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Thia paper preaents an overview of currend microproceisar archileciures which sup-
pori memory managemeni. Basic requirements for o procestor to support the memory
management are defined, and the kierarchically organized memory ie introduced. Several
address iranslation  achemes, such es  paging, segmentation, and combined
puglng/ugmentalmn are described, nad their implemenlation in current microprocessore
" n‘:aﬂmcd _ A speciol emphasis ia given lo the applieation of the associative eache
memory. Single-level and multi-level address mapping schemes are enalyzed ond com-
‘pared. Furthermore, the. paper discusses the capabilities of cxrrent microprocessors o
support virfual memory, which includes abilities o recognize an eddress faull, lo abort
the ezzcution of the current instruction and save necessary information, and the ability to
reslore the sgved stale ond resume normal processing. Tuwo methods Lo restart the inter-
rupted inatruction, snslruclion restart and inslruction conlinualion, are evalwaled, and
their implementolion in corren! microprocessors is discussed. Protection ond secarily
requirements- are defined, and two protection schemes, hierdrehical and non-hicrarchical,
ere evaluated.

I. INTRODUCTION

New generation 18-bit and 32-bit microprocessors are extensively used in multiuser
and multitasking environments. Therefore, there is an increased demand for the sup-
port of memory management. Furthermore, as shown in Figure 1, the capacity of pri-
mary and secondary memcriés in advanced mleroprocessors is mcrelsmg, which in turn
requirgs an increased virtual memory space, as well as more sophisticated virtual
riemory managemenl mechanisms.

in the I6-bit microprocessor srens, the techniques applied to solve memmory
ianagement problems sre relatively inadequate, and inefficiént. At the 32-bit level, a
more standardized approach can be found, and signiBicantly more sophisticated archi-
fectures for memory management bhave been designed. The paper evaluates various
‘srchitectores for memory mansgement and virtdal memory support, and their imple-
. mentations in- existing microprocessors. Several important issues are sddressed, such as
selection of & virtual memory organization, multi-level memory mapping schemes, asso-
‘ cistive cache memories applied 16 address translstion, virtual memory support tech-
. niques, dynumc memory. allocatwn algorithms, as well as protection and security tech-
niques.
The implementation of these teckniques in current 16-bit and 32-bit microproces-
gors, such as Intel 286, 3886, nnd 432 Motorols 62010 and $8010, National 22032, and
Zilog 780,000, is discussed. ‘

The paper is organized in eight sections. - The Section 2 discusses the requirements -
for a procasor to. support memory management. Two main strategies applied in
current microprocessors are presented: memoty msnagement unit {(MMU) on-tbe-CPU
chip.versus oﬂ-the—CPU-clnp. Two memory addressing schemes, linear and augment.ed
are evahmted Section’ 3 deals wnth the various address translation teehmques, such as
pagmg, umentation ‘and combined paging/segmentation; sad their implementations in
current microprocessors.” Both single-level and multi-level nddrm mapping schemes are




tvaluated. Techniques to supporl virtual address mechanism are presented in Section
4. The implementations of two methods, which resume operation after en address [ault
is detected and corrected, are discussed. Section 5 deseribes the security and protection
trehnigues anplicd in current microprocessors
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Figure 1. Addressing range needs [54]

2. MEMORY MANAGEMENT REQUIREMENTS

Advanced microprocessor svstern archilecture, which is sble to support memory
management, vses the hierarchically structured memory system, as shown in Figure 2.

The memory system consists of three Jevels and jnvolves the maintzining of a large
address space based op a hierarchy of memory devices, which differ io memory cape-
city, spead, and cost. At the first level is the bigh-speed cache memory, which is the
most expensive and, therefore of the lowest capacily. At the second level is the real
Iprimary) memory, which is slower, but less expansive than the cacke memory. The
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Figure 2. Alicroprocessor system architeclure with three levels of Fiecarchically
organized memory to seppor! memory manzgement [35]

third leve! consists of large capacity storage devices, such as disks, which kold the pre--

grams and data that cecnot fit in the first two levels. Wher a process is to be run, its
code and data are brought into primary or ¢cache momory, where cache memory always
bolds the most recently vsed codc or data. )

In this hierarchical memon structure, the basie reqmremenu of the memory
management ws' em ean be specified as follows:

1. ability to translate addresses and suppert dynamic memory allocation,
2. sability to support virlual memery, and

3, ebility to provide memory protection 2nd security.

There are two basic strategies in creating the microproressor system architecture
for memory management:

_ 1. memory managsment unit is on the CPU chip, and
2. memory managrement unit off the CPU chip.

Both strategies, 83 well as the list of microprocessor systems which apply them, are
indicated in Figure 3

CPU VERSUS CPU { + ymmu

! MMy l
]
Intet 286, 386 MC68000/10  +  MCSB451
Intel 432 MC68020 s MC688S!
Zilog 780,000 28001 ©+ 128010
Zilog 7800 ' 28003 + 28015
: NS 16000 + NS16082
HCR/32 .+ NCR/32101
WE32I00 ¢ WE3210]

Figure 3. On-chip versus off-chip memory macagement unit

6L



Thke main advantages of having the memory management on the CPU chip are;

1. . access time improvement, because there is ro off-chip MA{U-related delays,
2. maximum portability of operaling system and application programs, and
3. parts-count reduction.

On the other hand, the memory mavoagement on the CPU ship requires additional
trapsistor count, which could be invested iatoe other more frequentiy used resources,
For example, the Motorola 68020, which applies memory management off the CPU
chip, uses the saved trapsistor count to implement the instruction cacke on the chip.

Arocther important issue related to memory management is selection of the
memory organization scheme. Basically, there are two types of memory orgagization
schemes: lipear 2nd segmesnted.

lp the linear addressing schemes, addresses typically start from zero, and proceed
lipearly. The memory may later be structured, by software, st the Jevel of address
translation.

