗ = {s∗},
⋃
s∈R s is symmetric.

Let α ∈ Ωi, β ∈ Ωj and γ ∈ Ωk with r(α, β), r(β, γ) ∈ R. Then we have

r(α, γ)r(α, γ)∗ ⊆ r(α, β)r(β, γ)r(β, γ)∗r(α, β)∗.

If one of r(α, β), r(β, γ) is thin, then (α, γ)r(α, γ)∗, and hence r(α, γ) ∈ R. Now we as-
sume that both of them are non-thin. Since r(β, γ)r(β, γ)∗ = Oθ(Sj) = r(α, β)∗r(α, β),
it follows that

r(α, γ)r(α, γ)∗ ⊆ r(α, β)r(α, β)∗ = Oθ(Si).

Applying Lemma 3.1 and 3.2 we obtain that r(α, γ) is regular, and hence
⋃
s∈R s is transi-

tive.

Lemma 3.4. The set
⋃
s∈N s is an equivalence relation on Ω where N :=

⋃m
i=1 Si ∪

(S \R).
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Proof. Since 1Ωi ∈ Si ⊆ N for i = 1, 2, . . . ,m,
⋃
s∈N s is reflexive. By Lemma 3.3,⋃

s∈R is symmetric, so that
⋃
s∈N s is symmetric.

Let α ∈ Ωi, β ∈ Ωj and γ ∈ Ωk with r(α, β), r(β, γ) ∈ N . Since
⋃m
i=1 Si ⊆ R, it

follows from Lemma 3.3 that it suffices to show that

r(α, γ) ∈ S \R

under the assumption that

r(α, β), r(β, γ) ∈ S \R with i 6= k.

Suppose the contrary, i.e., r(α, γ) ∈ R. Then, by Lemma 3.3, Sik ⊆ R. Since

r(α, β)r(β, γ) ⊆ Sik ⊆ R,

it follows that
Oθ(Si)r(α, β)r(β, γ) = r(α, β)r(β, γ).

On the other hand, we have

Oθ(Si)r(α, β)r(β, γ) = Sijr(β, γ) = Sik.

Thus, r(α, β)r(β, γ) = Sik. Since i 6= k, each element of Sik has valency p, and hence,

σs1σs2 =
∑
u∈Sik

σu

where s1 := r(α, β) and s2 := r(β, γ). By Lemma 3.2,

p2 = 〈σs1σs2 , σs1σs2〉 = 〈σ∗s1σs1 , σs2σ
∗
s2〉 = p2 + p(p− 1),

a contradiction where 〈 , 〉 is the inner product defined by

〈A,B〉 := 1/p2tr(AB∗) for all A,B ∈MΩ(C).

Therefore,
⋃
s∈N s is transitive.

Lemma 3.5. We have either R = S or N = S.

Proof. Suppose R 6= S. Let α, β ∈ Ω with r(α, β) ∈ R. Since R 6= S, there exists γ ∈ Ω
with r(α, γ) ∈ N . Notice that r(β, γ) ∈ R ∪N . By Lemma 3.3, r(β, γ) ∈ N , and hence,
by Lemma 3.4,

r(α, β) ∈ R ∩N =

m⋃
i=1

Si.

Since α, β ∈ Ω are arbitrarily taken, it follows that

R =

m⋃
i=1

Si and N = S.

Lemma 3.6. Suppose that S = N and s1 ∈ Sij , s2 ∈ Sjk and s3 ∈ Sik with dis-
tinct i, j, k. Then σs1σs2 = σs3(

∑
t∈Oθ(Sk) atσt) for some non-negative integers at

with
∑
t∈Oθ(Sk) at = p,

∑
t∈Oθ(Sk) a

2
t = 2p − 1 and for each u ∈ Oθ(Sk) \ {1Ωk},∑

t∈Oθ(Sk) atatu = p− 1.
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Proof. Since s1s2 ⊆ Sij = s3Oθ(Sk), σs1σs2 =
∑
t∈Oθ(Sk) atσs3t for some non-

negative integers at. Since σs3t = σs3σt and

p2 = ns1ns2 =
∑

t∈Oθ(Sk)

atns3t = p
∑

tOθ(Sj)

at,

it remains to show the last two equalities on at with t ∈ Oθ(Sj). Expanding σ∗s2σ
∗
s1σs1σs2

by two ways we obtain from Lemma 3.2 that

(2p2 − p)σ1Ωj
+ (p2 − p)

∑
t∈Oθ(Sj)\{1Ωj

}

σt + (p2 − 2p)
∑

u∈Sj\Oθ(Sj)

σu

=
∑

t∈Oθ(Sk)

atσ
∗
t σ
∗
s3σs3

∑
t∈Oθ(Sk)

atσt.

Therefore, we conclude from Lemma 3.2 that

p
∑

t∈Oθ(Sk)

a2
t = 2p2 − p and p

∑
t∈Oθ(Sk)

atatu = p2 − p

for each u ∈ Oθ(Sk) with u 6= 1Ωk .

For the remainder of this section we assume that

S = N.

For i = 1, 2, . . . ,m we take αi ∈ Ωi and we define ti ∈ Si such that t1 ∈ Oθ(S1)\{1Ω1},
and for i = 2, 3, . . . ,m, ti is a unique element in Oθ(Si) with r(α1t1, αiti) = r(α1, αi).
Then Cp acts semi-regularly on Ω such that

Ω× Cp → Ω, (βi, t
j) 7→ βit

j
i ,

where Cp = 〈t〉 and βi is an arbitrary element in Ωi.

Lemma 3.7. The above action acts semi-regularly on Ω as an automorphism of (Ω, S).

Proof. Since Cp acts regularly on each of geometric coset of Oθ(Si) for i = 1, 2, . . . ,m,
the action is semi-regular on Ω. By the definition of {ti}, it is straightforward to show
that r(α1, αi) is fixed by the action on Ω × Ω, and hence each element of

⋃m
j=2 S1j ∪

Sj1 is also fixed since S1j = Oθ(S1)r(α1, αj). Let s ∈ Sijwith 2 ≤ i, j. Notice that
r(αi, α1)r(α1, αj) is a proper subset of Sij by Lemma 3.6. This implies that s is obtained
as the intersection of some of tki r(αi, α1)r(α1, αj) with 0 ≤ k ≤ p − 1, and hence s is
fixed.

For each i = 1, 2, . . . ,m we take {αik | k = 1, 2, . . . ,m} to be a complete set of
representatives with respect to the equivalence relation

⋃
t∈Oθ(Si)

t on Ωi.

Lemma 3.8. For each s ∈ Sij with i 6= j and all k, l = 1, 2, . . . , p there exists a unique
h(s)kl ∈ Zp such that r(αik, αjlth(s)kl) = s. Moreover, if s1 ∈ Sij and ta ∈ Oθ(Sk) with
s1 = sta, then h(s1)kl = h(s)kl + a for all k, l = 1, 2, . . . ,m.



58 Ars Math. Contemp. 19 (2020) 51–60

Proof. Since Oθ(Sj) acts regularly on Sij by its right multiplication, the first statement
holds. The second statement is obtained by a direct computation.

Lemma 3.9. For each s ∈ Sij with i 6= j and all k, l = 1, 2, . . . , p we have

s ∩ (αikOθ(Si)× αjlOθ(Sj)) = {(αiktai , αjltbj) | b− a = h(s)kl}.

Proof. Notice that

r(αikt
a
i , αjlt

b
j) = (tai )∗r(αik, αjl)t

b
j = r(αik, αjl)t

b−a
j .

Since r(αik, αjlth(s)kl) = s by Lemma 3.8, it follows that r(αiktai , αjlt
b
j) = s if and only

if b− a = h(s)kl.

Proposition 3.10. For each s ∈ Sij with i 6= j the matrix (h(s)kl) ∈ Mp×p(Zp) satisfies
that, for all distinct k1, k2 ∈ {1, 2, . . . , p},

{h(s)k1,l − h(s)k2,l | l = 1, 2, . . . , p} = Zp.

In other word the matrix is a generalized Hadamard matrix of degree p over Zp, equiv-
alently, the matrix (ξh(s)kl) ∈ Mp×p(C) is a complex Hadamard matrix of Butson type
(p, p) where ξ is a primitive p-th root of unity.

Proof. Notice that, for all distinct k, l, by Lemma 3.9,

{γ ∈ Ω | r(αiktai , γ) = r(αilt
b
i , γ) = s}

equals
p⋃
r=1

{αjrtcj | c− a = h(s)kr, c− b = h(s)lr}.

Since the upper one is a singleton by Lemma 3.2, there exists a unique r ∈ {1, 2, . . . , p}
such that b − a = h(s)kr − h(s)lr. Since a and b are arbitrarily taken, the first statement
holds.

The second statement holds since
∑p−1
i=0 x

i is the minimal polynomial of ξ over Q.

We shall write the matrix (ξh(s)kl) as H(s). For s ∈ Sij with i 6= j, the restriction of
σs to Ωi × Ωj can be viewed as a (p × p)-matrix whose (k, l)-entry is the matrix Ph(s)kl

i

where Pi is the permutation matrix corresponding to the mapping βi 7→ βiti where we may
assume that Pi = Pj , say P , for all i, j = 1, 2, . . . ,m by Lemma 3.7. Notice that H(s) is
obtained from (Ph(s)kl) by sending Ph(s)kl to ξh(s)kl .

Proposition 3.11. For all s1 ∈ Sij , s2 ∈ Sjk and s3 ∈ Sik with distinct i, j, k we have
H(s1)H(s2) = αH(s3) for some α ∈ C with |α| = √p.

Proof. By Lemma 3.6, H(s1)H(s2) = H(s3)(
∑p−1
i=0 aiξ

i) for some ai ∈ Z where ai =

ctik . Thus, it suffices to show that |(
∑p−1
i=0 aiξ

i)|2 = p. By Lemma 3.6, the left hand side
equals

p−1∑
i=0

p−1∑
j=0

aiajξ
i−j =

p−1∑
i=0

a2
i +

p−1∑
i=1

p−1∑
j=0

ajai+jξ
i = (2p− 1) + (p− 1)(−1) = p.
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Corollary 3.12. Let si := r(α1, αi) for i = 2, 3, . . . ,m and Bi denote the basis consisting
of the rows of H(si), i = 2, 3, . . . ,m, and B1 be the standard basis. Then {B1,B2, . . . ,
Bm} is a mutually unbiased bases for Cp, and m ≤ p+ 1.

Proof. The first statement is an immediate consequence of Proposition 3.10, and the second
statement follows from a well-known fact that the number of mutually unbiased bases for
Cn is at most n+ 1 (see [1]).

Proof of Theorem 1.3. Suppose that R 6= S. Then N = S and the theorem follows from
Corollary 3.12.

Proof of Theorem 1.1. Since nOθ(S) = p2 and Oθ(S) < Oθ(S), it follows from [5, The-
orem 2.1] (or see [8]) that the thin residue extension of (Ω, S) is a coherent configuration
with all fibers isomorphic to Cp o Cp such that each basic relation out of the fibers has
valency p.

We claim that S = N . Otherwise, S = R, which implies that 〈ss∗ | s ∈ S〉 has valency
p. Since Oθ(S) = 〈ss∗ | s ∈ S〉 (see [9]), it contradicts that Oθ(S) has valency p2.

By the claim, S = N . Since the number of fibers of the thin residue extension of (Ω, S)
equals |Ω/Oθ(S)|, the theorem follows from Theorem 1.3.

Proof of Corollary 1.2. Since (Ω, S) is a p-scheme and Oθ(S) ' Cp ×Cp, |Ω| is a power
of p greater than p2. By Theorem 1.1, |Ω| ≤ (p+ 1)p2, and hence, |Ω| = p3.
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Abstract

A dominating set in a graph is a set of vertices such that each vertex not in the set has
a neighbor in the set. The domination number is the smallest size of a dominating set. We
consider this problem in the incidence graph of a generalized quadrangle. We show that the
domination number of a generalized quadrangle with parameters s and t is at most 2st+ 1,
and we prove that this bound is sharp if s = t or if s = q − 1 and t = q + 1. Moreover,
we give a complete classification of smallest dominating sets in generalized quadrangles
where s = t, and give some general results for small dominating sets in the general case.

Keywords: Dominating set, finite generalized quadrangle.
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1 Preliminaries
Dominating sets in graphs have already been studied in 1958, but there was a boost of
interest after the publishing of a survey paper in the ’70s by Cockayne and Hedetniemi
[3], in which the authors show that the domination problem is related to the well-known
problem of colorings of graphs. In [8] a dominating set is defined as follows:
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Definition 1.1. Let G = (V,E) be a graph. The closed neighborhood N [S] of a set of
vertices S is defined as the set of vertices adjacent to any vertex in S, joint with the vertices
of S itself. A set D ⊆ V is a dominating set if N [D] = V .

It is desirable to find the smallest dominating sets in a graph. The number of vertices
in the smallest dominating set in a graph G is the domination number of G, and a common
notation for it is Γ(G).

The problem of domination has been studied before in incidence graphs of geometric
structures, see for instance [6] and [11]. Also, perfect dominating sets of the incidence
graphs of finite generalized quadrangles were considered in [4] (see also [9]), and for the
particular quadrangle Q(4, q), they were studied in detail in [2]; see Section 5 for further
information. In this paper, we will consider dominating sets in the incidence graph of finite
generalized quadrangles.

Generalized quadrangles were first introduced by Tits [14]. In [13], Payne and Thas
give the following definition of finite generalized quadrangles:

Definition 1.2. A finite generalized quadrangle GQ(s, t) with parameters s and t, where
s, t ≥ 1, is a point-line incidence structure (P,B, I), in which P is the set of points, B is
the set of lines and I is a symmetric point-line incidence relation, satisfying the following
axioms:

• Each point is incident with t + 1 lines and two distinct points are incident with at
most one line.

• Each line is incident with s+1 points and two distinct lines are incident with at most
one point.

• If x is a point and L is a line not incident with x, then there is a unique pair (y,M) ∈
P × B for which x I M I y I L.

We will refer to this third property as the projection property. A generalized quadrangle
GQ(s, t) with parameters s and t is said to have order (s, t). It is well known that the
number of points in a generalized quadrangle of order (s, t) is (s + 1)(st + 1), and the
number of lines is (t+ 1)(st+ 1). For two points P and Q, we will write P ∼ Q if there
exists a line incident with both (that is, they are collinear), and we will use this notation
dually for lines as well.

For readability, we will refer to a dominating set in the incidence graph of GQ(s, t) and
the domination number of the incidence graph of GQ(s, t) as a dominating set in GQ(s, t)
and the domination number of GQ(s, t).

When viewed from a geometric perspective, a dominating set in GQ(s, t) becomes the
union of a set of points and a set of lines such that each point which is not in the set is
incident with a line from the set and such that each line which is not in the set is incident
with a point from the set. This is closely related to the concept of blocking sets and the dual
concept of covers.

Definition 1.3. A blocking set in GQ(s, t) is a set of points such that each line is incident
with at least one of these points. A cover in GQ(s, t) is a set of lines such that each point
is incident with at least one of these lines.

A blocking set O such that no two points from O are collinear is called an ovoid, a
cover S such that no two lines from S are concurrent is called a spread. An arbitrary set
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of points O such that no two points from the set are collinear is called a partial ovoid,
an arbitrary set of lines S such that no two lines from S are concurrent is called a partial
spread. Let us note that an ovoid or a spread in GQ(s, t) contains exactly st+ 1 elements,
and this is the smallest possibe size for a blocking set or a covering set.

In Section 2 we will show that there exist dominating sets in GQ(s, t) of size 2st + 1
and that the union of a blocking set and a cover exceeds this size. This motivates us to call
a dominating set in GQ(s, t) small when it has size at most 2st+ 1. This section also lists
some properties of small dominating sets in GQ(s, t). In Section 3 we show that all small
dominating sets in GQ(s, t), where |s − t| ≤ 3 must have size 2st + 1, which shows that
the domination number in this case is 2st + 1. In particular, this gives us the domination
number of GQ(q, q) and GQ(q − 1, q + 1). In Section 4 we give a classification of small
dominating sets in GQ(q, q). In Section 5 we give a summary of the main results, and add
some open problems.

2 Examples and properties of small dominating sets in GQ(s, t)

Consider a generalized quadrangle GQ(s, t). We will construct a dominating set D of
size 2st + 1 as follows. Let P be a point in GQ(s, t). Number the lines through P as
`1, `2, . . . , `t+1. Now define P as the set of all points which are incident with one of the
first t lines `1, . . . , `t through P , including P itself. Then |P| = st + 1. Now define L as
the set of lines which intersect the last line `t+1 in a point different from P . Then |L| = st.
Define D = P ∪ L. The construction is also shown in Figure 1.

The size of D is 2st + 1. Now take an arbitrary point Q in GQ(s, t). If Q is incident
with `t+1, then it is either contained in the dominating set (if Q = P ), or covered by t
different lines from the dominating set. So assumeQ is not incident with `t+1. Then by the
projection property of generalized quadrangles, there exists a unique point-line pair (R,m)
such that R is incident with `t+1 and m is incident with both Q and R. If m is one of
the lines `1, . . . , `t, then Q is a point of the dominating set. Otherwise, m must be a line
intersecting `t+1 in a point different from P . Then m is in the dominating set and Q is
covered.

Now take an arbitrary line `. Assume ` is not incident with P . Then again by the
projection property of generalized quadrangles, there exists a unique point-line pair (R,m)
such that R is incident with ` and m is incident with both P and R. If R is incident with
`t+1, then ` intersects `t+1 in a point different from P , so it must be one of the lines in the
dominating set. Otherwise, R is incident with one of the lines `1, . . . , `t, hence it is in the
dominating set. In this case ` is blocked.

So D is indeed a dominating set of GQ(s, t). We now have Theorem 2.1.

Theorem 2.1. For any finite generalized quadrangle GQ(s, t) there exists a dominating
set of size 2st+ 1.

Note that the construction in Theorem 2.1 can be dualized, giving us a second example
of a dominating set of size 2st+1. We can also get this dual structure by omitting the point
P from the dominating set and adding the line `t+1 to it. See also Figure 1.

From a graph-theoretical point of view, we can get the dominating set from Theorem 2.1
or its dual as follows. Fix one edge {P, `} in the incidence graph, then all points with
distance two from {P, `} together with {P} (resp. together with {`}) form the dominating
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Figure 1: The dominating set from Theorem 2.1 (left) and its dual (right).

set from Theorem 2.1 (resp. its dual)1.
Let us note that this dominating set is a maximal independent set in the incidence graph.

Maximal independent sets are clearly dominating sets; however, the converse is not always
true. Even when the dominating set has the smallest size possible, it is not necessarily a
independent set. Families of graphs for which the smallest dominating sets are independent
also form a subject of study.

In the case of non-thick generalized quadrangles; that is, when s = 1 or t = 1, we
immediately have the following result.

Theorem 2.2. The domination number of GQ(q, 1) and GQ(1, q) is 2q + 1; furthermore,
dominating sets of size 2q + 1 are independent.

Proof. By duality, it is sufficient to show this result for GQ(q, 1). The points and lines of
GQ(q, 1) may naturally be viewed as the (q+ 1)2 points together with the q+ 1 horizontal
and q + 1 vertical lines of a (q + 1)× (q + 1) grid.

LetD be a dominating set of size |D| ≤ 2q+1, and let lv and lh stand for the number of
vertical and horizontal lines in D, respectively. If lh = q+ 1, then for each vertical line we
must have either the line or a point on the line in D, hence |D| ≥ 2q + 2, a contradiction.
Thus lh ≤ q, and similarly lv ≤ q.

If lh = q, then for all the q + 1 points on the horizontal line not in D, D must contain
either the point or the vertical line through it, whence |D| ≥ 2q + 1. Since we assumed
|D| ≤ 2q + 1, we now have |D| = 2q + 1. Moreover, note that D is independent in this
case. A similar argument works for lv = q.

Suppose now lh ≤ q− 1 and lv ≤ q− 1. The lines of D leave exactly (q+ 1− lh)(q+
1− lv) points not covered, which all must be in D, whence

(q + 1)2 − (lh + lv)(q + 1) + lhlv + (lh + lv) ≤ |D| ≤ 2q + 1.

As lh ≤ q−1 and lv ≤ q−1, we have lv+lh ≤ 2q−2 and lhlv ≥ (q−1)(lh+lv−(q−1)),
hence

2q+ 1 ≥ (q+ 1)2− (lh + lv)q+ lhlv ≥ (q+ 1)2− (lh + lv)− (q− 1)2 ≥ 4q− (2q− 2),

1The authors wish to thank Sam Mattheus (VUB) for this remark.
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a contradiction.
We can conclude that the size of a dominating set D is at least 2q + 1, and that D is

independent in this case. Theorem 2.1 assures that such a dominating set indeed exists.

From now on, we will assume that our generalized quadrangle is thick; that is, s ≥ 2
and t ≥ 2.

The most trivial dominating sets are the union of a blocking set and a cover. If an
ovoid and a spread exist, then their union forms a dominating set of size 2st + 2. So by
Theorem 2.1, the union of an ovoid and a spread is definitely not the smallest dominating
set. Moreover, we can prove that any dominating set containing a blocking set or a cover
exceeds the size 2st+ 1.

Lemma 2.3. Let D = PD ∪ LD be a dominating set in GQ(s, t), s, t ≥ 2, with PD the
points and LD the lines of D. If PD is a blocking set or LD is a cover, then |D| ≥ 2st+ 2.
Moreover, if equality holds, then PD is an ovoid and LD is a spread.

Proof. Assume without loss of generality that PD is a blocking set. The case where LD is
a cover can be showed analogously. Assume |D| ≤ 2st+ 2, then |PD| ≤ 2st+ 2− |LD|.
Any point that is not in PD needs to be covered at least once by a line of LD. But since PD

is a blocking set, each line of LD contains at least one point of PD, meaning it can only
cover at most s points not in PD. This gives us the following inequality:

(s+ 1)(st+ 1) ≤ |PD|+ s|LD| ≤ 2st+ 2− |LD|+ s|LD|,

whence (s − 1)(st + 1) ≤ (s − 1)|LD|, and thus st + 1 ≤ |LD| follows. Since PD is a
blocking set, we have that |PD| ≥ st + 1. But then |D| = |P| + |L| ≥ 2st + 2, so the
lower bound on |D| is proved.

Assume now that equality holds. Then |PD| = |LD| = st + 1 and LD covers each
point not in D exactly once. We want to show that LD covers each point of PD exactly
once as well. As PD is a blocking set, its size implies it being an ovoid, so each line of
LD covers at most one point of PD. Suppose that there exists a point P ∈ PD not covered
by LD. Then each of the (t + 1)s points collinear with P , which are not in PD, must
be covered by a line of LD which, due to the projection property, are pairwise distinct,
implying |LD| ≥ st+ s > st+ 1, a contradiction. Hence LD is a cover of size st+ 1, that
is, a spread.

Lemma 2.3, together with Theorem 2.1, motivates the following definition:

Definition 2.4. Let D be a dominating set in GQ(s, t). Then D is a small dominating set
if |D| ≤ 2st+ 1.

The following two lemmas also provide us with some information regarding the size
of a dominating set or, more precisely, regarding the size of the set of points and the set of
lines contained in a dominating set.

Lemma 2.5. Let P be an arbitrary point set in GQ(s, t). Assume there exists a number ∆
such that

∀P ∈ P : |{Q ∈ P | Q 6= P,Q ∼ P}| ≥ ∆.

Then the number of lines in GQ(s, t) not blocked by P is at least

(t+ 1)(st+ 1− |P|) +
|P|∆
s+ 1

.
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Proof. For any line ` in GQ(s, t), define the degree d(`) of ` as the number of points in P
which are incident with `. Let Lb be the set of lines blocked by P . Then

|Lb| = |P|(t+ 1)−
∑
`∈Lb

(d(`)− 1). (2.1)

Now let X := {(P,Q) | P,Q ∈ P, P 6= Q,P ∼ Q}. Then we have the following
inequalities:

|P|∆ ≤ |X| =
∑
`∈Lb

d(`)(d(`)− 1) ≤ (s+ 1)
∑
`∈Lb

(d(`)− 1),

implying that |P|∆s+1 ≤
∑

`∈Lb
(d(`)− 1). Together with (2.1) this yields:

|Lb| ≤ |P|(t+ 1)− |P|∆
s+ 1

.

Since the total number of lines in GQ(s, t) is (t+ 1)(st+ 1) it follows that the number of
lines not blocked by P is at least (t+ 1)(st+ 1− |P|) + |P|∆

s+1 .

If P is the point set of a dominating set, then Lemma 2.5 gives a lower bound on the
number of lines contained in this dominating set. By dualizing this lemma we find:

Lemma 2.6. Let L be an arbitrary line set in GQ(s, t). Assume there exists a number ∆
such that

∀` ∈ L : |{m ∈ L | m 6= `,m ∼ `}| ≥ ∆.

Then the number of points in GQ(s, t) not covered by the line set L is at least

(s+ 1)(st+ 1− |L|) +
|L|∆
t+ 1

.

Notation 2.7. Let D be a dominating set in GQ(s, t). Let PD and LD denote the point set
and the line set of D, resp. Define P ′ and L′ as the set of points and the set of lines resp.,
that are not covered by LD and not blocked by PD resp. We will use this notation in the
sequel implicitly. Note that by the definition of a dominating set, P ′ ⊆ PD and L′ ⊆ LD.

The following Lemma allows us to apply Lemma 2.5.

Lemma 2.8. Let D be a dominating set in GQ(s, t). For any point in P ′, the number of
points in P ′ collinear with it is at least ∆P := st+s−|LD|. For any line in L′ the number
of lines in L′ concurrent with it is at least ∆L := st+ t− |PD|.

Proof. Let P be an arbitrary point in P ′. Then each line of D covers at most one point
collinear with P . Hence, there are at least ∆P := (t + 1)s − |LD| points collinear with
P which are not covered by a line of D. These points must be in P ′. So each point of
P ′ is collinear with at least ∆P other points of P ′. Dually, we have that each line of L′ is
concurrent with at least ∆L := st+ t− |PD| other lines of L′.

From the next lemma follows that ∆P and ∆L are non-negative.
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Lemma 2.9. Let D be a dominating set in GQ(s, t). If |D| ≤ 2st+ 1, then

st− s+ 1 ≤ |PD| ≤ st+ t, (2.2)
st− t+ 1 ≤ |LD| ≤ st+ s. (2.3)

Proof. Assume |PD| = st+ 1− ε, then at least ε(t+ 1) lines are not blocked by PD and
have to be in LD. This implies that

2st+ 1 ≥ |D| = |PD|+ |LD| ≥ st+ 1− ε+ ε(t+ 1),

from which follows that ε ≤ s. Hence |PD| ≥ st− s+ 1. From this we obtain

2st+ 1 ≥ |D| = |PD|+ |LD| ≥ st− s+ 1 + |LD|,

hence |LD| ≤ st+ s. The other two inequalities follow similarly.

3 The domination number of GQ(s, t), |s− t| small
Theorem 3.1. The domination number of GQ(s, t), where |s− t| ≤ 3, is 2st+ 1.

Proof. By Theorem 2.1, it is enough to show Γ(GQ(s, t)) ≥ 2st+1. Assume a dominating
set D exists with size smaller than 2st+ 1. When lines or points are added to a dominating
set, it still remains a dominating set, so without loss of generality we may assume that D
has size |D| = 2st.

Let l = |LD| and p = |PD|, and let ∆P and ∆L be as in Lemma 2.8. By Lemma 2.5
we have that the number of lines not blocked byP ′ is at least (st+1−|P ′|)(t+1)+ |P

′|∆P
s+1 .

Since each point of D can block at most t + 1 lines, the number of lines |L′| not blocked
by D is at least

|L′| ≥ (st+ 1− |P ′|)(t+ 1) +
|P ′|∆P
s+ 1

− (p− |P ′|)(t+ 1)

= (st+ 1− p)(t+ 1) +
|P ′|∆P
s+ 1

.

Dually, by Lemma 2.6, we find that

|P ′| ≥ (st+ 1− l)(s+ 1) +
|L′|∆L
t+ 1

.

Suppose, say, l ≤ p (we may consider the dual quadrangle otherwise). Let 0 ≤ ε ≤ t be
such that p = st+ε, l = st−ε (cf. Lemma 2.9). Filling in these and ∆P = st+s−l = s+ε
and ∆L = st+ t− p = t− ε, multiplying by s+ 1 and t+ 1 resp., and rearranging we get

(s+ 1)|L′| − (s+ ε)|P ′| ≥ (1− ε)(t+ 1)(s+ 1), (3.1)
(t+ 1)|P ′| − (t− ε)|L′| ≥ (1 + ε)(t+ 1)(s+ 1). (3.2)

Suppose |P ′| ≤ |L′|. Then (3.2) yields

(1 + ε)(t+ 1)(s+ 1) ≤ (t+ 1)|P ′|− (t− ε)|L′| ≤ (1 + ε)|L′| ≤ (1 + ε)|LD| ≤ (1 + ε)st,

a contradiction. Hence |P ′| > |L′|. Then (3.1) gives

(1− ε)(t+ 1)(s+ 1) ≤ (s+ 1)|L′| − (s+ ε)|P ′| < (1− ε)|P ′| ≤ (1− ε)(st+ t),
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a contradiction if ε ≤ 1; thus ε ≥ 2. Adding up (3.1) and (3.2) we find

2(t+1)(s+1) ≤ (t−s−ε+1)|P ′|−(t−s−ε−1)|L′| = (t−s−ε−1)(|P ′|−|L′|)+2|P ′|.

As t− s ≤ 3, ε+ 1 ≥ 3, |P ′| − |L′| > 0 and |P ′| ≤ |PD| ≤ st+ t, this is a contradiction.
Consequently, |D| > 2st.

Corollary 3.2. The domination number of GQ(q, q) is 2q2+1, and the domination number
of GQ(q + 1, q − 1) and GQ(q − 1, q + 1) is 2q2 − 1.

This corollary applies to the well-known quadrangles W (q), Q(4, q), T2(O) (these
have order (q, q)), T ∗2 (O) (of order (q − 1, q + 1), q even), AS(q) (of order (q − 1, q + 1),
q odd) and their duals (of order (q + 1, q − 1)). Let us note that these quadrangles yield
isomorphic incidence graphs in many cases. Clearly, the incidence graphs of a GQ and
its dual are isomorphic. Let us now fix q. It is known that W (q) is isomorphic to the
dual of Q(4, q), and that T2(O) is isomorphic to Q(4, q) if and only if the oval O is a
conic [13, Section 3.2], which is certainly the case when q is odd by B. Segre’s celebrated
result. However, when q is even, O may be an oval that is not a conic, in which case the
construction T2(O) gives new instances of GQs of order (q, q) and corresponding incidence
graphs. In case of order (q − 1, q + 1), q even, there are also examples of GQs other than
T ∗2 (O) [13].

4 Classification of the smallest dominating sets in GQ(q, q)

Corollary 3.2 shows that all small dominating sets in GQ(q, q) have size 2q2 + 1. More-
over, we already have two constructions of small dominating sets, namely the construction
from Theorem 2.1 and its dual. In this section we show that these are the only two small
dominating sets.

First we need a few lemmas regarding the structure of small dominating sets in GQ(q, q).

Lemma 4.1. Let D = PD ∪LD be a dominating set in GQ(q, q) of size 2q2 + 1. Then P ′
is not a partial ovoid and L′ is not a partial spread.

Proof. It is sufficient to show that P ′ cannot be a partial ovoid. It then follows by duality
that L′ cannot be a spread. So assume to the contrary that P ′ is a partial ovoid, this will
lead to a contradiction.

Take a point P ∈ P ′. Since P ′ is a partial ovoid, all points collinear with P are not in
P ′. So they need to be covered by at least q2 + q different lines from LD. By Lemma 2.9
we now have that |LD| = q2 + q and |PD| = q2 − q + 1 ≥ |P ′|.

Now let η be the number of lines that are blocked by points of PD \ P ′, but are not in
LD and are not blocked by a point of P ′. Then we can count the total number of lines in
GQ(q, q):

q3 + q2 + q + 1 = |LD|+ (q + 1)|P ′|+ η.

Note that η ≤ (q2 − q + 1 − |P ′|)q, since each point of PD \ P ′ is covered at least once
by LD, so it contributes at most q lines to η. Remember that |LD| = q2 + q. We now find
that:

q3 + q2 + q + 1 ≤ q2 + q + (q + 1)|P ′|+ (q2 − q + 1− |P ′|)q,

which implies that |P ′| ≥ q2 − q + 1. This means that P ′ = PD. So all points of the
dominating set are uncovered.
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Since |LD| > q2 + 1, the set of lines LD cannot form a partial spread, meaning some
of these lines must intersect. Assume there exist three lines `1, `2, `3 ∈ LD such that `1
intersects both `2 and `3, in different points. Each point Q ∈ PD can be projected onto
`1. The projection point needs to be different from the points where `2 and `3 intersect
`1. Otherwise, there would not be enough lines in LD to cover all points collinear to Q.
Different points from PD will have different projection lines, since no two points from PD

are collinear. This implies that |PD| ≤ (q − 1)q = q2 − q, which is a contradiction. From
this we can conclude that each line of LD must cover at least q points which are not covered
by any other line of LD.

