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Abstract - The paper addresses the optimal bus stops allocation in the Laško municipality. The goal is to achieve 
a cost reduction by proper re-designing of a mandatory pupils’ transportation to their schools. The proposed 
heuristic optimization algorithm relies on data clustering and Monte Carlo simulation. The number of bus stops 
should be minimal possible that still assure a maximal service area, while keeping the minimal walking distances 
children have to go from their homes to the nearest bus stop. The working mechanism of the proposed algorithm 
is explained. The latter is driven by three-dimensional GIS data to take into account as much realistic dynamic 
properties of terrain as possible. The results show that the proposed algorithm achieves an optimal solution with 
only 37 optimal bus stops covering 94.6 % of all treated pupils despite the diversity and wideness of municipality, 
as well as the problematic characteristics of terrains’ elevation. The calculated bus stops will represent important 
guidelines to their actual physical implementation.  
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I. INTRODUCTION

The paper discourses the question of reduction of a specific type of costs, which are caused by 
mandatory transportation of specific categories of pupils in the municipality Laško, Slovenia. This 
transportation, which is enforced by government law, includes transport of pupils from their homes 
to the corresponding primary schools and vice versa. During the last years, such kind of transportation 
regularly reaches an enormously high level of costs, which can escalate even up to one million EUR 
per year. Since this is intolerable for such a small municipality, there exists a strong wish to decline 
these costs as much as possible. 

The primary reason for the high level of costs is a momentary inefficient organization of transport. 
Namely, transportation vehicles, hired by the municipality from the outsourcers, are used for picking 
up and delivery of every single pupil just at his home doors. Furthermore, the transport routes are 
completely disorganized in the sense of unnecessarily driven additional kilometers; vehicles are 
frequently not fully loaded, routes are sometimes needlessly doubled or even tripled, etc. All of these 
problems become even worse when a rural character and a dynamic terrain are additionally taken 
into consideration, with home addresses of the pupils being strongly spatially dispersed.     

Solving of afore-mentioned problems can be looked through a prism of resolving the so-called 
School Bus Routing Problem (SBRP) [1]. Normally, the SBRP can be solved using the following five steps 
[2]: 1.) data preparation; 2.) optimal bus stop selection (with a pupils’ assignment to the optimal bus 
stops); 3.) optimal bus route generation; 4.) school bell time adjustment; 5.) optimal route scheduling. 

The second step here refers to the so-called problem of optimal Bus Stops Allocation (BSA). In the 
paper, we restrict ourselves only to discuss about this sub-problem. Thus, similarly, as it was done, e.g. 
in the study [3], we do not cover all features of a typical SBRP problem. Conversely, we only refer to 
the problem of calculating the set of optimal bus stops (OBS) and assigning children to the nearest 
stop, where constraints on the distance between the bus stops and places of pupils’ homes are also 
considered.  
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To solve the BSA problem as a sub-problem of SBRP problem, we have used a so-called “maximum 
location covering problem” (MLCP) approach from the field of a facility location theory [4, 5]. Solving 
the MLCP problem implies that the minimum fixed number of facilities must be located, which should 
maximize the service area [6, 7]. Thus, in our case, the number of bus stops should be minimal possible 
that still assure a maximal service area within a prescribed radius, while keeping the minimal possible 
average walking distance (AWD) of the pupils to the nearest stop [7].  

 On one side, the allocation of bus stops implies that pupils are required to walk a certain 
(reasonably long) distance from their homes to the nearest bus stops, which means that some 
comfort will be lost. However, on the other hand, the transportation vehicles would have to drive 
along a significantly shorter quantity of routes (distances). Hence, some compromise between two 
distant interests (an interest of pupils/parents versus the municipality interest) must be reached in such 
cases.  

The algorithm for optimal BSA is based on the data clustering procedures and the Monte Carlo 
(MC) simulation method. Data clustering is based on the unique composition of hierarchical and 
non-hierarchical clustering that is mounted within the MC framework, while the whole mechanism is 
interconnected with the three-dimensional GIS data.  

We believe that the paper has the following contributions: 1. There have not been many similar 
studies detected that would apply a three-dimensional data approach; 2. The proposed algorithm 
can be treated as an original not only in the field of interest but also in other similar research;  3. The 
results show that the suggested algorithm reaches a best solution with only 37 OBS covering 94.6 % of 
all addressed pupils despite the diversity and wideness of municipality, as well as the rough 
characteristics of terrains’ elevation. 