In the segmented addressing schemes, the programs are pot written as a linear
sequance of instruetions and data, but rather as modules of code and data. The logical
address space is broken into several linear address spaces, tach of the specified length.
Ar efective logieal address is computed as a combination of the segment number,
which is a pointer to a block in memory, and the segment offiot, which defines the dis-
placement within the segment.

Table 1 shows memory addressin;; schernes appiied in various advanced micropro-
Cessors.

Note that Intel and Zilog offer both segmented and linear addressing on their 32-
bit processors 80386 and 280,000, respectively, as software programmable options.

In general, a linear addressing scheme is better suited for the applications that
manipulate large data structures, while the segmented addressing seheme facilitates
programming, enabling the programmer to structure sofiware inlo segments. In addi-
tion, the segmected addressing scheme simplifies protection and relocation of objects in
momury. As an example of the segmented addressing schems, Intel's 18036 processor

coptains four, 16-bit segment registers, which point to four objects in the memory: code,

stack, data, and extra segment (alternate data}, as shown io Figure 4a. The address
celculztion mechanism, which produces 20-bit physical address for the i8086, is shown
iz Fig. 4b. '

3. ADDRESS TRANSLATION TECHNIQUES

Regardless of the memory organization scheme, the precessor must have as
address translation mechanism to bandle virtual memory. The address translatjon
mechanism also provides a method of protecting memory objects. -

The »ddress trapslation is a process of mapping logical to physical memory
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addresses. The address franslation mecharism divides the memory into blocks, and
.then performs mapping of 2 block of logical addresses into a block of physicel memory
addresses. It allows programs to be relocated in the primary memory. It also provides
the base for virtual memory system design, where the logical address space can be
larger than the physical address space, The virtual memory mechanism allows pro-
grams to execute even when only few blocks of a program are in the primary memoary,
while the rest of the program is in the secondary memory {on the disk), The other
importent processor requirements for virteal memory suppert are discussed in Section
4. Three basic address translation schemes are:

1. paging .
segmentation, and

"

3. combined paging/segmentation.

In the paging systems, the prfmary memory is divided into fixed.size blocks
(pages). while in the segmentation systems, the blocks are of various size (segments), as
shown in Figure 5. '

Geoerally, the segments can overlap, while pages cannot, so pages are usually of a
relatively small size, compared to total memory, Typical page size is between 256 and
2048 bytes, while segments can be 64K bytes or more.

The paging/segmentation systems combine the features of bothk pagisg and seg-
mentation addressing schemes. The segmentation part of ths scheme manages virtual
space by dividing the programs into segments, while the pagicg part ‘manages physical
memory, which is divided into pages. Each segment consists of 3 number of pages, as
shown in Figure 6. g

Selection of the address translation mechanism has a crucial impaet on the
memory management techniques, which bave to be implemented by the operating sys-
tem, to handle page or segment fetching, placement, and replacement. For example,
the paging address transiation system is well svited for page placement and replace
ment, because all pages are of uniform size, while the segineztation system needs more
complicated placement and replacement algorithms to mateh incoming segments with
available memory space in the segmentation systems, a segmsat must reside entirely in
physical (primaryj memory in order to be executed, because the minimum unit that can
be swapped is the segment itself. The available memory space becomes then frag-
mented inlo many small pieces, and there is not enough contizuous memory for storing
one large segment. Because of the fragmerlation problem azsaciated with the segmen-
tation. systems, the paging systems ate mote efficient with r=pact lo memory uliliza-
tion. In the paging systems, all pages arc of equal size, thu. pages ean be swapped
without-leaving unusable fragmented spaces. Also, it is ¢t aecessary to swap in all

. pages of a ‘program at once, in order lo execute it, tut only the pages required
(*demand paging”}). This significantly reduces the swapping tlme.
For all these reasons, the demand paging address trznslation system seems to be
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Figure 6 Address translalion by combined paging and segmentation
{paging/segmentation)

the way 1o go. As a malter of fact, a'l advanced :;2-bit processors, as well as several
15-bit processors, fully suppori demand paging technique, wkich ma2y become a
standard address trensiation mechanism in future microprocessors.

Furthermore, when one selects the sddress translation scheme {paging, segmenta-
tion, or combined system), there are two additional issues which should be addressed:

1. implementation of the selected address trapslation mechanism, end

¢, seleetion of the number of mapping levels

3.1 Implementation of the address tranalation schemes

Regardless of the address translation orgenization, the implementation method is
always based on tramslation tables located in primary memory: page map tables (PMT)
ir the paging svstems, and segment map tebles (SMT) i the sezmentation systems
{10,11,14,16]. The table entries contain information to transtate the logieal into the
physical address, as well as additional data for protection purposes, and to support
piarement and replacement algorithms. A typical furmat of a translation table entry is
showp in Figure 7.

As an example of the address translating implementation, the virtual address of
the 1238 pracessor consists of a pair: segment selector nnd ¢isplacement v=(s,d}. The

RESIDENCE | ACCLSS RIGHTS| SUPPORT FOR| PHYSICAL ADDRESS
BIT & PROTECTION | REPLACEMENT

" Figure 7. Typica! format of a page or segment table entry

segmen! solector points to the segment deseriptor io the segrment map table, as shown
in Figure 8. The segment deser plor contains the primary meriory address s', at which
the segment begins. The dispiacernent d is added: to s forming the real physical
address, r=d+5', corresponding to the virtual gddress v,
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Figure 8. Address translation mechanism of the i286 [28)

The descrilied address translation implementation methad is knowan as direct map-
ping. Trapslating a Togical address to a physical address, usitg direct mapping, requires
an additional memory access operation to obtain segment (or page) base address, and
therefore the use of direct mapping can cause the computer svstem to run programs at
lower speed. There are several solutions applied in modern misroprocessor architectures
to overcome this problem. These solutions are disenssed below,

1 the Intel's 1286 processor slandard, four segment registers are extended with the
corresponding four 48-bit scgment deScriptor cache registers, as shown in Figure 9
|26,28).

