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Abstract

The connected Turán number is a variant of the much studied Turán number, ex(n, F ),
the largest number of edges that an n-vertex F -free graph may contain. We start a system-
atic study of the connected Turán number exc(n, F ), the largest number of edges that an
n-vertex connected F -free graph may contain. We focus on the case where the forbidden
graph is a tree. Prior to our work, exc(n, T ) was determined only for the case T is a star
or a path. Our main contribution is the determination of the exact value of exc(n, T ) for
small trees, in particular for all trees with at most six vertices, as well as some trees on
seven vertices and several infinite families of trees. We also collect several lower-bound
constructions of connected T -free graphs based on different graph parameters.

The celebrated conjecture of Erdős and Sós states that for any tree T , we have
ex(n, T ) ≤ (|T | − 2)n2 . We address the problem how much smaller exc(n, T ) can be,
what is the smallest possible ratio of exc(n, T ) and (|T | − 2)n2 as |T | grows.
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1 Introduction
For a graph G, we write e(G) and |G| to denote the number of edges and vertices in G.
For a pair U, V of disjoint sets of vertices in G, we use eG(U, V ) to denote the number of
edges in G with one endpoint in U and the other in V . G will be omitted from the subscript
if it is clear from context.

One of the most studied problems in extremal graph theory is to determine the Turán
number ex(n, F ), the largest number of edges that an n-vertex graph can have without
containing a subgraph isomorphic to F . In this paper, we start a systematic study of a
variant of this parameter: the connected Turán number exc(n, F ) is the largest number
of edges that a connected n-vertex graph can have without containing F as a subgraph.
Observe that if F is 2-edge-connected, then any maximal F -free graph G is connected,
as if G has at least two connected components, then adding an edge between them would
not create any copy of F . Also, if the chromatic number of F is at least 3, then by the
famous theorem by Erdős, Stone, and Simonovits [6, 7], we know that ex(n, F ) is attained
asymptotically (and for some graphs precisely) at the Turán graph that is connected. These
two observations imply the following proposition.

Proposition 1.1.
(1) If all connected components of F are 2-edge-connected, then ex(n, F ) = exc(n, F ).

(2) If χ(F ) ≥ 3, then exc(n, F ) = (1 + o(1)) ex(n, F ).

The asymptotics of ex(n, F ) is unknown for most bipartite F (for a general overview
of the so-called degenerate Turán problems, see the survey by Füredi and Simonovits [8]).
However, it is known that for any graph F that contains a cycle, ex(n, F ) grows super-
linearly. If ex(n, F ) is attained at a non-connected graph with a connected component of
size m, then we have ex(n, F ) ≤ ex(m,F ) + ex(n − m,F ), which does not hold for
’nice’ superlinear functions. There is a relatively large literature on the Turán number of
forests (see e.g. [3, 11, 12, 14, 15]), and in many cases the extremal graphs turned out to
be connected, so for those forests F , we have ex(n, F ) = exc(n, F ). In this paper, we
concentrate on the family of trees. A famous conjecture of Erdős and Sós (that appeared
in print first in [4]) states that any n-vertex graph with more than (k−2)n

2 edges contains
any tree T on k vertices. A proof was announced in the early 1990’s by Ajtai, Komlós,
Simonovits, and Szemerédi, but only arguments of special cases have appeared. A recent
survey of these and other degree conditions that imply embeddings of trees is given in
[13]. The universal construction that shows the tightness of the Erdős–Sós conjecture is
the union of vertex-disjoint cliques of size k− 1. This is not a connected graph and we are
only aware of two explicit results concerning exc(n, T ) (but there exist results on Turán
problems in connected host graphs, see e.g. [2]). The connected Turán number of stars
follows from the existence of (nearly) regular connected graphs. Apart from stars, paths on
k vertices, denoted by Pk, have been considered. The value of exc(n, Pk) was determined
by Kopylov, and independently by Balister, Győri, Lehel, and Schelp with the latter group
also showing the uniqueness of extremal constructions.

Theorem 1.2 ([1, Balister, Győri, Lehel, Schelp], [10, Kopylov]). If G is an n-vertex
connected graph that does not contain any paths on k + 1 vertices, then

e(G) ≤ max

{(
k − 1

2

)
+ n− k + 1,

(
⌈k+1

2 ⌉
2

)
+

⌊
k − 1

2

⌋(
n−

⌈
k + 1

2

⌉)}
holds.
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In the remainder of the introduction, we shall present the various results obtained con-
cerning exc(n, T ). Lower bound constructions are given in Section 2 and exact determi-
nation of exc(n, T ) including all trees on up to six vertices and some trees having seven
vertices is included in Section 3.

Our first result gathers several constructions, all based on some graph parameters, that
provide lower bounds on exc(n, T ). For those parameters we use the following notation.