We can now start counting again:

q3 + q2 + q + 1 > |PD|+ q|LD| = q2 − q + 1 + q(q2 + q) = q3 + 2q2 − q + 1,

from which q < 2 follows, yielding an obvious contradiction. Hence, P ′ cannot be a partial
ovoid.

Note that since P ′ ⊆ PD, this lemma implies that PD cannot be a partial ovoid either
and, dually, LD is not a partial spread.

The following two theorems give a characterization for the dominating set constructed
in Theorem 2.1, and its dual.

Theorem 4.2. Let D = PD ∪LD be a dominating set in GQ(q, q) of size 2q2 + 1. Let the
degree d(`) of a line ` be the number of points of P ′ that are incident with `. If all lines in
GQ(q, q) have d(`) ∈ {0, 1, q + 1}, then D is the dominating set from Theorem 2.1.

Proof. Suppose that every line ` of the GQ(q, q) admits d(`) ∈ {0, 1, q + 1}. If there is
no line with d(`) = q + 1, then P ′ is a partial ovoid, which is not possible according to
Lemma 4.1. So there is at least one line with degree q + 1. Then every point of P ′ must
be contained in a line of degree at least two since either it is contained in a line of degree
q+ 1 or it can be projected to one such line, and then the projection line has degree at least
two. Since as soon as a line has degree at least two, it is completely contained in P ′ as a
point set, this yields that P ′ can be obtained as the union of some lines.

Assume there are two non-intersecting lines ` andm contained (as a set of points) inP ′.
Then each point of ` can be projected ontom. All these projection lines have degree at least
two, so they are contained in P ′ as well (as point sets). But then |PD| ≥ (q+1)2 > q2 +q,
which contradicts Lemma 2.9.

Hence, P ′ is a set of k lines through a point P . Note that |P ′| = kq + 1, so by
Lemma 2.9, 1 ≤ k ≤ q. There are q + 1 − k lines through P that, aside from P itself,
do not contain points of P ′. So all points on these lines, except for P , must be covered.
This leads to (q + 1 − k)q lines from LD. These lines of L cover altogether at most
(q + 1 − k)q(q + 1) points. The other lines of LD can cover at most q points that are not
covered yet by these first lines. This leads to the following inequality:

q3 + q2 + q + 1 ≤ kq + 1 + (q + 1− k)q(q + 1) + (|LD| − (q + 1− k)q) q

= kq + 1 + (q + 1− k)q2 + q2 + q − kq + |LD|q − (q + 1− k)q2

= q2 + q + 1 + |LD|q,

hence |LD| ≥ q2.
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The number of lines blocked by the elements of P ′ is kq2 + q + 1. Consider a point Q
in PD \P ′. This point needs to be covered at least once by a line of LD. By projecting this
point on one of the k lines through P , we see that there is at least one line through Q that is
already blocked by a point from P ′. Hence, each point of PD \ P ′ can block at most q− 1
lines that are not in LD and are not blocked by a point of P ′. So for the size of this set we
obtain

|PD \ P ′| ≥
q3 + q2 + q + 1− |LD| − (kq2 + q + 1)

q − 1
=
q3 + q2 − kq2 − |LD|

q − 1
.

Using this inequality and the observation that |LD| ≥ q2, we find for the size of the domi-
nating set D = (PD \ P ′) ∪ P ′ ∪ LD that

|D| ≥ q3 + q2 − kq2 − |LD|
q − 1

+ kq + 1 + |LD|

=
q3 + q2 − kq2

q − 1
+ kq + 1 +

(
1− 1

q − 1

)
|LD| ≥

q3 − kq2

q − 1
+ kq + 1 + q2

= q2 + (1− k)q + (1− k) +
1− k
q − 1

+ kq + 1 + q2

= 2q2 + q + 2− k − k − 1

q − 1
.

Now assuming k < q, we find that |D| > 2q2 + 1, which is a contradiction. So the
only possibility left is k = q. In this case P ′ consists of the points on q lines through P ,
and |P ′| = q2 + 1. The number of lines blocked by these points is q3 + q + 1. Since
|LD| ≥ q2, all lines not blocked by the points of P ′ must be in LD. SoD is the dominating
set constructed in Theorem 2.1.

Dualizing this theorem gives us a characterization for the dual of the construction in
Theorem 2.1.

Theorem 4.3. Let D = PD ∪ LD be a dominating set in GQ(q, q) of size 2q2 + 1. Let
the degree d(P ) of a point P be the number of lines of L′ that are incident with P . If
all points in GQ(q, q) have d(P ) ∈ {0, 1, q + 1}, then D is the dual dominating set from
Theorem 2.1.

We will need the following lemma, which is actually a variation on Lemma 2.5.

Lemma 4.4. Let D = PD ∪ LD be a dominating set in GQ(q, q) of size 2q2 + 1. Let
p := |PD|, l := |LD|, and define ∆P = q2 + q− l and ∆L = q2 + q− p as in Lemma 2.8.
Define the degree d(`) of a line ` as the number of points from PD incident with `, and
the degree d(P ) of a point P as the number of lines from LD incident with P . Finally, we
introduce

c(D) =
∑

Q/∈PD

(q + 1− d(Q))(d(Q)− 1) +
∑
`/∈LD

(q + 1− d(`))(d(`)− 1)

+
∑

P∈PD

d(P ) +
∑
`∈LD

d(`).
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Then

p ≥ (q2 + 1− l)(q + 1) +
1

q + 1
(l∆L + c(D)) ,

l ≥ (q2 + 1− p)(q + 1) +
1

q + 1
(p∆P + c(D)) .

Proof. Let p′ := |P ′| and l′ := |L′|. Note that for a line `, d(`) ≥ 1 iff ` /∈ L′. With
p(q+1), we count each line ` blocked by PD exactly d(`) times, hence the number of lines
blocked by PD is

p(q + 1)−
∑
`/∈LD

(d(`)− 1)−
∑

`∈LD\L′

(d(`)− 1)

= p(q + 1)−
∑
`/∈LD

(d(`)− 1)−

(∑
`∈LD

d(`)− l + l′

)
.

(4.1)

Recall that l′ equals the number of lines not blocked by PD, hence l′ = (q2 + 1)(q + 1)−
(4.1). From this it follows that

l = (q2 + 1− p)(q + 1) +
∑
`/∈LD

(d(`)− 1) +
∑
`∈LD

d(`). (4.2)

We will estimate the middle term using

(q + 1)
∑
`/∈LD

(d(`)− 1) =
∑
`/∈LD

d(`)(d(`)− 1) +
∑
`/∈LD

(q + 1− d(`))(d(`)− 1). (4.3)

Note that the second sum on the right-hand side is a part of c(D). For the sum∑
`/∈LD

d(`)(d(`)− 1) we can find a lower bound as follows.
For P ∈ PD, let N ′(P ) denote the number of points of P ′ collinear with P . Then∑
`/∈LD

d(`)(d(`)− 1) = |{(P,Q, `) : ` /∈ LD, P ∈ PD, Q ∈ PD, P ∼ Q,PQ = `}|

≥ |{(P,Q, `) : ` /∈ LD, P ∈ PD, Q ∈ P ′, P ∼ Q,PQ = `}|

= |{(P,Q) : P ∈ PD, Q ∈ P ′, P ∼ Q}| =
∑

P∈PD

N ′(P ).

Let P ∈ PD. Then we have

l ≥ d(P ) +
∑
Q∼P

PQ/∈LD

d(Q) = d(P ) +
∑
Q∼P
Q/∈P′

PQ/∈LD

d(Q)

= d(P ) + (q + 1− d(P ))q −N ′(P ) +
∑
Q∼P
Q/∈P′

PQ/∈LD

(d(Q)− 1),

whence
N ′(P ) ≥ ∆P − (q − 1)d(P ) +

∑
Q∼P
Q/∈P′

PQ/∈LD

(d(Q)− 1).
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With this we find∑
P∈PD

N ′(P ) ≥ p∆P − (q − 1)
∑

P∈PD

d(P ) +
∑

P∈PD

∑
Q∼P
Q/∈P′

PQ/∈LD

(d(Q)− 1)

≥ p∆P − (q − 1)
∑

P∈PD

d(P ) +
∑

P∈PD

∑
Q∼P
Q/∈PD

PQ/∈LD

(d(Q)− 1)

= p∆P − (q − 1)
∑

P∈PD

d(P ) +
∑

Q/∈PD

∑
P∈PD
Q∼P

PQ/∈LD

(d(Q)− 1).

As for each point Q /∈ PD, there are q + 1− d(Q) lines on Q that are not in LD and each
of these must be incident with a point of PD, we find that∑

P∈PD

N ′(P ) ≥ p∆P − (q − 1)
∑

P∈PD

d(P ) +
∑

Q/∈PD

(q + 1− d(Q))(d(Q)− 1).

As
∑

`∈LD
d(`) =

∑
P∈PD

d(P ), we conclude∑
`/∈LD

d(`)(d(`)− 1) ≥ p∆P − (q − 1)
∑
`∈LD

d(`) +
∑

Q/∈PD

(q + 1− d(Q))(d(Q)− 1).

Together with (4.2) and (4.3), this gives the second desired inequality. The other inequality
is showed analogously.

Note that P ′ = PD and L′ = LD are equivalent. Also note that if this is the case, then∑
`∈LD

d(`) = 0. We can now prove the following Theorem, giving a classification of the
small dominating sets in GQ(q, q).

Theorem 4.5. LetD = PD∪LD be a dominating set in GQ(q, q) with size |D| = 2q2 +1.
Then D is the dominating set from Theorem 2.1 or its dual.

Proof. Define p = |PD|, l = |LD| and p′ = |P ′|; note that p + l = 2q2 + 1. By duality,
we may assume that p > l + 1 or p = q2 (and l = q2 + 1). Define the degree d(`) of a
line ` as the number of points from PD incident with `, and the degree d(P ) of a point P
as the number of lines from LD incident with P . We will find lower bounds on the sums
from Lemma 4.4; let c(D) be defined as therein.

Define ∆ := ∆P = q2 + q − l as in Lemma 2.8. For any point P ∈ PD, define
the number of neighbors N(P ) := |{Q | Q ∼ P,Q ∈ PD}|. We immediately have that
N(P ) ≥ ∆ if P ∈ P ′. If l = q2 +1, then ∆ = q−1. If p > l+1, then q2−q+1 ≤ l < q2,
by Lemma 2.9. In both cases, we have that ∆ 6≡ 0 (mod q). We now consider two types
of points in P ′ and their contributions to c(D).

• Type 1: P is incident with at least one line e with 2 ≤ d(e) ≤ q.

Since P is a point from P ′, the line e is not in LD. So this line e contributes at least
q − 1 to

∑
` 6∈LD

(q + 1− d(`)) (d(`)− 1). Note that on this line there are at most
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q points of Type 1. Assume there are k points of Type 1, then we find the following
lower bound: ∑

6̀∈LD

(q + 1− d(`)) (d(`)− 1) ≥ k q − 1

q
. (4.4)

• Type 2: All lines through P have degree 1 or q + 1.

If ∆ = N(P ), then there are exactly ∆ points in PD collinear with P . But ∆ 6≡ 0
(mod q), so then there must be at least one line ` through P with degree 2 ≤ d(`) ≤
q. Then P would be a point of Type 1. So we have N(P ) > ∆.

Denote by xi(P ) := |{R | R /∈ PD, R ∼ P,d(R) = i}|, for i = 1, . . . , q. Note
that, as P ∈ P ′ there are no points collinear with P with degree q + 1.

Each point R /∈ PD, with degree 1 ≤ i ≤ q contributes (q+ 1− i)(i− 1) to the sum∑
Q6∈PD

(q + 1− d(Q)) (d(Q)− 1). Such a point is collinear with at most q+1− i
points of Type 2, since a line through a point of Type 2 is not in LD, and either
contains no other points of PD or contains only points of PD. So the contribution of
P to

∑
Q6∈PD

(q + 1− d(Q)) (d(Q)− 1) is at least

q∑
i=1

xi
(q + 1− i)(i− 1)

q + 1− i
=

q∑
i=1

xi(i− 1).

Now we show that the contribution is strictly positive for each point of Type 2. So
assume this is not the case for a point P ∈ P ′ of Type 2, so each point Q /∈ PD

collinear with P has degree d(Q) = 1. Since each line through P has either degree
1 or q + 1, there must be λ lines through P which contain all points collinear with it
from P , for some 1 ≤ λ ≤ q + 1 (λ > 0 as N(P ) > 0). So we already have λq + 1
points in the dominating set.

On each of the other q + 1 − λ lines through P there are q points with degree 1.
This gives us q(q + 1− λ) lines in the dominating set. Through each of these points
/∈ PD, collinear with P there are q− 1 lines which are not in the dominating set and
are not blocked yet. Say there are x points in D, which are not collinear with P and
different from P itself. Each of these points can block at most q+ 1− λ lines which
are not yet blocked. From this follows (q − 1)q(q + 1 − λ) ≤ x(q + 1 − λ), hence
x ≥ q2 − q. Since 2q2 + 1 = |D| ≥ λq + 1 + x+ (q + 1− λ)q = q2 + q + 1 + x,
we have x = q2− q. As q2 + q ≥ |PD| = x+λq+ 1 = q2 + (λ− 1)q+ 1, we have
λ = 1 and |PD| = q2 + 1, contrary to our assumptions.

From this follows that we may assume that for each point P of Type 2 we have∑q
i=1 xi(i − 1) ≥ 1. Note that there are p′ − k points of Type 2. This gives us the

following inequality:∑
Q6∈PD

(q + 1− d(Q)) (d(Q)− 1) ≥ p′ − k. (4.5)

Note that d(P ) ≥ 1 for each P ∈ PD \ P ′, so
∑

`∈LD
d(`) =

∑
P∈PD

d(P ) ≥ p − p′.
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Combining this with (4.4) and (4.5), and with k ≤ p′ ≤ p and p ≥ q2, we get the following:

c(D) =
∑
` 6∈LD

(q + 1− d(`)) (d(`)− 1)

+
∑

Q6∈PD

(q + 1− d(Q)) (d(Q)− 1) + 2
∑

P∈PD

d(P )

≥ k q − 1

q
+ p′ − k + 2(p− p′) ≥ k q − 1

q
+ p− k

≥ p− k

q
≥ pq − 1

q
≥ q2 − q.

Thus, according to Lemma 4.4, we find

p ≥ (q2 + 1− l)(q + 1) +
1

q + 1

(
l∆l + q2 − q

)
,

l ≥ (q2 + 1− p)(q + 1) +
1

q + 1

(
p∆p + q2 − q

)
.

Now using 2q2 + 1 = |D| = p + l, ∆P = q2 + q − l, ∆L = q2 + q − p, and that
pl ≤ q2(q2 + 1), we calculate the sum of these two inequalities:

2q2 + 1 ≥ q + 1 +
p(q2 + q − l) + l(q2 + q − p) + 2(q2 − q)

q + 1

= q + 1 +
(p+ l)q(q + 1)− 2pl + 2(q2 − q)

q + 1

= q + 1 + q(2q2 + 1) +
−2pl + 2(q2 − q)

q + 1

≥ 2q3 + 2q + 1 +
−2q4 − 2q2 + 2q2 − 2q

q + 1

≥ 2q3 + 2q + 1− 2q
q3 + 1

q + 1

≥ 2q3 + 2q + 1− 2q(q2 − q + 1) = 2q2 + 1.

So we see that we actually reach equality. This means that all the estimates we used during
our countings were exact, hence we have k = p′ = p. As PD = P ′, every point P ∈ PD

has d(P ) = 0. Equality with zero in (4.5) yields that for all Q /∈ PD we have d(Q) = 1 or
d(Q) = q+1. By Theorem 4.3,D is the dual of the dominating set from Theorem 2.1.

5 Conclusion, remarks and open problems
The main results of this paper can be summarized as follows.

Theorem 5.1.

• The domination number of GQ(s, t) is at most 2st+ 1.

• The domination number of GQ(q, q) equals 2q2 + 1.

• A dominating set of GQ(q, q) of size 2q2 + 1 is one of the two examples seen in
Figure 1.
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• The domination number of GQ(q − 1, q + 1) and GQ(q + 1, q − 1) equals 2q2 − 1.

Let us outline some possible areas of further investigation in this topic. For the other
classical parameters, the calculations in Lemma 3.1 fail in general. Is the bound 2st + 1
for GQ(s, t) still sharp for general s and t? It would be also interesting to answer this
question for the classical generalized quadrangles. We have checked by computer, using
a simple linear integer programming model and Gurobi [7], for all classical GQs of order
(3, 9), (4, 8), (4, 16) as given on Moorhouse’s webpage [12], and we have found the bound
sharp.

InW (q), orQ(4, q), if q is even, there exists an ovoid and a spread as well, giving rise to
a dominating set of size 2q2 +2. This implies that there is no general stability phenomenon
for smallest dominating sets in GQs, unlike in the case of generalized triangles (projective
planes; see [11]); that is, the size of minimal examples (with respect to containment) may be
arbitrarily close. However, the structure of the mentioned dominating sets are immensely
dissimilar. Is it true that minimal dominating sets of size 2q2 + 2 of a GQ(q, q) (or, more
specifically,W (q)) are the union of an ovoid and a spread? What size does the next smallest
minimal example for a dominating set in GQ(q, q) have?

Dominating sets of a graph G = (V,E) may be also viewed as a set D of vertices
such that V \ D induces a subgraph of G such that every vertex has degree at least one
smaller than originally. If equality holds for every vertex of V \ D, then D is called a
perfect dominating set. More generally, if we replace ‘at least one smaller’ by ‘at least t
smaller’, we talk about t-fold dominating sets and perfect t-fold dominating sets. Perfect t
fold dominating sets of the incidence graphs of projective planes, generalized quadrangles
and generalized hexagons have already been studied in order to produce upper bounds on
the order of some particular cage graphs (see [9] for an overview). In [5], perfect t-fold
dominating sets of the incidence graph of the desarguesian projective plane PG(2, q) are
completely described for small enough t, while the characterization of small dominating
sets of projective planes can be found in [11]. In the case t = 1, describing smallest
dominating and perfect dominating sets is quite easy, unlike in the here discussed case
of generalized quadrangles; see also [2] for results on perfect (1-fold) dominating sets of
Q(4, q). It would be also interesting to study t-fold (ordinary and perfect) dominating sets
of generalized quadrangles, t ≥ 2. Also, as a counterpart of t-fold dominating sets, finding
a (preferably large) subset D of the incidence graph such that each vertex not in D has at
most t neighbors in D would be also interesting, as its complement induces a subgraph of
high minimum degree. Such subsets, asides being interesting in themselves, also may find
their applications in different topics as they do when the host graph is the incidence graph
of a projective plane; see [1, 10].
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[9] T. Héger, Some graph theoretic aspects of finite geometries, Ph.D. thesis, ELTE Eötvös Loránd
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Abstract

Recently, Huang gave a very elegant proof of the Sensitivity Conjecture by proving
that hypercube graphs have the following property: every induced subgraph on a set of
more than half the vertices has maximum degree at least

√
d, where d is the valency of

the hypercube. This was generalised by Alon and Zheng who proved that every Cayley
graph on an elementary abelian 2-group has the same property. Very recently, Potechin
and Tsang proved an analogous results for Cayley graphs on abelian groups. They also
conjectured that all Cayley graphs have the analogous property. We disprove this conjecture
by constructing various counterexamples, including an infinite family of Cayley graphs of
unbounded valency which admit an induced subgraph of maximum valency 1 on a set of
more than half the vertices.

Keywords: Cayley graphs, vertex-transitive graphs, sensitivity conjecture.
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1 Introduction
All graphs and groups in this paper are finite. Recently, Huang [5] gave a very elegant
proof of the Sensitivity Conjecture [6] by proving that hypercube graphs have the following
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property: every induced subgraph on a set of more than half the vertices has maximum
degree at least

√
d, where d is the valency of the hypercube. This is best possible, as

shown by Chung, Füredi, Graham and Seymour [2]. This was generalised by Alon and
Zheng who proved that every Cayley graph on an elementary abelian 2-group has the same
property [1]. In their concluding remarks, they point out that this result cannot generalise
directly to other groups, but that it would be interesting to investigate possible analogs for
Cayley graphs on other groups.

Very recently, Potechin and Tsang proved such an analogous result for Cayley graphs
on all abelian groups [7], by replacing the

√
d bound by

√
d/2. (More precisely, they

prove their result with the bound
√

x + x′/2, where x is the number of involutions in the
connection set of the Cayley graph, and x′ the number of non-involutions.) They also
conjectured that their result should hold for all Cayley graphs [7, Conjecture 1] and asked
whether even all vertex-transitive graphs might have this property.

In this short note, we give three infinite families of vertex-transitive graph such that
every graph in these families admits an induced subgraph of maximum valency 1 on a set
of more than half the vertices. First is the well-known family of odd graphs. Note that this
family has unbounded valency and so these graphs fail to have the required property in a
very strong sense. On the other hand, they are not Cayley. The second family consists of
some 3-regular Cayley graphs on dihedral groups. The last family consists of an infinite
family of graphs of unbounded valency which are Cayley on groups defined via iterated
wreath products. Both the latter families are thus counterexamples to [7, Conjecture 1].
(We also note that, in our first two families, the induced subgraph in question is a matching,
that is, each vertex has valency 1.)

2 Odd graphs
For n ≥ 1, the odd graph On has vertex-set the n-subsets of a (2n + 1)-set Ω, with
two vertices adjacent if and only if the corresponding subsets are disjoint. For example
O1
∼= K3, while O2 is isomorphic to the Petersen graph. Note that there is an obvious

action of S2n+1 as a vertex-transitive group of automorphism of On, so these graphs are
vertex-transitive. On the other hand, these graphs are not Cayley graphs for n ≥ 2 [4]. It is
easy to check that On is (n + 1)-regular. Let ω ∈ Ω and let U be the set of n-subsets of Ω
that do not contain ω. Note that

|U |
|V(On)|

=

(
2n
n

)(
2n+1

n

) =
n + 1

2n + 1
>

1

2
,

but the induced subgraph on U is 1-regular.

3 3-valent Cayley graphs on dihedral groups
For a group G and an inverse-closed and identity-free subset S of G, the Cayley graph
Cay(G,S) is the graph with vertex-set G and two vertices g and h adjacent if and only
g−1h ∈ S. For n ≥ 1, we denote by D2n the dihedral group 〈a, b | an = b2 = (ab)2 = 1〉
of order 2n.

Let Γ18 = Cay(D18, {b, ab, a3b}). There is a set U18 of 10 vertices of Γ18 such that
the induced subgraph on U18 is 1-regular, as can be seen on the picture below, where the
elements of U18 are coloured gray.



F. Lehner and G. Verret: Counterexamples to “A conjecture on induced subgraphs . . . ” 79

1

a8

a7
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a5
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a3

a2
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a8b

a7b

a6b
a5b

a4b

a3b

a2b

ab

Figure 1: Γ18 = Cay(D18, {b, ab, a3b}).

Starting from Γ18, it is easy to get an infinite family of further examples using covers:
for m ≥ 1, let Γ18m = Cay(D18m, {b, ab, a3b}) and let N be the subgroup of D18m

generated by a9. Note that N is a normal subgroup of D18m of order m and D18m/N ∼=
D18. Let ϕ : D18m → D18 be the natural projection and let U18m be the preimage of U18.
Now, |U18m| = 10m and, since Γ18m is a (normal) cover of Γ18, the induced subgraph on
U18m is 1-regular.

4 Cayley graphs on iterated wreath products
Let Z2 = {0, 1} denote the cyclic group of order 2, let G be a group with identity element
1G and let (Z2)G denote the set of functions from G to Z2. Note that (Z2)G forms a group
under pointwise addition. Let 0 be the identity element of (Z2)G (that is, the function
mapping every element of G to 0). Note also that there is natural action of G on (Z2)G.
Written in exponential notation, we have that if a ∈ (Z2)G and g ∈ G, then ag is the
element of (Z2)G defined by ag(x) = a(g−1x) for every x ∈ G.

The wreath product Z2 oG is the group consisting of all pairs (a, g) where a ∈ (Z2)G

and g ∈ G, with the group operation given by

(a, g)(b, h) = (a + bg, gh).

For g ∈ G, let ag ∈ (Z2)G be the function mapping g to 1 and every other element of
G to 0. If S is a generating set for G, then

{(a1, 1G)} ∪ {(0, s) | s ∈ S}

is a generating set for Z2 o G which we call the canonical generating set for Z2 o G (with
respect to S).
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Example 4.1. Let G = Z2 = {0, 1}, let S = {1} ⊆ G, let Ĝ = Z2 o G and let a =
(a0, 0), c = (0, 1) ∈ Ĝ. The canonical generating set for Ĝ with respect to S is Ŝ = {a, c}.
Writing b = ac = (a0, 0), Cay(Ĝ, Ŝ) is illustrated in Figure 2. (The colours of the vertices
will be explained in Example 4.3.)

ac

c

bc

abc

a

1

b

ab

Figure 2: Cay(Z2 o Z2, {a, c}).

Lemma 4.2. Let S be a generating set for a group G, let Ĝ = Z2 o G and let Ŝ be the
canonical generating set for Ĝ with respect to S. If Cay(G,S) is bipartite and has an
induced subgraph of maximum degree 1 on more than half the vertices, then the same is
true for Cay(Ĝ, Ŝ).

Proof. We first show that Cay(Ĝ, Ŝ) is bipartite. Call an element of G even if it lies in
the same part of the bipartition of Cay(G,S) as 1G, and odd otherwise. Call an element a
of (Z2)G even if a maps an even number of elements of G to 1, and call a odd otherwise.
Finally, call an element ĝ = (a, g) ∈ Ĝ even if a and g are either both even or both odd,
and call ĝ odd otherwise. It is straightforward to check that if ŝ ∈ Ŝ, then ĝ is even if and
only if ĝŝ is odd. Thus the partition of Ĝ into even and odd elements is a bipartition of
Cay(Ĝ, Ŝ).

Let H ⊆ G be such that |H| > |G|/2 and the subgraph of Cay(G,S) induced by H
has maximum degree 1. Denote by Geven and Godd the set of even and odd elements of G,
respectively. For each a ∈ (Z2)G, let [a] = {(a, g) | g ∈ G} ⊆ Ĝ and define a subset Ha
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of G as follows:

Ha =


H if a = 0,

Godd if a = ag for some g ∈ Geven,

Geven otherwise.

Let Ĥ = {(a, h) | a ∈ (Z2)G, h ∈ Ha} ⊆ Ĝ. Clearly, |Ĥ ∩ [0]| = |H| > |G|/2 while,
for a 6= 0, we have |Ĥ ∩ [a]| = |G|/2. It follows that |Ĥ| > |Ĝ|/2. Let (a, h) ∈ Ĥ . We
show that (a, h) has at most one neighbour in Ĥ . By definition, h ∈ Ha.

If a = 0, then h ∈ H . Note that, if g ∈ Geven, then Hag
= Godd, whereas if g ∈

Godd, then Hag = Geven. In particular, for every g ∈ G, (ag, g) /∈ Ĥ . It follows that
(0, h)(a1, 1G) = (ah1 , h) = (ah, h) /∈ Ĥ . On the other hand, for s ∈ S, (0, h)(0, s) =
(0, hs) ∈ Ĥ if and only if hs ∈ H . This shows that the number of neighbours of (0, h) in
Ĥ is the same as the number of neighbours of h in H and therefore at most 1 (with equality
reached for some h ∈ H).

Assume now a 6= 0. Since the partition of Ĝ into even and odd elements is a bipartition
of Cay(Ĝ, Ŝ), it follows from the definition of Ha that there are no two adjacent elements
in Ĥ ∩ [a]. Since (a, h) has exactly one neighbour outside of [a] (namely (a, h)(a1, 1G)),
it follows that (a, h) has at most one neighbour in Ĥ . This concludes the proof that the
subgraph induced by Ĥ has maximum degree 1.

By starting with, say (G,S) = (Z2, {1}) and applying Lemma 4.2 repeatedly, one
obtains an infinite family of Cayley graphs of unbounded valency such that every graph in
the family admits an induced subgraph of maximum degree 1 on a set of more than half the
vertices, as claimed.

Example 4.3. To illustrate Lemma 4.2, we pick off where Example 4.1 left off. We have
Geven = {0} and Godd = {1}. Let H = G. Following Lemma 4.2, we have

H0 = {0, 1},
Ha0

= {1},
Ha1 = {0},

Ha0+a1 = {0}.

This gives Ĥ = {1, c, ac, b, abc}, which is the set of vertices coloured in gray in Figure 2.
One can observe that this is more than half the vertices of the graph and that the induced
subgraph on Ĥ has maximum valency 1.

5 Concluding remarks
1. Recall that a covering map f from a graph Γ̂ to a graph Γ is a surjective map that is a

local isomorphism. If such a map exists, then Γ̂ is a covering graph of Γ. It is easy to
see that if Γ is a d-regular graph admitting an induced subgraph of maximum degree
1 on a set of more than half the vertices, then Γ̂ has the same property. (It is well
known that all the vertex-fibers have the same cardinality, so one can simply take the
preimage of the set of more than half the vertices of Γ.) Starting from one example,
one can thus construct infinitely many having the same valency, vertex-transitivity,
Cayleyness, etc.
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2. As a consequence of the above remark, we can construct infinite families of d-regular
Cayley graphs of order n admitting induced subgraphs of maximum degree 1 on
1+ε(d)

2 n vertices.

3. It is an easy exercise that if Γ is a d-regular graph of order n admitting a subset
X of vertices such that the induced graph on X has maximum valency at most 1,
then |X|/n ≤ d

2d−1 . Note that the Odd graph Od−1 attains this bound and so is
extremal from this perspective. It would be interesting to know if this bound can be
achieved by Cayley graphs. (Such examples were later found by Garcı́a-Marco and
Knauer [3].)

4. In light of the results from [1, 7] on Cayley graphs of abelian groups, it seems natural
ask if there is a natural family of nonabelian groups having the same property. In
Sections 3 and 4, we give examples of Cayley graphs on some dihedral groups and
some 2-groups that do not have this property. Given that both these families of groups
are in some sense close to being abelian (dihedral groups have a cyclic subgroup
of index 2, while 2-groups are nilpotent), the question of determining whether any
natural family of nonabelian groups has this property seems even more interesting.
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Abstract

A signed graph is said to be sign-symmetric if it is switching isomorphic to its negation.
Bipartite signed graphs are trivially sign-symmetric. We give new constructions of non-
bipartite sign-symmetric signed graphs. Sign-symmetric signed graphs have a symmetric
spectrum but not the other way around. We present constructions of signed graphs with
symmetric spectra which are not sign-symmetric. This, in particular answers a problem
posed by Belardo, Cioabă, Koolen, and Wang in 2018.
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1 Introduction
Let G be a graph with vertex set V and edge set E. All graphs considered in this paper are
undirected, finite, and simple (without loops or multiple edges).

A signed graph is a graph in which every edge has been declared positive or negative. In
fact, a signed graph Γ is a pair (G, σ), where G = (V,E) is a graph, called the underlying
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graph, and σ : E → {−1,+1} is the sign function or signature. Often, we write Γ = (G, σ)
to mean that the underlying graph is G. The signed graph (G,−σ) = −Γ is called the
negation of Γ. Note that if we consider a signed graph with all edges positive, we obtain
an unsigned graph.

Let v be a vertex of a signed graph Γ. Switching at v is changing the signature of each
edge incident with v to the opposite one. Let X ⊆ V . Switching a vertex set X means
reversing the signs of all edges between X and its complement. Switching a set X has the
same effect as switching all the vertices in X , one after another.

Two signed graphs Γ = (G, σ) and Γ′ = (G, σ′) are said to be switching equivalent if
there is a series of switching that transforms Γ into Γ′. If Γ′ is isomorphic to a switching of
Γ, we say that Γ and Γ′ are switching isomorphic and we write Γ ' Γ′. The signed graph
−Γ is obtained from Γ by reversing the sign of all edges. A signed graph Γ = (G, σ) is
said to be sign-symmetric if Γ is switching isomorphic to (G,−σ), that is: Γ ' −Γ.

For a signed graph Γ = (G, σ), the adjacency matrix A = A(Γ) = (aij) is an n × n
matrix in which aij = σ(vivj) if vi and υj are adjacent, and 0 if they are not. Thus A is a
symmetric matrix with entries 0,±1 and zero diagonal, and conversely, any such matrix is
the adjacency matrix of a signed graph. The spectrum of Γ is the list of eigenvalues of its
adjacency matrix with their multiplicities. We say that Γ has a symmetric spectrum (with
respect to the origin) if for each eigenvalue λ of Γ, −λ is also an eigenvalues of Γ with the
same multiplicity.