Segment registers ere Joaded by the program, while the CPU loads the explicit
cache registers, which are invisible to programs. Explicit cache speeds vp the operation
by climinating the need to refer to a descriplor table for every memory referesce
instruction. Loading the explicit cache is performed in four steps:

Tz
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Figure 9. Descriplor data type in the i2586 [28]

Program places a selector in the corresponding ==ninent register, .

2.  Processor adds the selector index to the base address of the descriptor tuble,
to seleet a descriptor.

3. After the processor verifies segment access rights, it copies the descriptor to
thte data segment register in cache.

4. The processor uses the descriptor information to chéck segment types and.
limits, 25 well as to form the effective address,

The described technique based on explicit cache registers speeds up the direct

mapping, bul still is nol efficient encugh, Yecause it requires euche loading whenever

. control is transferred from one to another sef ment of the same t: pe.
A much miore sophisticated solution is based on a sperial associative cache {32 1o
64 locations}, which holds the most recently used sel of translation values. Then, the
translation process is pesformed in the following steps, as shawo in Figure 10
1. First, the virtual address received from the CPU is searched through the
cache. M the address malches with ope of the cache entriss, then the
corresponding physical address stored in the csvlie is used by the CPU to
access the primary memory directly. .

2. If the received virtual address does not matelh with cache entries, but the
page ar segrment Is in the primary memory, ther the physical addsess will be
fetched from the translation tables lorated ic the primary memory, and
then stored in the cache. Then, the CPU will access the required physical
menoery.

3. Finally, if the page or ségment is not jn the primary memory, it must be

© first swapped from the secondary memo-y into the primary memory. The

translation tables musi be updaled, and the phyvsieal memory address will
. be fetehed from the trenslation tables inta the cache,

The associntive cache memory is usually argapized as s Translation Lookaside
B:Ter (TLBY). When the .address transiation mechanism receives a logical address,
#resy eatry in the TLY is searched simultaneously {or the logicel address,
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Figure 10. Address transletion mechanism using the essociative eache memory [10]

A number of simulation studies have proven that the small associative cache
significantly speeds up the system operation, because the hit ratic of finding the address
in the cache riches €8%. Many recent processors, [such as Motorola S2000 family with

its MC38451 MMU, Intel RO3S6, Zitog Z8&000 family sad 730,000, National NS15000

family with its NS16052 AU and otbérs} bave implemented the sddress translation
scheme by using the TLDB method [$,33,34,35,37,50,51.34].  Although translation
mechanisins based on the TLE metbod vary in complexity, they can be classified in two
basic groups: address-accessable TLBs, and content-addressable TLDs. In the address-
accessable TLB approach, a logical address field identifies the register in the TLI that
holds the physical base address, As an example of this technique, the Z&CO with oa-
chip MMU is shown in Figure 12 {33]. . :

The virtual address consists of a 4-bit TLI pointer, aad a I2-bit offet. The TLB

pointer selects one of the 16 translation registers of the TLB. Then, the 24-tit physical

“

EZ



16
PAGE BASE
ADORESS
REGISFERS

15

LOGICAL ADDRESS

REGISTER INDEX |

PAGE OFFSET

—

15

o —

4 bits

12 bits

43

—

PAGE FRAME
ADDRESS

PROTECTION,

FIELD

PHYSICAL MEMORY

25

PHYSICAL ADDRESS

{ PAGE FRAML ADDRESS] OFFSEY

4K -BYTE
PAGE

Figure 11. The Z800 address translation based on the address-accessable TLB [33]

“address is formed, as a selected 12-bit page bose address from the TLB, concatenated

with the 12-hit offset.

The address-accessable TLB technique. is not practies! for large systems, because
atcessing the TLB by addresses requires a segment register for éach logieal segnrent or
page that can be relocated.

The content-addressable TLB is more suitable for Targe systems.  This method has
been applied in several micraprocessars, sueh as the MCBS£51 MMU, Zgots }"..\L\lU.
Intel 80336, and N3 16032 MMU. To illustrate this method, Figure 32 shows the
content-addressable TLE applied in the MC88431 AMU,
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: ) . ‘ MEMOAY REGUEST .
The MAIY receives a logical address (23 bits), and the mask register masks the low mr—m—emme—{  SEARCH OF THE MEFIORY
order bits to determine the segment size. Then, the MMU compares the rest of the ";’ﬁi,ﬁ;&gﬁdﬁ“s‘
most significant bits with the comparison field values of 32 content-addressable regis- SIZE BUFFLR)

ters. If a mateh is fourd, the NMU performs address translation. If there is no mateh,
‘the MAMU generates a fault condition, and activates a trap routine. The trap routine
will update the TLB from.{ranslation tables stored in primary memory.

The flow-chart in Figure 13 illustrates the netessary operalions in & paging-based

virtual memory system with ap sssoriative cache memory for recently used pages. SEARCH FOR THE KEXT
‘ LARGER BUFFER

BUFFER
+AYAILASLE?

ALLOCATING BUFFER
TO THE REQUSETING TASK

EI.'ID

The virtual memory is activated whenever program requests an access 1o a page.
The flow-chart in Figure 13 indicates three different control paths:

BUFFER
AYAILABLE?