Definition 1.3.
• p(G) denotes the maximum number of vertices in a path P of G such that for all
x ∈ V (P ) we have dG(x) ≤ 2.

• ∆(G) and δ(G) denote the maximum and the minimum degree in G.

• ν(G) denotes the number of edges in a largest matching of G.

• δ2(T ) denotes the smallest degree in T that is larger than 1.

• For a vertex v ∈ V (T ) let mT (v) be the size of largest component of T − v and let
m(T ) = min{mT (v) : v ∈ V (T )}.

• For a vertex v ∈ V (T ) let mT,2(v) be the sum of the sizes of two largest components
of T − v and let m2(T ) = min{mT,2(v) : v ∈ V (T )}.

• For an edge e = xy ∈ E(G) we write w(e) = min{dG(x), dG(y)} and define
w(G) = max{w(e) : e ∈ E(G)}.

Notation. For graphs H and G, their disjoint union is denoted by H ∪ G. The join of H
and G, denoted by H+G, is H ∪G with all edges hg h ∈ H, g ∈ G added. For a graph H
and a positive integer k, kH denotes the pairwise vertex-disjoint union of k copies of H .
Sk denotes the star with k leaves, Pk, Ck,Kk, Ek denote the path, the cycle, the complete
graph and the empty graph on k vertices, respectively. The complete bipartite graph with
parts of size a and b is denoted by Ka,b.

In the following remark, we gather the consequences of known constructions (mostly
used for distinct purposes).

Remark 1.4.
(1) The existence of connected (nearly)-regular graphs show exc(n, T ) ≥ ⌊n(∆(T )−1)

2 ⌋.

(2) The construction of Theorem 1.2 shows that if T has diameter d, then exc(n, T ) ≥(⌈ d+1
2 ⌉
2

)
+ ⌊d−1

2 ⌋(n− ⌈d+1
2 ⌉).

(3) Ka−1,n−a+1 shows that if the bipartition of T consists of classes of sizes a and b
with a ≤ b, then exc(n, T ) ≥ (a−1)(n−a+1). In particular, we have exc(n, T ) ≥
(w(T )− 1)(n−w(T ) + 1) and exc(n, T ) ≥ (ν(T )− 1)(n− ν(T ) + 1). The latter
can be improved to exc(n, T ) ≥ (ν(T ) − 1)(n − ν(T ) + 1) +

(
ν(T )−1

2

)
shown by

Kν(T )−1 + En−ν(T )+1, the largest graph with matching number less than ν(T ) if n
is large as proved by Erdős and Gallai [5].

Observe that if T is balanced, i.e. a = b in its bipartition, then the number of edges in
Ka−1,n−a+1 is just a constant smaller than the number of edges in n

k−1Kk−1, the extremal
graph of the Erdős-Sós conjecture. The next proposition states lower bounds due to new
constructions. The proof of Proposition 1.5 will be given in Scetion 2.
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Proposition 1.5. Suppose T is a tree on k ≥ 4 vertices.

(1) If T is not a path and thus p(T ) ≤ k − 3, then exc(n, T ) ≥ (
(
k−2p(T )−3

2

)
+

p(T ) + 2)⌊ n
k−p(T )−2⌋. Furthermore, if T contains at least two vertices of degree

at least three, then exc(n, T ) ≥
(k−p(T )−1

2 )+p(T )+2

k n−O(k).

(2) If T is not a star and δ2(T ) > 2, then exc(n, T ) ≥ ⌊n−1
k−1 ⌋(

(
k−2
2

)
+ δ2(T )− 1).

(3) If T is not a path, then exc(n, T ) ≥ n− 1 + ⌊ n−1
m(T )−1⌋

(
m(T )−1

2

)
.

(4) exc(n, T ) ≥ ⌊ n
k−m2(T )⌋(1 +

(
k−m2(T )

2

)
).

Next, we determine exc(n, T ) for all trees on k vertices with 4 ≤ k ≤ 6 (note that
there do not exist P3-free connected graphs), some trees on 7 vertices and for some infinite
families of trees. We need some notation first.

Let Da,b denote the double star on a+b+2 vertices such that the two non-leaf vertices
have degree a + 1 and b + 1. Sa1,a2,...,aj with j ≥ 3 denotes the spider obtained from j
paths with a1, a2, . . . , aj edges by identifying one endpoint of all paths. So Sa1,a2,...,aj has
1 +

∑j
i=1 ai vertices and maximum degree j. The only vertex of degree at least 3 is the

center of the spider, the maximal paths starting at the center are the legs of the spider. Mn

denotes the matching on n vertices (so if n is odd, then an isolated vertex and ⌊n
2 ⌋ isolated

edges).
The values of exc(n, Pk+1) were determined by Theorem 1.2, and for k ≥ 3, the

statement exc(n, Sk) = ⌊n(k−1)
2 ⌋ follows from Remark 1.4(1) and that the degree-sum of

an Sk-free graph is at most n(k−1). So in the next theorem, we only list those trees that are
neither paths nor stars. In particular, all trees have 5 or 6 vertices. Proofs of the following
theorems will be given in Section 3.