Recall that (see [4]), the Seidel adjacency matrix of a graphGwith the adjacency matrix
A is the matrix S defined by

Suv =


0 if u = v

−1 if u ∼ v
1 if u � v

so that S = J − I − 2A. The Seidel adjacency spectrum of a graph is the spectrum of
its Seidel adjacency matrix. If G is a graph of order n, then the Seidel matrix of G is
the adjacency matrix of a signed complete graph Γ of order n where the edges of G are
precisely the negative edges of Γ.

Proposition 1.1. Suppose S is a Seidel adjacency matrix of order n. If n is even, then S
is nonsingular, and if n is odd, rank(S) ≥ n − 1. In particular, if n is odd, and S has a
symmetric spectrum, then S has an eigenvalue 0 of multiplicity 1.

Proof. We have det(S) ≡ det(I − J) (mod 2), and det(I − J) = 1 − n. Hence, if n
is even, det(S) is odd. So, S is nonsingular. Now, if n is odd, any principal submatrix of
order n− 1 is nonsingular. Therefore, rank(S) ≥ n− 1.

The goal of this paper is to study sign-symmetric signed graphs as well as signed graphs
with symmetric spectra. It is known that bipartite signed graphs are sign-symmetric. We
give new constructions of non-bipartite sign-symmetric graphs. It is obvious that sign-
symmetric graphs have a symmetric spectrum but not the other way around (see Remark 4.1
below). We present constructions of graphs with symmetric spectra which are not sign-
symmetric. This, in particular answers a problem posed in [2].
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2 Constructions of sign-symmetric graphs
We note that the property that two signed graphs Γ and Γ′ are switching isomorphic is
equivalent to the existence of a ‘signed’ permutation matrix P such that PA(Γ)P−1 =
A(Γ′). If Γ is a bipartite signed graph, then we may write its adjacency matrix as

A =

[
O B
B> O

]
.

It follows that PAP−1 = −A for

P =

[
−I O
O I

]
,

which means that bipartite graphs are ‘trivially’ sign-symmetric. So it is natural to look for
non-bipartite sign-symmetric graphs. The first construction was given in [1] as follows.

Theorem 2.1. Let n be an even positive integer and V1 and V2 be two disjoint sets of size
n/2. Let G be an arbitrary graph with the vertex set V1. Construct the complement of G,
that is Gc, with the vertex set V2. Assume that Γ = (Kn, σ) is a signed complete graph in
which E(G) ∪ E(Gc) is the set of negative edges. Then Γ is sign-symmetric.

2.1 Constructions for general signed graphs

LetMr,s denote the set of r × s matrices with entries from {−1, 0, 1}. We give another
construction generalizing the one given in Theorem 2.1:

Theorem 2.2. Let B,C ∈ Mk,k be symmetric matrices where B has a zero diagonal.
Then the signed graph with the adjacency matrices

A =

[
B C
C −B

]
is sign-symmetric on 2k vertices.

Proof. [
O −I
I O

] [
B C
C −B

] [
O I
−I O

]
=

[
−B −C
−C B

]
= −A

Note that Theorem 2.2 shows that there exists a sign-symmetric graph for every even
order.

We define the family F of signed graphs as those which have an adjacency matrix sat-
isfying the conditions given in Theorem 2.2. To get an impression on what the role of F is
in the family of sign-symmetric graphs, we investigate small complete signed graphs. All
but one complete signed graphs with symmetric spectra of orders 4, 6, 8 are illustrated in
Figure 1 (we show one signed graph in the switching class of the signed complete graphs
induced by the negative edges). There is only one sign-symmetric complete signed graph
of order 4. There are four complete signed graphs with symmetric spectrum of order 6,
all of which are sign-symmetric, and twenty-one complete signed graphs with symmetric
spectrum of order 8, all except the last one are sign-symmetric, and together with the nega-
tion of the last signed graph, Figure 1 gives all complete signed graphs with symmetric
spectrum of order 4, 6 and 8. Interestingly, all of the above sign-symmetric signed graphs
belong to F .

The following proposition shows that F is closed under switching.
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Figure 1: Complete signed graphs (up to switching isomorphism and negation) of order
4, 6, 8 having symmetric spectrum. The numbers next to the graphs are the non-negative
eigenvalues. Only the last graph on the right is not sign-symmetric.

Proposition 2.3. If Γ ∈ F and Γ′ is obtained from Γ by switching, then Γ′ ∈ F .

Proof. Let Γ ∈ F . It is enough to show that if Γ′ is obtained from Γ by switching with
respect to its first vertex, then Γ′ ∈ F . We may write the adjacency matrix of Γ as follows:

A =



0 b> c c>

b B′ c C ′

c c> 0 −b>

c C ′ −b −B′



.

After switching with respect to the first vertex of Γ, the adjacency matrix of the resulting
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signed graph is 

0 −b> −c −c>

−b B′ c C ′

−c c> 0 −b>

−c C ′ −b −B′



.

Now by interchange the 1st and (k + 1)-th rows and columns we obtain

0 c> −c −b>

c B′ −b C ′

−c −b> 0 −c>

−b C ′ −c −B′


which is a matrix of the form given in Theorem 2.2 and thus Γ′ is isomorphic with a signed
graph in F .

In the following we present two constructions for complete sign-symmetric signed
graphs using self-complementary graphs.

2.2 Constructions for complete signed graphs

In the following, the meaning of a self-complementary graph is the same as defined for
unsigned graphs. Let G be a self-complementary graph so that there is a permutation
matrix P such that PA(G)P−1 = A(G) and PA(G)P−1 = A(G). It follows that if Γ is
a complete signed graph with E(G) being its negative edges, then A(Γ) = A(G)− A(G)
(in other words, A(Γ) is the Seidel matrix of G). It follows that PA(Γ)P−1 = −A(Γ). So
we obtain the following:
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Observation 2.4. If Γ is a complete signed graph whose negative edges induce a self-
complementary graph, then Γ is sign-symmetric.

We give one more construction of sign-symmetric signed graphs based on self-comple-
mentary graphs as a corollary to Observation 2.4. We remark that a self-complementary
graph of order n exists whenever n ≡ 0 or 1 (mod 4).

Proposition 2.5. Let G,H be two self-complementary graphs, and let Γ be a complete
signed graph whose negative edges induce the join of G and H (or the disjoint union of
G and H). Then Γ is sign symmetric. In particular, if G has n vertices, and if H is a
singleton, then the complete signed graph Γ of order n + 1 with negative edges equal to
E(G) is sign-symmetric.

In the following remark we present a sign-symmetric construction for non-complete
signed graphs.

Remark 2.6. Let Γ′,Γ′′ be two signed graphs which are isomorphic to −Γ′,−Γ′′, respec-
tively. Consider the signed graph Γ obtained from joining Γ′ and Γ′′ whose negative edges
are the union of negative edges in Γ′ and Γ′′. Then, Γ is sign-symmetric.

Remark 2.7. By Proposition 2.5, we have a construction of sign-symmetric complete
signed graphs of order n ≡ 0, 1 or 2 (mod 4). All complete sign-symmetric signed graphs
of order 5 and 9 (depicted in Figure 2) can be obtained in this way. There is just one
sign-symmetric signed graph of order 5 which is obtained by joining a vertex to a com-
plete signed graph of order 4 whose negative edges form a path of length 3 (which is
self-complementary). Moreover, there exist sixteen complete signed graphs of order 9
with symmetric spectrum of which ten are sign-symmetric; the first three are not sign-
symmetric, and when we include their negations we get them all. All of these ten complete
sign-symmetric signed graphs can be obtained by joining a vertex to a complete signed
graph of order 8 whose negative edges induce a self-complementary graph. Note that there
are exactly ten self-complementary graphs of order 8.

Theorem 2.8. There exists a complete sign-symmetric signed graph of order n if and only
if n ≡ 0, 1 or 2 (mod 4).

Proof. Using the previous results obviously one can construct a sign-symmetric signed
graph of order n whenever n ≡ 0, 1 or 2 (mod 4). Now, suppose that there is a complete
sign-symmetric signed graph Γ of order n with n ≡ 3 (mod 4). By [6, Corollary 3.6],
the determinant of the Seidel matrix of Γ is congruent to 1 − n (mod 4). Since n ≡ 3
(mod 4), the determinant of the Seidel matrix (obtained from the negative edges of Γ) is
not zero. Hence, we can conclude that all eigenvalues of Γ are non-zero. Therefore, Γ
cannot have a symmetric spectrum, and also it cannot be sign-symmetric.

In [7] all switching classes of Seidel matrices of order at most seven are given. There
is a error in the spectrum of one of the graphs on six vertices in [7, Table 4.1] (2.37 should
be 2.24), except for that, the results in [7] coincide with ours.

3 Positive and negative cycles
A graph whose connected components areK2 or cycles is called an elementary graph. Like
unsigned graphs, the coefficients of the characteristic polynomial of the adjacency matrix
of a signed graph Γ can be described in terms of elementary subgraphs of Γ.
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Figure 2: Complete signed graphs (up to switching isomorphism and negation) of order
5, 9 having symmetric spectrum. The numbers next to the graphs are the non-negative
eigenvalues.The first three signed graphs of order 9 are not sign-symmetric.

Theorem 3.1 ([3, Theorem 2.3]). Let Γ = (G, σ) be a signed graph and

PΓ(x) = xn + a1x
n−1 + · · ·+ an−1x+ an (3.1)

be the characteristic polynomial of the adjacency matrix of Γ. Then

ai =
∑
B∈Bi

(−1)p(B)2|c(B)|σ(B),

where Bi is the set of elementary subgraphs of G on i vertices, p(B) is the number of
components of B, c(B) the set of cycles in B, and σ(B) =

∏
C∈c(B) σ(C).

Remark 3.2. It is clear that Γ has a symmetric spectrum if and only if in its characteristic
polynomial (3.1), we have a2k+1 = 0, for k = 1, 2, . . . .

In a signed graph, a cycle is called positive or negative if the product of the signs of its
edges is positive or negative, respectively. We denote the number of positive and negative
`-cycles by c+` and c−` , respectively.
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Observation 3.3. For sign-symmetric signed graph, we have

c+2k+1 = c−2k+1 for k = 1, 2, . . . .

Remark 3.4. If in a signed graph Γ, c+2k+1 = c−2k+1 for all k = 1, 2, . . ., then it is not
necessary that Γ is sign-symmetric. See the complete signed graph given in Figure 5.
For this complete signed graph we have c+2k+1 = c−2k+1 for all k = 1, 2, . . ., but it is
not sign-symmetric. Moreover, one can find other examples among complete and non-
complete signed graphs. For example, the signed graph given in Figure 4 is a non-complete
signed graph with the property that c+2k+1 = c−2k+1 for all k = 1, 2, . . ., but it is not sign-
symmetric.

By Theorem 3.1, we have that a3 = 2(c−3 − c
+
3 ). By Theorem 3.1 and Remark 3.2 for

signed graphs having symmetric spectrum, we have c+3 = c−3 . Further, for each complete
signed graph with a symmetric spectrum, it can be seen that c+5 = c−5 . However, the
equality c+2k+1 = c−2k+1 does not necessarily hold for k ≥ 3. The complete signed graph in
Figure 3 has a symmetric spectrum for which c+7 6= c−7 .

Figure 3: The graph induced by negative edges of a complete signed graph on 9 vertices
with a symmetric spectrum but c+7 6= c−7 .

Remark 3.5. There are some examples showing that for a non-complete signed graph we
have c+2k+1 = c−2k+1 for all k = 1, 2, . . ., but their spectra are not symmetric. As an
example see Figure 4 (dashed edges are negative; solid edges are positive).

Now, we may ask a weaker version of the result mentioned in Remark 3.4 as follows.

Question 3.6. Is it true that if in a complete signed graph Γ, c+2k+1 = c−2k+1 for all k =
1, 2, . . ., then Γ has a symmetric spectrum?

4 Sign-symmetric vs. symmetric spectrum
Remark 4.1. Consider the complete signed graph whose negative edges induces the graph
of Figure 5. This graph has a symmetric spectrum, but it is not sign-symmetric. Note that
this complete signed graph has the minimum order with this property. Moreover, for this
complete signed graph we have the equalities c+2k+1 = c−2k+1 for k = 1, 2, 3.
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Figure 4: A signed graph with c+2k+1 = c−2k+1 for k = 1, 2, . . ., but its spectrum is not
symmetric.

Figure 5: The graph induced by negative edges of a complete signed graph on 8 vertices
with a symmetric spectrum but not sign-symmetric.

Remark 4.2. A conference matrix C of order n is an n × n matrix with zero diagonal
and all off-diagonal entries ±1, which satisfies CC> = (n − 1)I . If C is symmetric,
then C has eigenvalues ±

√
n− 1. Hence, its spectrum is symmetric. Conference matrices

are well-studied; see for example [4, Section 10.4]. An important example of a symmet-
ric conference matrix is the Seidel matrix of the Paley graph extended with an isolated
vertex, where the Paley graph is defined on the elements of a finite field Fq , with q ≡ 1
(mod 4), where two elements are adjacent whenever the difference is a nonzero square in
Fq . The Paley graph is self-complementary. Therefore, by Proposition 2.5, C is the adja-
cency matrix of a sign-symmetric complete signed graph. However, there exist many more
symmetric conference matrices, including several that are not sign-symmetric (see [5]).

In [2], the authors posed the following problem on the existence of the non-complete
signed graphs which are not sign-symmetric but have symmetric spectrum.

Problem 4.3 ([2]). Are there non-complete connected signed graphs whose spectrum is
symmetric with respect to the origin but they are not sign-symmetric?

We answer this problem by showing that there exists such a graph for any order n ≥ 6.
For s ≥ 0, define the signed graph Γs to be the graph illustrated in Figure 6.

Theorem 4.4. For s ≥ 0, the graph Γs has a symmetric spectrum, but it is not sign-
symmetric.

Proof. Let S be the set of s vertices adjacent to both 1 and 5. The positive 5-cycles of Γs

are 123461 together with u1645u for any u ∈ S, and the negative 5-cycles are u1465u for
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Figure 6: The graph Γs.

any u ∈ S. Hence, c+5 = s+ 1 and c−5 = s. In view of Observation 3.3, this shows that Γs

is not sign-symmetric.
Next, we show that Γs has a symmetric spectrum. It suffices to verify that a2k+1 = 0

for k = 1, 2, . . . .
The graph Γs contains a unique positive cycle of length 3: 4564 and a unique negative

cycle of length 3: 1461. It follows that a3 = 0.
As discussed above, we have c+5 = s+ 1 and c−5 = s. We count the number of positive

and negative copies ofK2∪C3. For the negative triangle 1461, there are s+1 non-incident
edges, namely 23 and 5u for any u ∈ S and for the positive triangle 4564, there are s + 2
non-incident edges, namely 12, 23 and 1u for any u ∈ S. It follows that

a5 = −2((s+ 1)− s) + 2((s+ 2)− (s+ 1) = 0.

Now, we count the number of positive and negative elementary subgraphs on 7 vertices:

C7 : s positive: u123465u for any u ∈ S, and no negative;
K2 ∪ C5 : 2s positive: u5 ∪ 123461, and 23 ∪ u1645u for any u ∈ S, and

s negative: 23 ∪ u1465u for any u ∈ S;
2K2 ∪ C3 : s+ 1 positive: u1 ∪ 23 ∪ 4564 for any u ∈ S, and

s+ 1 negative: u5 ∪ 23 ∪ 1461 for any u ∈ S;
C4 ∪ C3 : none.

Therefore,
a7 = −2(s− 0) + 2(2s− s)− 2((s+ 1)− (s+ 1)) = 0.

The graph Γs contains no elementary subgraph on 8 vertices or more. The result now
follows.

More families of non-complete signed graphs with a symmetric spectrum but not sign-
symmetric can be found. Consider the signed graphs Γs,t depicted in Figure 7, in which the
number of upper repeated pair of vertices is s ≥ 0 and the number of upper repeated pair
of vertices is t ≥ 1. In a similar fashion as in the proof of Theorem 4.4 it can be verified
that Γs,t has a symmetric spectrum, but it is not sign-symmetric.
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Figure 7: The family of signed graphs Γs,t.
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[3] F. Belardo and S. K. Simić, On the Laplacian coefficients of signed graphs, Linear Algebra Appl.
475 (2015), 94–113, doi:10.1016/j.laa.2015.02.007.

[4] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012,
doi:10.1007/978-1-4614-1939-6.

[5] F. C. Bussemaker, R. A. Mathon and J. J. Seidel, Tables of two-graphs, in: S. B. Rao (ed.),
Combinatorics and Graph Theory, Springer, Berlin-New York, volume 885 of Lecture Notes
in Mathematics, 1981 pp. 70–112, proceedings of the Second Symposium held at the Indian
Statistical Institute, Calcutta, February 25 – 29, 1980.

[6] G. Greaves, J. H. Koolen, A. Munemasa and F. Szöllősi, Equiangular lines in Euclidean spaces,
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Abstract

We define the mechanical complexity C(P ) of a 3-dimensional convex polyhedron P ,
interpreted as a homogeneous solid, as the difference between the total number of its faces,
edges and vertices and of its static equilibria; and the mechanical complexity C(S,U)
of primary equilibrium classes (S,U)E with S stable and U unstable equilibria as the
infimum of the mechanical complexity of all polyhedra in that class. We prove that the
mechanical complexity of a class (S,U)E with S,U > 1 is the minimum of 2(f + v −
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S − U) over all polyhedral pairs (f, v), where a pair of integers is called a polyhedral
pair if there is a convex polyhedron with f faces and v vertices. In particular, we prove
that the mechanical complexity of a class (S,U)E is zero if and only if there exists a
convex polyhedron with S faces and U vertices. We also give asymptotically sharp bounds
for the mechanical complexity of the monostatic classes (1, U)E and (S, 1)E , and offer a
complexity-dependent prize for the complexity of the Gömböc-class (1, 1)E .

Keywords: Polyhedron, static equilibrium, monostatic polyhedron, f -vector.

Math. Subj. Class. (2020): 52B10, 70C20, 52A38

1 Introduction
1.1 Basic concepts and the main result

Polyhedra may be regarded as purely geometric objects, however, they are also often intu-
itively identified with solids. Among the most obvious sources of such intuition are dice
which appear in various polyhedral shapes: while classical, cubic dice have 6 faces, a large
diversity of other dice exists as well: dice with 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 30 and 100
faces appear in various games [37]. The key idea behind throwing dice is that each of the
aforementioned faces is associated with a stable mechanical equilibrium point where dice
may be at rest on a horizontal plane. Dice are called fair if the probabilities to rest on
any face (after a random throw) are equal [10], otherwise they are called loaded [9]. The
concept of mechanical equilibrium may also be defined in purely geometric terms:

Definition 1.1. Let P be a 3-dimensional convex polyhedron, let intP and bdP denote
its interior and boundary, respectively and let c ∈ intP . We say that q ∈ bdP is an
equilibrium point of P with respect to c if the planeH through q and perpendicular to [c, q]
supports P at q. In this case q is nondegenerate, if H ∩ P is the (unique) vertex, edge, or
face of P , respectively, that contains q in its relative interior. A nondegenerate equilibrium
point q is called stable, saddle-type or unstable, if dim(H ∩ P ) = 2, 1 or 0, respectively.

Throughout this paper we deal only with equilibrium points with respect to the center
of mass of polyhedra, assuming uniform density. A support plane is a generalization of
the tangent plane for non-smooth objects. While it is a central concept of convex geometry
its name may be related to the mechanical concept of equilibrium. If c coincides with the
center of mass of P , then equilibrium points gain intuitive interpretation as locations on
bdP where P may be balanced if it is supported on a horizontal surface (identical to the
support plane) without friction in the presence of uniform gravity. Equilibrium points may
belong to three stability types: faces may carry stable equilibria, vertices may carry unstable
equilibria and edges may carry saddle-type equilibria. Denoting their respective numbers
by S,U,H , by the Poincaré-Hopf formula [25] for a convex polyhedron one obtains the
following relation for them:

S + U −H = 2, (1.1)

E-mail addresses: domokos@iit.bme.hu (Gábor Domokos), kovacs.florian@epito.bme.hu (Flórián Kovács),
zlangi@math.bme.hu (Zsolt Lángi), regoskriszti@gmail.com (Krisztina Regős), petercobbler@gmail.com (Péter
T. Varga)
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which is strongly reminiscent of the well-known Euler formula

f + v − e = 2, (1.2)

relating the respective numbers f , v and e of the faces, vertices and edges of a convex
polyhedron. In the case of regular, homogeneous, cubic dice the formulae (1.1) and (1.2)
appear to express the same fact, however, in case of irregular polyhedra the connection
is much less apparent. While the striking similarity between (1.1) and (1.2) can only be
fully explained via deep topological and analytic ideas [25], our goal in this paper is to
demonstrate an interesting connection at an elementary, geometric level. To this end, we
define

N = S + U +H,

n = f + v + e.

Figure 1 shows three polyhedra where the values for all these quantities can be compared.

f 6 7 7

v 8 10 10

e 12 15 15

n=f+v+e 26 32 32

S 6 7 6

U 8 10 8

H 12 15 12

N=S+U+H 26 32 26

C=n-N 0 0 6

U=1
v=1 2 3 4 5 6 7 8 9 10

S=1
f=1

2

3

4

5

6

7

8

9

10

(S,U)E=(6,8)E

(f,v)C=(7,10) C

(a) (b)(a1) (a2) (a3)

Figure 1: (a): Three polyhedra interpreted as homogeneous solids with given numbers for
faces (f ), vertices (v), edges (e), stable equilibria (S), unstable equilibria (U ) and saddle-
type equilibria (H), their respective sums n = f + v+ e, N = S+U +H and mechanical
complexity C = n − N (given in Definition 1.2). (b): Polyhedron in column (a3) shown
on the overlay of the (S,U) and (f, v) grids, complexity obtained from distance between
corresponding diagonals.

The numbers S,U,H may serve, from the mechanical point of view, as a first-order
characterization of P and via (1.1) the triplet (S,U,H) may be uniquely represented by the
pair (S,U), which is called primary equilibrium class of P [35]. Based on this, we denote
by (S,U)E the family of all convex polyhedra having S stable and U unstable equilibrium
points with respect to their centers of mass. In an analogous manner, the numbers (v, e, f)
(also called the f -vector of P ) serve as a first-order combinatorial characterization of P ,
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and via (1.2) they may be uniquely represented by the pair (f, v). Here, we call the family
of all convex polyhedra having v vertices and f faces the primary combinatorial class of
P , and denote it by (f, v)C . The face structure of a convex polyhedron P permits a finer
combinatorial description of P . In the literature, the family of convex polyhedra having the
same face lattice is called a combinatorial class; here we call it a secondary combinatorial
class, and discuss it in Section 5. In an entirely analogous manner, one can define also
secondary equilibrium classes of convex bodies, for more details the interested reader is
referred to [16]. While it is immediately clear that for any polyhedron P we have

f ≥ S, v ≥ U, (1.3)

inverse type relationships (e.g. defining the minimal number of faces and vertices for given
numbers of equilibria) are much less obvious.

A trivial necessary condition for any die to be fair can be stated as f = S and it is
relatively easy to construct a polyhedron with this property. The opposite extreme case
(when a polyhedron is stable only on one of its faces) appears to be far more complicated.
John H. Conway was first to notice this curious fact [5] and ever since, his idea has been
expanded in various ways [2, 28]. In broader terms, it appears that, as the number of
equilibria in a given equilibrium class gets smaller, it is getting increasingly difficult to
identify the corresponding geometry. In other words, the difference (n − N) between
the topological and mechanical characteristics of the polyhedron appears to indicate some
kind of complexity of the geometry. Motivated by this intuition we define the mechanical
complexity of polyhedra.

Definition 1.2. Let P be a convex polyhedron and letN(P ), n(P ) denote the total number
of its equilibria and the total number of its k-faces (i.e., faces of k dimensions) for all values
k = 0, 1, 2, respectively. Then C(P ) = n(P )−N(P ) is called the mechanical complexity
of P .

We remark that the term mechanical complexity has been used in various contexts,
ranging from robotics [1] to cell biology [21], to describe phenomena where the observed
complexity is rooted in the mechanical properties of the investigated subject. In our case
we witness the same phenomenon: the apparent complexity of some polyhedral shapes
arises from the mechanical constraint that the number of static equilibria is kept, compared
to the number of vertices, edges and faces, very low.

Mechanical complexity may not only be associated with individual polyhedra but also
with primary equilibrium classes.

Definition 1.3. If (S,U)E is a primary equilibrium class, then the quantity

C(S,U) = min{C(P ) : P ∈ (S,U)E}

is called the mechanical complexity of (S,U)E .

Our goal is to find the values of C(S,U) for all primary equilibrium classes. For
S,U > 1 we will achieve this goal while for S = 1 or U = 1 we provide some partial
results. To formulate our main results, we introduce the following concept:

Definition 1.4. Let x, y be positive integers. We say that (x, y) is a polyhedral pair if and
only if x ≥ 4 and x

2 + 2 ≤ y ≤ 2x− 4.
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The combinatorial classification of convex polyhedra was established by Steinitz [30,
31] (for a proof, see also [20]), who proved, in particular, the following.

Theorem 1.5. For any positive integers f, v, there is a convex polyhedron P with f faces
and v vertices if and only if (f, v) is a polyhedral pair.

Based on this theorem, we call a primary equilibrium class (S,U)E a polyhedral (pri-
mary equilibrium) class if (S,U) is a polyhedral pair, and the remaining primary equilib-
rium classes non-polyhedral classes.

Definition 1.6. For any primary equilibrium class (S,U)E with S,U ≥ 1, let

R(S,U) = min{f + v − S − U : (f, v) is a polyhedral pair and f, v satisfy (1.3)}.

The geometric interpretation of R(S,U) is given in the left panel of Figure 2. Since
(1.3) holds for any polyhedron P ∈ (S,U)E , we immediately have the trivial lower bound
for mechanical complexity:

C(S,U) ≥ 2R(S,U). (1.4)

Remark 1.7. Based on Definition 1.4, the function R(S,U) can be expressed as

R(S,U) =


dS2 e − U + 2, if S > 4 and S > 2U − 4,
dU2 e − S + 2, if U > 4 and U > 2S − 4,
8− S − U, if S,U ≤ 4,
0, otherwise.

(1.5)

Our main result is Theorem 1.8, stating that this bound is sharp if S,U > 1:

Theorem 1.8. Let S,U ≥ 2 be positive integers. Then C(S,U) = 2R(S,U).

We remark that, as a consequence of Theorem 1.8, C(S,U) = 0 if and only if (S,U) is
a polyhedral pair. For monostatic equilibrium classes (S = 1 or U = 1) we cannot provide
a sharp value for their mechanical complexity. However, we will provide an upper bound
for their complexity, which differs from 2R(S,U) only by a constant:

Theorem 1.9. If S ≥ 4 then C(S, 1) ≤ 59 + (−1)S + 2R(S, 1); if U ≥ 4 then C(1, U) ≤
90 + 2R(1, U).

We also improve the lower bound (1.4) in some of these classes by generalizing a
theorem of Conway [7] about the non-existence of a homogeneous tetrahedron with only
one stable equilibrium point. We state our result in the following form:

Theorem 1.10. Any homogeneous tetrahedron has S ≥ 2 stable and U ≥ 2 unstable
equilibrium points.

We summarize all results (including those about monostatic classes) in Figure 2.
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Figure 2: Summary of results for S,U ≤ 10. Left panel: the (S,U) grid with some selected
polyhedra as examples. Polyhedral pairs on the (S,U) grid have white background. The
functionR(S,U) illustrated for classes (2, 2)E , (2, 9)E , (10, 3)E . Right panel: Mechanical
complexity of equilibrium classes (S,U)E . Polyhedral pairs on the (S,U) grid have white
background. Sharp values for mechanical complexityC(S,U) are given as integers without
brackets. In column U = 1 and row S = 1 we give bounds. If two integers are given in
square brackets then they are the lower and upper bounds for C(S,U), if only one integer
is given in square brackets then it is the lower bound (and no upper bound is available).

1.2 Sketch of the proof

The main idea of the proofs of Theorems 1.8 and 1.9 is to provide explicit constructions
for at least one polyhedron P in each class (S,U)E , S,U > 1 with mechanical complexity
C(P ) = 2R(S,U), in class (S, 1)E , S ≥ 4 with C(P ) = 59 + (−1)S + 2R(S, 1), and in
class (1, U)E , U ≥ 4 with C(P ) = 90 + 2R(1, U). By Definition 1.3, such a construction
establishes an upper bound for C(S,U). In case of S > 1 and U > 1, by Definition 1.6,
this coincides with the lower bound while for S = 1 or U = 1 the bounds remain separate.

Our proof consists of five parts:

(a) for classes (S, S)E with S ≥ 4, suitably chosen pyramids have zero mechanical
complexity (Section 3);

(b) for classes 1 < S ≤ 5 and 1 < U ≤ 5, (S,U)E 6= (4, 4)E , (5, 5)E , we provide
examples found by computer search (Subsection 3.2, Tables 1 and 2);

(c) for polyhedral classes with S 6= U , we construct examples by recursive, local ma-
nipulations of the pyramids mentioned in (a) (Subsection 3.1);

(d) for non-polyhedral classes with U > S ≥ 6, we construct examples by recursive, lo-
cal manipulations starting with polyhedral classes containing simple polyhedra (Sub-
section 3.2);

(e) for non-polyhedral classes with 6 ≤ U < S we provide examples by using the



G. Domokos et al.: Balancing polyhedra 101

polyhedra obtained in (d) and the properties of polarity proved in Section 2. We also
show how to modify the construction in (d) for this case (Subsection 3.2);

(f) for monostatic classes with S = 1 or U = 1 we provide examples using Conway’s
polyhedron PC in class (1, 4)E , we also construct a polyhedron P3 in class (3, 1)
and subsequently we apply recursive, local truncations (Section 4).

In Section 2, we prove a number of lemmas which help us keep track of the change
of the center of mass of a convex polyhedron under local deformations and establish a
connection between equilibrium points of a convex polyhedron and its polar. The local
manipulations in our proof may be regarded as generalizations of the algorithm of Steinitz
[20]. Figure 3 and Figure 4 summarize the steps outlined above.

Figure 3: Summary of the proof. Left panel: Symbols on the (S,U) grid indicate how
polyhedra in the given equilibrium class (S,U)E have been constructed. Dark background
corresponds to classes where polyhedra have been identified by computer search. Light
grey background corresponds to polyhedral pairs. Symbols are explained in the right panel.
For S,U > 1 the indicated constructions provide minimal complexity and thus the com-
plexity of the class itself. Hyphen indicates that no polyhedron is known in that class. Right
panel: Symbols in the left panel explained briefly with reference to sections, subsections
and sub-subsections of the paper.

2 Preliminaries
Before we prove some lemmas that we need for Theorem 1.8, we make a general remark
about small perturbations:

Remark 2.1. Observe that

(i) a nondegenerate (stable) equilibrium point sF on face F of a convex polyhedron P
exists if and only if the orthogonal projection sF of c(P ) (the center of mass of P )
onto F is in the relative interior of F ;

(ii) a vertex q is a nondegenerate (unstable) equilibrium point of P if and only if the
plane perpendicular to q − c(P ) and containing q contains no other point of P ;
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Figure 4: Summary of the proof. (a) – (b): Upper row: schematic picture of local manip-
ulations L1 – L6, showing local face structure and equilibria on original and manipulated
polyhedra P and P ′, respectively. Lower rows: Original and manipulated polyhedra P and
P ′ shown on the (f, v) and (S,U) grids.

(iii) a nondegenerate equilibrium point sE on an edge E of P exists if and only if the
orthogonal projection sE of c(P ) onto E is in the relative interior of E, and the
angle between c(P )− sE and any of the two faces of P containing E is acute.

The subject of our investigation is the family of 3-dimensional convex polyhedra which
have only nondegenerate equilibria, and all polyhedra appearing in the paper satisfy this
property. Then the following observation is used many times in the paper for some 3-
dimensional convex polyhedron P :

If all equilibria are nondegenerate then we will find the same number of equilibria

(a) after applying any sufficiently small perturbation of vertices which leaves the com-
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binatorial structure unchanged on all vertices, edges and faces,

(b) after applying a truncation to the polyhedron with sufficiently small volume, on ver-
tices, edges or faces left unchanged by the truncation and

(c) after applying an augmentation (inverse of truncation) to the polyhedron with suffi-
ciently small volume, on vertices, edges or faces left unchanged by the augmentation.