I.  when the page descriptor is found in the associative cache, l

SPLIT THE LARGE
SUFFER I8N0 TwD PIECES

2. when the page descriptor is not found in the eache (‘cache miss’), but the
page is in the primary memory, and

. ONL PIECT ALLOCATE

TO THE REQUESTING TASK

. AKQTHIR PLACT ON

THE HERDRY AYAILABLE
LI8T

e

3. when the page deseriptor is not found in the sssociative cache, and the page
is rot in the primary memoty ('page mlss} Then, the address fault ban-
dling routine is activated,

In additiop to address tramslation mechanism, the MC68151 MMU supports
dynamic memory allocation. The dypamic memory allocation mechanism is able to
allocate the memory to a process, while it is running. The Binary Buddy system, an
algoritkm for dynamic memory allueation, is implemented in the MC88451. The algo-
rithm divides the entire physical address space into buffers. the size of which varies .
from 256 bytes {0 250K bytes (in the MC88451). The algorithm mairtains these buffers . i n
by veing the bulfer lists for all sets of buflers of the same size. as well as buffer descnp-
tors for each bufler independently [52).

Mo

[ = o e m W o owaa

[Pur Rrouess maoutur |

Figure 14. Binary Buddy algorithm for dypamic metnory allocation

Wkhen a memory request is received, the algorithm searches through the list of

available buffers in order o find the best ftted buffer. If the best-fitled buffer is not
available, the search-process is continued for the next larger size buffer. The fow-chart T
of the Binary. Euddy algorithm is shown in Figure 14 ] - - L .
. % ] . s F PICOMENTOESCRIFTON puy |

A detailed description of the algonlhm, as well as adémonal issues related to it,
are discussed in {45,48,52].

ACCESS DESCRIPFTOR -"-'1]

3.2  Single-level versus multl-leve] addreéss mapping ' BEQWERT SELECTOR

The second issue c]osc-l)" related to address translation architectures is dealing with
the number of mapping levels in address translation schemes. The copventional .
address mapping scheme consists of just one mapping level, such as in most of the 16 : ) ACCESS ) sEQNTNT mn;,.',
. ! : K KOKENT TABLE -
- bit processors (286, Z8010, and 28015 MMUs}. O the other band; almost all 32-bit :
processors use multi-level mapping scbemes, which brings some pew features in the
memory management.

The basic advantages of multi-level mapping schemes versus singlé-level mappiog,

schemes can be summarized as follows: Figure 15. Two-level address mapping scheme in the i432 processor [27]
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1. they provide more sophisticated protection methazism,
2. they are able to accommodate larger address. space, and
3. they provide page sharing.
Several mufti-level mapping schemes are evaluated below,
Intel’s §432 processor uses (wo-level mapping in order to provide more sophisti-
cated protection mechanism, as shown in Figure 15 {27,40,47).

The segment selector register- poinis to gn eatry of the ascess segment, where the
access rights are stored and are thus associated with program modules. The necess
descriptor contains the pointer to the segment table, and finaliv the segmeit deseriptor
cottains s pointer to the beginning of the selected segment in the primery memory.

Because the access rights are stored independently of the segment descriptors, several -

modules can share the same segment, each with different access,rights to it. In Figure
15, the module A cap write and read the selecled segment, while the module B can oply

LINEAR TRANELATION HIT

ADDRESS | DIRECTORY | TABLE{ OFFSET| ! LoOKASIDE |-

BUFFER

1

;
. B euvsion
‘ g MEMORY
k]

ADDRESS

PAGE TABLES

DIRECTORY

Figure 16. Paging system architecture in the i385 processor [54]

read the scgment,

In addition, the two-level mapping scheme makes it possible to restrict the pumber
of segments accessable by & given program. In single-level mapping systems, such as
1286, any program may address any segment iz memory. simply by pointing to it
through the segment table. .

The two-level scheme of the i432 also enables fewer address bits to point to a par-
ticular segment.

The Intel's i38G prévides two options, which are user selectable: segmentation sys-
tem [sanie as in the 1280}, or paging system. The paging svstem srchitecture uses two-
level mapping scheme, along with a translation lrokaside bufler, designed as a cache
memory. The complete architecture is shown in Figure 16.

The linear virtual address consists of three fields {directory, table, offset), and
address translation is performed in the following steps:

“ 1. irst, the address is searched through the TLﬁ If the address is found, ther

translation is performed in the TLB, and the primary memory h accessed
directly, .

2. if the address is not found in the TLB, the miss signal is generated, and the
translation is performed through the two-level mapping built on the CPU
chip, as shown in Figure i5.

" The two-level on-chip mapping scheme enables fast address’ translation, and page
tables can be shared and/or swapped. ‘ .

A similar two-level mapping scheme has been implemerte | jn the NSI6082 ADVU
i6.25,38]. The total physical address space is divided into 32,768 fixed pages of 512
bytes each. The virtual address consist of 24 bits divided irto three fields: index-1 and
index-2 of the page selector, and the offset, as showa in Figure 17.

LOGICAL ADDRESS
urs | 8 BITS ] 7 BITS ] 8 BITS i
Yat INDEX 2nd INDEX BYTE
, : ADDRESS
PTBUY | | - e o
e : -
| PTB(S) hd vy . 2
v a
256 PTEs : PAGE
DANK 125 PTEs
3 7 15 9 .
L]
[l meseavep | (PaGe ADDRESSYs12 | prot. & ust | ) . )
PTE (32 BITS) MEMORY

Figure 17. Two-level mappiog scheme of the N516082 ADMU [35]
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The index-1 (8 bits) of the page selector is used to locate one of the 256 entries of
the page table. The contents of the page table PTE-1 points to the begmnmg of one of
236 painter tables, each of which contains [28 entries: Then. the pointer to the pointer
table is combined with the index-2 {7 bits) of the page selector, to locale one of the
entries within the pointer table. The selected entry contains the actual page number in
primary memory. The offset field is then used to locate data within the page. The NS
16082 MU contains the associative cache to hold 32 recent[y used pame address
entries, as well.