Theorem 1.6. For non-star, non-path trees with 5 or 6 vertices, the following exact results
are valid.

(1) For any T = S2,1,...,1 we have exc(n, T ) = ⌊n(∆(T )−1)
2 ⌋ if n ≥ |T |. In particular,

exc(n, S2,1,1) = n if n ≥ 5 and exc(n, S2,1,1,1) = ⌊ 3n
2 ⌋ if n ≥ 6.

(2) We have exc(n,D2,2) = 2n− 4 if n ≥ 6.

(3) We have exc(n, S3,1,1) = ⌊ 3(n−1)
2 ⌋ if n ≥ 7 and ex(6, S3,1,1) = 9.

(4) We have exc(n, S2,2,1) = 2n− 3 if n ≥ 6.

Let D∗
2,2 be the tree obtained from D2,2 by attaching a leaf to one leaf of D2,2.

Theorem 1.7. exc(n,D
∗
2,2) = 2n − 3 for all n ≥ 7, and exc(n,D

∗
2,2) =

(
n
2

)
for

1 ≤ n ≤ 6.

Theorem 1.8. exc(n, S2,2,2) = 2n − 2 for all n ≥ 7, and exc(n, S2,2,2) =
(
n
2

)
for

1 ≤ n ≤ 6.

Theorem 1.9. exc(n, S3,2,1) = 2n − 3 for all n ≥ 7, and exc(n, S3,2,1) =
(
n
2

)
for

1 ≤ n ≤ 6.
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Theorem 1.10. For any T = S3,1,...,1 with ∆(T ) ≥ 4, if n is large enough, then
exc(n, T ) = ⌊ (∆(T )−1)n

2 ⌋.

The broom, which we denote by B(k, a), is the special spider Sa−1,1,1,...,1 on k ver-
tices. So its maximum degree is k − a+ 1 and its diameter is a.

Theorem 1.11.

(1) For any a ≤ k−2, exc(n,B(k, a)) ≥ max{⌊ (k−a)n
2 ⌋,

(⌈ a+1
2 ⌉
2

)
+⌊a−1

2 ⌋(n−⌊a+1
2 ⌋)}

holds.

(2) For any a ≤ k/3, exc(n,B(k, a)) = ⌊ (k−a)n
2 ⌋ holds if n is large enough.

For a better overview, we include tables with previous results, our results and open
cases for trees on up to 7 vertices. SD2,2 denotes the tree on 7 vertices obtained from the
double star D2,2 by subdividing the edge connecting its two centers.

Number of vertices Tree exc(n, T ) Construction
4 P4 n− 1 Sn−1

S3 n Cn

5 P5 n K1 + (K2 ∪ En−3)

S4 ⌊ 3n
2 ⌋ (nearly) 3-regular

S2,1,1 n Cn

6 P6 2n− 3 K2 + En−2

S5 2n 4-regular
S2,1,1,1 ⌊ 3n

2 ⌋ (nearly) 3-regular
S2,2,1 2n− 3 K2 + En−2

S3,1,1 ⌊ 3(n−1)
2 ⌋ K1 +Mn−1

D2,2 2n− 4 K2,n−2

Table 1: The value of exc(n, T ) for all trees up to 6 vertices.

Tree exc(n, T ) Construction Tree exc(n, T ) Construction
S6 ⌊ 5n

2 ⌋ (nearly) 5-regular P7 2n− 2 K2 + (En−4 ∪K2)

S4,1,1 ≥ 2n− 3 K2 + En−2 S3,2,1 2n− 3 K2 + En−2

S3,1,1,1 ⌊ 3n
2 ⌋ (nearly) 3-regular S2,1,1,1,1 2n 4-regular

S2,2,2 2n− 2 K2 + (En−4 ∪K2) S2,2,1,1 ≥ 2n− 3 K2 + En−2

D∗
2,2 2n− 3 K2 + En−2 D2,3 ≥ 2n− 4 K2,n−2

SD2,2 ≥ 13n
7 −O(1) Proposition 1.5(1) D2,3 ≥ 2n− 2 if 6|n− 1 Proposition 1.5(2)

Table 2: Exact values and lower bounds on exc(n, T ) for trees with 7 vertices.