 
 

A.  Characteristics of the previous research 
     

This research is a logical continuation of the previous work, presented in [7-10], where a 
Geographic Information system (GIS) [11] and its modules (ArcLogistics 9.3, ArcView 9.31, Network 
Analyst) were also applied. The following has been done in the previous research: 1.) Solving of the 
BSA problem to get the OBS positions; 2.) Computation of the optimal  driving  routes,  schedules  and  
driving  fleet considering the given schools’ positions and road network characteristics, as well as the 
previously calculated OBS; 3.) Estimation of the driven kilometers and cost savings for the simulated 
optimized case if compared to the real un-optimized case; 4.) Estimation of the amount of reduced 
tons of CO2 emissions for the optimized case, for which the simulated vehicles’ km traveled (VKT) 
have been noticeably lowered (for almost 1000 km/day) in comparison with the real un-optimized 
kilometers.  

One of the most significant deficiencies was that we had used a two-dimensional (2D) GIS, where 
a terrain elevation was not considered. Consequently, all the calculations were slightly distorted 
meaning that the results were not sufficiently optimal. So we have decided to keep moving with our 
research and additionally consider the third dimension by conducting three-dimensional (3D) GIS 
data to more accurately capture the dynamic properties of a municipality terrain. Consequently, 
besides some significant methodological improvements, this paper reports about replicated 3D BSA 
results instead of 2D results.  

    
B.  Bus stops allocation as an MLCP problem from a facility location theory 
 

Church and ReVelle first introduced the MLCP in 1974, when they applied a relaxed linear 
programming and branch and bound procedure [6, 12]. MLCP problem is significant for many cases 
in the public, as well as in the private sector ([2, 10, 13, 25]). In the public sector, authorities need to 
determine bases for emergency highway patrol vehicles, or they must locate fire stations, police 
stations, and ambulances. In all of these cases, poorly chosen locations can increase the possibility 
of damage or loss of life [13].   

Greedy heuristic algorithms [6, 13] are also often used to solve MLCP problems, as well as other 
much more advanced heuristics like Genetic Algorithms [14, 15], Simulated Annealing [16, 17], Tabu 
Search [18, 19], Lagrangean relaxation [13, 20, 21], Lagrangean/Surrogate heuristics (Lorena, L., 
Pereira, M. 2002), etc.  
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Worwa  [3] has provided an excellent formal presentation of a greedy method in the context of 
solving the BSA problem.  Many of the MLCP approaches afore-mentioned can also be 
conducted for solving of the BSA problems, depending on the characteristics of the problem. 
Gleason was the first, who has done a pioneer work about bus stop allocation using the location 
theory [22]. Later, stop location problems have been considered in many other studies within the 
scope of facility location theory (see excellent surveys [23-25] and references therein).  

  
   
C.  Bus stops allocation as a sub-problem of the SBRP problem 
 

The BSA can also be considered as a sub-problem in the context of the SBRP problem if we are 
dealing with a design (re-design) of bus stops mostly dedicated to the pupils–commuters. Numerous 
authors (e.g. [1, 26]) have discussed the SBRP, and a common thread of these papers is that 
optimization reduces VKT and hence transportation costs.  

However, surprisingly, explanation of BSA procedures and assignment of pupils to the bus stops are 
often omitted in the SBRP literature by assuming that the bus stops are already given, while the pupils 
are already assigned. Moreover, not many papers are dedicated to the explanation of the BSA 
procedures only, and most of them use certain types of heuristic algorithms, usually classified into two 
groups of methods: 1.) LAR (Location-Allocation-Routing) methods; and 2.) ARL (Allocation-Routing-
Location) methods [1, 3]. Further details about different heuristic methods used in both approaches 
(LAR and ARL) can be found in [1].  

 
 

II. PROBLEM DEFINITION, GEOGRAPHICAL PROPERTIES OF TERRAIN, AND GIS PROCESSING 
 
 
A.  Geographical, terrain and general characteristics of the Municipality  
 

The Municipality can be with 189 2km  and some 13.300 inhabitants classified as the medium-sized 
municipality in central Slovenia [27]. It is characterized by sub-alpine hills, while the flatlands spread 
along the Savinja River and its tributaries.  