- The Z80,000 processor uses lhree-level mapping scheme based on the cet of three
translation tables localed in primary, memory [2,33,53]. It also coptaing an séscéiative
memory for the TLB, where 16 most recently referenced pages are stored. The CPU
automatically loads the TLB from traoslation tables, when a logical address is missing.

The NCR /32 processor uses an address translation chip {ATC) for address transia-
tion based on paging system with one-leve] mapping |22] The chip contains 18 associa-
tive memeries for recently used pages. ]

The 28010 MMU, which is used with' the 28001 processor, applies one-level seg-
mentation system, hased on 64 conteni-addressable segment descriptor registers. For
more details see [33,50].

The 22015 MOMU differs from the 28010 MMU in that the logicat address is
translated into page frames rather than segments. It applies one-level mapping scheme
; and uses 64 page descriptor registers, which are also content-addressable {33,56).

The W[.32100 32-bit processor uses of-chip &2101 MMU, which supports both
demand paging and segmentation systems, which are user selectable {15, 17, 18]. The
MAJU contains an on-chip cache memory: a 32-entry segment daseripior cache, and a
Si-eniry page descriptor cache, to hold recently used segmest and page descriptors,
respectively, .

Table 2 summarizes address transltation features of some 16- aud 32-bit micropro-

CE5R0TS.

4. VIRTUAL ADDRESS SUPPORT TECHNIQUES
A virtual memory system allows the user to execuie programs oo a very large
memory of virtual address space, much larger than the actua! pbysieal memory. This is
accomplished by the capability of a microprocessor to detect access to memory pages
(or segments) which are not present in the physical memory. When the virtual memory
system detects such a reference, it will fetch’ the required page from the secondasy
memory into the primary memory.
In order to support virtual memory capabilities, besides the address trans!allon 8
mlcroprocessor must provide the following attributes:
1.  to recognize & page or segment fault, if the page or segment is not present
in the primary memory. The memory manager must then inform the pro-
cessor so that the missing page or segment can be fetched from the secon-

dary memory, and eventually one of the current pages or segments can be:
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replaced,
2. to sbort execution of the current instruction (instruetion abort cepabilily),
to save necessary information needed later to retover from the fault,

4. to call and exeeute the fault service routine in the operating system, which
will swep the required page(s) or segments(s), from secafidary memory to
primary memory,

5. to provide necessary information for the operating system, in order to sup-

- port page (or segment} placement and replacement algotithms (indicelion
of access activities), and

6. to restore the saved state and resume the normal processing (instruction
restart capabilities).

Although very different in complexity, all advanced microprocessors provide
instruetion abort and restart capabilities. Some solutions are preseated below. Recog-
pizing the access fault can be performed internally only, if the MMU is on the CPU
chip, or both internally and externally, if the MMU is off the CPU ebip.

When an access is made to an instruction or data whizb is not present in primary
_ memory, 2n address error is internally detected, and it iniliates the address error fault

handling routine finternally defeeted foult). It the off-chip MMU detects 2 faylt situa-
tien, it will send a signal to the CPU, which will in turn activate the fauit handling
routine festernally detected foult).

When the CPU recognizes an access fault, it saves the siate informatijon needed to
recover from the fault. The information is usuzlly saved ob the stack. The typical
information which must be saved in the program counter {-tarting address of the
instruction), the status register, the fault address, the trap-specific parameters, the
aceess type, the internal temporary registers, various internal statuses, ete. For illus-
tration, the AMC68010 processor which supports virtual memory, saves 26 words versus
the MCBR000 process, which saves oply seven words, which is not erough to provide
the user with the state of the machine after the fault has been occurred. Figure 18
shows the information saved ob the stack for these two processors.

The MC B201D address stack is divided into {wo parts; a user visible sectiop, and a
_ DoOb-user visible section in which the internal status and the temporary data are saved.

The memory management unit also has to provide the information related to
access activities needed by the operating system [placement and replacement algo-
rithms). This information is usually stored in the trapsition table entries. There are
three information bits which are present in typical systems:-

1. the wolid bit - which is controllad by the operating éystem, and specifies
whether or not a block {page or szgment) is in the pr.mary memory,

2. the veferenees bit - where the MMU typically sets this bit to indicate if
access to the corresponding block in primary memory is on. The operating
system may reset this bit to keep track of the access history.

3. the modified bit - which is set by any write operation to the corresponding

STATUS REGISTER L 5P
PROGRAM COUNTER KIGH | 02

PROSRAM COUNTER LOW o

FORMAT | VECTOR OLESEY 05

SPECiaL STATUS WORD 08 SPEIAL STATUS WORD a1l
FAULT ADDRISS HIGH oA FRULY AZDRESS HIGH ”
FAULT ADDRESS LOW oc - FAULY AZDRESS Low [T
RESERVED I3 INSTRUZTION REGISTER o5
DATA QUTPUT BUFFER 10 STATUS REG'STER o5
BESEAVED 12 PADSEAN COUNTER H:GH A
DATA IXOUT BUFFER 9 PRIGARY JRUNTIR LOW o
RESEAVED 18 i

INSTR INPUT BUFFER

b

INTERNAL INFORMATION

®
1A
NON USER-VISIBLE < o
:
38

4a.

Figure 18. Address error stack [36]
a. MCB8010
b, MCGBERODO

block. This bit indicates whether the block must be written back to the
secondary memory, before being replaced from the primary memory.

For iflustration, the i432 processor contzips four access astivity bits ip its segment -
descriptor, as shown in Figure 19,

The valid bit (V) indicates whetber or pot the segment is in the memory. The
storage allocated bit (S) indicates whether any memory has been associated with this
descriptor. The actessed bit {AC) indicates whether the segment has been accessed,
while the sltered bit (AL) indicates whether the information cantained in the segment

has been modified.