In the following, convX , aff X , intX and clX denote the convex hull, the affine hull,
the interior and the closure of the set X ⊂ Rd, respectively. The origin is denoted by o.
For any convex polytope P in Rd, we denote by V (P ) the set of vertices of P , and the
volume and the center of mass of P by w(P ) and c(P ), respectively. The polar of the set
X is denoted by X◦.

The first three lemmas investigate the behavior of the center of mass of a convex poly-
hedron under local deformations.

Lemma 2.2. Let P be a convex polyhedron and let q be a vertex of P . Let Pε be a convex
polyhedron such that Pε ⊂ P , and every point of P \Pε is contained in the ε-neighborhood
of q. Let c = c(P ) and cε = C(Pε). Then there is a constant γ > 0, independent of ε, such
that |cε − c| ≤ γε3 holds for every polyhedron Pε satisfying the above conditions.

Proof. Without loss of generality, let c = o, c̄ε = c(cl(P \ Pε)), w = w(P ) and wε =
w(Pε). Then o = wεcε + (w − wε)c̄ε, implying that cε = −w−wε

wε
c̄ε. Note that for some

γ′ > 0 independent of ε, we have 0 ≤ w−wε

wε
< 2w−wε

w ≤ γ′ε3. Furthermore, for some
γ′′ > 0, |q − c̄ε| ≤ γ′′ε, which yields that |c̄ε| is bounded. Thus, the assertion readily
follows.

Lemma 2.3. Let F be a triangular face of the convex polyhedron P , and assume that
each vertex of P lying in F has degree 3. Let q1, q2 and q3 be the vertices of P on
F , and for i = 1, 2, 3, let Li denote the line containing the edge of P through qi that
is not contained in F . For i = 1, 2, 3 and τ ∈ R, let qi(τ) denote the point of Li at
the signed distance τ from qi, where we orient each Li in such a way that qi(τ) is a
point of P for any sufficiently small negative value of τ . Let U be a neighborhood of
o, and for any t = (τ1, τ2, τ3) ∈ U , let W (t) = w(P (t)) and C(t) = c(P (t)), where
P (t) = conv ((V (P ) \ {q1, q2, q3}) ∪ {q1(τ1), q2(τ2), q3(τ3)}). Then the Jacobian of the
function W (t)C(t) is nondegenerate at t = o.

Proof. It is sufficient to show that the partial derivatives of the examined function span R3.
Without loss of generality, we may assume that q1, q2 and q3 are linearly independent.

Consider the polyhedron P (τ1, 0, 0) for some τ1 > 0, and let W̄ (τ1) = w(T (τ1)),
C̄(τ1) = c(T (τ1)) and T (τ1) = conv{q1, q2, q3, q1(τ1)}. Let A be the area of the triangle
conv{q1, q2, q3}. If τ1 > 0 is sufficiently small, then

∂

∂τ1
W (t)C(t)

∣∣∣∣
t=(0,0,0)

=
sinα1A

12
(2q1 + q2 + q3),

W (τ1, 0, 0)C(τ1, 0, 0) = w(P )c(P ) + W̄ (τ1)C̄(τ1).

Since C̄(τ1) = 1
4 (q1 + q2 + q3 + q1(τ1)), it follows that

∂

∂τ1
W (t)C(t)

∣∣∣∣
t=(0,0,0)

=
sinα1A

12
(2q1 + q2 + q3),
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where αi denotes the angle between Li and the plane through q1, q2, q3.
Using a similar consideration, we obtain the same formula if τ1 < 0, and similar for-

mulas, where q2 or q3 plays the role of q1, in the partial derivatives with respect to τ2 or τ3,
respectively. Note that 0 < α1, α2, α3 ≤ π

2 . Thus, to show that the three partial derivatives
are linearly independent, it suffices to show that the vectors 2q1 + q2 + q3, q1 + 2q2 + q3
and q1 + q2 + 2q3 are linearly independent. To show it under the assumption that q1, q2, q3
are linearly independent can be done using elementary computations, which we leave to
the reader.

Remark 2.4. We remark that Lemma 2.3 can be ‘dualized’ in the following form: Assume
that q is a 3-valent vertex of P , and each face of P that q lies on is a triangle. Furthermore,
let Y be a neighborhood of q, and for any x ∈ Y , let

W (x) = w (conv ((V (P ) \ {q}) ∪ {x})) ,

and C(x) = c (conv ((V (P ) \ {q}) ∪ {x})). Then the Jacobian matrix of the function
W (·)C(·) : Y → R3 is nondegenerate at q.

Remark 2.5. If the Jacobian of a smooth vector-valued function in R3 is nondegenerate, by
the Inverse Function Theorem it follows that the function is surjective. Thus, a geometric
interpretation of Lemma 2.3 and Remark 2.4 is that under the given conditions, by slight
modifications of a vertex or a face of P the function w(P )c(P ) moves everywhere within
a small neighborhood of its original position.

In the forthcoming two lemmas we investigate the connection between polarity and
equilibrium points.

Lemma 2.6. Let S be a d-dimensional simplex in the Euclidean space Rd such that o ∈
intS. Then o = c(S◦) if and only if o = c(S).

Proof. Let the vertices of S be denoted by p1, p2, . . . , pd+1. For i = 1, 2, . . . , d+ 1, let ni
denote the orthogonal projection of o onto the facet hyperplane Hi of S not containing pi,
and let H ′i be the hyperplane through o and parallel to Hi. We remark that since o ∈ intS,
none of the pis and the nis is zero. Finally, let αi denote the angle between pi and ni.

Assume that o = c(S). Then for all values of i, we have dist(pi, H
′
i) = ddist(H ′i, Hi),

where dist(A,B) = inf{|a− b| : a ∈ A, b ∈ B} is the distance of the sets A and B. This
implies that the projection of pi onto the line through o and ni is −dni for all values of i,
or in other words,

cosαi|pi| = −d|ni| (2.1)

for all values of i. On the other hand, it is easy to see that if (2.1) holds for all values of i,
then o = c(S).

The vertices of S◦ are the points p?i = ni

|ni|2 , where i = 1, 2, . . . , d + 1, and the
projection of o onto the facet hyperplane of P ◦ not containing p?i is n?i = pi

|pi|2 . Hence, the
angle between p?i and n?i is αi. Similarly like in the previous paragraph, o = c(S◦) if and
only if

cosαi|p?i | = −d|n?i | (2.2)

holds for all values of i. On the other hand, if cosαi|pi| = −d|ni| for some value of i,
then cosαi|p?i | = cosαi

|ni| = − d
|pi| = −d|n?i |, and vice versa. Thus, (2.1) and (2.2) are

equivalent, implying Lemma 2.6.
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Lemma 2.7. Let P be a convex d-polytope in the Euclidean space Rd such that o ∈ intP ,
and let P ◦ be its polar. Let F be a k-face of P , where 0 ≤ k ≤ d − 1, and let F ? denote
the corresponding (d − k − 1)-face of P ◦. Then F contains a nondegenerate equilibrium
point of P with respect to o if and only if F ? contains a nondegenerate equilibrium point
of P ◦ with respect to o.

Proof. Let F = conv{pi : i ∈ I}, where I is the set of the indices of the vertices of P
such that pi is contained in F , and let p be the orthogonal projection of o onto aff F . Let
L = aff(F ∪ {o}), and let Lc denote the orthogonal complement of L passing through
o. For any facet hyperplane of P containing F , let nj , j ∈ J denote the projection of o
onto this hyperplane. Let H+

j be the closed half space {q ∈ Rd : 〈q, nj〉 ≤ 〈nj , nj〉}. Let
H̄+
i = H+

i ∩H for any i /∈ I . Finally, let n̄i be the component of ni parallel to H .
Before proving the lemma, we observe that for any given vectors n1, n2, . . . , nk span-

ning Rd, the following are equivalent:

(a) o is an interior point of a polytope Q in Rd with outer facet normals n1, n2, . . . , nk.

(b) There are some λ1, λ2, . . . , λk > 0 such that o ∈ intQ′, where

Q′ = conv{λ1n1, λ2n2, . . . , λknk}.

(c) We have o ∈ int conv{λ1n1, λ2n2, . . . , λknk} for any λ1, λ2, . . . , λk > 0.

We note that if a polytope Q satisfies the conditions in (a), then its polar Q′ = Q◦ satisfies
the conditions in (b), and vice versa. Finally, observe that if F contains an equilibrium
point, then by exclusion it is p.

We show that p is a nondegenerate equilibrium point of F if and only if it is contained
in the relative interiors of the conic hulls of the pis as well as those of the njs. First, let
p be a nondegenerate equilibrium point. Then p ∈ relintF , that is, it is in the relative
interior of the conic hull (in particular, the convex hull) of the pis. Observe that since the
projection of o onto aff F is p, for any j ∈ J , the projection of nj onto aff F is p. In other
words, nj ∈ L′ = aff(Lc ∪ {p}) for all j ∈ J . Since p is a vertex of the polytope P ∩ L′,
the vectors nj , j ∈ J span this linear subspace, or equivalently, the vectors n̄j span Lc.
Observe that the intersection of P with the affine subspace (1 − ε)p + Lc, for sufficiently
small values of ε > 0, is a (d− k− 1)-polytope, with outer facet normals n̄j , j ∈ J , which
contains (1 − ε)p in its relative interior. By the observation in the previous paragraph,
it follows that o is contained in the relative interior of the convex hull of the n̄js, which
implies that p is contained in the relative interior of the conic hull of the njs. On the other
hand, if p is contained in the relative interior of the conic hull of the pis, then the fact that
p ∈ aff F implies that p ∈ relintF . Furthermore, if p is contained in the relative interior
of the conic hull of the njs, then o is contained in the relative interior of the convex hull of
the n̄js. Thus, the only solution for q ∈ Lc of the system of linear inequalities 〈q, n̄j〉 ≤ 0,
where j ∈ J , is q = p, which implies that the only point of P in p + Lc is p. This means
that p is a nondegenerate equilibrium point of P .

Finally, observe that the vertices of F ? are the points nj

|nj |2 , and the projections of o
onto the facet hyperplanes of P ◦ containing F ? are the points pi

|pi|2 . Furthermore, aff F ? =
p
|p|2 + Lc, which yields that the projection of o onto aff F ? is p

|p|2 . Combining it with the
consideration in the previous paragraph, this yields the assertion.



106 Ars Math. Contemp. 19 (2020) 95–124

The next corollary is an immediate consequence of Lemmas 2.6 and 2.7 and, together
with the result of Conway [7], implies Theorem 1.10.

Corollary 2.8. Every homogeneous tetrahedron has at least two vertices which are equi-
librium points. Furthermore, there are inhomogeneous tetrahedra with exactly one vertex
which is an equilibrium point.

3 Polyhedra with many stable or unstable equilibria: proof of Theo-
rem 1.8

3.1 Proof of Theorem 1.8 for polyhedral pairs

We need to show that if (S,U)E is a polyhedral class (see the remark after Theorem 1.5),
then there is a polyhedron with S faces and U vertices. For brevity, we call such a polyhe-
dron a minimal polyhedron in class (S,U)E . We do the construction separately in several
cases.

3.1.1 Case 1: S = U ≥ 4

Let S ≥ 4, and consider a regular (S−1)-gonRS in the (x, y)-plane, centered at o and with
unit inradius. Let Pv(h) be the pyramid with base Rv and apex (0, 0, h). By its symmetry
properties, PS(h) is a minimal polyhedron in the class (S, S)E for all h > 0.

3.1.2 Case 2: S > 4 and S < U ≤ 2S − 4

In this case the proof is based on Lemma 3.1.

Lemma 3.1. Assume that P is a minimal polyhedron in class (S,U)E having a vertex of
degree 3. Then there is a minimal polyhedron in class (S + 1, U + 2)E having a vertex of
degree 3.

Proof. Let P be a minimal polyhedron in class (S,U)E with a vertex q of degree 3. For
sufficiently small ε > 0, let Pε ⊂ P be the intersection of P with the closed half space
with inner normal vector c − q, at the distance ε from q. We show that if ε is sufficiently
small, then Pε satisfies the conditions in the lemma.

If ε is sufficiently small, the boundary of this half space intersects only those edges of
P that start at q. Thus, Pε has one new triangular face F , and three new vertices q1, q2, q3
on F . Since q is not a vertex of Pε, Pε has S + 1 faces and U + 2 vertices. Furthermore,
q1, q2 and q3 have degree 3, which means that we need only to show that Pε is a minimal
polyhedron. To do it, we set c = c(P ) and cε = c(Pε).

Note that by (1.2) and (1.1), every edge of a minimal polyhedron contains an equilib-
rium point. Thus, by Remark 2.1, if ε is sufficiently small, then every edge of Pε, apart
from those having at least one common point with F , contains an equilibrium point with
respect to cε. For a sufficiently small ε, clearly, |c− cε| is also small enough such that the
edges starting at (but not contained by) F still contain equilibrium points with respect to
cε. We intend to show that if ε is sufficiently small, then the edges of Pε in F also contain
equilibrium points with respect to cε, which, by (1.2) and (1.1) clearly implies that Pε is a
minimal polyhedron.

Consider, e.g. the edge E = [q1, q2], and let F3 be the face of Pε different from F and
containing E. Let h and s be the equilibrium point on E and on F3, respectively, with
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respect to c. Let α and β denote the dihedral angles between the planes aff(E ∪ {c})
and aff F , and the planes aff(E ∪ {c}) and aff F3, respectively. The fact that h is an
equilibrium point with respect to c is equivalent to saying that the orthogonal projection of
c onto the line of E is h, and that 0 < α, β < π

2 .
Since h is contained in the plane aff{q, c, s} for all values of ε, and it is easy to see that

there is some constant γ′ > 0 independent of ε such that |q1−h|, |q2−h| ≥ γ′ε. Similarly,
an elementary computation shows that for some constant γ′′ > 0 independent of ε, we have
0 < α, β ≤ π

2 − γ
′′ε. Thus, Lemma 2.2 implies that for small values of ε, E contains an

equilibrium point with respect to cε, implying that Pε is a minimal polyhedron.

Now, consider some class (S,U)E with S > 4 and S < U ≤ 2S − 4. Then, if we
set k = U − S and S0 = S − k, we have 0 < k ≤ S − 4 and 4 ≤ S0. In other words,
(S,U)E = (S0+k, S0+2k)E for some S0 ≥ 4 and k > 0. Now, by the proof in Case 1, the
class (S0, S0)E contains a minimal polyhedron, e.g. a right pyramid PS0

(h) with a regular
(S0 − 1)-gon as its base, where h > 0 is arbitrary. Note that the degree of every vertex
of PS0(h) on its base is 3, and thus, applying Lemma 3.1 yields a minimal polyhedron in
class (S0 +1, S0 +2)E having a vertex of degree 3. Repeating this argument (k−1) times,
we obtain a minimal polyhedron in class (S,U)E .

3.1.3 Case 3: S > 4 and S
2
+ 2 ≤ U < S

Note that these inequalities are equivalent to U > 4 and U < S ≤ 2U − 4. For the proof
in this case we need Lemma 3.2.

Lemma 3.2. Assume that there is a minimal polyhedron P in class (S,U)E having a
triangular face. Then there is a minimal polyhedron P ′ in class (S + 2, U + 1)E having a
triangular face F ′.

Proof. Let c = c(P ), and let cF be its orthogonal projection on the plane of F . Since P
is a minimal polyhedron, cF is a relative interior point of F , and an equilibrium point with
respect to c (see also Figure 5 for illustration). Let c̄ be the centroid of F and define the
vector u as c̄ − cF . Let v be the outer unit normal vector of F , and for any 0 < ε and
0 ≤ α ≤ 1, let Tεα denote the tetrahedron with base F and apex q = cF + εv + αu such
that Tεα ∩ P = F . Let Pεα = Tεα ∪ P , c′ = c(Pεα), and c′F be the orthogonal projection
of c′ on the plane of F . By Remark 2.1, for a sufficiently small ε, equilibrium points on all
vertices of Pεα except q, as well as on all edges and faces of Pεα not containing q will be
preserved.

It is also easy to see from simple geometric considerations that for small values of ε,
every face and vertex of Pεα contains an equilibrium point with respect to c′ if q, c′F and c′

are collinear. In the special case of u = 0, those points are obviously collinear. In any other
case, it is also straightforward to see that c′F ∈ relint conv{cF , cF /4+3c̄/4}. Let us define
d(α) = (cF + αu − c′F ) · u. Since d continuously varies with α and d(0) < 0, d(1) > 0,
for any small ε > 0 there is an α0 such that apex q and all edges and faces it is contained
in have equilibrium points.

Remark 3.3. Note that the argument also yields a polyhedron P ′ such that there is an equi-
librium point on each face and at every vertex of P ′ with respect to the original reference
point: in this case we may choose the value of α in the proof simply as α = 0.
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Figure 5: Building a tetrahedron on a triangular face of a convex polyhedron.

Now we prove Theorem 1.8 for Case 3. Like in Case 2, if we set k = S − U and
S0 = U − k, then S0 ≥ 4, k > 0, and (S,U)E = (S0 + 2k, S0 + k)E . Consider the
right pyramid PS0

(h) in Case 1. This pyramid has S0 faces consisting of S0 − 1 triangles
and one regular (S0 − 1)-gon shaped face. Thus, applying the construction in Lemma 3.2
k times subsequently yields the desired polyhedron.

3.2 Proof of Theorem 1.8 for non-polyhedral pairs

3.2.1 Case 1: 2 ≤ S ≤ 4 and 2 ≤ U ≤ 4

Lemma 3.4. Let S,U ∈ {2, 3, 4}. Then C(S,U) = 2R(S,U).

Proof. Table 1 contains an example for a tetrahedron in each of the 9 classes (illustrated
in Figure 6) and for the tetrahedron we have n = f + v + e = 14, consequently an upper
bound for complexity can be computed as C(S,U) ≤ 14− S − U −H = 16− 2S − 2U .
Since from (1.5) we have the same for the lower bound we proved the claim.

3.2.2 Case 2: 2 ≤ S ≤ 4, U = 5 or 2 ≤ U ≤ 4, S = 5

This case follows from Lemma 3.5.

Lemma 3.5. Let 2 ≤ S ≤ 4, U = 5 or 2 ≤ U ≤ 4, S = 5. Then C(S,U) = 2R(S,U).

Proof. Table 2 contains an example for a pentahedron in each of the 6 classes (illustrated
in Figure 6) and for the pentahedron we have n = f + v + e = 18, consequently an upper
bound for complexity can be computed as C(S,U) ≤ 18− S − U −H = 20− 2S − 2U .
From (1.5) we obtain the same lower bound for all 6 classes so we proved the claim.

3.2.3 Case 3: S ≥ 5 and U > 2S − 4, or 2 ≤ S ≤ 4 and U ≥ 6

First, we prove the following lemma.

Lemma 3.6. Let P ∈ (S,U)E be a convex polyhedron with f faces and v vertices. Let qi,
i = 1, . . . , j, be successive vertices of an m-gonal (m ≥, j ≥ 3) face F of P such that

(i) the lines aff({q1, q2}) and aff({qj−1, qj}) intersect at some point q with the property
|q − q1| > |q − q2|;
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(2,2) (2,3) (2,4)

(3,2) (3,3) (3,4)

(4,2) (4,4)

(2,5)

(3,5)

(4,5)

(5,2) (5,4) (5,5)

(4,3)

(5,3)

(2,2) (2,3) (2,4) (2,5)

Figure 6: The 8 tetrahedra in Table 1 and the 6 pentahedra in Table 2, the regular tetrahedron
and the symmetrical pyramid in equilibrium classes (S,U)E , S,U ∈ {2, 3, 4, 5} produced
by 3D printing.

Non-constant vertex coordinates
Class Cx Cy Dx Dy Ex Ey Ez

(2, 5) 1.0 1.7 0.5 −0.3 2.1 1.2 1.2
(3, 5) 1.0 1.7 3.8 −2.2 1.6 0.9 0.9
(4, 5) 2.5 1.4 3.8 −2.2 2.0 1.2 1.2
(5, 2) 1.0 1.7 0.9 0.5 −0.6 −1.1 −1.1
(5, 3) 1.0 1.7 0.9 0.5 1.5 2.6 2.6
(5, 4) 1.0 1.7 1.3 0.8 1.5 2.6 2.6

Table 2: Examples for pentahedra in equilibrium classes (i, 5) and (5, i), i ∈ {2, 3, 4}.
Constant vertex coordinates for all pentahedra areAx = Ay = Az = Bx = Cz = Dz = 0,
By = 1.

(ii) both edges Ea = [q1, q2] and Eb = [qj−1, qj ] contain saddle points;

(iii) the vertices qi, i = 2, . . . , j − 1, are trivalent.

Then there is convex polyhedron P ′ ∈ (S,U + 2)E with f + 1 faces and v + 2 vertices.

Proof. Let the saddle points on Ea and Eb be denoted by xa and xb. In the proof, based
on Remark 2.1, we show that there is an arbitrarily small truncation of P by a plane that
intersects F in a line close to xa and xb that results in two new unstable vertices ua and ub.

We choose a suitable truncation from a 2-parameter family of truncations defined as
follows (see also Figure 7 for explanation): For any t ∈ [0, 1], set ya(t) = tq2 + (1− t)q1
and yb(t) = tqj−1 + (1 − t)qj . Let G(s, t) be the plane that intersects [q1, q2] at ya(s)
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and [qj−1, qj ] at yb(t), whose angle with the plane of F is a sufficiently small value ε > 0
(the term ‘sufficiently small’ is explained in the next paragraph) and truncates the vertices
q2, q3, . . . , qj−1. For i = 2, 3, . . . , j − 1, let qi(s, t) be the intersection of G(s, t) with the
edge of P starting at qi and not contained in F . Finally, let P (s, t) be the truncation of P by
G(s, t), that is, P (s, t) = cl(P \ conv{ya(s), yb(t), q2, . . . , qj−1, q2(s, t), . . . , qj−1(s, t)}.
We denote the center of mass of P (s, t) by c(s, t), and the projection of c and c(s, t) onto
the plane of F by cF and cF (s, t), respectively. Furthermore, we denote the new edge of
P (s, t) starting at ya(s) and different from [ya(s), yb(t)] by Ya(s, t), and define Yb(s, t)
similarly.

Figure 7: Increasing the number of unstable equilibria by two. Views perpendicular to the
plane F (a) and edge [ua, ub] (b).

We choose some ε > 0 to satisfy the following conditions: with respect to any point
c′ ∈ V , the original polyhedron P has equilibrium points on the same faces and edges, and
at the same vertices, as with respect to the center of mass c of P , where V is the locus of
the centers of mass of all truncations of P by the plane G(s, t), s, t ∈ [0, 1] (for a suffi-
ciently small ε, clearly, |c−c′| and the volume removed by truncation are also small enough
for the number of original equilibrium points on vertices, edges and faces to be preserved
as well; new face and edges included in G(s, t) have no equilibrium points). Further-
more, we assume also that G(s, t) truncates no vertex or equilibrium point of P other than
those on F , and that there is some arbitrarily small, fixed value δ > 0 (independent of
(s, t)) such that c(s, t) is a Lipschitz function at every (s, t) with Lipschitz constant δ, i.e.
|c(s+ ∆s, t+ ∆t)− c(s, t)| ≤ δ

√
(∆s)2 + (∆t)2 for all s, t ∈ [0, 1].

First, we show that for some suitable choice of s and t, the orthogonal projections of
c(s, t) onto the lines of Ea and Eb are ya(s) and yb(t), respectively. To do this, we use
a consequence of Brouwer’s fixed point theorem, the so-called Cube Separation Theorem
from [27], which states the following: Let the pairs of opposite facets of a d-dimensional
cube K be denoted by F ′i and F ′′i , i = 1, 2, . . . , d, and let Ci, i = 1, 2, . . . , d, be compact
sets such that Ci ‘separates’ F ′i and F ′′i , or in other words, K \ Ci is the disjoint union of
two open sets Q′i, Q

′′
i such that F ′i ⊂ Q′i, and F ′′i ⊂ Q′′i . Then

⋂d
i=1 Ci 6= ∅.

To apply this theorem, we set K = {(s, t) : 0 ≤ s, t ≤ 1}, and define Q′1, C1 and
Q′′1 as the set of pairs (s, t) such that the orthogonal projection of c(s, t) onto the line of
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Ea is a relative interior point of [ya(s), q1], coincides with ya(s), or does not belong to
[ya(s), q1], respectively. We define Q′2, C2 and Q′′2 similarly. Then these sets satisfy the
conditions of theorem, and we obtain a pair (s̄, t̄) with the desired property. Note that by
the choice of ε > 0, it holds that in a neighborhood of (s̄, t̄), the orthogonal projection of
c(s, t) onto the line of Ya(s, t) is in the relative interior of Ya(s, t), and the same holds also
for the projection onto the line of Yb(s, t). Now we choose some (s′, t′) sufficiently close
to (s̄, t̄) such that the intersections of G(s′, t′) and G(s̄, t̄) with F are parallel, and that of
G(s′, t′) is closer to q2 and qj−1 than that of G(s̄, t̄). By the Lipschitz property of c(s, t),
we have that the distance of the two intersection lines is greater than |c(s′, t′) − c(s̄, t̄)|,
and hence, the projections of c(s′, t′) onto the lines of Ea and Eb lie in the relative interior
of the segments [ya(s′), q1] and [yb(t

′), qj ], respectively. From this it readily follows that
both these edges of P ′ = P (s′, t′) and also Ya(s′, t′) and Yb(s′, t′) contain saddle points
with respect to c(s′, t′). This implies also that ya(s′) and yb(t′) are vertices of P ′ carrying
unstable equilibrium points, and the assertion follows.

Corollary 3.7. Let conditions (i) and (iii) of Lemma 3.6 hold and (ii) be modified as fol-
lows:

(ii) q1 contains an unstable and Eb = [qj−1, qj ] contains a saddle-type equilibrium
point.

Then there exists a polyhedron P ′′ ∈ (S,U + 1)E with f + 1 faces and v + 1 vertices.

Remark 3.8. A simplified version of the proof of Lemma 3.6 can be used to prove the
same statement for a fixed reference point c.

To prove Theorem 1.8 in Case 3, we construct a simple polyhedron with U vertices
that has S stable and U unstable points. Since any polyhedron in class (S,U)E has at least
U vertices, and among polyhedra with U vertices those with a minimum number of faces
are the simple ones, such a polyhedron clearly has minimal mechanical complexity in class
(S,U)E .

First, consider the case that S ≥ 5 and U > 2S − 4. Let U0 = 2S − 4. By the
construction in Subsection 3.1, class (S,U0)E contains a simple polyhedron P0 with U0

vertices and S faces. Remember that to construct P0 we started with a tetrahedron T in
class (4, 4)E , and in each step we truncated a vertex of the polyhedron sufficiently close to
this vertex. Throughout the process, the vertex can be chosen as one of those created during
the previous step. Since in this case the conditions of Lemma 3.6 are satisfied for any face
of P0, applying Lemma 3.6 to it we obtain a polyhedron P1 with two more vertices, one
more face, two more unstable and the same number of stable points. By subsequently
applying the same procedure, we can construct a convex polyhedron in class (S,U)E for
every even value of U . To obtain a polyhedron in class (S,U)E where U is odd, we can
modify a polyhedron in class (S,U − 1)E according to Corollary 3.10.

Now, consider the case that 2 ≤ S ≤ 4, and U ≥ 6. Then, starting with a tetrahedron
in class (S, 4)E (based on the data of Table 1, all three tetrahedra meet the conditions of
Lemma 3.6) we can repeat the argument in the previous paragraph.

3.2.4 Case 4: U ≥ 5 and S > 2U − 4, or 2 ≤ U ≤ 4 and S ≥ 6

Theorem 1.8 in Case 4 can be deduced from Case 3 using direct geometric properties of
polarity. Nevertheless, also the proof in Case 3 via Lemma 3.6 can be dualized as well. In
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Lemma 3.9 and Corollary 3.10 we prove dual versions of Lemma 3.6 and Corollary 3.7,
respectively, which we are going to use also in Section 4, in our investigation of monostatic
polyhedra. Since Theorem 1.8 follows from Lemma 3.9 and Corollary 3.10 similarly like
in the proof of Case 3, we leave it to the reader.

We start with the proof using polarity. Considering a tetrahedron T centered at o, a
straightforward modification of the construction in Lemma 3.1 and by Remark 3.8, we
may construct a simple polyhedron P with U vertices that has S stable and U unstable
equilibrium points with respect to o. Using small truncations, we may assume that P
is arbitrarily close to T measured in Hausdorff distance. Furthermore, without loss of
generality, we may assume that a face of T , and all vertices of this face have degree 3 in P .
Let this face of T be denoted by F .

Recall that P ◦ denotes the polar of P . By Lemma 2.6, c(T ◦) = o, and by the continuity
of polar and the center of mass, c(P ◦) is ‘close’ to o. On the other hand, since the vertex q
of P ◦ corresponding to F has degree 3, and each face containing q is a triangle, Lemma 2.3
implies that by a slight modification of q we obtain a polyhedron Q such that c(Q) = o,
and a face/edge/vertex of Q contains an equilibrium point with respect to o if and only if
the corresponding vertex/edge/face of P contains an equilibrium point with respect to o.
Thus, Q satisfies the required properties.

As we mentioned, an alternative way to prove Theorem 1.8 in Case 4 is using Lemma 3.9
and Corollary 3.10.

Lemma 3.9. Let P ∈ (S,U)E be a convex polyhedron with f faces and v vertices. Let qi,
i = 1, . . . , j − 1, j, . . . ,m (j ≥ 3), be successive vertices of an m-gonal (m ≥ 3) face F
of P such that

(i) P has a stable equilibrium point cF on F , which is contained in the relative interior
of the triangle T = conv{q1, qj−1, qj};

(ii) the edge E = [qj−1qj ] contains a saddle-type equilibrium point cE;

(iii) the vertices qi, i = 2, . . . , j − 1 and i = j + 1, . . . ,m, are trivalent;

(iv) q1, cF and cE are not collinear.

Then there exists a polyhedron P ′ ∈ (S + 2, U)E with f + 2 faces and v + 1 vertices.

Proof. In the proof, we show that for a sufficiently small pyramid erected over the triangle
T = conv{q1, qj−1, qj} (which is contained by F and carries a stable equilibrium point)
followed by a truncation of P by the plane of the three new faces of the pyramid, results
in three new faces instead of F all carrying stable equilibrium and two new edges both
carrying saddle-type equilibrium, see Figure 8 (subfigure (a)).

Let the intersection point of the line through q1 and cF with E be denoted by x. We
choose the apex q of the pyramid from a fixed, sufficiently small neighborhood V of x. Let
U be the set of the centers of mass of the modified convex polyhedra, which we denote
by P (q). We choose V in such a way that, apart from the three new faces and edges, and
the new vertex, P (q) and P have equilibrium points on the same faces and edges, and at
the same vertices. Furthermore, we choose V such that for all q ∈ V , the face structure
of the resulting polyhedron P (q) is the one described in the previous paragraph, and for
any y ∈ U , the Euclidean distance function from y on [qj−1, q] ∪ [q, qj ] has a unique
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Figure 8: Increasing the number of stable equilibria by two. Schematic view of the pyramid
with three light faces instead of the original dark one denoted as F (a); view perpendicular
to face F : full circles mean stable equilibrium points, the empty circle is the projection of
c(α, β, γ) onto F (b); illustration for the application of the Cube Separation Theorem for
compact sets Xα and Xβ (c).

local minimum, and this point is different from q, for all q ∈ V . Note that the latter
condition implies that the new vertex q is not an unstable equilibrium point. Thus, we need
to prove only that, with a suitable choice of q, all the three new faces contain a new stable
equilibrium point.

We parametrize q using the following parameters:

• the angle α of the plane of conv{qj−1, qj , q} and the plane of F . Here we assume
that 0 ≤ α ≤ α0, where the sum of α0 and the dihedral angle of P at E is π;

• the angle β between two rays, both starting at q1, and containing qj−1 and the orthog-
onal projection qF of q onto the plane of F , respectively. Here we set β1 ≤ β ≤ β2,
where [β1, β2] is a sufficiently small interval containing the angle ∠qj−1q1cF ;

• the angle γ between the ray starting at q1 and containing q, and the plane of F . Here
we assume that 0 < γ < γ0 for some small, fixed value γ0.

We choose the values of β1, β2, γ0 such that in the permitted range of the parameters, q ∈
V . For brevity, we may refer to P (q(α, β, γ)) as P (α, β, γ), c(P (α, β, γ)) as c(α, β, γ)
and observe that these three quantities determine q.
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Note that, using the idea of the proof of Lemma 2.2, we have that |c(P (q))− c(P )| =
O(γ), and for some constant C > 0 independent of α, β, γ, if |α′ − α| ≤ γ, then
|c(α′, β, γ)− c(α, β, γ)| ≤ Cγ2.