There live only 67 inhabitants per 2km , which represents a 65.8 % of average Slovenian population 
per 2km  [27]. Most significant settlements are located in valleys, while many smaller dispersed 
settlements and isolated homesteads are spread on a higher landscape territory. The Laško town is 
a central city with some 3.300 inhabitants and represents a nucleated urban settlement of the 
municipality, located in the extended part of Savinja Valley[28, 29].  

Whereas valleys and ravines highly segment a landscape in the region, it is hardly passable [30]. 
This is also the reason why the municipality possesses one of the most diverse road networks in the 
country, with as much as 30 m of roads per citizen when compared with the Slovenian average of 
only 7 m [29]. One main road along Savinja valley, some regional roads and a large number of local 
roads lead through the municipality. To summarize, the municipality has a lot of settlements, a 
complex terrain, a current low population density, and a large number of individual road segments 
of the poor quality of construction [28, 29]. 
 
B.  Problem definition and spatial distribution of the pupils and their schools  
 

Figure 1 depicts the locations of 562 treated pupils' home addresses (blue points) in the municipality 
(shadowed area). In the research, we were forced to exclude about 10% (59 pupils’ addresses) of 
the most problematic pupils’ locations due to extremely difficult and remote terrain accessibility.   

For a given pupils' homes distribution, the goal is to find such (reasonably small) number of OBS 
from the massive group of the previously road-fragmented BSC points, which will cover the biggest 
possible number of pupils' addresses, while the AWD distance to the nearest stop will be minimal 
possible. Figure 1 also shows the positions of pupils’ schools (little houses in yellow color) and their total 
number is 11.  
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Figure 1. Positions of 562 pupils’ addresses and 11 schools in the municipality of Laško. Roads of 

different categories split the municipality. The river Sava is illustrated at the lower left corner of the 
figure (blue line). 

 
Figure 2 explains, why we have decided to treat the BSA problem in a 3D space instead of 2D 

space. Namely, in reality, pupils walk a distance from their homes to the potential bus stop that is not 
always nearly horizontal, but mostly quite inclined and therefore (sometimes significantly) longer. 
Thus, distortion of 2D results could have appeared in our previous studies, since the differences in 
height might have caused quite longer walking distances between the observed surfaces’ locations 
than it was supposed (c.f. figure2). Specifically, taking into account a hypotenuse 1d  (as done in this 

study) is much more realistic than a straight line 2d  (as done in the previous studies). As will be later 
seen, we have had also incorporated certain randomness while calculating the (euclidian) 
hypotenuse 1d  with an intention to approach closer to the reality. This fact later essentially influences 
on a quality of optimality of calculated OBS since an accurately estimated walking distance is also 
one of the important constraints in our optimization process. Namely, we have incorporated three 
important types of distances as constraints, which are shown in Table 1. 

 
Table 1. The three important types of distances involved as constraints in our optimization process. 

Type of 
distance 

Meaning of distance 

TOTd -TWD  The total walking distance of all pupils to their nearest 
bus stops 

−avgd AWD   The average walking distance that every pupil must walk 
to the nearest bus stop 
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maxd - MWD  The maximal walking distance that is still acceptable for 
pupils’ walking 

 
 

According to some recommendations (e.g. [31, 32] ), it is suggested that children should be 
motivated to walk reasonably long distances (up to 2 km) in urban areas due to several motives 
related to the health and sustainability reasons. However, in our circumstances, it should be taken 
into consideration that these recommendations might have quite been hard to implement in such a 
hilly non-urban terrain and simultaneously efficiently carry out solving of the addressed optimization 
problem. Thus, regarding the difficulties arisen from problematic and hilly (rural) terrain, we have 
decided that a slightly bigger distance  max = 2.5kmd  might be still an acceptable maximal limit for 
walking.  

 

 
 

Figure 2. The dynamic complexity of the terrain: The main cause of a height difference between 
surface locations of home addresses and bus stops that occurs in many cases. 

 
 
C.  Processing and analyzing of adapted terrain’s properties with a GIS system 
 

Figure 3 shows a surface of the entire municipality when its properties were adapted into a GIS 
system. The lowest terrain elevation in the municipality is 190.3 m, while the highest is 984.3 m. The 
terrain elevations between 300 and 600 m with 69.88 % of the area are those that prevail in the 
municipality [33].  