{Tv]s|ac]al |
Figure 10. Access activity bits of the i432 processor contained in the segment
descriptor [27]
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The operating system uses V and S bits to detect when & physical segment i not

‘present in memc:;r_v, while the AC and AL bits are used by the replacement algorithm to .

decide which of the currently present segments should be swapped out by the pew seg-
ment. ‘ '

In addition, several Gelds in the segment descriptor can be used by the operating
system to record other useful information about the segment {{requency of use, etc.).

The other advanced processors contain similar infcrmation on access activities used
by the operating systém. Commonly used page replacement techniques are Least
Recently Used (LRU), Least Frequently Used {(L¥U), and First-In-First-Out (FIFO)
[1,58.9,55]. The described information maintained by the CPU (referenced and
modified bits), as well as some sdditional user-defiped fields, can be used to design the
page replacement algorithm io the operating svstem. :

One of the popular schemes for the LRU algorithm classifies the pages into four
groups: : :

Group 1: unreferenced (ﬂ =0) and unmodified (M =0}

Group 2: unrelerenced (R =0} and modified (M =1}
_Group 3: referenced (R =1) and unmodified {M=0)

Group 4: referenced (R =1) and modified (M=1)

The pages from the lowest groups are replaced first, and the pages from the
highest groups are replaced lasi. The referenced bit is set by the CPU whenever the
page is referenced. The operating system {08) periodically clears the referenced bit. A
sophisticated LRU algorithm, “software caching.” has beer implemented in the
VAN/VMS operating system {31]. The LFU algorithm can also be incorporated into
this scheme. Whepever the relerenced bit is cleared, the OS cap count the frequency
with which the pages were used. The modified bit is set by the CPU whenever the

page is written. When the page is swapped, the OS checks this bit to see if thereis a -

need to update the copy of the page in the secondary memory.

The last attribute of a processor te support virtuazl memory is the most complex,
and refers to reloading of the state of the program, arnd resuming the operation, after
the address fault routine is completed. Two methods of implementing the resume
operation on 8 processor are;

1. ipstruction restart meihod, and
2. imstruction continuvation method.

Advantages and drawbacks of these two methods are discussed.in the following two.
subsections. :
4.1 Instruction restart method

" In this method, after the address fault error handling routine bas completed all

activities, the instruction in which fault occurred is restarted from the beginning. Fig-
ure 20 illustrates the execution of the microcode in the ¢:se when no eddress [ault is

present (Fig. 20a), and in the case when the restart method & applied, with ag address

" {fault eecurred (Fig. 20b}. .
In Figure 20 it is assumed that a machine iastruction capsists of several microin-
struetions {ml, m2, m3, m4]. If there is no address faunlt, these instructions will execute .

sequentially, as shown in Fig. 20a. I the MMU detects an address fault in the microin-
struction m2, the contro! will be transferred to the address error routine. The address

error routine will Brst save the information state, and then the routine will bandle the
address error (the required page or segment will be fefeked from the secondary’

memory). . Finally, the suved information state will be restored, and the faulted instruc-
tion will be restarted from the beginning - &t the machive ipstruction Jevel. Therefore,
the sequence [ml, m2, m3, m4] will be executed again. - .. .

The main problem in the instruction restart method is thal the processor must
reconstruet the state of the machine, as it was at the begiariog of the machine instruc-
tion, while he [aulted instruction was interrupted in the middiz of its execution. There
gre some situations when this is very complex, such as wher a resource is used both as
jnput and outpul parameter in the samé instruction. For example, in extended preci-

siop arithmetic operations, a carry {or borrow) bit from the previous operation is used

in the instruction as an input parami_;ter, but the insiructiop itsell also sets the same
bit as the result of the current operation. ‘If the address favlfis detected aller this bit
is updated, the original value must bie restored before the izstruction is restarted. A
similar. case is with autoinerement and- autodecrement addréssizg modes.

FAULY
* SEQUENCE
NORMAL :
MICROINSTRUSTION ! ml
SEQUENCE FAULT —p m?
. ADDRESS FAULT
m1 ROUTINE
m2 Save
ma . .
m4 ’ .

=| Relurn

.ml
m2
ma
m4

s

Figure 20. Microinstruction sequence [38]

s. No address fault
b. lpstruction restart method
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Several techniques have been proposed to solve this problem, and are discussed
below:

1. The processor may postpone the modification of uier-visible resoyzes (such
as carry bit), until the end of the instruction. Ttsen, if the address favit bas
-pot occurred, the resoutces will be updated. '

2. All modifications of the user-visible resources will be recorded by the ‘proces-

sor if the address fault occurs, Onp the basis of this juformation, the proces

sor will be able Lo restore the original vajues of the modified resources.

3. 'The processor maintains the copies of all user-visible resources, that ate
modified. Because the copy always coniszins the original value, i the
address fault oecurs, it will be easy to restore the criginal state.

4.2. Instruction continuation method

In the instruction cobptinvation method, when the address error routine has been
completed, the machine instruction will pot be resumed from the beginning, but from
the szme loeation within the instruction at which the execution was suspended. The
execytion of the same sequence of microinstructions |ml, m2, m3, m4), in the case of
the continuation method, is shown in Figure 21,

The address fault was detected in the microinstruction m2, and the control was
transferred to the address error handling routine. After the rouline has been com-
plzted, the processor will resume operation, Dy executing the misroinstruction m3. The

FAULT
SEQUENCE

.
L

ml
FAULY =—a{ m?2

ADDRESS FAULT
ROUTINE
Seve
?