Fix some γ > 0, and let Xα be the set of pairs (α, β) ∈ [0, α0]× [β1, β2] such that the
planes through E, and containing c(α, β, γ) and q(α, β, γ), respectively, are perpendicular.
Furthermore, let Xβ be the set of pairs (α, β) ∈ [0, α0] × [β1, β2] such that q1, and the
projections of c(α, β, γ) and q(α, β, γ) onto the plane of F are collinear. If γ > 0 is
sufficiently small, the property |c(P (q))− c(P )| = O(γ) implies that Xα strictly separates
the sets {(0, β) : β ∈ [β1, β2]} and {(α0, β) : β ∈ [β1, β2]}, and Xβ strictly separates the
sets {(α, β1) : α ∈ [0, α0]} and {(α, β2) : α ∈ [0, α0]}. Since Xα and Xβ are compact,
we may apply the Cube Separation Theorem [27] as in the proof of Lemma 3.6. From this,
it follows that there is some (αγ , βγ) ∈ Xα ∩Xβ .

It is easy to see that (αγ , βγ) ∈ Xα implies that for sufficiently small values γ, the poly-
hedron P (αγ , βγ , γ) has stable equilibrium points on both faces containing the new edge
[q1, q(αγ , βγ , γ)]. Furthermore, the orthogonal projection of c(αγ , βγ , γ) onto the plane
containingE and q = q(αγ , βγ , γ) lies onE. Now, let us replace αγ by α′ = αγ−γ. Then,
since in this case |c(α′, βγ , γ)−c(αγ , βγ , γ)| ≤ Cγ2, we have that if γ is sufficiently small,
then the orthogonal projection of c(α′, βγ , γ) onto the face conv{qj−1, qj , q(α′, βγ , γ)}
lies inside the face; that is, P has a stable equilibrium point on this face. This yields the
assertion.

Corollary 3.10. If all conditions (i) – (iv) of Lemma 3.9 hold, then there is a polyhedron
P ′′ ∈ (S + 1, U)E with f + 2 faces and v + 1 vertices.

4 Monostatic polyhedra: proof of Theorem 1.9
Our theory of mechanical complexity highlights the special role of polyhedra in the first row
and first column of the (S,U) grid. These objects have either only one stable equilibrium
point (first row) or just one unstable equilibrium point (first column) and therefore they
are called collectively monostatic. In particular, the first row is sometimes referred to as
mono-stable and the first column as mono-unstable. Our theory provided only a rough
lower bound for their mechanical complexity. While no general upper bound is known,
individual constructions provide upper bounds for some particular classes; based on these
values one might think that the mechanical complexity of these classes, in particular when
both S and U are relatively low, is very high. Monostatic objects have peculiar properties,
apparently the overall shape in these equilibrium classes is constrained. In [35] the thinness
T and the flatness F of convex bodies is defined (1 ≤ T, F ≤ ∞) and it is shown that, for
nondegenerate convex bodies, T = 1 if and only if U = 1, and F = 1 if and only if S = 1.
This constrained overall geometry may partly account for the high mechanical complexity
of monostatic polyhedra.

4.1 Known examples

The first (and probably best) known such object is the monostatic polyhedron PC con-
structed by Conway and Guy in 1969 [19] (cf. Figure 9) having mechanical complexity
C(PC) = 96. Recently, there have been two additions: the polyhedron PB by Bezdek
[2] (cf. Figure 10) and the polyhedron PR by Reshetov [28] with respective mechanical
complexities C(PB) = 64 and C(PR) = 70. It is apparent that all of these authors were
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primarily interested in minimizing the number of faces on the condition that there is only
one stable equilibrium, so, if one seeks minimal complexity in any of these classes it is
possible that these constructions could be improved. Also, as we show below, the same
ideas can be used to construct examples of mono-unstable polyhedra. The construction in
[19] relies on a delicate calculation for a certain discretized planar spiral, defining a planar
polygon P , serving as the basis of a prism which is truncated in an oblique manner (cf. Fig-
ure 9). The spiral consists of 2m similar right triangles, each having an angle β = π/m at
the point o. The cathetus of the smallest pair of triangles has length r0, and this will be the
vertical height of o when the solid stands in stable equilibrium.

h1

s1

a b

u4 (h3,u3)u2 (h2,u1)

u3

h3

u4

u1

h2

u2

h1 

(s1)

u1 h2 u2 

(u3 h3 u4)

h1

r rO

c
o

PC

Figure 9: Schematic view of the monostatic polyhedron PC ∈ (1, 4)E , (19, 34)C con-
structed by Conway and Guy in 1969 [19]. Stable, unstable and saddle-type equilibria are
marked with si, uj , hk, i = 1, j = 1, 2, 3, 4, k = 1, 2, 3, respectively. Complexity can be
computed as C(PC) = 2(19 + 34− 1− 4) = 96.

We denote the height of the center of mass c by r in the same configuration. It is evident
from the construction that if P is a homogeneous planar disc then we have r > r0 since
such a disc cannot be monostatic [17]. However, it is also clear that for a non-uniform mass
distribution resulting in r < r0, P would be monostatic (cf. Figure 9). In the construction
of Conway and Guy we can regard r as a function r(a, b) of the geometric parameters
a, b (cf. Figure 9). Apparently, r(0, b) = r1 and r(a, 0) = r2 are constants. If P is the
aforementioned homogeneous disc then we have r = r2 > r0. Next we state a corollary to
the main result of [19]:

Corollary 4.1. If m ≥ 9 then r1 < r0.

4.2 Examples in (3, 1)E and (2, 1)E

Consider a Conway construction with b = 0 and denote its vertical centroidal coordinate by
r3: it equals the centroidal coordinate of a plane polygon depicted on the right of Figure 9.
Now erect a mirror-symmetric pyramid over the polygon with its apex close to the bottom
edge: the vertical coordinate of the body centre of the pyramid will then be close to 3r3/4.
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Figure 10: Schematic view of the monostatic polyhedron PB ∈ (1, 3)E , (18, 18)C con-
structed by Bezdek in 2011 [2]. Stable, unstable and saddle-type equilibria are marked
with si, uj , hk, i = 1, j = 1, 2, 3, k = 1, 2, respectively. Complexity can be computed as
C(PB) = 2(18 + 18− 1− 3) = 64.

It can be shown that for a sufficiently flat pyramid (we call it P3) will be in classes (3, 1)E

and (18, 18)C . Introducing a small asymmetry to P3 by moving the apex off the symmetry
plane, a polyhedron P2 is obtained which belongs to classes (2, 1)E and (18, 18)C .

These ‘mono-unstable’ polyhedra are illustrated in Figure 11. An overview of the
discussed monostatic polyhedra is shown in Figure 12 on an overlay of the (f, v)C and
(S,U)E grids.

4.3 Proof of Theorem 1.9

Proof. Consider the case C(1, U) first. The polyhedron PC has a narrow rectangular face
with a stable point and two saddle points on opposite short edges of the same face. They do
not satisfiy condition (i) of Lemma 3.6 because of being collinear, but both 17-gonal faces
of PC can slightly be rotated to get P ′C according to Remark 2.1 in a way that no equilib-
rium points appear or disappear but the two edges with saddle points become nonparallel,
and thus Lemma 3.6 turns to be applicable.

Since the same face of PC contains four unstable points as well (and none of them is
collinear with the stable and any saddle point), Corollary 3.7 can directly be applied to
get PD with C(PD) = C(PC) + 2 = 98. It means that C(1, 4) ≤ 2R(1, 4) + 90 and
C(1, 5) ≤ 2R(1, 5) + 90. Applying now Lemma 3.6 on both PC and PD successively, the
assertion readily follows. Note that PB could not be used as departure instead of PC , since
its saddle points are not on edges of the same face.

A similar path is taken for the case C(S, 1). Depart now P3 with C(P3) = 64: that
polyhedron has a 17-gonal face with a stable equilibrium and there is a vertex and an edge
on its perimeter having an unstable and a saddle point, respectively. Now it is possible
again to slightly rotate the plane of the symmetric triangular face about an axis which is
perpendicular to the 17-gon and runs through the apex of the pyramid, making the stable
(s3) and saddle (h1) point to move off the symmetry axis of the 17-gon, so that they become
non-collinear with u1 (Remark 2.1 guarantees that it can always be done without changing
the number of equilibrium points of any kind). Applying or not Corollary 3.10 first then
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Figure 11: Schematic view of two polyhedra P3 ∈ (3, 1)E , (18, 18)C and P2 ∈
(2, 1)E , (18, 18)C , obtained by using the ideas of the Conway and Bezdek constructions.
Stable, unstable and saddle-type equilibria are marked with si, uj , hk. In case of P3 we
have i = 1, 2, 3, j = 1, k = 1, 2 and in case of P2 we have i = 1, 2, j = 1, k = 1. Com-
plexity can be computed asC(P3) = 2(18+18−3−1) = 64, C(P2) = 2(18+18−2−1) =
66.

Lemma 3.9 successively gives C(S, 1) ≤ S + 61 and C(S, 1) ≤ S + 62 for odd and even
S, respectively, which is equivalent to the second statement of the theorem.

4.4 Gömböcedron prize

While the construction of monostatic polyhedra with less than 34 edges appears to be chal-
lenging (cf. Figure 12), the only case which has been excluded is the tetrahedron with e = 6
edges.

It also appears to be very likely that Gömböc-like polyhedra in class (1, 1)E do exist,
however, based on this chart and the previous results, one would expect polyhedra with high
mechanical complexity. To further motivate this research we offer a prize for establishing
the mechanical complexity C(1, 1), the amount p of the prize is given in US dollars as

p =
106

C(1, 1)
.

5 Generalizations and applications
5.1 Complexity of secondary equilibrium classes

A special case of Theorem 1.8 states that for any polyhedral pair (f, v) one can construct
a homogeneous polyhedron P with f faces and v vertices in such a manner that C(P ) =
0. In other words, in any primary combinatorial class there exist polyhedra with zero
complexity. A natural generalization of this statement is to ask whether this is also true for
any secondary combinatorial class of convex polyhedra. While we do not have this result,
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Figure 12: Polyhedra with a single stable or unstable equilibrium point. The grid shown
is an overlay of the (f, v) and the (S,U) grids. White squares correspond to poly-
hedral pairs. Location of monostatic polyhedra is shown with black capital letters on
the (f, v) grid and white capital letters on the (S,U) grid. Abbreviations: PC : Con-
way and Guy, 1969 [19], PB : Bezdek, 2011 [2], PR: Reshetov, 2014 [28]. P2, P3:
current paper, Figure 11. Complexity for these polyhedra can be readily computed as
C(PC) = 96, C(PB) = 64, C(PR) = 70, C(P3) = 64, C(P2) = 66.

we present an affirmative statement for the inhomogeneous case:

Proposition 5.1. Let P be a Koebe polyhedron, i.e. a convex polyhedron midscribed (edge-
circumscribed) about the unit sphere S2 with center o. Then every face, edge and vertex of
P carries an equilibrium point with respect to o.

Proof. By (1.1) and (1.2) it is sufficient to show that every edge of P contains an equilib-
rium point with respect to o.

Let E be an edge of P that touches S2 at a point q, and let H be the plane touching S2
at q. Clearly, H is orthogonal to q, and since every face of P intersects the interior of the
sphere, we have H ∩ P = E. Thus, q is an equilibrium point of P with respect to o.

Here it might be worth noting that for any convex body K and any point p ∈ intK
there is a density function ρ : K → [0,∞) such that the center of mass of K with respect
to this density function is p, implying that Proposition 5.1 can indeed be reformulated in
terms of Koebe polyhedra with inhomogeneous densities. Thus, since a variant of the Circle
Packing Theorem [4] states that every combinatorial class contains a Koebe polyhedron, it
follows that every combinatorial class contains an inhomogeneous polyhedron with zero
mechanical complexity. To find a homogeneous representative appears to be a challenge.

In [24], the author strengthened the result in [4] by showing the existence of a Koebe
polyhedron P in each combinatorial class such that the center of mass of the k-dimensional
skeleton of P , where k = 0, 1 or 2, coincides with o. This result and Proposition 5.1 imply
that replacing c(P ) by the center of mass of the k-skeleton of a polyhedron with 0 ≤ k ≤ 2,
every combinatorial class contains a polyhedron with zero mechanical complexity.



120 Ars Math. Contemp. 19 (2020) 95–124

5.2 Inverse type questions

The basic goal of this paper is to explore the nontrivial links between the combinatorial
(f, v)C and the mechanical (S,U)E classification of convex polyhedra. The concept of
mechanical complexity (Definition 1.2) helps to explore the (S,U)E → (f, v)C direction
of this link. Inverse type questions may be equally useful to understand this relationship:
for example, a natural question to ask is the following: Is it true that any equilibrium class
(S,U)E intersects all but at most finitely many combinatorial classes (f, v)C? Here it is
worth noting that it is easy to carry out local deformations on a polyhedron that increase
the number of faces and vertices, but not the number of equilibria. Alternatively, one may
ask to provide the list of all (S,U)E classes represented by homogeneous polyhedra in
a given combinatorial class (f, v)C . A similar question may be asked for a secondary
combinatorial class of polyhedra. In general, we know little about the answers, however
we certainly know that (1.3) holds and we also know that S = f, U = v is a part of this
list. The minimal values for S and U are less clear. In particular, based on our previous
results it appears that the values S = 1 and U = 1 can be only achieved for sufficiently
high values of f, v. On the other hand, Theorem 1.10 and Lemma 3.4 resolve this problem
at least for the (4, 4)C class. The latter is based on a global numerical search and this could
be done at least for some polyhedral classes, although the computational time grows with
exponent (f + v).

5.3 Inhomogeneity and higher dimensions

While here we described only 3D shapes, the generalization of Definitions 1.2 and 1.3 to
arbitrary dimensions is straightforward. While the actual values of mechanical complex-
ity are trivial in the planar case (class (2)E has mechanical complexity 2 and every other
equilibrium class has mechanical complexity zero), the d > 3 dimensional case appears
an interesting question in the light of the results of Dawson et al. on monostatic simplices
in higher dimensions [6, 7, 8]. We formulated all our results for homogeneous polyhedra,
nevertheless, some remain valid in the inhomogeneous case which also offers interesting
open questions. In particular, the universal lower bound (1.3) is independent of the material
density distribution so it remains valid for inhomogeneous polyhedra and as a consequence,
so does Theorem 1.8. However, our other results (in particular the bounds for monostatic
equilibrium classes) are only valid for the homogeneous case. In the latter context it is
interesting to note that Conway proved the existence of inhomogeneous, monostatic tetra-
hedra [7].

5.4 Classification of centric minimal polyhedra

Recall from Subsection 3.1 that a 3-dimensional convex polyhedron is called a minimal
polyhedron if its every vertex, edge and face contains an equilibrium point. To further
specify these polyhedra, we define a centric minimal polyhedron P as a minimal polyhe-
dron with the additional property that the orthogonal projection of the center of mass of P
onto the affine hull of every face/edge of P coincides with the center of mass of the cor-
responding face/edge of P . It is worth noting that the notions of both minimal polyhedra
and centric minimal polyhedra can be defined for d-dimensional convex polytopes in an
analogous manner for any d ≥ 2. Then, for any centric minimal d-polytope P and k-face
F , F is a centric minimal k-polytope.
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Problem 5.2. Characterize the family of centric minimal polyhedra in R3.

In Proposition 5.3 we collect some elementary properties of centric minimal polyhedra.

Proposition 5.3. Let P ⊂ Rd with d ≥ 2 be a d-dimensional convex polytope.

(i) If d = 2, then P is a centric minimal polygon if and only if every vertex of P is at
the same distance from the center of mass of P .

(ii) If d ≥ 3 and P is a centric minimal polytope, then every vertex of P is at the same
distance from the center of mass of P .

Proof. Let o be the center of mass of P . Then the orthogonal projection of o onto the
line through any edge of P is the midpoint of the edge, which yields that the two end-
points of the edge are at the same distance from o. Thus, both (i) and (ii) follow from the
connectedness of the edge graph of P .

By relaxing the definition of centric minimal polyhedra, we may define a weakly centric
d-dimensional minimal polytope P as a minimal polytope such that the orthogonal projec-
tion of the center of mass of P onto the affine hull of every (d − 1)-face of P coincides
with the center of mass of the corresponding (d− 1)-face of P .

Problem 5.4. Characterize the family of weakly centric minimal polyhedra in R3.

5.5 Applications

Here we describe some problems in mineralogy, geomorphology and industry where the
concept of mechanical complexity could potentially contribute to the efficient description
and the better understanding of the main phenomena.

5.5.1 Crystal shapes

Crystal shapes are probably the best known examples of polyhedra appearing in Nature
and the literature on their morphological, combinatorial and topological classification is
substantial [22]. However, as crystals are not just geometric objects but also (nearly ho-
mogeneous) 3D solids, their equilibrium classification appears to be relevant. The number
of static balance points has been recognized as a meaningful geophysical shape descriptor
[11, 18, 33] and it has also been investigated in the context of crystal shapes [32]. The
theory outlined in our paper may help to add new aspects to their understanding. While
the study of a broader class of crystal shapes is beyond the scope of this paper, we can
illustrate this idea in Figure 13 by two examples of quartz crystals with identical number of
faces displaying a large difference in mechanical complexity. The length a of the middle,
prismatic part of the hexagonal crystal shape (appearing on the left side of Figure 13) is
not fixed in the crystal. As we can observe, for sufficiently small values of the length a
the crystal will be still in the same combinatorial class (18, 14)C , however, its mechanical
complexity will be reduced to zero.

5.5.2 Random polytopes, chipping models and natural fragments

There is substantial literature on the shape of random polytopes [29] which are obtained by
successive intersections of planes at random positions. Under rather general assumptions
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Figure 13: Quartz crystals. Left: Hexagonal habit in classes (18, 14)C and (6, 2)E ,
C(P ) = 48. Right: Cumberland habit [36] in classes(18, 32)C and (12, 8)E , C(P ) = 60.
Picture source [26].

on the distribution of the intersecting planes it can be shown that the expected primary com-
binatorial class of such a random polytope is (6, 8)C (see Theorem 10.3.1 in [29]), however,
there are no results on the mechanical complexity. A very special limit of random poly-
topes can be created if we use a chipping model [13, 23] where one polytope is truncated
with planes in such a manner that the truncated pieces are small compared to the polytope.
Although not much is known about the combinatorial properties of these polytopes, it can
be shown [15] that under a sufficiently small truncation the mechanical complexity either
remains constant or it increases (this is illustrated in Figure 1). Apparently, random poly-
topes can be used to approximate natural fragments [12, 14]. There is data available on
the number and type of static equilibria of the latter, so any result on the mechanical com-
plexity of random polytopes could be readily tested and also used to identify fragmentation
processes.

5.5.3 Assembly processes

In industrial assembly processes parts are processed by a feeder and often these parts can
be approximated by polyhedra. These polyhedra arrive in a random orientation on a hori-
zontal surface (tray) and end up ultimately on one of their faces carrying a stable equilib-
rium. Based on the relative frequency of this position, one can derive face statistics and the
throughput of a part feeder is heavily influenced by the face statistics of the parts processed
by the feeder. Design algorithms for feeders are often investigated from this perspective
[3, 34]. It is apparent that one key factor determining the entropy of the face statistics is
the mechanical complexity of the polyhedron, in particular, higher mechanical complex-
ity leads to better predictability of the assembly process so this concept may add a useful
aspect to the description of this industrial problem.

5.6 Concluding remarks

We showed an elementary connection between the Euler and Poincaré-Hopf formulae (1.1)
and (1.2): the mechanical complexity of a polyhedron is determined jointly by its equilib-
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rium class (S,U)E and combinatorial class (f, v)C . Mechanical complexity appears to be
a good tool to highlight the special properties of monostatic polyhedra and offers a new
approach to the classification of crystal shapes. We defined polyhedral pairs (x, y) of in-
tegers (cf. Definition 1.4) and showed that they play a central role in both classifications:
they define all possible combinatorial classes (f, v)C while in the mechanical classification
they correspond to classes with zero complexity.
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[32] T. Szabó and G. Domokos, A new classification system for pebble and crystal shapes based on
static equilibrium points, Cent. Eur. Geol. 53 (2010), 1–19, doi:10.1556/ceugeol.53.2010.1.1.
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1 Introduction
Let Λ = PG(V,Fqn) = PG(1, qn), where V is a vector space of dimension 2 over Fqn . If
U is a k-dimensional Fq-subspace of V , then the Fq-linear set LU is defined as

LU = {〈u〉Fqn : u ∈ U \ {0}},

and we say that LU has rank k. Two linear sets LU and LW of PG(1, qn) are said to be
PΓL-equivalent if there is an element φ in PΓL(2, qn) such that LφU = LW . It may happen
that two Fq-linear sets LU and LW of PG(1, qn) are PΓL-equivalent even if the Fq-vector
subspaces U and W are not in the same orbit of ΓL(2, qn) (see [5, 12] for further details).
In this paper we focus on maximum scattered Fq-linear sets of PG(1, qn), that is, Fq-linear
sets of rank n in PG(1, qn) of size (qn − 1)/(q − 1).

If 〈(0, 1)〉Fqn is not contained in the linear set LU of rank n of PG(1, qn) (which we
can always assume after a suitable projectivity), then U = Uf := {(x, f(x)) : x ∈ Fqn}
for some linearized polynomial (or q-polynomial) f(x) =

∑n−1
i=0 aix

qi ∈ Fqn [x]. In this
case we will denote the associated linear set by Lf . If Lf is scattered, then f(x) is called
a scattered q-polynomial; see [24].

The first examples of scattered linear sets were found by Blokhuis and Lavrauw in [3]
and by Lunardon and Polverino in [18] (recently generalized by Sheekey in [24]). Apart
from these, very few examples are known, see Section 3.

In [24, Section 5], Sheekey established a connection between maximum scattered linear
sets of PG(1, qn) and MRD-codes, which are interesting because of their applications to
random linear network coding and cryptography. We point out his construction in the last
section. By the results of [1] and [2], it seems that examples of maximum scattered linear
sets are rare.

In this paper we will prove that any

fh(x) = hq−1xq − hq
2−1xq

2

+ xq
4

+ xq
5

, h ∈ Fq6 , hq
3+1 = −1, q odd (1.1)

is a scattered q-polynomial. This will be done by considering two cases:

Case 1: h ∈ Fq , that is, fh(x) = xq −xq2 +xq
4

+xq
5

; the condition hq
3+1 = −1 implies

q ≡ 1 (mod 4).
Case 2: h 6∈ Fq . In this case h 6= ±

√
−1, otherwise h ∈ Fq2 and then we have hq+1 = 1,

a contradiction to hq
3+1 = −1.

Note that in Case 1, this example coincides with the one introduced in [27], where it
has been proved that fh is scattered for q ≡ 1 (mod 4) and q ≤ 29. In Corollary 3.11 we
will prove that the linear set Lh associated with fh(x) is new, apart from the case of q a
power of 5 and h ∈ Fq . This solves an open problem posed in [27].

Finally, in Section 4 we prove that the Fq-linear MRD-codes with parameters (6, 6, q; 5)
arising from linear sets Lh are not equivalent to any previously known MRD-code, apart
from the case h ∈ Fq and q a power of 5; see Theorem 4.1.

2 Lh is scattered
A q-polynomial (or linearized polynomial) over Fqn is a polynomial of the form

f(x) =

t∑
i=0

aix
qi ,
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where ai ∈ Fqn and t is a positive integer. We will work with linearized polynomials of
degree less than or equal to qn−1. For such a kind of polynomial, the Dickson matrix1

M(f) is defined as

M(f) :=


a0 a1 · · · an−1
aqn−1 aq0 · · · aqn−2

...
...

. . .
...

aq
n−1

1 aq
n−1

2 · · · aq
n−1

0

 ∈ Fn×nqn ,

where ai = 0 for i > t.
Recently, different results regarding the number of roots of linearized polynomials have

been presented, see [4, 9, 22, 23, 26]. In order to prove that a certain polynomial is scat-
tered, we make use of the following result; see [4, Corollary 3.5].

Theorem 2.1. Consider the q-polynomial f(x) =
∑n−1
i=0 aix

qi over Fqn and, with m as a
variable, consider the matrix

M(m) :=


m a1 · · · an−1
aqn−1 mq · · · aqn−2

...
...

. . .
...

aq
n−1

1 aq
n−1

2 · · · mqn−1

 .

The determinant of the (n− i)× (n− i) matrix obtained by M(m) after removing the first
i columns and the last i rows of M(m) is a polynomial Mn−i(m) ∈ Fqn [m]. Then the
polynomial f(x) is scattered if and only if M0(m) and M1(m) have no common roots.

2.1 Case 1

Let
f(x) = xq − xq

2

+ xq
4

+ xq
5

∈ Fq6 [x].

By Theorem 2.1, f(x) is scattered if and only if for each m ∈ Fq6 the determinants of the
following two matrices do not vanish at the same time

M5(m) =


1 −1 0 1 1
mq 1 −1 0 1

1 mq2 1 −1 0

1 1 mq3 1 −1

0 1 1 mq4 1

 ,

M6(m) =



m 1 −1 0 1 1
1 mq 1 −1 0 1

1 1 mq2 1 −1 0

0 1 1 mq3 1 −1

−1 0 1 1 mq4 1

1 −1 0 1 1 mq5


.

1This is sometimes called autocirculant matrix.
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Theorem 2.2. The polynomial f(x) is scattered if and only if q ≡ 1 (mod 4).

Proof. If q is even, then form = 0 the matrixM6(0) has rank two and f(x) is not scattered.
Suppose now q ≡ 3 (mod 4). Then let m ∈ Fq2 \ Fq such that m2 = −4. So

m = mq2 = mq4 = −mq = −mq3 = −mq5 and, by direct checking,

det(M5(m)) = (m2 + 4)2 = 0, det(M6(m)) = −(m2 + 4)3 = 0

and f(x) is not scattered.
Assume q ≡ 1 (mod 4) and suppose that f(x) is not scattered. Then there exists

m0 ∈ Fq6 such that

(det(M5(m0)))q
s

= 0, (det(M6(m0)))q
t

= 0, s, t = 0, 1, 2, 3, 4, 5. (2.1)

Consider

P1 = det


1 −1 0 1 1
Y 1 −1 0 1
1 Z 1 −1 0
1 1 U 1 −1
0 1 1 V 1

, P2 = det


X 1 −1 0 1 1
1 Y 1 −1 0 1
1 1 Z 1 −1 0
0 1 1 U 1 −1
−1 0 1 1 V 1
1 −1 0 1 1 W

. (2.2)

Therefore,
X = m0, Y = mq

0, . . . , W = mq5

0 (2.3)

is a root of P1 =: P
(0)
1 , P2 =: P

(0)
2 and of the polynomials inductively defined by

P
(j)
i (X,Y, Z, U, V,W ) = P

(j−1)
i (Y, Z, U, V,W,X), j = 1, 2, 3, 4, 5, i = 1, 2,

which arise from Equation 2.1. These polynomials satisfy(
P

(j−1)
i (m0,m

q
0,m

q2

0 ,m
q3

0 ,m
q4

0 ,m
q5)
)q

= P
(j)
i (m0,m

q
0,m

q2

0 ,m
q3

0 ,m
q4

0 ,m
q5).

One obtains a set S of twelve equations in X,Y, Z, U, V,W having a nonempty zero set.
The following arguments are based on the fact that taking the resultant R of two polyno-
mials in S with respect to any variable, the equations S ∪ {R} admit the same solutions.

We have

P1 = Y ZUV −Y ZU−2Y Z+2Y U+4Y −ZUV +2ZV −2UV +4V +16 = 0. (2.4)

Consider the following resultants:

Q1 := ResV (P
(3)
1 , P1) = 2(XY 2ZU −XY 2ZW +XY 2UW + 2XY 2W

− 2XY ZU + 2XY ZW − 2XY UW + 8XYW + 8XY − 8XW + 16X

− Y 2ZUW − 2Y 2ZU + 2Y ZUW − 8Y ZU − 8Y Z + 8Y U − 8YW

+ 8ZU − 16Z + 16U − 16W ),

Q2 := ResV (P
(4)
1 , P1) = XY ZW −XY Z −XYW + 2XZ

− 2XW − 2Y Z + 2YW + 4Z + 4W + 16,

Q3 := ResV (P
(5)
1 , P1) = XY ZU −XY Z − 2XY + 2XZ

+ 4X − Y ZU + 2Y U − 2ZU + 4U + 16.
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They all must be zero, as well as

ResW (ResU (Q1, Q3), Q2) = 8(Y Z − 4)(Y 2 + 4)(X − Z)(XZ + 4)(XY − 4). (2.5)

We distinguish a number of cases.

1. Suppose that Y 2 = −4. Since q ≡ 1 (mod 4), X = Y = Z = U = V = W . So

P1 = X4 − 2X3 + 8X + 16

and the resultant between X2 + 4 and P1 with respect to X is 227 6= 0 and then (2.3)
is not a root of P1, a contradiction.

2. Condition Y Z = 4 is clearly equivalent to XY = 4. This means that Y = U =
W = 4/X , Z = V = X . Therefore, by (2.4) we get X2 + 4 = 0 and we proceed as
above.

3. Case XZ = −4. In this case Z = −4/X , U = −4/Y , V = −4/Z = X , W = Y ,
X = Z and therefore X2 = −4 and we can proceed as above.

4. Condition X = Z implies X ∈ Fq2 and so X = Z = V and Y = U = W . By
substituting in P1 and P2,

X3Y 3 + 3X3Y − 6X2Y 2 − 12X2 + 3XY 3 + 24XY − 12Y 2 − 64 = 0,

X2Y 2 −X2Y + 2X2 −XY 2 − 4XY + 4X + 2Y 2 + 4Y + 16 = 0.

Eliminating Y from these two equations one gets

8(X2 + 4)6 = 0,

and so X2 + 4 = 0. We proceed as in the previous cases.

This proves that such m0 ∈ Fq6 does not exist and the assertion follows.

2.2 Case 2

We apply the same methods as in Section 2.1. In the following preparatory lemmas (and in
the rest of the paper) q is a power of an arbitrary prime p.

Lemma 2.3. Let h ∈ Fq6 be such that hq
3+1 = −1, h4 6= 1. Then

1. hq 6= −h;

2. hq
2+1 6= 1;

3. hq
2+1 6= ±hq , if q is odd;

4. h4q
2+4 + 14h2q

2+2q+2 + h4q = 0 implies p = 2 and hq
2−q+1 = 1 or q = 32s,

s ∈ N∗, hq2−q+1 = ±
√
−1.

Proof. The first three are easy computations. Consider now

h4q
2+4 + 14h2q

2+2q+2 + h4q = 0.

For p = 2 the equation above implies hq
2−q+1 = 1.
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Assume now p 6= 2. Since h 6= 0, it is equivalent to

(hq
2−q+1)4 + 14(hq

2−q+1)2 + 1 = 0,

that is (hq
2−q+1)2 = −7 ± 4

√
3 = (

√
−3 ± 2

√
−1)2. Let z = −7 ± 4

√
3. Note that

hq
2−q+1 = ±

√
z belongs to Fq2 . We distinguish two cases.

•
√
z ∈ Fq . Then

−1 = hq
3+1 = (hq

2−q+1)q+1 =
(
±
√
z
)q+1

= z = −7± 4
√

3,

a contradiction if p 6= 3. Also, z = −1, q is an even power of 3, and hq
2−q+1 =

±
√
−1.

•
√
z /∈ Fq . Then

−1 = hq
3+1 = (hq

2−q+1)q+1 =
(
±
√
z
)q+1

= −z = 7∓ 4
√

3,

a contradiction if p 6= 2.

Lemma 2.4. Let h ∈ Fq6 be such that hq
3+1 = −1, h4 6= 1. If a root σ of the polynomial

hq+1T q+1 + (hq
2+q+2 + h2q

2+2)T q + (h2q
2+2 − hq

2+1)T

+ hq
2+2q+1 + h2q

2+q+1 − h2q − hq
2+q ∈ Fq6 [T ]

belongs to Fq6 , then one of the following cases occurs:

• p = 2, hq
2−q+1 = 1; or

• q = 32s, s > 0, hq
2−q+1 = ±

√
−1; or

• σ = ±(hq
2

+ hq); or

• h ∈ Fq .

