TEMPORAL LOGIC - A TOOL FOR SYSTEM MODELING

UDK 519.711.3

Abstract

INFORMATICA 4/1988

Bogdan Dugonik
Technical Faculty Maribor

This paper presents a model for processes, that communicate by

message—passing, and the

of temporal 1logic for their

description. The specification of process determines behaviour

on its external ports, whence

its internal behaviour is not

significant. Specifications based on the model are compositional,

that is, we get external
specifications of its components.

behaviour of a system from

In the introduction a process

recorded with traces is presented. A model 1is shown that
represents a process specification by use of temporal logic.

Temporal logic operators,

examples of temporal assertions and

some specifications for primitive and composed processes are

given.

Povzetek

vV ¢&lanku Jje prikazan model za procese in mre2e procesov, ki

kaomuniciraijo izkl judno ' s

¢asovne logike za njihov opis.

prehajanjem sporoéil, ° in uporaba
EBpecifikacija procesa doloca

obnasanje na njegovih zunanjih prikljuékih, dogajanje v nijegovi
notranjosti pa nas ne zanima. Opisi procesov so komponibilni, kar’
pomeni, da zunanje obnasanje mre2e dobimo iz specifikacij njenih
komponent. Pri tem prikrijemo njeno notranjo strukture.. V uvodu

predstavimo zapis procesa s sledmi.

PrikaZ2emo tudi specifikacijo

procesa in mreZe procesov z uporabo fasovne logike. Opisani so

operatorji ¢asovne logike,

Introduction

This paper treats processes that communicate
exclusively through message passing. Messages
are transmitted over input and output ports.
Let us ohserve a process on its external ports
for a time, up to some moment. We get a
sequance of events. The sequence gives us a

trace. The trace 1is an information .about
bahaviour of the process up to that moment .
Traces . are appropriate to describe only

terminating processes. The model of a system is
modular, it 1is composed of =some primitive
processes. In a system output ports of
processes are linked to inputs of another
processes. Some input and output ports are not
linked. Nonlinked ports are external ports and
linked ports are internal ports.

A processg is determined by a 'set of possible
input-output behaviours . The behaviour on a
set of input and output ports is an infinite
sequence of observations @

6 = (tw,Ine,Oute,Rdm),(tsi,Ins,Outy,Rdy),...

podanih je nekaj primerov <¢asovnih
izjav ter specifikacij enostavnih

in sestavl jenih procesov.

t 18 a trace of events on input ports (input
events) and events on output ports (output
events). R

Events represent - conmmunication between
processes. Communication can be synchronous or
asynchronous. If communication is synchronous,
a process cannot send a message until the
recelving process is ready to read the message
on his 1input ports. If communication is
asynchronous, a process can send message on hies
output ports as soon as it is ready without
having to wait for the receiving process. In
case of synchronous communication, input
events present the data read by a process, and
in case of asynchronous communication, they

" present the data that have appeared on input

ports. Qutput events in both vays of
communication present messages sent by a
process' at its output ports. An - event |is
recorded in the trace as a pair (x,k), where x
is a datum and k is the port name where the
event has appeared. In and Out are boolean
functions. If they are true for input - output
ports, then we =say the process is ready ¢to

communicate. If logical values of some input
port functions are true, then we say the
process is ready to read on those ports. If
logical values of some output port functions
are true, then we say the process is ready to
send on those output ports . Rd gives us the
number of messages read up to the observed
moment for each input port . It is clear that
this number cannot be greater than the number
of messages which have appeared on an input
port. We could describe the process by writing
down all possible seguences 6, which is vague
and for more complicated cases practically
imposeible. Because of that , we apply a
language which enables us to express all
possible behaviours of a process.

Temporal logic:

Natural languages are very expressive, but not
precise, whereas formal languages are very
precise but not so expressive. Formal languages
have strictly defined semantics and syntax. It
is impossible to say everything in them. But
what you can =say is unambiguous.

Temporal logic is a formal language. It allows
us to make a temporal description of a process
and also formal dealing of it. We present a
model of temporal logic with infinite sequence
of states

G = Sawy, 81, B2, e«

Assertions in temporal logic have a temporal
meaning because they include some temporal
operators. Language employs a set of basic
symbols: individual variables and constants,
function and predicate symbols. These are
divided into two subsets: a set of local
symbols and a set of global symbols.

Global symbols keep their values unchanged from
state to state. Local symbols can vary their
values from one state to another. We wuse
boolean operators, classical operators and
temporal operators. Existence quantification
and universal guantification are also included
in the system.

The operators of temporal logic:s

By w we denote a tarm or a formula that may
contain some temporal operators.

~ temporal operator “always":

O w means: w is true in this moment and will
be true forever.

- temporal operator "eventually”:

© w means: w will be true at least in one of
following moments.

~ temporal operator "until":

continually true
indeed

Wy U wa means ! w,; is
until wz becomes true, and wz does
become true.

- temporal operator “unleas":
Wi N W= means: Wy is continually true or
there is a moment, when wz is true and up
to the moment w:; is continually true.

-~ temporal operator wpgxt",

o means: w will be true in next moment.

Jemporal assertions:

Formulas given below are examples of some
temporal assertions. They are compounded by
using temporal operators mentioned above. We
will write A for conjunction, -1 for negation,
and ® for implication.

O(u ¢ v) - whenever u 1is true, it will
eventually .-be followed by v.

S 0Ow - eventually w will become true
and it will remain thrue forever,

¢ w - every instant 1is followed by
some later instant, when w is
true, so w is true Iindefinitely
often.

Qv (1 v)Uu) -~ if v ever happens, its first
occurrence is preceded by, or
coincides with u.