As can be seen in figure 3, there is also an enlarged section (excerpt) of the municipality shown. 
Here, the fragmented road points (yellow color circles) that represent BSC candidates and some of 
the pupil’s addresses (red color circles) can be clearly noticed. BSC points have been generated by 
100 meters segmentation of every single road, and their total number collected by the GIS system is 
9585. Since a such number of BSC points dispersed across the whole municipality is enormous, it 
should be somehow reduced. Namely, our final goal related to the financial reasons is to decrease 
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a total number of BSC candidates to an acceptable, reasonably low level that would still cover a 
maximal possible number of pupils.  

 

 
 
Figure 3. The terrain of the Municipality of Laško; Enlarged section (excerpt) of the municipality that 
illustrates BSC candidates (yellow circles), which were generated by 100 meters segmentation of 

every road, while the PA addresses are marked with red circles. 
 

Similarly as in a case of collected BSC positions, also the positions of 562-59 (excluded) =503 pupil 
addresses (PA) were collected by means of GIS system. Some of the geographical properties of the 
PA points and corresponding schools are given in Table 2. 

 
Table 2. Some of the geographical properties of the pupils’ addresses (PA) and corresponding 

schools. 

Issue Value 

The height of the lowest PA 201.6 m  

The height of the highest PA 714.6 m  

% of all PA with a height lower than 500 m 81.49 % 

% of all PA with a height between 500 and 600 m 15.12 % 
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% of all PA with a height higher than 600 m 3.38 % 

The height of the lowest school 215.38 m 

The height of the highest school 570.48 m 

Number of schools with a height lower than 300 m Four schools (Savinja valley) 

Number of schools with a height between 300 and 400 
m 

Three schools 

Number of schools with a height between 400 and 500 
m 

Two schools 

Number of schools with a height higher than 500 m Two schools 
 
 

III. METHODS 
 
A. The framework of entire research 
 

The heuristic optimization algorithms were used to solve the BSA problem. The algorithm for optimal 
BSA is based on the data clustering procedures and the Monte Carlo (MC) simulation method. Data 
clustering in our study is based on the unique composition of hierarchical and non-hierarchical 
clustering that is mounted within the MC framework, while the whole mechanism is interrelated with 
the three-dimensional GIS data.  

Figure 4 shows the framework of entire research, which is intended to be carried out (based on 3D 
GIS data). As mentioned before, we focus on the BSA step only in this paper (see the highlighted 
frame in figure 4 – stage 1). Further stages of research (calculation of optimal bus routes, route 
schedules, and driving fleet, as well as an accurate estimation of reduced VKT and corresponding 
CO2 emissions) are in progress and will be finished in the near future.  
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Figure 4. The framework of entire research (Stage 1- Optimal bus stops’ allocation presented in this 
paper is highlighted within the red frame). 

B.  Clustering 
 

Clustering is the key mechanism inside the heuristic procedure for optimal BSA. The latter is 
frequently used in data mining and multivariate statistical analysis for many scientific fields, from 
engineering, medical, life and social sciences all over to the computer science [34, 35].   

Clustering is the method of grouping of a set of objects in such way that objects in the same group 
(cluster) are more similar to each other than to those in other groups (clusters) [36]. The classification 
into the connectivity-based clustering (hierarchical clustering (HC)) and Centroid-based (non-
hierarchical) clustering (NHC) is usually used for the representation of two most typical families of 
clustering methods [36].  

HC methods provide a wide-ranging hierarchy of clusters (i.e., dendrogram) that are merged at 
certain distances. Here, the "objects" are connected to form "clusters" based on their distance, where 
a cluster can be defined by the maximum distance needed to connect all of its parts. At different 
distances, different clusters will form, while the observation of a dendrogram can help to reveal the 
characteristics of any patterns present in the data. This way, it is relatively easy to choose an 
appropriate number of clusters. 