Proof. First, note that σ = 0 would imply hq(hq+h)q(hq
2+1−1) = 0 which is impossible

by Lemma 2.3. Therefore σ 6= 0 and σq
i

= `i(X)
mi(X) , where

`1(X) = −(hq
2+1 − 1)(hq

2+1X + h2q + hq
2+q)

m1(X) = h(hqX + hq
2+q+1 + h2q

2+1)

`2(X) = −(hq + h)(2hq
2+q+1X + h2q

2+q+2 + h3q
2+2 + h3q + hq

2+2q)

m2(X) = hq+1(h2q
2+2X + h2qX + 2hq

2+2q+1 + 2h2q
2+q+1)

`3(X) = (hq + h)q(3h2q
2+q+2X + h3qX + h3q

2+q+3 + h4q
2+3 + 3hq

2+3q+1

+ 3h2q
2+2q+1)

m3(X) = hq
2+q(h3q

2+3X + 3hq
2+2q+1X + 3h2q

2+2q+2 + 3h3q
2+q+2 + h4q + hq

2+3q)
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`4(X) = (hq
2+1 − 1)(h4q

2+4X + 6h2q
2+2q+2X + h4qX + 4h3q

2+2q+3 + 4h4q
2+q+3

+ 4hq
2+4q+1 + 4h2q

2+3q+1)

m4(X) = hq
2

(4h3q
2+q+3X + 4hq

2+3q+1X + h4q
2+q+4 + h5q

2+4 + 6h2q
2+3q+2

+ 6h3q
2+2q+2 + h5q + hq

2+4q)

`5(X) = −(hq + h)(h5q
2+5X + 10h3q

2+2q+3X + 5hq
2+4q+1X + 5h4q

2+2q+4

+ 5h5q
2+q+4 + 10h2q

2+4q+2 + 10h3q
2+3q+2 + h6q + hq

2+5q)

m5(X) = 5h4q
2+q+4X + 10h2q

2+3q+2X + h5qX + h5q
2+q+5 + h6q

2+5

+ 10h3q
2+3q+3 + 10h4q

2+2q+3 + 5hq
2+5q+1 + 5h2q

2+4q+1

`6(X) = (hq + h)q(6h5q
2+q+5X + 20hq

3+3q+3X + 6Xhq
2+5q+1 + h6q

2+q+6

+ h7q
2+6 + 15h4q

2+3q+4 + 15h5q
2+2q+4 + 15h2q

2+5q+2

+ 15h3q
2+4q+2 + h7q + hq

2+6q)

m6(X) = h6q
2+6X + 15h4q

2+2q+4X + 15h2q
2+4q+2X + hq

6

X + 6h5q
2+2q+5

+ 6h6q
2+q+5 + 20h3q

2+4q+3 + 20h4q
2+3q+3 + 6hq

2+6q+1 + 6h2q
2+5q+1.

Since σq
6

= σ, in particular

(h2q
2+2 +h2q)(h4q

2+4 +14h2q
2+2q+2 +h4q)(hq

2

−hq)(σ+hq+hq
2

)(σ−hq−hq
2

) = 0.

The claim follows from Lemma 2.3.

Lemma 2.5. Let h ∈ Fq6 be such that hq
3+1 = −1, h4 = 1. If a root σ of the polynomial

hq+1T q
2+1 + (hq + h)q+1 ∈ Fq6 [T ]

belongs to Fq6 , then

σ = ±(hq
2

+ hq).

Proof. If σ = 0, then hq+h = 0, a contradiction to Lemma 2.3. So we can suppose σ 6= 0.
Then

σq
2

= − (hq−1 + 1)q+1

σ

σq
4

= (hq−1 + 1)q
3+q2−q−1σ

σq
6

= − (hq−1 + 1)q
5+q4−q3−q2+q+1

σ
=

(hq + h)2q

σ
.

So, σ = ±(hq
2

+ hq).

Let h ∈ Fq6 be such that hq
3+1 = −1, h4 6= 1. By Theorem 2.1 the polynomial

fh(x) = hq−1xq − (hq
2−1)xq

2

+ xq
4

+ xq
5
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is scattered if and only if for each m ∈ Fq6 the determinant of the following two matrices
do not vanish at the same time

M6(m) =



m hq−1 −hq2−1 0 1 1

1 mq hq
2−q h−q−1 0 1

1 1 mq2 −h−q2−1 h−q
2−q 0

0 1 1 mq3 h1−q −h1−q2

hq+1 0 1 1 mq4 hq−q
2

−hq2+1 hq
2+q 0 1 1 mq5


, (2.6)

M5(m) =


hq−1 −hq2−1 0 1 1

mq hq
2−q h−q−1 0 1

1 mq2 −h−q2−1 h−q
2−q 0

1 1 mq3 h1−q −h1−q2

0 1 1 mq4 hq−q
2

 . (2.7)

Theorem 2.6. Let h ∈ Fq6 , q = 2s, be such that hq
3+1 = 1. Then the polynomial

fh(x) = hq−1xq − (hq
2−1)xq

2

+ xq
4

+ xq
5

is not scattered.

Proof. Consider m = hq
2

+ hq . So,

mq =
1

h
+ hq

2

, mq2 =
1

hq
+

1

h
, mq3 =

1

hq2
+

1

hq
,

mq4 = h+
1

hq2
, mq5 = hq + h.

By direct checking, in this case, both det(M6(m)) = det(M5(m)) = 0 and therefore
fh(x) is not scattered.

Theorem 2.7. Let h ∈ Fq6 , q = ps, p > 2, be such that hq
3+1 = −1 and h /∈ Fq . Then

the polynomial fh(x) = hq−1xq − (hq
2−1)xq

2

+ xq
4

+ xq
5

is scattered.

Proof. First we note that h4 6= 1 since q is odd, h /∈ Fq , and hq
3+1 = −1. Suppose that

f(x) is not scattered. Then det(M6(m0)) = det(M5(m0)) = 0 for some m0 ∈ Fq6 .
Consider

X = m0, Y = mq
0, Z = mq2

0 , U = mq3

0 , V = mq4

0 , W = mq5

0 .

With a procedure similar to the one in the proof of Theorem 2.2, we will compute resul-
tants starting from the polynomials associated with det(M6(m0)), det(M5(m0))q

3

, and
det(M5(m0))q

5

.
Eliminating W using det(M5(m0))q

3

= 0 and U using det(M5(m0))q
5

= 0, one gets
from det(M6(m0)) = 0

hq
2+2q+1ϕ1(X,Y )ϕ2(X,Y, Z, V )ϕ3(X,Y, Z, V ) = 0,
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where

ϕ1(X,Y ) = hq+1XY + h2q
2+2X − hq

2+1X + hq
2+q+2Y + h2q

2+2Y

+ hq
2+2q+1 + h2q

2+q+1 − h2q − hq
2+q;

ϕ2(X,Y, Z, V ) = hq
2+q+2XY ZV − hq

2+q+2XY Z − h2XY − hq+1XY

− h2q
2+q+1XZV − h2q

2+2XV − h2q
2+q+1XV − hq

2+2q+3Y Z

− h2q
2+q+3Y Z − hq

2+q+2Y − h2q
2+2Y − hq

2+2q+1Y

− h2q
2+q+1Y − hq

2+2q+1ZV − h2q
2+q+1ZV − h2q

2+q+1V

− h3q
2+1V − h2q

2+2qV − h3q
2+qV + h2q

2+q+3 + h3q
2+3

+ h2q
2+2q+2 + h3q

2+q+2 − 2hq
2+q+2 − 2h2q

2+2 − 2hq
2+2q+1

− 2h2q
2+q+1 + hq+1 + hq

2+1 + h2q + hq
2+q;

ϕ3(X,Y, Z, V ) = hq
2+q+2XY ZV + hq

2+q+2XY Z − h2XY − hq+1XY

+ h2q
2+q+1XZV − h2q

2+2XV − h2q
2+q+1XV − hq

2+2q+3Y Z

− h2q
2+q+3Y Z + hq

2+q+2Y + h2q
2+2Y + hq

2+2q+1Y

+ h2q
2+q+1Y − hq

2+2q+1ZV − h2q
2+q+1ZV + h2q

2+q+1V

+ h3q
2+1V + h2q

2+2qV + h3q
2+qV + h2q

2+q+3 + h3q
2+3

+ h2q
2+2q+2 + h3q

2+q+2 − 2hq
2+q+2 − 2h2q

2+2 − 2hq
2+2q+1

− 2h2q
2+q+1 + hq+1 + hq

2+1 + h2q + hq
2+q.

• If ϕ1(X,Y ) = 0, then by Lemma 2.4 either q = 32s and hq
2−q+1 = ±

√
−1, or

X = ±(hq
2

+ hq).

In this last case,

Y = ±(−h−1 + hq
2

), Z = ±(−h−q − h−1), U =± (−h−q
2

− h−q)
V = ±(h− h−q

2

), W = ±(hq + h).
(2.8)

By substituting in det(M5(m0)) one obtains

4(h+ hq)q+1(hq
2+1 − 1)(hq

2+1 − hq) = 0

and
4(h+ hq)q+1(hq

2+1 − 1)(hq
2+1 + hq) = 0,

respectively. Both are not possible due to Lemma 2.3.

Consider now the case q = 32s, hq
2−q+1 = ±

√
−1 and X 6= ±(hq

2

+ hq). So,
using ϕ1(X,Y ) = 0 and hq

2−q+1 = ±
√
−1,

det(M5(m0)) = 0 =⇒

hq
2+2q+1(hq

2

+ hq)(hq + h)(hq
2+1 − 1)(hq

2+q + hq)3(hq
2+q − hq)3 ·

· (h2q
2+2 − hq

2+1 + h2q)(X + hq + hq
2

)2(X − hq − hq
2

)2 = 0.

By Lemma 2.3 we get
h2q

2+2 − hq
2+1 + h2q = 0,

which yields to a contradiction.
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• If ϕ2(X,Y, Z, V ) = 0 and ϕ1(X,Y ) 6= 0, eliminating V in det(M5(m0)) = 0 one
gets

2h3q
2+2q+1(hq+2Y Z − hq

2+2 − hq
2+q+1 + hq + h) ·

· (hXY + hq
2+q+1 + h2q

2+1 − hq
2

− hq) ·
· (hq+1XZ + hq+1 + hq

2+1 + h2q + hq
2+q) ·

· (hq+2Y Z + hY + hqY − hq
2+q+1Z + hqZ − hq

2+2 − hq
2+q+1 + hq + h) = 0.

– If hq+2Y Z − hq2+2 − hq2+q+1 + hq + h = 0 then, from

Z =
hq

2+2 + hq
2+q+1 − hq − h
hq+2Y

,

det(M5) = 0 gives

(hq + h)q+1(hY − hq
2+1 + 1)(hY + hq

2+1 − 1) = 0.

So, (2.8) holds and as in the case ϕ1(X,Y ) = 0 a contradiction arises.

– If hXY + hq
2+q+1 + h2q

2+1 − hq2 − hq = 0 then, from

Y =
−hq2+q+1 − h2q2+1 + hq

2

+ hq

hX
,

the equation det(M5(m0)) = 0 yields

(hq + h)(hq
2+1 − 1)(X − hq

2

− hq)(X + hq
2

+ hq) = 0.

So, (2.8) holds and as in the case ϕ1(X,Y ) = 0, a contradiction.

– If hq+1XZ + hq+1 + hq
2+1 + h2q + hq

2+q = 0 then by Lemma 2.5

(X − hq
2

− hq)(X + hq
2

+ hq) = 0,

again a contradiction as before.

– If hq+2Y Z+hY +hqY −hq2+q+1Z+hqZ−hq2+2−hq2+q+1 +hq +h = 0
then

Z = − (hq + h)Y − hq2+2 − hq2+q+1 + hq + h

hq+2Y − hq2+q+1 + hq
.

So, substituting U = Zq , V = Zq
2

,W = Zq
3

,X = Zq
4

in det(M5(m0)) = 0
we get

(h− 1)q+1(h+ 1)q+1(hq + h)q+1(hq
2+1 − 1) ·

· (hY − hq
2+1 + 1)2(hY + hq

2+1 − 1)2 = 0.

By Lemma 2.3, (hY −hq2+1 + 1)(hY +hq
2+1− 1) = 0. Since Y = ±(hq

2 −
1/h) then (2.8) holds and a contradiction arises as in the case ϕ1(X,Y ) = 0.
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• If ϕ3(X,Y, Z, V ) = 0 and ϕ1(X,Y ) 6= 0, eliminating U from det(M5(m0)) = 0 =

det(M5(m0))q
5

and then eliminating V using ϕ3(X,Y, Z, V ) = 0 one gets

2h3q
2+q+1(hq + h)q(hq+2Y Z − hq

2+2 − hq
2+q+1 + hq + h)2 ·

· (hXY + hq
2+q+1 + h2q

2+1 − hq
2

− hq) ·
· (hq+1XZ + hq+1 + hq

2+1 + h2q + hq
2+q) = 0.

A contradiction follows as in the case ϕ2(X,Y, Z, V ) = 0 and ϕ1(X,Y ) 6= 0.

3 The equivalence issue
We will deal with the linear sets Lh = Lfh associated with the polynomials defined in
(1.1). Note that when h ∈ Fq , such a linear set coincide with the one introduced in [27,
Section 5].

3.1 Preliminary results

We start by listing the non-equivalent (under the action of ΓL(2, q6)) maximum scattered
subspaces of F2

q6 , i.e. subspaces defining maximum scattered linear sets.

Example 3.1.

1. U1 := {(x, xq) : x ∈ Fq6}, defining the linear set of pseudoregulus type, see [3, 11];

2. U2
δ := {(x, δxq + xq

5

) : x ∈ Fq6}, Nq6/q(δ) /∈ {0, 1}, defining the linear set of
LP-type, see [16, 18, 20, 24];

3. U3
δ := {(x, xq + δxq

4

) : x ∈ Fq6}, Nq6/q3(δ) /∈ {0, 1}, satisfying further conditions
on δ and q, see [6, Theorems 7.1 and 7.2] and [23] 2;

4. U4
δ := {(x, xq + xq

3

+ δxq
5

) : x ∈ Fq6}, q odd and δ2 + δ = 1, see [10, 21].

In order to simplify the notation, we will denote by L1 and Liδ the Fq-linear set defined
by U1 and U iδ , respectively. We will also use the following notation:

Uh := Uhq−1xq−hq2−1xq2+xq4+xq5 .

Remark 3.2. Consider the non-degenerate symmetric bilinear form of Fq6 over Fq defined
by

〈x, y〉 = Trq6/q(xy),

for each x, y ∈ Fq6 . Then the adjoint f̂ of the linearized polynomial f(x) =
∑5
i=0 aix

qi ∈
L̃6,q with respect to the bilinear form 〈 , 〉 is

f̂(x) =

5∑
i=0

aq
6−i

i xq
6−i
,

i.e.
Trq6/q(xf(y)) = Trq6/q(yf̂(x)),

for any x, y ∈ Fq6 .

2Here q > 2, otherwise it is not scattered.
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In [10, Propositions 3.1, 4.1 and 5.5] the following result has been proved.

Lemma 3.3. Let Lf be one of the maximum scattered of PG(1, q6) listed before. Then a
linear setLU of PG(1, q6) is PΓL-equivalent toLf if and only if U is ΓL-equivalent either
to Uf or to Uf̂ Furthermore, LU is PΓL-equivalent to L3

δ if and only if U is ΓL-equivalent
to U3

δ .

We will work in the following framework. Let x0, . . . , x5 be the homogeneous coordi-
nates of PG(5, q6) and let

Σ = {〈(x, xq, . . . , xq
5

)〉Fq6 : x ∈ Fq6}

be a fixed canonical subgeometry of PG(5, q6). The collineation σ̂ of PG(5, q6) defined
by 〈(x0, . . . , x5)〉σ̂Fq6 = 〈(xq5, x

q
0, . . . , x

q
4)〉Fq6 fixes precisely the points of Σ. Note that if

σ is a collineation of PG(5, q6) such that Fix(σ) = Σ, then σ = σ̂s, with s ∈ {1, 5}.
Let Γ be a subspace of PG(5, q6) of dimension k ≥ 0 such that Γ ∩ Σ = ∅, and

dim(Γ ∩ Γσ) ≥ k − 2. Let r be the least positive integer satisfying the condition

dim(Γ ∩ Γσ ∩ Γσ
2

∩ · · · ∩ Γσ
r

) > k − 2r. (3.1)

Then we will call the integer r the intersection number of Γ w.r.t. σ and we will denote it
by intnσ(Γ); see [27].

Note that if σ̂ is as above, then intnσ̂(Γ) = intnσ̂5(Γ) for any Γ.
As a consequence of the results of [11, 27] we have the following result.

Result 3.4. Let L be a scattered linear set of Λ = PG(1, q6) which can be realized in
PG(5, q6) as the projection of Σ = Fix(σ) from Γ ' PG(3, q6) over Λ. If intnσ(Γ) 6=
1, 2, then L is not equivalent to any linear set neither of pseudoregulus type nor of LP-type.

3.2 Lh is new in most of the cases

The linear set Lh can be obtained by projecting the canonical subgeometry

Σ = {〈(x, xq, xq
2

, xq
3

, xq
4

, xq
5

)〉Fq6 : x ∈ F∗q6}

from

Γ:

{
x0 = 0

hq−1x1 − hq
2−1x2 + x4 + x5 = 0

to

Λ:


x1 = 0

x2 = 0

x3 = 0

x4 = 0.

Then

Γσ̂ :

{
x1 = 0

hq
2−qx2 + h−q−1x3 + x5 + x0 = 0
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and

Γσ̂
2

:

{
x2 = 0

−h−1−q2x3 + h−q
2−qx4 + x0 + x1 = 0.

Therefore,

Γ ∩ Γσ̂ :


x0 = 0

x1 = 0

−hq2−1x2 + x4 + x5 = 0

hq
2−qx2 + h−q−1x3 + x5 = 0

and

Γ ∩ Γσ̂ ∩ Γσ̂
2

:



x0 = 0

x1 = 0

x2 = 0

x4 + x5 = 0

h−q−1x3 + x5 = 0

−h−q2−1x3 + h−q
2−qx4 = 0.

Hence, dimFq6 (Γ∩Γσ̂) = 1 and dimFq6 (Γ∩Γσ̂∩Γσ̂
2

) = −1, since q is odd and hq
3+1 6= 1.

So, intnσ(Γ) = 3 and hence, by Result 3.4 it follows that Lh is not equivalent neither to
L1 nor to L2

δ .
Generalizing [27, Propositions 5.4 and 5.5] we have the following two propositions.

Proposition 3.5. The linear set Lh is not PΓL-equivalent to L3
δ .

Proof. By Lemma 3.3, we have to check whether Uh and U3
δ are ΓL-equivalent, with

Nq6/q3(δ) /∈ {0, 1}. Suppose that there exist ρ ∈ Aut(Fq6) and an invertible matrix
(
a b
c d

)
such that for each x ∈ Fq6 there exists z ∈ Fq6 satisfying(

a b
c d

)(
xρ

hρ(q−1)xρq − hρ(q2−1)xρq2 + xρq
4

+ xρq
5

)
=

(
z

zq + δzq
4

)
.

Equivalently, for each x ∈ Fq6 we have3

cxρ + d(hq−1xρq − hq
2−1xρq

2

+ xρq
4

+ xρq
5

) =

aqxρq + bq(hq
2−qxρq

2

+ h−q−1xρq
3

+ xρq
5

+ xρ)

+ δ[aq
4

xρq
4

+ bq
4

(h−q
2+qxρq

5

− hq+1xρ + xρq
2

+ xρq
3

)].

This is a polynomial identity in xρ and hence we have the following relations:

c = bq + δhq+1bq
4

dhq−1 = aq

−dhq2−1 = hq
2−qbq + δbq

4

0 = h−1−qbq + δbq
4

d = δaq
4

d = bq + δhq−q
2

bq
4

.

(3.2)

3We may replace hρ by h, since hq
3+1 = −1 if and only if (hρ)q

3+1 = −1.
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From the second and the fifth equations, if a 6= 0 then δhq−1 = aq−q
4

and Nq6/q3(δ) =
1, which is not possible and so a = d = 0 and b, c 6= 0. By the last equation, we would get
Nq6/q3(δ) = 1, a contradiction.

Proposition 3.6. The linear set Lh is PΓL-equivalent to L4
δ (with δ2 + δ = 1) if and only

if there exist a, b, c, d ∈ Fq6 and ρ ∈ Aut(Fq6) such that ad− bc 6= 0 and either

c = bq − δkq2+1bq
5

a = −kq+1bq
4 − δqbq2

d = k−q+1bq
3

+ δbq
5

bq
3

+ (kq−1 + δkq+q
2

)bq
5

= 0

kq
2−qbq + (1 + kq

2−q)bq
3

+ δkq
2−1bq

5

= 0

−δbq + (k−q+1 + δ2k1−q
2

)bq
3

+ δbq
5

= 0

(3.3)

or 

c = δbq − kq2+1bq
5

a = −δqkq+1bq
4 − bq2

d = k−q+1bq
3

+ bq
5

δbq
3

+ (kq−1 − δkq2+q)bq5 = 0

δkq
2−qbq + (kq

2−q + 1)bq
3

+ kq
2−1bq

5

= 0

δ2bq + (k−q+1 + δ2k−q
2+1)bq

3

+ bq
5

= 0,

(3.4)

where k = hρ.

Proof. By Lemma 3.3 we have to check whether Uh is equivalent either to U4
δ or to (U4

δ )⊥.
Suppose that there exist ρ ∈ Aut(Fq6) and an invertible matrix

(
a b
c d

)
such that for each

x ∈ Fq6 there exists z ∈ Fq6 satisfying(
a b
c d

)(
xρ

hρ(q−1)xρq − hρ(q2−1)xρq2 + xρq
4

+ xρq
5

)
=

(
z

zq + zq
3

+ δzq
5

)
.

Equivalently, for each x ∈ Fq6 we have

cxρ + d(kq−1xρq − kq
2−1xρq

2

+ xρq
4

+ xρq
5

) =

aqxρq + bq(kq
2−qxρq

2

+ k−1−qxρq
3

+ xρq
5

+ xρ)

+ aq
3

xρq
3

+ bq
3

(k−q+1xρq
4

− k−q
2+1xρq

5

+ xρq + xρq
2

)

+ δ[aq
5

xρq
5

+ bq
5

(−k1+q
2

xρ + kq
2+qxρq + xρq

3

+ xρq
4

)].

This is a polynomial identity in xρ which yields to the following equations

c = bq − δkq2+1bq
5

dkq−1 = aq + bq
3

+ δkq+q
2

bq
5

−dkq2−1 = kq
2−qbq + bq

3

0 = k−q−1bq + aq
3

+ δbq
5

d = k−q+1bq
3

+ δbq
5

d = bq − k−q2+1bq
3

+ δaq
5
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which can be written as (3.3).
Now, suppose that there exist ρ ∈ Aut(Fq6) and an invertible matrix

(
a b
c d

)
such that

for each x ∈ Fq6 there exists z ∈ Fq6 satisfying(
a b
c d

)(
xρ

hρ(q−1)xρq − hρ(q2−1)xρq2 + xρq
4

+ xρq
5

)
=

(
z

δzq + zq
3

+ zq
5

)
.

Equivalently, for each x ∈ Fq6 we have

cxρ + d(kq−1xρq − kq
2−1xρq

2

+ xρq
4

+ xρq
5

) =

δ[aqxρq + bq(kq
2−qxρq

2

+ k−1−qxρq
3

+ xρq
5

+ xρ)]

+ aq
3

xρq
3

+ bq
3

(k−q+1xρq
4

− k−q
2+1xρq

5

+ xρq + xρq
2

)

+ aq
5

xρq
5

+ bq
5

(−k1+q
2

xρ + kq
2+qxρq + xρq

3

+ xρq
4

).

This is a polynomial identity in xρ which yields to the following equations

c = δbq − kq2+1bq
5

dkq−1 = δaq + bq
3

+ kq+q
2

bq
5

−dkq2−1 = δkq
2−qbq + bq

3

0 = δk−q−1bq + aq
3

+ bq
5

d = k−q+1bq
3

+ bq
5

d = δbq − k−q2+1bq
3

+ aq
5

which can be written as (3.4).

We are now ready to prove that when h /∈ Fq2 , Lh is new.

Proposition 3.7. If h /∈ Fq2 , then Lh is not PΓL-equivalent to L4
δ (with δ2 + δ = 1).

Proof. By Proposition 3.6 we have to show that there are no a, b, c and d in Fq6 such that
ad − bc 6= 0 and (3.3) or (3.4) are satisfied. Note that b = 0 in (3.3) and (3.4) yields
a = c = d = 0, a contradiction. So, suppose b 6= 0. Since h /∈ Fq2 then k /∈ Fq2 . We start
by proving that the last three equations of (3.3), i.e.

Eq1 : bq
3

+ (kq−1 + δkq+q
2

)bq
5

= 0

Eq2 : kq
2−qbq + (1 + kq

2−q)bq
3

+ δkq
2−1bq

5

= 0

Eq3 : −δbq + (k−q+1 + δ2k1−q
2

)bq
3

+ δbq
5

= 0,

yield a contradiction. As in the above section, we will consider the q-th powers of Eq1,
Eq2 and Eq3 replacing bq

i

, kq
j

, and δq
`

(respectively) by Xi, Yj , and Z` with i, j ∈
{0, 1, 2, 3, 4, 5} and ` ∈ {0, 1}. Consider the set S of polynomials in the variables Xi, Yj ,
and Z`

S := {Eqq
α

1 ,Eqq
β

2 ,Eqq
γ

3 : α, β, γ ∈ {0, 1, 2, 3, 4, 5}}.

By eliminating from S the variables X5, X4, X3, and X2 using Eq1, Eqq1, Eqq
4

1 , and Eqq
3

1

respectively we obtain

X0Y1(Z1Y
2
0 Y2 − Z1Y0Y

2
2 − Z1Y0 + Z1Y2 − Z2

0Z2 − Z2) = 0.
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By the conditions on b and k, X0Y1 6= 0 and therefore

P := Z1Y
2
0 Y2 − Z1Y0Y

2
2 − Z1Y0 + Z1Y2 − Z2

0Z2 − Z2 = 0.

We eliminate Z1 in S using P , obtaining, w.r.t. b, k, and δ,

bkq
2+1(k − kq)(k + kq)(kq

2+1 − 1)(kq
2+1 + 1) = 0,

a contradiction to k /∈ Fq2 .
Consider now the last three equations of (3.4), i.e.

Eq1 : δbq
3

+ (kq−1 − δkq2+q)bq5 = 0

Eq2 : δkq
2−qbq + (kq

2−q + 1)bq
3

+ kq
2−1bq

5

= 0

Eq3 : δ2bq + (k−q+1 + δ2k−q
2+1)bq

3

+ bq
5

= 0.

As before, we will consider the q-th powers of Eq1, Eq2, and Eq3 replacing bq
i

, kq
j

, and
δq
`

(respectively) by Xi, Yj , and Z` with i, j ∈ {0, 1, 2, 3, 4, 5} and ` ∈ {0, 1}. Consider
the set S of polynomials in the variables Xi, Yj and Z`

S := {Eqq
α

1 ,Eqq
β

2 ,Eqq
γ

3 : α, β, γ ∈ {0, 1, 2, 3, 4, 5}}.

We eliminate in S the variables X5, X4, X3, and X2 using Eq1, Eqq1, Eqq
4

1 , and Eqq
3

1

respectively, and we get

Y0X0(Z1Y
2
0 Y

2
2 +2Z1Y0Y

2
1 Y2 +2Z1Y0Y2 +Z1Y

2
1 −Y 2

0 Y
2
2 −Y0Y 2

1 Y2−Y0Y2−Y 2
1 ) = 0.

Since b 6= 0 and k /∈ Fq2 , X0Y0 6= 0 and therefore

P := Z1Y
2
0 Y

2
2 + 2Z1Y0Y

2
1 Y2 + 2Z1Y0Y2 +Z1Y

2
1 −Y 2

0 Y
2
2 −Y0Y 2

1 Y2−Y0Y2−Y 2
1 = 0.

Once again we consider the resultants of the polynomials in S and P w.r.t. Z1 and we
obtain

bkq
2+2q(k − kq)(k + kq)(kq

2+1 − 1)(kq
2+1 + 1) = 0,

a contradiction to k /∈ Fq2 .

As a consequence of the above considerations and Propositions 3.5 and 3.7, we have
the following.

Corollary 3.8. If h /∈ Fq2 , then Lh is not PΓL-equivalent to any known scattered linear
set in PG(1, q6).

3.3 Lh may be defined by a trinomial

Suppose that h ∈ Fq2 , then the condition on h becomes hq+1 = −1. For such h we can
prove that the linear set Lh can be defined by the q-polynomial (h−1 − 1)xq + xq

3

+

(h− 1)xq
5

.

Proposition 3.9. If h ∈ Fq2 , then the linear set Lh is PΓL-equivalent to

Ltri := {〈(x, (h−1 − 1)xq + xq
3

+ (h− 1)xq
5

)〉Fq6 : x ∈ F∗q6}.
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Proof. Let A =
(
a b
c d

)
∈ GL(2, q6) with a = −h + h−1, b = 1, c = h−1 − 1 −

h3 + h2 and d = h − h2 − 1. Straightforward computations show that the subspaces
Uh and U(h−1−1)xq+xq3+(h−1)xq5 are ΓL(2, q6)-equivalent under the action of the matrix
A. Hence, the linear sets Lh and Ltri are PΓL-equivalent.

The fact that Lh can also be defined by a trinomial will help us to completely close the
equivalence issue for Lh when h ∈ Fq2 . Indeed, we can prove the following:

Proposition 3.10. If h ∈ Fq2 , then the linear set Lh is PΓL-equivalent to some L4
δ (δ2 +

δ = 1) if and only if h ∈ Fq and q is a power of 5.

Proof. Recall that by [27, Proposition 5.5] if h ∈ Fq and q is a power of 5, then Lh is PΓL-
equivalent to some L4

δ . As in the proof of Proposition 3.6, by Lemma 3.3 we have to check
whether U(h−1−1)xq+xq3+(h−1)xq5 is ΓL-equivalent either to U4

δ or to (U4
δ )⊥. Suppose

that there exist ρ ∈ Aut(Fq6) and an invertible matrix
(
a b
c d

)
such that for each x ∈ Fq6

there exists z ∈ Fq6 satisfying(
a b
c d

)(
xρ

(h−ρ − 1)xρq + xρq
3

+ (hρ − 1)xρq
5

)
=

(
z

zq + zq
3

+ δzq
5

)
.

Let k = hρ, for which kq+1 = −1. As in Proposition 3.5, we obtain a polynomial identity,
whence 

c = bq(kq − 1) + bq
3

+ δbq
5

(k−q − 1)

d(k−1 − 1) = aq

0 = bq(k−q − 1) + bq
3

(kq − 1) + bq
5

δ

d = aq
3

0 = bq + bq
3

(k−q − 1) + bq
5

(kq − 1)δ

d(k − 1) = δaq
5

.

(3.5)

By subtracting the fifth equation from the third equation raised to q2, we get

bq = bq
5

(kq − 1),

i.e. either b = 0 or kq − 1 = (bq)q
4−1, whence we get either b = 0 or Nq6/q2(kq − 1) = 1.

If b 6= 0, since k − 1 ∈ Fq2 and Nq6/q2(k − 1) = (k − 1)3 = 1, then

k3 − 3k2 + 3k − 2 = 0

and, since Nq6/q2(kq − 1) = 1 and kq = −1/k,

2k3 + 3k2 + 3k + 1 = 0,

from which we get
9k2 − 3k + 5 = 0. (3.6)

• If k /∈ Fq then k and kq are the solutions of (3.6) and

−1 = kq+1 =
5

9
,

which holds if and only if q is a power of 7. By (3.6) it follows that k ∈ Fq , a
contradiction.
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• If k ∈ Fq , then k2 = −1 and by (3.6) we have k = −4/3, which is possible if and
only if q is a power of 5.

Hence, if either k /∈ Fq or k ∈ Fq with q not a power of 5, we have that b = 0 and hence
c = 0, a 6= 0 and d 6= 0.

By combining the second and the fourth equation of (3.5), we get Nq6/q2(k−1−1) = 1
and, since kq = −1/k, Nq6/q2(kq + 1) = −1. Arguing as above, we get a contradiction
whenever k /∈ Fq or k ∈ Fq with q not a power of 5.

Now, suppose that there exist ρ ∈ Aut(Fq6) and an invertible matrix
(
a b
c d

)
such that

for each x ∈ Fq6 there exists z ∈ Fq6 satisfying(
a b
c d

)(
xρ

(h−ρ − 1)xρq + xρq
3

+ (hρ − 1)xρq
5

)
=

(
z

δzq + zq
3

+ zq
5

)
.

Let k = hρ. As before, we get the following equations

c = δbq(kq − 1) + bq
3

+ bq
5

(k−q − 1)

d(k−1 − 1) = δaq

0 = δbq(k−q − 1) + bq
3

(kq − 1) + bq
5

d = aq
3

0 = δbq + bq
3

(k−q − 1) + bq
5

(kq − 1)

d(k − 1) = aq
5

.

(3.7)

By subtracting the fifth equation from the third raised to q2 of the above system we get

bq = bq
3

(k−q − 1).