We choose some fixed reference moment named
reference moment when interpreting a temporal
assertion. It tells us, what holds at the
reference moment, i.e. now, and what will
happen in the future of it. It =says nothing
about what happened before. Instead of 6 = g,
S1,82,00 let us write G = Cg,81,8=z,9+9

where G, is an observation in behaviour 6 . An
observation can be treated as a state.
Usually, a state of a process reflects current
values of variables of the process. Hence, an
observation 6; is a state, which involves the
history of process up to a current moment in
its trace t.. Specification of a process
signifies how this process behaves. For this
model we write process specifications in the
form of temporal assertions.

The specification of the system P has the form
<P> R , where R is an assertion, written in
temporal logic. Specification <P> R is read:
each behaviour of system P satisfies assertion
R. <KP> R 1is external specification, if R
specifies behaviour on P's external ports.
System specification is a conjunction of
component assertions. The external
specification is obtained by using a proof
system.

The proof system for specifications 1includes
rules for temporal logic, rules regarding the
description of the domain of values, rules for
designing a system, a set of system components
with their precise specifications, and axioms
which define the jehaviour of the system.
Specification defines 4wo kinds of process
properties: safety and 1liveness. Informally,
safety specification asserts, what the process
may do, and liveness specification asserts,
what it must do.We will give some examples of
specifications.

First, we show how certain ports of a process
can bhe disabled, discarded from communication
by wusing negation operatér 7 with In or Out
function.

In the specification below input port a. and
output port by are disabled. Input al can not
read the data, and bi can not send the data.

<C> D-In(as) A O~ Out(by)

Now, let us assume that communication |is
asynchronous. We will write external
specifications of processes. That is, we will
specify a process only by means of lengths of
ports' traces, without using In, Out and Rd.
By Ibl we denote the length of trace on port b.
b&c means, that sequence b is a prefix of

sequence c. First example below (fig.l.) gives
a process with input port k and output port 1.

The process reads six values on input k and
writes +them on output 1 leaving out the first
two values.
K F* 1l
fig.1. Process with input port k and output
port 1. ’
CAD>OL1 E[k(2),k(3),k(4),k(5)]
AR =0 K [kl 2 3)
A(C kI =3 2 & 1] = 1)
A(Q kKl =4 F © 1] = 2)
A(C kI =86 FF © 1l = 3)
A(O KL 26 % O 1 = 4)
The first line is safety specification. It

indicates +that at most four wvalues may occur
on the output port, which will be read on input
port k. The second conjunct indicates that the
length of the output trace is zero, unless the
length of input trace 1is three. The third
conjunct and those following require the
length of the output trace to be increased by
one as soon the length of the input trace |is
increased. :

2) is a process with two
inputs and one output. It reads one value on j
and one value on k. Then it writes first the
value on the output 1 from input k, and later
the value from input j.

Second example (fig.

B

A process named B with two inputs and

Fig.2. S
one output
< B> 0151 k(0),j(e) J.°
Al(C Kkl =1 2 © 11 =1).
A(CCS 131 =1 A kI 21) = o ili = 2)
Finally, we present an asynchronous-ne;work P

of component processes A,B and C. Components A
and B have one input and one ocutput, component
C two inputs and one output. Components are
linked as shown in figure 3.
one value on input a and writes it +twice on
output c¢. Process B reads one value on input b
and vwrites it once on output d. Process C reads
values on its inputs, then writes them on
output e as follows: first a value from input
d, then both values from input c.

Process A reads-

23

. : .]
l:l! B d } :
.
N
"

—Q‘;) o
b P "_

Fig.3. Process P with visible and hidden
internal structure.
First, specifications for each components are

given:

<A> Dc & a(@),a(0))

A(C Jlal 21 3 <0 jcl = 2)
< B> Dd s b(d))
A { © b} = idy = 1)

= o0

A
(@]
v
a
1]

£ ([d(8),c(2),c(1))

A (© dl ;'1 = ¢ el = 1)

AlLC(el =1 A dl 21) 2 (O lel = 2)

A(O(el =2 A JdI 2 1) 2 (O fel = 3)
External specification of P is obtained from

conjunction of component specifications by

using proof rules.

< P> Oe & [b(@), a(0), a(0))

A(O bl 21206 le] =1)

Al O (lal 21 A bl 21) 00 lel =3)
It tells wus how the system behaves on 1its
external ports.
Conclusion
We presented a model for processes which uses
temporal logic as one of existing formal
languages for specifying them. The benefit of
temporal logic 1is its ability of ‘describing
temporal behaviour of processes.

Specifications can be short and so expressive,
that "they need no extra comments. Troubles
arise, 1f we want to set +the exact - time,
because in the model we can express ourselves
only qualitatively about the time of
events.

References:

{1] Dugonik B., Modeliranje procesov,
diplomsko delo, Tehnidka fakulteta v
Mariboru, 1987

{2] Hoare C.A.R., Communicating Sequential
Proceases , Prentice - Hall International,
Ltd., London 1985.

(3} Kapus T., ¢asovna logika in mreze
pracesav, diplomsko delo, Tehnigka
fakulteta v Mariboru, 1987

{4] Lamport L., What Good is Temporal Logic ?,
Information Processing (1983),pp. 657-668

[56] Manna Z.,Pnueli A., Verification of
Concurrent Programs, Part I: The temporal
Framework; Tehnical Report STAN-SC-81-836,
Standford University, June 1981.

[6] Nguyen V., Demers A., Gries D., Owickl S.,
A model and temporal proof system for
networks of processes, Distributed
Computing (1986), i, pp. 7-265.