Conversely, at NHC methods (usually k-means methods are used), the number of clusters must be 
predefined and fixed to some value k at first, while k cluster centers are formed in the second step. 
Finally, the objects are assigned to the nearest cluster center in such a way that the squared 
distances from the cluster are minimized [36]. In our approach, we have combined both types of 
methods, HC-based and NHC-based. Firstly, the HC-based method helped us to find a most 
appropriate number k of clusters. Afterward, the k-means algorithm with the previously obtained 
number k has been used to form clusters and group the closest BSC candidates around clusters’ 
centers. Hence, by operating with the whole clusters of BSC candidates instead of each individual 
BSC point, we managed to simplify the entire procedure of optimal BSA. At this place it should be 
emphasized that we have also tried to cluster pupils instead of BSC candidates; however, in this case, 
the algorithm failed to give satisfactory results. 
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C.  Heuristic algorithm for bus stops’ allocation 
 

Figures 5 and 6 shows the main steps of the heuristic algorithm for BSA. The letters (A, B, …, J) of all 
blocks of both figures corresponds to each other. The BSC points are marked with a red color, while 
blue color highlights PA points in figure 6. As can be seen from figures 5 and 6 (block A in both figures), 
9585 road data points (BSC) and 503 pupils’ addresses (PA) points are collected using GIS. In the next 
step, an initial road data reduction is carried out (block B in both figure 5 and 6) relying on a heuristic 
rule that only those BSC are considered which are not too close to the nearest neighboring BSC. By 
this reduction, we have managed to obtain the reduced number of 2410 road points, which is a 
quite smaller number in comparison with the original 9585 road data points.  Nevertheless, 
unfortunately, the reduced number of 2410 road data points is still too big in the sense of optimal 
BSA. Therefore, the further reduction of these points is somehow needed in order to lower the total 
number of optimal bus stops to the acceptable level.  

For this purpose, the MC procedure is applied (see loop block C in figure 5), similarly as in our 
previous works (e.g. [7]). For each iteration mci  of the MC procedure, random three-dimensional 

radium ( ) ( )( )∈ 2
mc r mcr i N r,σ i  is applied at first (block D in figure 5), where mean r has been settled 

to a certain predefined constant value, while variability ( )2
r mcσ i is changed by means of random 

generator at each iteration mci . Based on this radium all road data points that are more distant from 

any pupils‘ point than ( )mcr i  are removed. This way, only those ( )  BSC mcN r i  BSC points remain 
accumulated around pupils' points that are close enough to them (block E in figure 5). As it turns out, 
for the optimal iteration (discussed later), their total number is ( )* * 

 BSC mc
N r i = 1292 .  

In the next step (block F in figure 5), ( )  CLU mcN r i  clusters of the remaining ( )  BSC mcN r i  BSC 
points are formed based on a clustering procedure.  As it turns out, for the optimal iteration (discussed 
later) the total number of clusters is ( )* * 

 CLU mc
N r i = 49  (clusters can be noticed in a block denoted 

by »F, G, H, I, J« in figure 6). As can be seen in this block, each cluster iC  contains a certain number 
of BSC points, as well as some of the PA points.  

Furthermore, the algorithm moves to block G in figure 5, where ( ) 
 CLUCLU peak NP r S  BSC points are 

randomly peaked for each cluster iC . Here, ( )CLUpeak Nr S represents each cluster's »inner radium« 

that defines »inner circles« inside the cluster, while  
CLUNS denotes the »strength« (density) of the 

cluster. Inner circles' centers are then fixed to the  CLUP  points meaning that these points become 
surrounded by inner circles. Since peakr depends on the density 

CLUNS of the cluster, each cluster has 

inner circles with different inner radius peakr .  

Afterward (see block H in figure 5), each PA point in each cluster is assigned to the nearest CLUP  

point, if the mutual distance is smaller than peakr  of the CLUP  point's inner circle, otherwise, is marked 
as unassigned meaning that is not surrounded by any of inner circle. In the next step (block I in figure 
5), for each cluster iC , three types of distances are calculated for assigned pupils: 

 
1. Mutual distances between CLUP  points and corresponding PA points that are assigned to them: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

mc mc
mci   =   

∈
ij

CLU ASSIGNED

CLU CLU

2
ij mc euclid,ij mc d mc

P mc PA mc

d P i ,PA j d P i,i ,PA j,i =

= d i N d i ,σ i ,

i = 1, ..., N i , j = 1, ..., N i

      (1) 
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where implying the normally distributed randomness via ( )
ij

2
d mcσ i  is conducted to incorporate the 

fact that in reality the real mutual distances are bigger than (hypothetical) euclidian distances. 