If b 6= 0, then Nq6/q2(k−q − 1) = 1. Hence, arguing as above, we get that b = 0 and hence
c = 0, a, d 6= 0. By combining the fourth equation with the second and the fifth equation
of (3.7) we get Nq6/q2(k − 1) = 1, which yields again to a contradiction when k /∈ Fq or
k ∈ Fq with q not a power of 5.

So, as a consequence of Corollary 3.8 and of the above proposition, we have the fol-
lowing result.

Corollary 3.11. Apart from the case h ∈ Fq and q a power of 5, the linear set Lh is not
PΓL-equivalent to any known scattered linear set in PG(1, q6).

By Proposition 3.9, when h ∈ Fq2 , Lh is a linear set of the family presented in [23,
Section 7]. Also, we get an extension of [21, Table 1], where it is shown examples of
scattered linear sets which could generalize the family presented in [10]. We do not know
whether the linear set Lh, for each h ∈ Fq6 \ Fq2 with hq

3+1 = −1, may be defined by a
trinomial or not.

4 New MRD-codes
Delsarte in [13] (see also [14]) introduced in 1978 rank metric codes as follows. A rank
metric code (or RM-code for short) C is a subset of the set of m × n matrices Fm×nq over
Fq equipped with the distance function

d(A,B) = rk (A−B)
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for A,B ∈ Fm×nq . The minimum distance of C is

d = min{d(A,B) : A,B ∈ C, A 6= B}.

We will say that a rank metric code of Fm×nq with minimum distance d has parameters
(m,n, q; d). When C is an Fq-subspace of Fm×nq , we say that C is Fq-linear. In the same pa-
per, Delsarte also showed that the parameters of these codes fulfill a Singleton-like bound,
i.e.

|C| ≤ qmax{m,n}(min{m,n}−d+1).

When the equality holds, we call C a maximum rank distance (MRD for short) code. We
will consider only the case m = n and we will use the following equivalence definition for
codes of Fm×mq . Two Fq-linear RM-codes C and C′ are equivalent if and only if there exist
two invertible matrices A,B ∈ Fm×mq and a field automorphism σ such that {ACσB :

C ∈ C} = C′, or {ACTσB : C ∈ C} = C′, where T denotes transposition. Also, the
left and right idealisers of C are L(C) = {A ∈ GL(m, q) : AC ⊆ C} and R(C) = {B ∈
GL(m, q) : CB ⊆ C} [17, 19]. They are important invariants for linear rank metric codes,
see also [15] for further invariants.

In [24, Section 5] Sheekey showed that scattered Fq-linear sets of PG(1, qn) of rank n
yield Fq-linear MRD-codes with parameters (n, n, q;n− 1) with left idealiser isomorphic
to Fqn ; see [7, 8, 25] for further details on such kind of connections. We briefly recall
here the construction from [24]. Let Uf = {(x, f(x)) : x ∈ Fqn} for some scattered q-
polynomial f(x). After fixing an Fq-basis for Fqn we can define an isomorphism between
the rings End(Fqn ,Fq) and Fn×nq . In this way the set

Cf := {x 7→ af(x) + bx : a, b ∈ Fqn}

corresponds to a set of n × n matrices over Fq forming an Fq-linear MRD-code with
parameters (n, n, q;n − 1). Also, since Cf is an Fqn -subspace of End(Fqn ,Fq) its left
idealiser L(Cf ) is isomorphic to Fqn . For further details see [6, Section 6].

Let Cf and Ch be two MRD-codes arising from maximum scattered subspaces Uf and
Uh of Fqn ×Fqn . In [24, Theorem 8] the author showed that there exist invertible matrices
A, B and σ ∈ Aut(Fq) such that ACσfB = Ch if and only if Uf and Uh are ΓL(2, qn)-
equivalent

Therefore, we have the following.

Theorem 4.1. The Fq-linear MRD-code Cfh arising from the Fq-subspace Uh has parame-
ters (6, 6, q; 5) and left idealiser isomorphic to Fq6 , and is not equivalent to any previously
known MRD-code, apart from the case h ∈ Fq and q a power of 5.

Proof. From [6, Section 6], the previously known Fq-linear MRD-codes with parameters
(6, 6, q; 5) and with left idealiser isomorphic to Fq6 arise, up to equivalence, from one of the
maximum scattered subspaces of Fq6 × Fq6 described in Section 3. From Corollaries 3.8
and 3.11 the result then follows.

ORCID iDs
Daniele Bartoli https://orcid.org/0000-0002-5767-1679
Corrado Zanella https://orcid.org/0000-0002-5031-1961
Ferdinando Zullo https://orcid.org/0000-0002-5087-2363



144 Ars Math. Contemp. 19 (2020) 125–145

References
[1] D. Bartoli and M. Montanucci, Towards the full classification of exceptional scattered polyno-

mials, J. Comb. Theory Ser. A, in press, arXiv:1905.11390 [math.CO].

[2] D. Bartoli and Y. Zhou, Exceptional scattered polynomials, J. Algebra 509 (2018), 507–534,
doi:10.1016/j.jalgebra.2018.03.010.

[3] A. Blokhuis and M. Lavrauw, Scattered spaces with respect to a spread in PG(n, q), Geom.
Dedicata 81 (2000), 231–243, doi:10.1023/a:1005283806897.
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Abstract

In this note we revisit noncommutative frames. Special attention is devoted to the study
of join completeness and related properties in skew lattices.

Keywords: Noncommutative frame, skew lattice, completeness, lattice section.
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1 Introduction
In [5], the first author introduced noncommutative frames, motivated by a noncommutative
topology constructed by Le Bruyn [7] on the points of the Connes-Consani Arithmetic Site
[2, 3]. The definition of noncommutative frame fits in the general theory of skew lattices,
a theory that goes back to Pascual Jordan [6] and is an active research topic starting with
a series of papers of the third author [8, 9, 10]. For an overview of the primary results on
skew lattices, we refer the reader to [12] or the earlier systematic survey [11].

Recall that a frame is a complete lattice which satisfies the infinite distributive laws.
Noncommutative frames are noncommutative generalizations of frames, the precise defini-
tion is given in Section 1. Loosely speaking, a noncommutative frame is a frame of certain
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congruence classes, D-classes. A noncommutative frame containing both the top and the
bottom elements would necessarily be commutative. There are thus two natural ways of
generalizing frames to the noncommutative setting:

1. We keep the bottom element, but replace the top element with a top D-class. This
approach is carried out in the present paper.

2. We keep the top element, but replace the bottom element with a bottomD-class. This
approach was carried out in [4].

Note that the two approaches are essentially different as they do not dualize one another.
The notion of completeness for noncommutative lattices is much more complex than

for lattices. For example, join completeness and meet completeness turn out to be non-
equivalent properties. The main purpose of this note is to study aspects of [join, meet]
completeness for certain types of skew lattices as well as certain related properties, which
we define and explore in Section 3. In Section 4 we study join completeness in terms of
D-classes. In Section 5 we state and prove a correction of Theorem 4.4 of [5], where the
assumption of join completeness was erroneously omitted. Theorem 5.1 states that if S is a
join complete, strongly distributive skew lattice with 0, then S is a noncommutative frame
if and only if its commutative shadow S/D is a frame. Examples 3.2 and 3.4 show that the
assumption of join completeness is indeed necessary.

2 Preliminaries
A skew lattice is a set A endowed with a pair of idempotent, associative operations ∧ and
∨ which satisfy the absorption laws:

x ∧ (x ∨ y) = x = x ∨ (x ∧ y) and (x ∧ y) ∨ y = y = (x ∨ y) ∧ y.

The terms meet and join are still used for ∧ and ∨, but without assuming commutativity.
Given skew lattices A and B, a homomorphism of skew lattices is a map f : A → B that
preserves finite meets and joins, i.e. it satisfies the following pair of axioms:

• f(a ∧ b) = f(a) ∧ f(b), for all a, b ∈ A;

• f(a ∨ b) = f(a) ∨ f(b), for all a, b ∈ A.

A natural partial order is defined on any skew lattice A by: a ≤ b iff a ∧ b = b ∧ a = a,
or equivalently, a∨ b = b = b∨ a. The Green’s equivalence relation D is defined on A by:
a D b iff a∧ b∧ a = a and b∧ a∧ b = b, or equivalently, a∨ b∨ a = a and b∨ a∨ b = b.
By Leech’s First Decomposition Theorem [8], relation D is a congruence on a skew lattice
A and A/D is a maximal lattice image of A, also referred to as the commutative shadow
of A.

Skew lattices are always regular in that they satisfy the identities:

a ∧ x ∧ a ∧ y ∧ a = a ∧ x ∧ y ∧ a and a ∨ x ∨ a ∨ y ∨ a = a ∨ x ∨ y ∨ a.

The following result is an easy consequence of regularity.



K. Cvetko-Vah, J. Hemelaer and J. Leech: Noncommutative frames revisited 149

Lemma 2.1. Let a, b, u, v be elements of a skew lattice A such that Du ≤ Da, Du ≤ Db,
Da ≤ Dv and Db ≤ Dv . Then:

1. a ∧ v ∧ b = a ∧ b,

2. a ∨ u ∨ b = a ∨ b.

A skew lattice is strongly distributive if it satisfies the identities:

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

By a result of Leech [10], a skew lattice is strongly distributive if and only if it is symmetric,
distributive and normal, where a skew lattice A is called:

• symmetric if for any x, y ∈ A, x ∨ y = y ∨ x iff x ∧ y = y ∧ x;

• distributive if it satisfies the identities:

x ∧ (y ∨ z) ∧ x = (x ∧ y ∧ x) ∨ (x ∧ z ∧ x)

x ∨ (y ∧ z) ∨ x = (x ∨ y ∨ x) ∧ (x ∨ z ∨ x);

• normal if it satisfies the identity x ∧ y ∧ z ∧ x = x ∧ z ∧ y ∧ x.

Further, it is shown in [10] that a skew lattice A is normal if and only if given any a ∈ A
the set

a↓ = {u ∈ A | u ≤ a}

is a lattice. For this reason, normal skew lattices are sometimes called local lattices. Given
any comparable D-classes D < C in a normal skew lattice A and any c ∈ C there exist a
unique d ∈ D such that d < c with respect to the natural partial order.

Finally, a skew lattice with 0 is a skew lattice with a distinguished element 0 satisfying
x ∨ 0 = x = 0 ∨ x, or equivalently, x ∧ 0 = 0 = 0 ∧ x.

Example 2.2. Let A,B be non-empty sets and denote by P(A,B) the set of all partial
functions from A to B. We define the following operations on P(A,B):

f ∧ g = f |dom(f)∩dom(g)

f ∨ g = g ∪ f |dom(f)\dom(g).

Leech [10] proved that (P(A,B);∧,∨) is a strongly distributive skew lattice with 0. More-
over, given f, g ∈ (P(A,B);∧,∨) the following hold:

• f D g iff dom(f) = dom(g);

• f ≤ g iff f = g|dom(f)∩dom(g);

• P(A,B)/D ∼= P(A), the Boolean algebra of subsets of A;

• P(A,B) is left-handed in that x∧ y ∧ x = x∧ y and dually, x∨ y ∨ x = y ∨ x hold.

A commuting subset of a skew lattice A is a nonempty subset {xi | i ∈ I} ⊆ A such
that xi ∧ xj = xj ∧ xi and xi ∨ xj = xj ∨ xi hold for all i, j ∈ I . The following result is
a direct consequence of the definitions.
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Lemma 2.3. Let A and B be skew lattices, f : A → B be a homomorphism of skew
lattices, and {xi | i ∈ I} ⊆ A be a commuting subset of A. Then {f(xi) | i ∈ I} is a
commuting subset of B.

A skew lattice is said to be join [meet] complete if all commuting subsets have suprema
[infima] with respect to the natural partial ordering. By a result of Leech [9], the choice
axiom implies that any join complete symmetric skew lattice has a topD-class. If it occurs,
we denote the topD-class of a skew lattice A by T (or TA). Dually, if A is a meet complete
symmetric skew lattice, then it always has a bottom D-class, denoted by B (or BA).

A frame is a lattice that has all joins (finite and infinite), and satisfies the infinite dis-
tributive law:

x ∧
∨
i

yi =
∨
i

(x ∧ yi).

A noncommutative frame is a strongly distributive, join complete skew lattice A with 0 that
satisfies the infinite distributive laws:

(
∨
i

xi) ∧ y =
∨
i

(xi ∧ y) and x ∧ (
∨
i

yi) =
∨
i

(x ∧ yi) (2.1)

for all x, y ∈ A and all commuting subsets {xi | i ∈ I}, {yi | i ∈ I} ⊆ A.
By a result of Bignall and Leech [1], any join complete, normal skew lattice A with 0

(for instance, any noncommutative frame) satisfies the following:

• A is meet complete, with the meet of a commuting subset C denoted by
∧
C;

• any nonempty subset C ⊆ A has an infimum with respect to the natural partial order,
to be denoted by

⋂
C (or by x ∩ y in the case C = {x, y});

• if C is a nonempty commuting subset of A, then
∧
C =

⋂
C.

We call the
⋂
C the intersection of C.

A lattice section L of a skew lattice S is a subalgebra that is a lattice (i.e. both ∧ and
∨ are commutative on L) and that intersects each D-class in exactly one element. When it
exists, a lattice section is a maximal commuting subset and it is isomorphic to the maximal
lattice image, as shown by Leech in [8]. If a normal skew lattice S has a top D-class T
then given t ∈ T , t↓ = {x ∈ S | x ≤ t} is a lattice section of S; moreover, all lattice
sections are of the form t↓ for some t ∈ T . Further, it is shown in [8] that any symmetric
skew lattice S such that S/D is countable has a lattice section.

We say that a commuting subset C in a symmetric skew lattice S extends to a lattice
section if there exists a lattice section L of C such that C ⊆ L.

3 Comparison of completeness properties
Let S be a normal, symmetric skew lattice. We will consider the following four properties
that S might have:

(JC) S is join complete;

(BA) S is bounded from above, i.e. for every commuting subset C there is an element
s ∈ S such that c ≤ s for all c ∈ C;
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(EX) every commuting subset extends to a lattice section;

(LS) there exists a lattice section.

Note that the last two properties are trivially satisfied if S is commutative.

Proposition 3.1. For normal, symmetric skew lattices, the following implications hold:

(JC)⇒ (BA)⇒ (EX)⇒ (LS).

Proof. We only prove (BA)⇒ (EX), the other two implications are trivial. Take a normal,
symmetric skew lattice S, such that every commutative subset has a join. Let C ⊆ S be a
commuting subset. We have to prove that C extends to a lattice section. For every chain
C0 ⊆ C1 ⊆ · · · of commuting subsets, the union

⋃∞
i=0 Ci is again a commuting subset.

So by Zorn’s Lemma, C is contained in a maximal commuting subset C ′. Take an element
s ∈ S such that s ≥ c for all c ∈ C ′. Then s↓ contains C ′ and it is a commuting subset
because S is normal. By maximality, C ′ = s↓. Again by maximality, s is a maximal
element for the natural partial order on S. This also means that s is in the top D-class (if
y ∈ S has a D-class with [y] 6≤ [s], then s ∨ y ∨ s > s, a contradiction). So C ′ is a lattice
section.

We claim that the converse implications do not hold in general. We will give a coun-
terexample to all three of them. In each case, the counterexamples are strongly distributive
skew lattices with 0.

Example 3.2 ((BA) 6⇒ (JC)). Consider the set S = N∪{∞a,∞b} and turn S into a skew
lattice by setting

x ∧ y = min(x, y) x ∨ y = max(x, y)

whenever x or y is in N (∞a and∞b are both greater than every natural number), and

∞a ∧∞b =∞a =∞b ∨∞a

∞b ∧∞a =∞b =∞a ∨∞b.

Then S is a left-handed strongly distributive skew lattice with 0. The commuting subsets
of S are precisely the subsets that do not contain both∞a and∞b. Clearly, S is bounded
from above (as well as meet complete). However, the commuting subset N ⊆ S does not
have a join.

Note that there are commutative examples as well, for example the real interval [0, 1]
with join and meet given by respectively maximum and minimum. The element 1 is an
upper bound for every subset, but the lattice is not join complete. However, we preferred
an example where the commutative shadow S/D is join complete.

Example 3.3 ((EX) 6⇒ (BA)). Here we give a commutative example. Take S = N with
the meet and join given by respectively the minimum and maximum of two elements. Then
(EX) is satisfied, but (BA) does not hold.

If S satisfies (EX) and S/D is bounded from above, then for any commuting subset
C ⊆ S we can find a lattice section L ⊇ C and an element y ∈ L such that [y] ≥ [c] for all
c ∈ C. It follows that y ≥ c for all c ∈ C, so S is bounded from above. So any example as
the one above essentially reduces to a commutative example.
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Example 3.4 ((LS) 6⇒ (EX)). Consider the subalgebra S of P(N,N) consisting of all
partial functions with finite image sets in N. Note that S/D = P(N). The skew lattice S
has lattice sections, for example the subalgebra of all functions in P(N,N) whose image
set is {1}. The set of 1-point functions {n 7→ n | n ∈ N} is clearly a commuting subset,
but it cannot be extended to an entire lattice section.

Even the weakest property (LS), the existence a lattice section, does not always hold
for strongly distributive skew lattices.

Example 3.5 ((LS) does not hold). Let S be the subalgebra of P(R,N) consisting of all
partial functions f such that f−1(n) is finite for all n ∈ N. In particular, if f ∈ S, then
the domain of f is at most countable. Conversely, for any at most countable subset U ⊆ R
we can construct an element f ∈ S with domain U . Suppose now that Q ⊆ S is a lattice
section. Then there is an entire function q : R → N such that every f ∈ Q can be written
as a restriction f = q|U with U ⊆ R at most countable. Take n ∈ N such that q−1(n) is
infinite, and take a countably infinite subset V ⊆ q−1(n). Then q|V /∈ S, by definition.
But this shows that there is no element f ∈ Q with domain V , which contradicts that Q is
a lattice section.

By [8], any symmetric skew lattice S with S/D at most countable has a lattice section.
This shows that in the above example it is necessary that the commutative shadow S/D is
uncountable.

4 Join completeness in terms of D-classes
Let S be a normal, symmetric skew lattice. Recall that for an element a ∈ S, we write
its D-class as [a]. For a D-class u ≤ [a], the unique element b with b ≤ a and [b] = u
will be called the restriction of a to u. We will denote the restriction of a to u by a|u. For
u, v ≤ [a] two D-classes, we calculate that

(a|u)|v = a|v if v ≤ u,

and in particular
a|u ≤ a|v ⇔ u ≤ v.

Proposition 4.1. Let S be a normal, symmetric skew lattice and take a commuting subset
{ai | i ∈ I} ⊆ S. Then the following are equivalent:

(1) the join
∨

i∈I ai exists;

(2) the join
∨

i∈I [ai] exists and there is a unique a ∈ S with [a] =
∨

i∈I [ai] and ai ≤ a
for all i ∈ I .

In this case, a =
∨

i∈I ai. In particular,
[∨

i∈I ai
]
=
∨

i∈I [ai].

Proof. (1)⇒ (2): We claim that
[∨

i∈I ai
]

is the join of theD-classes [ai]. Because taking
D-classes preserves the natural partial order, [ai] ≤

[∨
i∈I ai

]
for all i ∈ I . If

[∨
i∈I ai

]
is

not the join of the [ai]’s, then we can find a D-class u <
[∨

i∈I ai
]

such that [ai] ≤ u for
all i ∈ I . But then

ai ≤

(∨
i∈I

ai

)∣∣∣∣∣
u

<
∨
i∈I

ai
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for all i ∈ I , a contradiction. So
∨

i∈I [ai] exists and is equal to
[∨

i∈I ai
]
. For the remain-

ing part of the statement, it is a straightforward calculation to show that a =
∨

i∈I ai is the
unique element with the given properties.

(2)⇒ (1): Write u =
∨

i∈I [ai]. Let b ∈ S be an element such that ai ≤ b for all i ∈ I .
Then u ≤ [b] and ai ≤ b|u for all i ∈ I . It follows that a = b|u, in particular a ≤ b. So a is
the join of the ai’s.

Corollary 4.2. Let S be a normal, symmetric skew lattice. Suppose that S is bounded from
above and that S/D is join complete. If every two elements a, b ∈ S have an infimum a∩ b
for the natural partial order, then S is join complete.

Proof. Let {ai | i ∈ I} ⊆ S be a commuting subset. Because S is bounded from above,
we can take an element s ∈ S such that ai ≤ s for all i ∈ I . Set u =

∨
i∈I [ai]. By

Proposition 4.1 it is enough to show that there is a unique a ∈ S with [a] = u and ai ≤ a
for all i ∈ I . Existence follows by taking the restriction s|u. To show uniqueness, take two
elements a and a′ with [a] = [a′] = u and ai ≤ a, ai ≤ a′ for all i ∈ I . It follows that
[a ∩ a′] =

∨
i∈I [ai] = u. But this shows that a = a ∩ a′ = a′.

In Example 3.2, the two elements∞a and∞b do not have an infimum.

5 Noncommutative frames
The following is a correction of a result in [5], where the assumption of being join complete
was erroneously omitted.

Theorem 5.1. Let S be a join complete, strongly distributive skew lattice with 0. Then S
is a noncommutative frame if and only if S/D is a frame.

Proof. Suppose that S/D is a frame. We prove the infinite distributivity laws (2.1). Take
x ∈ S and let {yi | i ∈ I} ⊆ S be a commuting subset. It is enough to show that

x ∧
∨
i∈I

yi =
∨
i∈I

x ∧ yi

(the proof for the other infinite distributivity law is analogous). Using that S is strongly
distributive, it is easy to compute that y ≤ z implies x ∧ y ≤ x ∧ z. In particular, x ∧ yi ≤
x ∧

∨
i yi for all i ∈ I . This shows:∨

i∈I
x ∧ yi ≤ x ∧

∨
i∈I

yi. (5.1)

Further, we can use Proposition 4.1 to compute[∨
i∈I

x ∧ yi

]
=
∨
i∈I

[x] ∧ [yi] = [x] ∧
∨
i∈I

[yi] =

[
x ∧

∨
i∈I

yi

]
,

where for the middle equality we use that S/D is a frame. Since left- and right-hand side
in (5.1) are in the same D-class, the inequality must be an equality, so that S is seen to be
a noncommutative frame. Conversely, suppose that S is a noncommutative frame. Then S
has a maximal D-class, TS . Let t be in TS . Then t↓ is a copy of S/D.

The extra assumption that S is join complete is necessary: the strongly distributive
skew lattices from Examples 3.2 and 3.4 have a frame as commutative shadow, but they are
not noncommutative frames, since they are not join complete.
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Abstract

We study polygon spaces arising from planar configurations of necklaces with some of
the beads fixed and some of the beads sliding freely. These spaces include configuration
spaces of flexible polygons and some other natural polygon spaces. We characterise critical
points of the oriented area function in geometric terms and give a formula for the Morse
indices. Thus we obtain a generalisation of isoperimetric theorems for polygons in the
plane.

Keywords: Flexible polygons, configuration spaces, Morse index, critical points.

Math. Subj. Class. (2020): 58K05, 52B60

1 Preliminaries: necklaces, configuration spaces, and the oriented
area function

Suppose one has a closed string with a number of labelled beads, a necklace. Some of
the beads are fixed and some can slide freely (although the beads never pass through one
another). Having the necklace in hand, one can try to put it on the plane in such a way that
the string is strained between every two consecutive beads. We will call this a (strained
planar) configuration of the necklace. The space of all configurations (up to rotations and
translations) of a given necklace, called the configuration space of the necklace, together
with the oriented area function on it is the main object of the present paper.

Let us now be precise. Given a tuple (n1, . . . , nk) of positive integers and
a tuple (L1, . . . , Lk) of positive reals, we define a necklace N to be a tuple(
(n1, L1), . . . , (nk, Lk)

)
interpreted as follows:

∗I am deeply indebted to Gaiane Panina for posing the problem and supervising my research. I am also
thankful to Joseph Gordon and Alena Zhukova for fruitful discussions and to Nathan Blacher for his valuable
comments on the linguistic quality of the paper.
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E-mail address: dan.mamaev@gmail.com (Daniil Mamaev)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/
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• the necklace has the total of n = n(N) = n1 + · · ·+ nk beads on it;

• k = k(N) of the beads are fixed and numbered by the index j = 1, . . . , k in counter-
clockwise order, the index j is considered to be cyclic (that is, j = 6k+5 is the same
as j = 5);

• there are (nj−1) freely sliding beads between the j-th and the (j+ 1)-th fixed bead;

• the total length of the string is L = L(N) = L1 + · · ·+ Lk;

• the length of the string between the j-th and the (j + 1)-th fixed bead is equal to Lj .

We fix some notation concerning polygons.

• A planar n-gon is a collection of n (labelled) points (called vertices) (p1, . . . , pn)
in the Euclidean plane R2. Note that all kinds of degenerations, including self-
intersection and collision of vertices, are allowed.

• The space of all planar n-gons Polyn is thus just
(
R2
)n

.

• The edges of a polygon P = (p1, . . . , pn) are the segments pipi+1 for i = 1, . . . , n,
the length of the i-th edge is li = li(P ) = |pipi+1|. Note that the index i = 1, . . . , n
is cyclic (that is, i = 10n+ 3 is the same as i = 3).

To avoid messy indices, we introduce some additional notation associated with a neck-
lace N =

(
(n1, L1), . . . , (nk, Lk)

)
(see Figure 1 for an example). For index j = 1, . . . , k

• denote by j∗ the set of indices corresponding to the j-th piece of N:

j∗ = {n1 + · · ·+ nj−1 + 1, . . . , n1 + · · ·+ nj}; (1.1)

• define a function Lj : Polyn → R, the total length of the edges of a polygon corre-
sponding to the j-th piece of N, that is

Lj(P ) =
∑
i∈j∗

li(P ).

Figure 1: A configuration P = (p1, . . . , p7) of N =
(
(2, L1), (1, L2), (4, L3)

)
.

Definition 1.1. A (strained planar) configuration of a necklace
N =

(
(n1, L1), . . . , (nk, Lk)

)
is a polygon P ∈ Polyn with Lj(P ) = Lj for all

j = 1, . . . , k.
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All configurations of a necklace N =
(
(n1, L1), . . . , (nk, Lk)

)
modulo translations

and rotations form a space M(N) = M
(
(n1, L1), . . . , (nk, Lk)

)
called configuration

space of the necklace N. More formally,

• Consider all the strained planar configurations of N =
(
(n1, L1), . . . , (nk, Lk)

)
:

M̃(N) = {P ∈ Polyn : Lj(P ) = Lj for j = 1, . . . , k} .

• The group Iso+
(
R2
)

of orientation-preserving isometries of the Euclidean plane R2

acts diagonally on the space of all planar n-gons Polyn =
(
R2
)n

.

• The configuration space of the necklace N is the space of orbits:

M(N) = M̃(N)
/

Iso+
(
R2
)
.

Definition 1.2. The oriented area A of an n-gon P = ((x1, y1), . . . , (xn, yn)) ∈
(
R2
)n

is
defined to be

A(P ) =
1

2

∣∣∣∣x1 x2
y1 y2

∣∣∣∣+
1

2

∣∣∣∣x2 x3
y2 y3

∣∣∣∣+ · · ·+ 1

2

∣∣∣∣xn x1
yn y1

∣∣∣∣ . (1.2)

The oriented area is preserved by the action of Iso+
(
R2
)

and thus gives rise to a well-
defined continuous function onM(N) for all the necklaces N. We will denote these func-
tions by the same letter A. The study of critical points (i.e. the solutions of dA(P ) = 0) of
A : M(N)→ R is the subject of the present paper.

The paper is organised as follows. In Section 2 we review previously studied extreme
cases: polygonal linkages (the ‘all beads are fixed’ case) and polygons with fixed perimeter
(the ‘one bead is fixed’ case, which is clearly the same as ‘none of the beads are fixed’ case).
In Section 3 we discuss the regularity properties of configuration spaces of necklaces. In the
subsequent sections we study the non-singular part of the configuration space. In Section 4
we give a geometric description of critical points of the oriented area in the general case
(Theorem 4.1) and deduce a formula for their Morse indices (Theorem 4.2). In Section 5
the auxiliary Lemmata 4.3 and 4.4 concerning orthogonality of certain spaces with respect
to the Hessian form of the oriented area function are proven. In Section 6 we discuss the
‘two consecutive beads are fixed’ case and give a proof of Lemma 4.5.

2 An overview of existing results
2.1 Configuration spaces of polygonal linkages

In the notation of the present paper these are the spaces M
(
(1, l1), . . . , (1, ln)

)
, i.e. the

spaces M(N) for necklaces N with all beads being fixed. These spaces are studied in
many aspects (see e.g. [1] or [2] for a thorough survey). On the side of studying the ori-
ented area on these spaces, the first general fact about its critical points was noticed by
Thomas Banchoff (unpublished), reproved by Khimshiashvili and Panina [5] (their tech-
nique required some non-degeneracy assumptions) and then proved again by Leger [8] in
full generality.

Theorem 2.1 (Critical configurations in the ‘all beads are fixed’ case; Bunchoff, Khimshi-
ashvili, Leger, and Panina). Let N be a necklace with all the beads fixed. Then a polygon
P ∈Msm(N) is a critical point of A if and only if it is cyclic (i.e. inscribed in a circle).
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After describing critical points, the following natural question arises: are these critical
points Morse (i.e. whether HessP A, the Hessian of A at P , is a non-degenerate bilinear
form on TPM(N)) and if they are, what is the Morse index (the maximal dimension of
a subspace on which HessP A is negative definite). The state-of-the-art answer to this
question requires some more notation (see Figure 2 for an example).

Figure 2: Notation for a cyclic polygon.

Definition 2.2. Let P be a cyclic n-gon, o be the circumcentre of P , and i ∈ {1, . . . , n}.

• The central half-angle of the i-th edge of P is

αi(P ) =
|∠piopi+1|

2
∈ [0, π/2].

• The orientation of the i-th edge of P is

εi(P ) =


1, if ∠piopi+1 ∈ (0, π);

0, if ∠piopi+1 ∈ {0, π};
−1, if ∠piopi+1 ∈ (−π, 0).

(2.1)

We will denote by Cn the configuration space of cyclic n-gons with at least three ver-
tices. More precisely,

Cn =

{
P ∈

(
R2
)n

:
P is a cyclic polygon;
AffineHull(P ) = R2

}/
Iso+

(
R2
)
. (2.2)

For P ∈ Cn denote by ΩP its circumscribed circle, by oP its circumcentre, and by RP the
radius of ΩP .
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Definition 2.3. Let P be a cyclic polygon with at least three distinct vertices. It is called
admissible if no edge of P passes through its circumcentre o. In this case its winding
number wP = w(P, o) with respect to o is well-defined.

Theorem 2.4 (Morse indices in the ‘all beads are fixed’ case; Gordon, Khimshiashvili,
Panina, Teplitskaya, and Zhukova). Let N =

(
(1, l1), . . . , (1, ln)

)
be a necklace without

freely moving beads, and let P ∈Msm(N) be an admissible cyclic polygon. Then P is a
Morse point of A if and only if

∑n
i=1 εi tanαi 6= 0 and in this case its Morse index is

µP (A) = #
{
i ∈ {1, . . . , n} : εi > 0

}
− 1− 2wP −

{
0, if

∑n
i=1 εi tanαi > 0;

1, otherwise.

The formula more or less explicitly appeared in [6, 9], and [11], but in this form, with
the precise condition of being Morse, the theorem was proved only in [3]. The following
definition was first given in [3].

Definition 2.5. An admissible cyclic polygon P is called bifurcating if∑n
i=1 εi tanαi = 0.

2.2 Configuration space of n-gons with fixed perimeter

This is the spaceM
(
(n,L)

)
= M(n,L) (for different L these spaces are isomorphic, so

usually L is set to 1). It is no secret since antiquity, that, with perimeter fixed, convex
regular polygons maximise the area. All the critical points of the oriented area together
with their indices were determined only in a recent paper [7] by Khimshiashvili, Panina
and Siersma.

Definition 2.6. A regular star is a cyclic polygon P such that all its edges are equal and
have the same orientation (see (2.1)). A complete fold is a regular star P with pi = pi+2

for all i = 1, . . . , n. It exists for even n only.

Theorem 2.7 (Critical configurations and Morse indices in the ‘one bead is fixed’ case;
Khimshiashvili, Panina, and Siersma).

(1) M(n,L) is homeomorphic to CPn−2.

(2) A polygon P ∈Msm(n,L) is a critical point of A if and only if it is a regular star.

(3) The stars with maximal winding numbers are Morse critical points of A.

(4) Under assumption that all regular stars are Morse critical points, the Morse indices
are:

µnP (A) =


2wP − 2, if wP < 0;

2n− 2wP − 2, if wP > 0;

n− 2, if P is a complete fold.