Return

Figure 21. Miczoinstruction execution - the instruction <ontinuation method [36)

continuation method is analogous to ap interrupt operation nl the microinstzuction
level. )

In order to support the instruction continvation method. the processor must be
able to save the entire state of the machine, when an address fault is detected. There
fore, the processors which apply this method usually have a large address error stack,
to save &ll necessary information (e.g. MCB3010). Regardless of this requirement,
another problem with the continuation method is related to the instructions that
require execution without interruption. In addition, this methed requires the additional
time and silicon resources for saving and restoring the complete state of the machine.

The instruction continuztion method has been implemented in the MCG65010 and
the MCB3020 processors only [33,36]; while all other ad\anced processors use the
instruction restart method.

The N516082 XMU sends an abort signal to the CPU (NS 16032 or 32032), which
will stop the execution and will return the CPU into the state before the aborted
instruction. Ther, all needed information (contained in program counter, machine
status, stack pointer, and several other registers) is automstically saved. When the
address fault rovtioe is completed, a returp-from-trap izstruction is executed, which
will resume the aborted instruction from the beginping [38).

Zilog processors alse implement the instruction restart method. The Z8001/Z8015
system coptaips a special data couut register which counts the pumber of successful
dats accesses before an address fault. This mformat:on used lo restore the machine
slnte. which existed before the address faullt.

The 280,000 and Z800 proressors, which have the MM on the CPU chip, apply
an improved instructiod restart method compatible with their pipelining srchitecture.
The 780,000 executes instructions by using six-stage pipelining. and therefore the page
fault can be detected before memory access. The sddress translation is performed in
the third stage of the pipeline, and if an address fault is detected, the execution stage
will be suspended, before any change of register contents is made [33,35). The 2800
gpplies a similar technique, because it has a three siage pipeline allowing the instrue-
tion suspension, before any register is chapged.

Intel processors i286 and 386 apply the ipstruction restart method, as well -
|26,28,51). They are also able 1o detect an address fault before executing instruction, .
and thus fzulted instruction restart becomes simple. After completing the execution of
the address fault bandling routine, the CPU places the address of the interrupted
instruction into the instruction pointer, and resumes the program execution.

6. PROTECTION AND SECURITY TECHNIQUES

In multitasking and multiuser environments, it is required from processor architec-
ture to support pretection and security, in order to increase system performance and
simplify system implementatios. Basically, protection esd security issues can be
divided into the following topics:

1. memory protection,




2. program protection,
3. user protection, and
4. irformation security,

Memory profection meehanism should detect any addressing error before it caused dam-
age. Each instruction should be checked to verify that it performs the intended opera-
tion. The MA{U unit performs this check, and if there is an address error detected, it
generates an address fault. The address fault bandling routine is then activated, which
analyzes the address error, eveptually fixes it, and returns te the interrupted program.
Program prolection mechanizm should prevent application program from making illegal
modifications of the operating system. It elso should control the transfer between sys-
tem modules to achieve total reliability, User protection mechanism should protect
users against each other. Securify mechanism should provide limited access to informa-
tion.

Two basic architectures that provide program and user protection are:

1. hierarchica) protection system, or ring profection system, and
2. non-hierarchical protection system, or capabdilify-based protection sysfem.

These two systems are discussed in the fbllowing paragraphs. ,
Hierarchical proteptién system consists of a hierarchy of protection levels, or rings,

starting from the most privileged to the least privileged. Basic principles of the ring
system are: ’

RING 1

RING 2

Figure 22. Principles of ring protection system [28]
a. control transfer bétween programs
b. data access

1. A program maywaccess only data that reside on the same ring, or a less
privileged ring,
2. A program ay cal services that reside on the same, or a more privileged
ring.
These two protection approaches are llustrated ip Figure 22.
The ring system has been implemented in the 1296 and the i386 processors
{21,26,28,54). Their ring protection system consists of four privilege rings, as
shown in Figure 23. ‘ i

Different priotities are assigned to diferent programs (segments} within the
systery, Greater privilege is assigned to more important programs. Typically, the
operating system occupies the most-privileged ring, thus it is protected from the
application programs. The programs may access the OS with a bigh-speed call
instruction, rather than using the context switehing technique, which is the
traditional way to implement the call of OS services.

Second and third rings are typically used for system services and custom
extensions, respectively, while the application programs are usually located at the

‘least-privileged ring. .

The i285/i386 protection model also provides task isolation, by baving
separate descriptor tables. The entire isolatiop between rings is provided by a
separate stack for each ring.

1o non-hierarchical protectionsystems {or capability-based p'ro!ection svstems), for
cach task a table of operations is defined. This table of operations specifies opera-

tions ithat may affect other tasks in the syst'.omf In order to perform an operation

TASK
BDLATON
FAOVIDIDBY
. BEPARS TE
CESCRATON
TAPLES

TASK A

FRNVMEOE LIVEL
BOLATION -

Tagy . . -

Figure 23. The tipg protection system of the 1286/i385 processors [28]
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which could affect another task, a task must have the corresponding capability in
its table of operations.
The capability-based protection syslem is more complex, and the current pro-

cessors still do no! implement it in the architecture, bt in the operaling system. .

The current processors provide some protection features, which can be used when
desigping a sophisticated protection system io software ;3,4,5,25,85].

The MCH3000, the Z3000, and the NS 168000 processors have two operating
mades {or privilege levels) af the CPU: supervisor mode, and user mode. In the
superviéor mode, the CPU can execute the comple.e set of instructions, while in
the user mode, orly a subset of instructions ¢an be used. In Zilog processors, these
two modes are called system and normal.

Typicelly, the operating system functions are placed at the supervisor level,
while application programs execute at the user level, thus the operaling system is
protected from the apphication programs. The supervisor level typically has access
to all of the processor resources, as well as to all external resources, such as
memory and [/O. This epables the operating system to control both processor and
external functions.

In addition, the NS16000 processors provide separate address spaces for each
running process, thus protecting one user from another.