2. Total distance as a sum of all mutual distances in (1):    

 ( ) ( ) ( )
mci  ∑TOT CLU CLU

i, j
d N = d P i ,PA j        (2)  

3. Average distance as a mean value of all mutual distances in (1): 

 ( ) ( ) ( )
mci

     avg CLU CLUd N = mean d P i ,PA j       (3)  

In the final step of each MC iteration, all important results are saved for all clusters (see block J in 
figure 3). 

A similar situation just described occurs for all other MC iterations. Namely, if next iterations of the 
Monte Carlo procedure are repeated, the situation in figures 5 and 6 persistently changes, since the 
random radium ( )mcr i  is different at every further repetition. Consequently, the clusters are different 

at every repetition, and so are the assigned pupils' data points that correspond to ( ), mci iCLUP  BSC 

points. Also, all distances of all clusters are persistently changed at each mci  repetition. 
 

 
 

Figure 5. The main steps of the heuristic algorithm for bus stops’ allocation. 
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Thus, when all mc MCi = 1, ..., N  iterations of the Monte Carlo procedure are finished, the following set 

of values of distances of all clusters ( ) ( )k mc CLU mcC i ,k = 1, ..., N i will be formed: 

 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( )

( ) ( )

( )( ) ( )( ) ( )( )

,

, , ,
mc mc

mc mc mc mc

mc mc mc mc mc mc

mc mc mc mc mc mc

  
  

    

∑
CLU ASSIGNEDCLU P PA

TOT CLU CLU
i i , j i

avg CLU CLU

mc MC

d P i,i ,PA j,i ,i = 1, ..., N i , j = 1, ..., N i

d N i i = d P i i ,i , PA j i ,i

d N i i = mean d P i i i ,PA j i i

i = 1, ..., N

 

 
 
 
(4) 

 
Here, ( )( ),mc mcTOT CLUd N i i  represents the total distance of all mutual distances between 

( )mcCLUP i,i  points and corresponding ( )mcPA j,i points meaning the overall distance, which should 

be walked by assigned pupils to the nearest bus stops identified inside each cluster ( )k mcC i . 

Conversely, ( )( ),mc mcavg CLUd N i i  denotes the average distance that every individual pupil must walk 

to the nearest bus stop inside each cluster ( )k mcC i .  

 

 
 

Figure 6. The illustration of BSC and PA points’ data processing while executing the heuristic 
algorithm in figure 5: A – Given data; B – Initial road data reduction; F-J: Clustering of the remaining 
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( )  BSC mcN r i  BSC points, assigning pupils to the nearest ( ), mci iCLUP  BSC points, and calculating 

all distances; Down-right sub-figure: Positions of optimal bus stops (OBS). 

 

Now, our goal is to apply an optimization procedure to find such optimal MC iteration *
mc

i where 

the sum of distances ( )( )mc mc

* *
TOT CLUd N i ,i  of all clusters ( )*

mckC i  (total walking distance (TWD) of all 

assigned pupils) is minimal possible. Consequently, all the assigned pupils would have to walk the 
shortest possible joint total distance to their closest optimal bus stop. An additional criterion is that the 
average distance (AD) each individual pupil should have to walk to the nearest bus stop is minimal 

possible regarding the average distances ( )( )* *,
mc mcavg CLUd N i i  of all clusters ( )*

mckC i . Naturally, both 

criteria are trying to be reached with an additional demand that the minimal possible number of 

optimal bus stops (OBS), i.e., ( ) ( )( )( ) ( ){ }* * * *,unionOBS over all clusters∈
mc mc mc mcCLU ki U P i i i C i  collected 

over all clusters ( )*
mckC i should be kept at the lowest possible level. The algorithm is also designed in 

such a way that avoids those iterations where the results would likely lead to an unacceptable 
number of unassigned pupils.  

 If the optimal bus stops are calculated as described above, they will cover as many pupils as 
possible, while the latter should have to walk (on average) as little as possible. Also, the TWD distance 
of all pupils to their nearest bus stops would be minimal possible. The distribution of obtained optimal 
results, i.e. OBS points is shown in the down-right sub-figure of figure 6 and will be more transparently 
illustrated in the sequel. 
 