Remark 2.8. The super-index in µP (A) allows one to identify the domain of A. For ex-
ample, µnP (A) is the Morse index ofA : M

(
n,L1(P )

)
→ R at point P (as in (4) of Theo-

rem 2.7), and µ1,...,1
P (A) is the Morse index of A : M

((
1,L1(P )

)
, . . . ,

(
1,Ln(P )

))
→ R

at point P (as in Theorem 2.4). This notation will be of much use in the proof of Theo-
rem 4.2.
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Let us also mention an auxiliary statement proven in [7].

Lemma 2.9 (Khimshiashvili, Panina, and Siersma). Let P be a regular star which is not a
complete fold with wP > 0. Then P is a non-degenerate local maximum on Cn.

In fact, this lemma together with Theorem 2.4 and Lemma 4.3 allows one to omit the
assumption in (4) of Theorem 2.7. All the critical points of the oriented area on Cn were
described in a recent preprint [10] by Siersma.

3 Singular locus of the configuration space
Definition 3.1. Let P be a configuration of a necklace N =

(
(n1, L1), . . . , (nk, Lk)

)
. It

is called non-singular if L = (L1, . . . ,Lk) is a smooth submersion at P (i.e. L is differ-
entiable at P and its differential DPL : TP Polyn → TPRk is a surjective linear map),
otherwise it is called singular.

First we give a geometric characterisation of singular configurations. Consider a poly-
gon P = (p1, . . . , pn), with pi = (xi, yi) ∈ R2 and li = |pi+1 − pi| 6= 0 for all
i = 1, . . . , n. Define βi to be the oriented angle between vectors (1, 0) and (pi+1 − pi).
Denote by s(j) = n1 + · · ·+ nj−1 + 1 the index of the j-th fixed bead. Then every Lj is
differentiable at P and the derivative of Lj with respect to xi and yi is as follows:

∂Lj
∂xi

(P ) =


− cosβi, if i = s(j);

cosβi−1 − cosβi, if i ∈ j∗ \ {s(j)};
cosβi−1, if i = s(j + 1);

0, otherwise.

(3.1)

∂Lj
∂yi

(P ) =


− sinβi, if i = s(j);

sinβi−1 − sinβi, if i ∈ j∗ \ {s(j)};
sinβi−1, if i = s(j + 1);

0, otherwise.

(3.2)

Definition 3.2. Let N =
(
(n1, L1), . . . , (nk, Lk)

)
be a necklace. An index

i ∈ {1, . . . , n(N)} is called boundary if it is equal to s(j) for some j ∈ {1, . . . , k},
otherwise it is called inner.

In Figure 1 the indices 1, 3, 4 are boundary and the indices 2, 5, 6, 7 are inner.

Lemma 3.3. A configuration P ∈ Polyn of the necklace N =
(
(n1, L1), . . . , (nk, Lk)

)
is

singular if and only if one of the following holds:

(1) li = 0 for some i ∈ {1, . . . , n(N)};
(2) P fits in a straight line in such a way that βi = βi−1 for all inner indices i.

Proof. The first condition is equivalent to L being differentiable at P . Therefore, what is
left to prove, is that for P ∈ M̃(N) with no vanishing edges, the second condition holds if
and only if the gradients gradP L1, . . . , gradP Lk are linearly dependent.

Suppose that λ1 gradP L1 + · · · + λk gradP Lk = 0 is a non-trivial vanishing linear
combination. If λj 6= 0, then, using formulae (3.1) and (3.2) for boundary index s(j),
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we get −λj cosβs(j) + λj−1 cosβs(j)−1 = 0 and −λj sinβs(j) + λj−1 sinβs(j)−1 = 0.
It means that points λj(cosβs(j), sinβs(j)) 6= (0, 0) and λj−1(cosβs(j)−1, sinβs(j)−1)
coincide, which implies that 2(βs(j)−βs(j)−1) = 0 and λj−1 = cos(βs(j) − βs(j)−1)λj 6=
0. It follows then that λj 6= 0 for all j = 1, . . . , k, consequently, (we now use (3.1) and
(3.2) for inner indices) βi = βi−1 for all inner indices i, meaning that P is composed of
straight segments of lengths L1, . . . , Lk. Taking into account previously deduced formula
2(βi−βi−1) = 0 for boundary i, we conclude that P does satisfy condition (2). Reversing
the above argument, we get the reverse implication.

Definition 3.4. A singular configuration P of a necklace N is called strongly singular, if it
satisfies (2) in Lemma 3.3. Otherwise it is called weakly singular.

Remark 3.5. Let N =
(
(n1, L1), . . . , (nk, Lk)

)
be a necklace. Then

• weakly singular configurations of N are, in a sense, inessential (for instance,M(N)
is a topological manifold around them);

• if (L1, . . . , Ln) is such that ±L1 ± · · · ± Ln 6= 0 for any choice of ± (such tuples
are called generic in [2]), then there are no strongly singular configurations of N.

Together, these two facts allow to deduce some information about topology ofM(N) for
generic N from Theorems 4.1 and 4.2, but this is not the subject of the present paper.

Now let M̃sm(N) be the set of non-singular configurations of necklace N and
Msm(N) be the non-singular part ofM(N):

Msm

(
N) =

M̃sm(N)

Iso+ (R2)
=

{
P ∈ Polyn :

P is a non-singular
configuration of N

}/
Iso+

(
R2
)

If these spaces are non-empty, they are smooth manifolds. This statement generalises
previous results on smoothness of configuration spaces of polygonal linkages by Kapovich–
Millson [4] and Farber [2].

Definition 3.6. A necklace N = ((n1, L1), . . . , (nk, Lk)
)

is called realisable if for all
j = 1, . . . , k, such that nj = 1, the inequality 2Lj < L1 + · · ·+ Lk holds.

Proposition 3.7. Let N be a realisable necklace. Then

(1) M̃sm(N) is a smooth (2n− k)-dimensional submanifold of Polyn = R2n;

(2) Msm(N) is a topological manifold of dimension 2n − k − 3 with a unique smooth
structure making the quotient map M̃sm(N)→Msm(N) a smooth submersion;

(3) the oriented area function A is a smooth function onMsm(N).

Proof. It follows from Lemma 3.3, that the inequalities 2Lj < L1 + · · ·+Lk are necessary
and sufficient for M̃sm(N) to be non-empty.

The first claim is clear since M̃sm(N) is locally a level of a smooth submersion
L = (L1, . . . ,Lk) :

(
R2
)n → Rk.

To establish the second claim, we first note thatMsm(N) is an orbit space of the action
of 3-dimensional Lie group Iso+

(
R2
)

on the smooth manifold M̃sm(N). Thus, it suffices
to observe that the action is free and proper, which is indeed the case.

The third claim is obvious since the smooth structure on Msm(N) is induced from
Polyn, and the oriented area A is a smooth function (cf. (1.2)) on Polyn preserved by the
action of Iso+

(
R2
)
.
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4 Main results: critical configurations and their Morse indices in the
general case

The following theorem describes critical points of the oriented area on configuration spaces
of necklaces. It generalises Theorem 2.1 and (2) in Theorem 2.7.

Theorem 4.1 (Critical configurations in the general case). A polygon
P ∈ Msm

(
(n1, L1), . . . , (nk, Lk)

)
is a critical point of A if and only if all of the

following conditions hold:

(1) P is cyclic;

(2) li(P ) = Lj/nj for all i ∈ j∗;
(3) εi1(P ) = εi2(P ) for all i1, i2 ∈ j∗,

where j∗ is the set of indices corresponding to the j-th piece of a necklace (see (1.1)) and
εi(P ) is the orientation of the i-th edge of a cyclic polygon P (see (2.1)).

The proof essentially is a reformulation of geometric arguments into the language of
Lagrange multipliers, so we first write partial derivatives of A with respect to xi and yi:

2 · ∂A
∂xi

(P ) = li−1 sinβi−1 + li sinβi (4.1)

2 · ∂A
∂yi

(P ) = −li−1 cosβi−1 − li cosβi. (4.2)

We follow the convention 0 · undefined = 0 hence both sides are defined for all P ∈ Polyn.

Proof of Theorem 4.1. Let P be a non-singular configuration of a necklace N =(
(n1, L1), . . . , (nk, Lk)

)
. Then P is a critical point of A if and only if there exist λ1, . . . ,

λk ∈ R, such that 2 · gradP A = λ1 gradP L1 + · · ·+ λk gradP Lk.
Assume that 2 · gradP A = λ1 gradP L1 + · · · + λk gradP Lk. Applying formu-

lae (3.1), (3.2), (4.1), (4.2) to an inner index i ∈ j∗, one deduces

li−1 sinβi−1 + li sinβi = λj (cosβi−1 − cosβi) ;

−li−1 cosβi−1 − li cosβi = λj (sinβi−1 − sinβi) .

If βi = βi−1, then li = li−1 = 0, but P is non-singular, so it cannot be the case
by Lemma 3.3. The only other possibility for these equations to hold is li−1 = li and
λj = li cot

(βi−βi−1

2

)
. Since we have such equations for all inner indices corresponding to

j, we get li1 = li2 for all i1, i2 ∈ j∗, which implies condition (2) of the theorem. Moreover,
for all i ∈ j∗ \ s(j) we get cot

(βi−βi−1

2

)
=

njλj

Lj
, therefore βi − βi−1 is the same for all

i ∈ j∗ \ s(j), which implies that there is a circle Ωj with centre oj such that conditions (2)
and (3) of the theorem hold. It now remains to prove that P is cyclic, i.e. oj is the same
for all j = 1, . . . , k. If P is a smooth point ofMsm((1, l1), . . . , (1, ln)) ⊂ Msm

(
N
)
, in

other words, if P does not fit in a straight line, then we are done by Theorem 2.1. Suppose
that P fits in a straight line. Pick a boundary vertex i = s(j + 1), denote lj = Lj/nj , and
apply formulae (3.1), (3.2), (4.1), (4.2) to i:

lj sinβi−1 + lj+1 sinβi = λj cosβi−1 − λj+1 cosβi;

−lj cosβi−1 − lj+1 cosβi = λj sinβi−1 − λj+1 sinβi.
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Since P fits in a straight line, 2(βi − βi−1) = 0. If βi−1 = βi = β, then the points
(lj + lj+1)(cosβ, sinβ) and (λj − λj+1)(cos(β + π/2), sin(β + π/2)) coincide which
cannot be the case since lj , lj+1 > 0. If βi−1 = βi + π = β + π, then the points
(lj − lj+1)(cosβ, sinβ) and (λj + λj+1)(cos(β + π/2), sin(β + π/2)) coincide, which
implies that lj = lj+1. Since this is the case for all j, P is a complete fold and thus indeed
is cyclic.

Now assume that a non-singular configuration P of necklace N satisfies con-
ditions (1) – (3). Let Ω be its circumscribed circle with centre o. Denote by
γj the oriented angle ∠ps(j)ops(j)+1

and set λj = li cot (γj/2) for some in-
dex i corresponding to j. Since γj = βi − βi−1 for inner indices i, equality
2 · gradP A = λ1 gradP L1 + · · ·+ λk gradP Lk holds in all inner indices. For a bound-
ary index i = s(j + 1) we can (performing rotation around o) assume that βi−1 = 0, and
what we need to check then is the following two equalities:

lj+1 sinβi = lj cot(γi−1/2)− lj+1 cot(γi/2) cosβi;

−lj − lj+1 cosβi = −lj+1 cot(γi/2) sinβi,

Putting the origin at o, we note that

pi+1 − pi = lj+1 · (cosβi, sinβi),

pi+1 + pi = lj+1 cot
γi
2
· (− sinβi, cosβi),

pi =

(
lj
2
,− lj

2
cot

γi−1
2

)
,

and thus the desired equalities are just the coordinate manifestations of the obvious identity

pi+1 − pi
2

− pi+1 + pi
2

+ pi = (0, 0).

The following theorem provides a criterion for an admissible cyclic polygon to be a
Morse point of the oriented area and gives a formula for its Morse index. It generalises
Theorem 2.4 and allows one to omit the assumption in (4) of Theorem 2.7.

Theorem 4.2 (Morse indices in the general case). Let N =
(
(n1, L1), . . . , (nk, Lk)

)
be a

realisable necklace (see Definition 3.6), and P ∈Msm(N) be an admissible (see Defini-
tion 2.3) critical point of the oriented area A. Then P is a Morse point of A if and only
if it is not a bifurcating polygon (see Definition 2.5). In this case its Morse index can be
computed as follows:

µP (A) =
1

2

k∑
j=1

(2nj − 1) · (Ej + 1)− 1− 2wP −

{
0, if

∑k
j=1 njEj tanAj > 0;

1, otherwise,

where Ej = εi and Aj = αi for some i ∈ j∗ (due to Theorem 4.1 this does not depend on
the choice of i).

Proof. Let P be as in the theorem. First, let us split the tangent space of Msm(N)
at the critical point P into subspaces that are orthogonal with respect to the Hessian
form HessP A. For this, given a polygon P , we introduce the following submanifolds
inMsm(N):
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(1) EP = Msm((1, l1), . . . , (n, ln)) ⊂ Msm(N) is the space of all polygons having
the same edge length as P ;

(2) CP =Msm(N) ∩ C is the subspace of cyclic polygons;

(3) CPj =

{
Q ∈Msm(N) :

(qs(j), . . . , qs(j+1)) is cyclic
qi = pi for i /∈ j∗ \ {s(j)}

}
for j = 1, . . . , k.

We will deduce the theorem from Lemmata 4.3, 4.4, and 4.5 (see Sections 5 and 6 for
their proofs).

Lemma 4.3. Let P be as in Theorem 4.2. Then

(1) EP ⊂ Msm(N) is a smooth (n − 3)-dimensional submanifold in a neighbourhood
of P ;

(2) CP ⊂ Msm(N) is a smooth (n − k)-dimensional submanifold in a neighbourhood
of P ;

(3) EP and CP intersect transversally at P , i.e. TPMsm(N) = TPEP ⊕ TPCP ;

(4) TPEP and TPCP are orthogonal with respect to the bilinear form HessP A.

One can note that none of the CPj are contained in CP . Nonetheless, from the following
lemma one sees that in the first approximation they very much are.

Lemma 4.4. Let P be as in Theorem 4.2. Then

(1) CPj ⊂Msm(N) is a smooth (nj − 1)-dimensional submanifold in a neighbourhood
of P ;

(2)

TPCP =

k⊕
j=1

TPCPj

(3) TPCPj are pairwise orthogonal with respect to the bilinear form HessP A.

It remains to compute the Morse index of P with respect to A on each CPj .

Lemma 4.5. Suppose that P ∈ Cn+1 is such that l1 = · · · = ln = L/n and εi = 1
(εi = −1) for i = 1, . . . , n. Then P is a non-degenerate local maximum (minimum) of the
oriented area onMsm((n,L), (1, ln)) ∩ Cn+1.

Now we are ready to prove the theorem. From Lemmata 4.3 and 4.4, P is a Morse
point of A onMsm if and only if it is a Morse point of A on EP and all of CPj . Since P
is always a Morse point on each CPj (because by Lemma 4.5 it is a non-degenerate local
extremum), it is a Morse point of A onMsm if and only if it is a Morse point of A on EP ,
which is equivalent to P not being bifurcating by Theorem 2.4.

Moreover, Lemmata 4.3 and 4.4 imply that if P is a Morse point of A onMsm, then
its Morse index is

µn1,...,nk

P (A) = µE
P

P (A) + µC
P

P (A) = µ1,...,1
P (A) +

k∑
j=1

µ
CPj
P (A).
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From Theorem 2.4 we know that

µ1,...,1
P (A) =

1

2

k∑
j=1

nj(Ej + 1)− 1− 2ω −

{
0, if

∑k
j=1 njEj tanAj > 0;

1, otherwise.

From Lemma 4.5 and (1) of Lemma 4.4 we get

µ
CPj
P (A) =

1

2
(nj − 1) · (Ej + 1).

Summing all up, we obtain the desired formula.

5 Orthogonality with respect to the Hessian form of the oriented area
Let us remind that Cn is the configuration space of cyclic polygons with at least three
different vertices (see (2.2)). First, we parametrise Cn smoothly. For this we introduce

Hn =
{

(θ1, . . . , θn) ∈
(
S1
)n

: #{θ1, . . . , θn} ≥ 3
}/

S1,

where S1 acts on
(
S1
)n

diagonally by rotations. Consider the following map

ϕ̃ :
((
S1
)n \Diag

)
× R>0 →

(
R2
)n \Diag ,

(θ1, . . . , θn, R) 7→ R · ((cos θ1, sin θ1), . . . , (cos θn, sin θn)) .

Lemma 5.1. ϕ̃ induces a diffeomorphism ϕ : Hn × R>0 → Cn.

Proof. ϕ is obviously a bijection, so the only thing we need to check is that the Jacobian
of ϕ̃ has rank (n + 1) at every point. In fact, it is just a statement of the form ‘S1 × R>0

is diffeomorphic to R2 \ {0} via polar coordinates’, but we compute the Jacobian for the
sake of completeness:

Jacϕ =


Jac1 ϕ

...
Jacn ϕ

Jacn+1 ϕ

 =


−R sin θ1 R cos θ1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −R sin θn R cos θn
cos θ1 sin θ1 cos θ2 . . . cos θn sin θn


The first n rows are obviously linearly independent. Suppose one has Jacn+1 ϕ =
λ1 Jac1 ϕ+ · · ·+ λn Jacn ϕ. Then for any i = 1, . . . , n one gets

(cos θi, sin θi) = λ1(−R sin θi, R cos θi) = λ1R (cos (θi + π/2) , cos (θi + π/2)) ,

which implies λi = 0, a contradiction.

We now provide local coordinates for Cn.

Lemma 5.2. LetP ∈ Cn be an admissible non-bifurcating cyclic polygon with edge lengths
l1, . . . , ln > 0. For Q ∈ Cn let ti(Q) = li(Q) − li. Then (t1, . . . , tn) are smooth local
coordinates for Cn around P .
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Proof. In view of Lemma 5.1 we just need to show that for

ψ : Hn × R>0 → Rn,

(θ1, . . . , θn, R) 7→ R ·
(√

2− 2 cos(θ2 − θ1), . . . ,
√

2− 2 cos(θ1 − θn)
)

Jacψ is of rank n at points where θ1 6= θ2 6= · · · 6= θn 6= θ1. Indeed, Jacψ is

R sin(θ1−θ2)√
2−2 cos(θ1−θ2)

0 · · · 0 R sin(θ1−θn)√
2−2 cos(θ1−θn)

R sin(θ2−θ1)√
2−2 cos(θ2−θ1)

R sin(θ2−θ3)√
2−2 cos(θ2−θ3)

· · · 0 0

...
...

...
. . .

...

0 0 · · · R sin(θn−1−θn)√
2−2 cos(θn−1−θn)

0

0 0 · · · R sin(θn−θn−1)√
2−2 cos(θn−θn−1)

R sin(θn−θ1)√
2−2 cos(θn−θ1)

√
2−2 cos(θ2−θ1)

√
2−2 cos(θ3−θ2) · · · √

2−2 cos(θn−θn−1)
√

2−2 cos(θ1−θn)


Since 2(θi+1− θi) 6= 0, all the entries are well-defined and non-zero. Consider a vanishing
non-trivial linear combination of columns. The form of the first n rows forces the coeffi-
cient at the i-th column to be equal (up to the common multiplier) to

√
2−2 cos(θi−θi+1)

sin(θi−θi+1)
, but

then for the last row we have

0 =

n∑
i=1

2− 2 cos(θi − θi+1)

sin(θi − θi+1)
= 2

n∑
i=1

tan

(
θi − θi+1

2

)
,

which means exactly that P is bifurcating and contradicts the assumptions of the lemma.
Thus, Jacψ has rank n as desired.

Proof of Lemma 4.3. To prove the first two claims let us note that smooth structures on
EP , CP , and Msm(N) come from the smooth structure on Polyn =

(
R2
)n

. Thus, the
first claim immediately follows from Lemma 3.3, as the only cyclic polygon fitting into a
straight line is a complete fold, which is not admissible. The dimension of EP is computed
according to (2) in Proposition 3.7. From Lemma 5.1 it follows that Cn around P is a
smooth submanifold in Polyn/ Iso+, and from Lemma 5.2 we deduce that CP around P is
a smooth (n− k)-dimensional submanifold of Cn as it is a preimage of the linear subspace
of codimension k in Rn under the map Q 7→ (t1(Q), . . . , tn(Q)). Thus the second claim
is also proved.

The third claim is equivalent (by dimension count) to representability of every vector in
TPMsm(N) as a sum of two vectors from TPEP and TPCP respectively, but this is indeed
the case since every polygon Q near P inMsm(N) can be obtained first by a move in CP
making the edges of desired length (by Lemma 5.2) and then by a move inside EQ.
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Finally, we establish the fourth claim. Consider v ∈ TPC and w ∈ TPE. To compute
HessP A(v, w), we choose a curve γ : (−ε, ε)→ TPC such that γ(0) = P and γ′(0) = v,
then we extend w to a vector field W (t) ∈ Tγ(t)Eγ(t) along γ. Then

HessP A(v, w) =
d

dt

∣∣∣∣
t=0

dγ(t)A(W (t)).

But dγ(t)A vanishes on Tγ(t)Eγ(t) by Theorem 4.1.

The following lemma allows one to relate CPj with CP .

Lemma 5.3. Let P ∈ Cn be an admissible non-bifurcating cyclic polygon such that l1 = l2
and ∠p1op2 = ∠p2op3, where o is the centre of the circumscribed circle Ω. Let V be a
local vector field around P equal to

(
∂
∂t1
− ∂

∂t2

)
in the coordinates from Lemma 5.2.

Then (V R) (P ) = 0 and (V dab) (P ) = 0 for a, b ∈ {1, . . . , n} \ {2}, where V f is the
derivative of a function f along V , R(Q) is the radius of the circumscribed circle of Q
and dab(Q) = |qb − qa|.

Proof. Consider a curve P (s) : (−ε, ε) → Cn, (t1, . . . , tn)(P (s)) = (s,−s, 0, . . . , 0).
We choose representatives P̃ (s) ∈ Polyn in such a way that oP̃ (s) = (0, 0) and (p3 − p1)

is codirectional with x-axes. Notice that P̃ (−s) is obtained from P̃ (s) by the following
procedure: pi(−s) = pi(s) for i 6= 2 and p2(−s) is symmetric to p2(s) relative to y-axes.
From this it follows that P̃ (s)− P̃ (−s)) = (0, 0, 2η, 0, . . . , 0) for some η > 0. Hence all
pi for i 6= 2 are not moving in the first approximation, which implies the statement of the
lemma.

Proof of Lemma 4.4. The space
{
Q ∈Msm(N) : qi = pi for i /∈ j∗ \ {s(j)}

}
is a

smooth submanifold inMsm(N) diffeomorphic toMsm

(
(nj , Lj), (1, |ps(j+1)− ps(j)|)

)
.

Under this identification, CPj is just CP . Applying (2) of Lemma 4.3 to
Msm

(
(nj , Lj), (1, |ps(j+1) − ps(j)|)

)
, we get the first claim.

To establish the second claim it suffices to find bases in every TPCPj such that their
disjoint union forms a basis of TPCP . Consider the coordinates from Lemma 5.2. On
the one hand, when we consider cyclic polygons coordinatised by (t1, . . . , tn), the vectors(

∂
∂ti−1

− ∂
∂ti

)
for inner i form a basis of TPCP . On the other hand, when we consider CPj

coordinatised by (si)i∈j∗\{s(j)}, where si = li(Q)− li(P ), the vectors
(

∂
∂si−1

− ∂
∂si

)
for

i ∈ j∗ \ {s(j)} form a basis of TPCPj . It now follows from Lemma 5.3 that
(

∂
∂ti−1

− ∂
∂ti

)
=(

∂
∂si−1

− ∂
∂si

)
for i ∈ j∗ \ {s(j)} thus the second claim is proven.

Now we pass to the third claim. Consider v ∈ TPCPj and w ∈ TPCPh , take a curve
γ : (−ε, ε) → CPj such that γ(0) = P and γ′(0) = v, and a curve σ : (−ε, ε) → CPh , such
that σ(0) = P and σ′(0) = w. Then extend w to a vector field W (t) ∈ Tγ(t)Msm(N)

along γ by setting W (t) = σ′t(0), where σt : (−ε, ε) → Cγ(t)h is such that σt(0) = γ(t)
and for all i ∈ j∗ \ s(j) the i-th vertex of σt(s) is the same as the i − th vertex of σ(s).
Then

HessP A(v, w) =
d

dt

∣∣∣∣
t=0

W (t)A,

and it vanishes since W (t)A does not depend on t.
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6 Configuration spaces of polygons with perimeter and one edge
length fixed

These are the spaces M
(
(n,L), (1, l)

)
for L ≥ l. Vividly speaking, it is the space of

broken lines of given length with fixed endpoints. One can think that the first and the last
vertices have coordinates (0, 0) and (l, 0) respectively. Our interest in these spaces was
first motivated by the fact that they are simple enough to be studied completely, but then it
turned out that they are important for understanding the case of general necklaces.

Proposition 6.1 (Configuration space in the ‘two consecutive beads are fixed’ case). Let
L > l and n ≥ 2. ThenM

(
(n,L), (1, l)

)
is homeomorphic to the sphere S2n−3.

Proof. By setting p1 = (0, 0) and pn+1 = (l, 0) we identify M
(
(n,L), (1, l)

)
with the

level set

F−1(L) =
{

(p2, . . . , pn) ∈
(
R2
)n−1

: F (p2, . . . , pn) = L
}
,

where F (p2, . . . , pn) = |p2|+ |p3 − p2|+ · · ·+ |pn − pn−1|+ |(l, 0)− pn|.

F is a convex function as sum of convex functions. The sublevel set F−1((−∞, L]) is
bounded since if any of |pi| is greater than L, then F (p2, . . . , pn) ≥ L by triangle inequal-
ity. Also, the set F−1((−∞, L)) is non-empty, since if all of the pi are in the disk of radius
δ around (l/2, 0), then F (p2, . . . , pn) < (l/2 + δ) + (n− 3)δ+ (l/2 + δ) = l+ (n− 1)δ,
which is less than L for small δ. So, F−1(L) is a boundary of the compact convex
set F−1((−∞, L]) ⊂

(
R2
)n−1

with non-empty interior and thus is homeomorphic to
S2n−3.

The following two propositions are easily deduced from Theorems 4.1 and 4.2 respec-
tively.

Proposition 6.2 (Critical points in the ‘two consecutive beads are fixed’ case). Let L > l
and n ≥ 2. Then critical points of A on Msm

(
(n,L), (1, l)

)
are in bijection with the

solutions of

|Un−1(x)| = nl

L
(6.1)

where Un−1 is the (n − 1)-th Chebyshev polynomial of second kind, that is,
Un−1(cosϕ) = sinnϕ

sinϕ .

Proof. By Theorem 4.1 a configuration P ∈ Msm

(
(n,L), (1, l)

)
is a critical point of A

if and only if it is inscribed in a circle Ω with centre o and radius R in such a way that
∠p1op2 = · · · = ∠pnopn+1 =: α(P ) = α. Let us construct a bijection

{critical points of A onMsm

(
(n,L), (1, l)

)
} → {solutions of (6.1)}, P 7→ cP .

Let cP = cos(α/2), where α/2 ∈ (0, π). Since L/n = R
√

2− 2 cosα = 2R sin(α/2)
and l = R

√
2− 2 cos(nα) = 2R| sin(nα/2)|, we get Un−1(cP ) = nl/L. Since the map

R
2πZ

\ {0} → (−1, 1), α 7→ cos(α/2)

is a bijection and P is uniquely determined by α(P ), the constructed map P 7→ cP is
indeed a bijection.
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Proposition 6.3 (Morse index in the ‘two consecutive beads are fixed’ case). If P is an ad-
missible non-bifurcating critical configuration ofA onMsm((n,L), (1, l)), then its Morse
index is

µn,1P (A) =

{
2n− 2− i, if cP is the i-th largest positive solution of (6.1);
i− 1, if cP is the i-th smallest negative solution of (6.1).

Proof. By symmetry reasons, to prove the claim, it suffices to prove it only for P with
cP > 0. Then by Theorem 4.2 one has

µn,1P (A) = (2n− 1) +
1

2
(εn+1 + 1)− 1−wP −

{
0, if n tan(α/2) > εn+1 tan(nα/2);

1, otherwise.

The roots and extrema of Un−1(t) are interchanging. Let us start from t = 1 and move to
the right. The extrema correspond to the bifurcating polygons (i.e. those with n tan(α/2) =
εn+1 tan(nα/2)) and the roots correspond to polygons with ln+1 = 0. So, when t passes
a root, εn+1 changes from 1 to −1 and whenever t passes an extrema, the last summand
changes from 0 to 1. When p1pn+1 passes through o, wP increases by 1, and εn+1 changes
from −1 to 1, which does not change the Morse index. The right-most t corresponds to the
global maximum, so the above argument completes the prove.

Finally, we check the last yet unproven ingredient in the proof of Theorem 4.2.

Proof of Lemma 4.5. Let P be as in the lemma. Without loss of generality we can assume
that ΩP = Ω is the unit circle with centre o, and, due to symmetry, it is enough to prove
the statement for P with wP > 0. We should prove that the function

A
l2n+1

:

{
polygons P inscribed in the unit circle with

L1(P )

ln+1(P )
=
L

l

}
→ R

attains a non-degenerate local maximum at P . For this it suffice to prove that the function

G :

{
polygons inscribed
in the unit circle

}
→ R,

G(Q) =
2A(Q)

ln+1(Q)2
− λ

(
L1(Q)2

ln+1(Q)2
− L2

l2

)
− µ

(
L1(Q)2

ln+1(Q)2
− L2

l2

)2 (6.2)

attains a non-degenerate local maximum at P for suitable λ and µ. Set
α = ∠p1op2 = · · · = ∠pnopn+1 ∈ (0, π) and introduce local coordinates by setting
ti(Q) = ∠qioqi+1 − α for i = 1, . . . , n. First, we write the functions involved in the defi-
nition (6.2) in these coordinates:

ln+1 (t1, . . . , tn) =

√√√√2− 2 cos

(
nα+

n∑
i=1

ti

)
;

L1 (t1, . . . , tn) =

n∑
i=1

√
2− 2 cos(α+ ti);

2A (t1, . . . , tn) =

n∑
i=1

sin(α+ ti)− sin

(
nα+

n∑
i=1

ti

)
.
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Secondly, we perform the computations in the 2-jets at the point P , which by the aforemen-
tioned coordinates are identified with R[t1, . . . , tn]/I , where I is the ideal generated by all
products titjth with i, j, h = 1, . . . , n. It turns out that the 2-jets of the functions we are in-
terested in are all contained in the subring R+RT1+RT 2

1 +RT2, where T1 =
∑n
i=1 ti and

T2 =
∑n
i=1 t

2
i . This subring is naturally identified with the ring R[T1, T2]/(T 3

1 , T
2
2 , T1T2).

With all the identifications done, the 2-jets of the functions involved in the definition (6.2)
look as follows:

j2ln+1 = l ·
(

1 +
1

2
cot
(nα

2

)
T1 −

1

8
T 2
1

)
;

j2L1 = L ·
(

1 +
1

2n
cot
(α

2

)
T1 −

1

8n
T2

)
;

j2(2A) = (n sinα− sin(nα)) + (cosα− cosnα)T1 −
sinα

2
T2 +

sin(nα)

2
T 2
1 .

Now, setting x = tan α
2 and y = tan nα

2 , we can write the 2-jets of the summands in (6.2)
in more or less compact form:

j2

(
L2
1

l2n+1

− L2

l2

)
=
nx(1 + y2)(y − nx)

y3(1 + x2)
T1 −

nx2(1 + y2)

4y2(1 + x2)
T2 + C1(n, x, y)T 2

1 ;

j2

(
L2
1

l2n+1

− L2

l2

)2
=
n2x2(1 + y2)2(y − nx)2

y6(1 + x2)
T 2
1 ;

j2

(
2A
l2n+1

− 2A(P )

l2

)
=

(1 + y2)(y − nx)

2y3(1 + x2)
T1 −

x(1 + y2)

4y2(1 + x2)
T2 + C2(n, x, y)T 2

1 .

To get rid of T1 in j2G we set λ = 1
2nx , and then finally obtain

j2
(
G−G(P )

)
= − x(1 + y2)

8y2(1 + x2)
T2

+

(
C2(n, x, y)− 1

2nx
C1(n, x, y)− µ · n

2x2(1 + y2)2(y − nx)2

y6(1 + x2)

)
T 2
1 .

Note that the first summand is a negative definite quadratic form since x > 0. As for the
second one, nx − y 6= 0 as P is not bifurcating, and thus, whatever C1 and C2 are, when
µ is big enough the second term is a non-positive definite quadratic form. Therefore, G
attains a non-degenerate local maximum at P for λ = 1

2nx and large positive µ.
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