The MC62020 implements a concept of multiple access levels, which provides
expansion on up to 236 hierarchical levels, which present 2 superset of ring archi-
tecture.

Security refers to the lmited access to information. The basic principle is to
allow a program to access only whai it needs to know, For example, Linden sug-
gests that "..almost every procedure should run in a protection domain that gives
it an access to exactly what it needs to accomplish its function, and nothing more
[32]." The security is provided by giving each process certain access rights to a
page or & segment. The most commotly used access rights are:

1. read access: a process may obtain sy ipformstinn from the page or the
segment.

2. wrile aceess’ a process may modifly the page or the segment, and may
place additional information in it. The proress may destroy all of the
information in the page or the segment,

3. erecule -gccess: n process may run the page or the segment ss a pro-
gram. Esecute access is given to pages or segmenis wbich are pro-
grams, and denied to data pages or segrents,

Current processors typically store the aceess rights ip page or segment
descriptors. Befora the pracessor aceessas n page or a segroent, it Srst checks its
access rights, aod i they are verified, it may atcess the selected page or xegment.
The diagram in Figure 24 illustrates the described mecksnism, based on access

rights stored ip the page or segment deseriptors. The character N indicates that
the corresponding page or segment cancot be accessed at all.

The segmentation virtual memeory system provides a more natural security
system jn a paging system. The logica) address space is divided into pages, and
the deseribed mechanism cancot protect the program modules precisely. It either
protects loa little or too much. In the segmentalion system, each segment is of
specific length, and the way to protect segments by using access rights is more
natural. :

Regardiess of the implemented virtwal memory svstem, the drawback of the
described security mechanism is that all users have the same access rights to com-
mon pages or segments, becavse the access rights are assosiated with the pazes or
the segments, and not with the users. . ‘

This problem can be solved by using twe-level mapping scheme, 8s described
in Sectiop 3.2, for the case of the i432 processor [27]. In this two-level mapping
scheme, the -access rights are stored independently of the segment (er page)
descriptors, and are associated with the users, and not with the scgments (or
pages).

.
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Figure 24. Security technique bused on access rights stored in the page or segment

deseriptors [27
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8. DISCUSSION AND CONCLUSION

We have discissed in this paper several issues relsted to memory management
.in advanced mictoprocessors. All these concepts are not new; they are known for
vears from the operating system's theory and practice, however the approaches are
sometimes modified, and implementation - techaiques may be different, in com-
parison with the minicomputer and mainframe enviroments,

The processor architect must make several crucial decisions related to the pro-
cessor archlteclure, which have to support memory management and virtual
memory. The main decisions to be made are listed in Figure 25.

The opn-chip MMU versus off-chip MMU is ope of the basic decisions which
kas to be made. Both concepts have advantages, as well s drawbacks. These
have been.discussed in the paper. In addition, the an-chip MA U bas an advantage
over the off-chip MAIU which is related to-cache memory design. Ap external
"ADMU requires logical address caches to bypass the MMU delay, while the internal
AMMU implements the physical address cache: Tbhe logical address cache requires
special address tag hardware, large operating system overhead on task swilch, and
fBusk cache when sharing data. '

" The issue related to virtual memor) system paging versus segmeniation, is of
crucial importance. Again, some microprocessors support paging, other processors
. support segmentation, while few microprocessors support both systems, i which
case the mode is user selectable. Anyhow, it seems tha! the paging system has
advantages over the segmentation systern, and almost all 32-bit microprocessors
support it. ’ i

The pext two qnestlons are related to the lmpl»menlahon of the ‘address
translation mechanism: levels of mappiog and use of so associative cache memory.
Both multi-level mapping and a small associative cache memory significantly
improve svstem performance, and thus they should be built into an advanced
microprocessor architecture. Pracnca!ly, all 32-bit microprocessors have 1mple-
-mented these two concepts in their architecture.

MU GN~CI4IP VErsys MMU GFF-CHIP

PAGING.  versus  SEGMENTATION 4
ONE-STAE MAPPING”  versus MULTI-STAGE MAPPING
CACHE MEMORY-YES versus CACHE MEMORY-NO

- INSTRUCTION RESTART = versus INSTRUCTION CONTINUATION

Ay

PROTECTION BUILT-IN  versus PROECTION IN SOFTWARE

-

- Figure 25.. A list of questions for the processor srchiteet

Techniques to support the virtual memorg system, especially the choiee of the -

techniques to implement resume operation, alter ap address fault is detected and
corrected, is also an important decision for the architect. The instruction restart
method seems to be more eflicient than the instruction costinuation method, espe-
cially if the AMMU is on the CPU chip. Theu. due to pipelined nature of
architectures in medern mjcroprocessors, the address fault can be detecied bel‘ore a
memery access. This significantly simplifies ‘the restart of the fauited instruction.’
Finally, the protection meéchsbism built io the architecture’ (such as the nng
system in the {286/i386 procestors) provides a powerful togl (or ab opérating sys-
tem designer, and reduces software overbead. On the other hatd, because the pro-

“tection system is already defined in the arc.‘:iu:clure. there is mo choice for the OS

designer, but to implement the available mechanism, whetber be {she) likes it or
not. ) -

The other approach, in which the processor provides some basic protection
elements, but pot the whole Protection system {such as supervisor/usér modes sod
access concepts in the MCG8020), requires from the OS designer to create the pro-
tection system in'software, thus i mcreasmg the sofhmre ov erhead Houever, t!ns
approach is more fexible,

We may conclude that the memory management architédure; in current -

micraprocéssors are coming of age. However, one of-the most challenging aspects

.of future processor design' will be to provide more élegam solutions to all these

problems, as well as to enable a more complete mtegrallon of memory manage
ment and virtual memory support
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