 

IV. NUMERICAL RESULTS 

 

The algorithm was developed in the MATLAB. Table 3 shows all relevant parameters used and 
obtained results for the case of optimal MC iteration *

mc
i . When the entire heuristic procedure was 

finished, the (X,Y,Z) coordinates of 37 OBS points were calculated (see details in table 3). The OBS 
were capable of covering of 503-27=476 pupils within the previously defined radium constrained by 

max = 2.5kmd  (see section II.B), while 27 pupils should have to walk only several hundred meters more. 
Since the total number of observed pupils is 503, the algorithm apparently managed to achieve 
service to 94.6 % of all pupils by determination of calculated OBS points.  
 
 

Table 3. The relevant parameters used and obtained results for the case of optimal MC iteration *
mc

i . 

Number of MC iterations to achieve appropriate results 70000 

Optimal iteration *
mc

i  27085 

( )* * 
 BSC mc

N r i  points after removing too distant BSC points 

(see block E, figure 5) 
1292 

( )* * 
 CLU mc

N r i
 
clusters 49 

Total walking distance (TWD) of all assigned pupils at *
mc

i  1054 km 
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Average walking distance (AWD), each individual pupil 
should have to walk to the nearest BS at *

mc
i  1962 m 

Number of optimal bus stops ( )*OBS
mc

i  37 

 
The calculated results for 37 OBS positions can be represented as shown in figure 7. Their spatial 

distribution is relatively uniformly distributed, with the exception of most remote municipality's regions 
with a low density of population. Naturally, the presented OBS are based on mathematical principles 
only, so they must be appropriately calibrated to align hypothetical positions with the actual terrain 
characteristics.   

 

 
 

Figure 7. The spatial distribution of calculated 37 optimal bus stops positions in the Municipality of 
Laško. 

 
V.  DISCUSSION 

 
Since we managed to find an optimal solution with only 37 optimal bus stops covering 94.6 % of all 

treated pupils, we believe that these are quite encouraging results regarding the diversity and 
wideness of municipality (189 km2), as well as difficult terrain characteristics and complex terrain's 
elevation dynamics. Our trust in promising results is fortified also for the reason that an average 
distance each individual pupil should have to walk to the nearest bus stops is acceptably long (1962 
m), while the total walking distance of all assigned pupils is 1054 km.  

Our combined clustering-MC heuristic algorithm based on 3D GIS data has proved effective in 
quite difficult circumstances with a problematic dynamic rural terrain and dispersed pupils’ 
addresses. For this reason, our approach can apparently solve even such complicated optimization 
problems, as the complex type of BSA problem is. This might be an important contribution of this 
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paper. Also, we offer research community an exciting methodology alternative to some other typical 
methodological approaches that are most commonly used for solving of hard optimization 
problems, such as MLCP problems, SBRP problems, and other location and/or vehicle routing 
problems. This belief might be particularly accepted for the reason that a GIS framework is also a 
common thread that is shared by all of such kinds of problems.  

After some additional minor modifications, the optimal solution (coordinates of derived optimal 
bus stops) are planned to be submitted to the Laško municipality responsible personnel. By doing this, 
they are going to get an opportunity to trigger all necessary procedures for the purpose of actual 
bus stops’ physical implementation.     

When this implementation will be finished and correctly adapted to the actual terrain 
characteristics, the drivers of transportation vehicles will have to pick up the treated pupils only at 
the bus stops, instead of picking them at their homes individually. Since the number of all treated 
pupils is 503, while the number of planned bus stops is only 37, obviously the savings of transportation 
costs are going to be considerably significant.  

 
VI. CONCLUSION 

  
The problem of cost optimization related to the mandatory pupils’ transportation to their schools 

should be at the top of the priority list of every municipality in Slovenia. Namely, the level of such costs 
can escalate over any reasonable limit, which is intolerable for any municipality, particularly the small 
ones with a low budget. The paper addressed the optimal bus stops’ allocation within the framework 
of a pupils’ transportation cost reduction process in the Municipality of Laško.  

The heuristic optimization algorithm based on data clustering and Monte Carlo simulation has been 
introduced for the case of three-dimensional GIS data. The results have shown that the algorithm is 
capable of allocating a relatively small number of optimal bus stops that can still assure a maximal 
service area to the majority of pupils. Furthermore, the optimal bus stops’ allocation ensured that an 
average distance each individual pupil should have to walk to the nearest bus stop is acceptably 
long, while the total walking distance of all assigned pupils is within the reasonable level.  
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