The starting point of our final subtopic is the Erdős–Sós conjecture, ex(n, T ) = k−2
2 n+

Ok(1). We would like to know how much smaller exc(n, T ) can be than ex(n, T ). For any
tree T we introduce

γT := lim sup
n

2

|T | − 2
· exc(n, T )

n
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where |T | denotes the number of vertices in T . It is well-known that any graph with average
degree at least 2d contains a subgraph with minimum degree at least d. Also, any tree on
k vertices can be embedded to any graph with minimum degree at least k. This shows that
γT ≤ 2 for any tree T on k vertices. The Erdős–Sós conjecture would imply γT ≤ 1.

Let Tk denote the set of trees on at least k vertices. We write γk := inf{γT : T ∈ Tk}
and γ := limk→∞ γk. Observe that γk is monotone increasing as T2 ⊃ T3 ⊃ T4 ⊃ . . . ,
and thus the limit γ exists.

Theorem 1.12. The following upper and lower bounds hold: 1
3 ≤ γ ≤ 2

3 .

2 Constructions
Proof of Proposition 1.5. For all lower bounds we need constructions.

For the general lower bound of (1), we construct a graph G(V,E) as follows: let s :=
⌊ n
k−p(T )−2⌋ and let V be partitioned into

⋃s
i=1(Ai∪Qi) with |Ai| = k−2p(T )−3 for all

1 ≤ i ≤ s, |Qi| = p(T ) + 1 for all 1 ≤ i < s. G[Ai] is a clique for all i. Every clique Ai

contains a special vertex xi, and G[{xi, xi+1}∪Qi] is a path with end vertices xi and xi+1

(with xs+1 = x1). Then G cannot contain T , as a copy of T could contain the vertices of
an Ai and then at most p(T ) vertices from both of Qi−1 and Qi, so at least one vertex of T
cannot be embedded.

To see the furthermore part of (1), we have the following construction G: we partition
the vertex set of G into {v}∪

⋃s
i=1(Ai∪Qi), where s = ⌈n−1

k ⌉ with |Ai| = k−p(T )−1,
|Qi| = p(T ) + 1 for all 1 ≤ i < s, and |Qi| ≤ p(T ) + 1 and if |Ai| > 0, then |Qi| =
p(T ) + 1. The edges of G are defined such that G[{v} ∪

⋃s
i=1 Qi] is a spider with center v

and legs Qi, G[Ai] is a clique and exactly one vertex of Ai is connected to the leaf of the leg
in Qi. The number of edges adjacent to Ai∪Qi is

(
k−p(T )−1

2

)
+p(T )+2, therefore e(G) is

as claimed. Finally, to see that G is T -free, observe that as T contains at least two vertices
of degree at least 3, if G contained a copy of T , then this copy should contain a vertex u
from one of the Ais. Also, such a copy cannot contain all vertices of Qi as p(T ) < |Qi|.
Therefore, the vertices of the copy of T should be contained in |Ai|+ |Qi|−1 < k vertices
— a contradiction.

The lower bound of (2) is shown by the following construction of a connected n-vertex

T -free graph G: we partition the vertex set of G into {v} ∪
⋃⌈n−1

k−1 ⌉
i=1 Ai with |Ai| = k − 1

for all i = 1, 2, . . . , ⌊n−1
k−1 ⌋ and every Ai containing a special vertex xi. The edges of G

are defined as follows: G[Ai \ {xi}] is a clique, v is adjacent to all xi, and xi is adjacent to
δ2(T )− 2 other vertices of Ai, so dG(xi) = δ2(T )− 1. We claim that G is T -free. Indeed,
as G − v has components of size at most k − 1, a copy of T must contain v. As T is not
a star, at least one of v’s neighbors is not a leaf and so its degree should be at least δ2(T ).
But all v’s neighbors are xi vertices that have degree δ2(T )− 1 in G. The number of edges

in G[{v} ∪
⋃⌊n−1

k−1 ⌋
i=1 Ai] is ⌊n−1

k−1 ⌋(
(
k−2
2

)
+ δ2(T )− 1).

The construction yielding the lower bound of (3) is G = K1 + (rKm(T )−1 ∪ Ks),
where r = ⌊ n−1

m(T )−1⌋ and s ≥ 0. Indeed, if G contained a copy of T , then this copy should
contain the vertex v of K1 as otherwise T would be contained in m(T ) − 1 vertices. But
then we cannot embed the largest branch pending on v as it has size at least m(T ).

To obtain the construction yielding the lower bound of (4), we partition the vertex set to
A1, A2, . . . , As, As+1 with s = ⌊ n

k−m2(T )⌋ and |Ai| = k −m2(T ) for all i = 1, 2, . . . , s.
As T is not a path, we have k−m2(T ) ≥ 2, so in each Ai we can pick two distinct vertices
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xi, yi, maybe with the exception of As+1. Then we define G as a “cycle of cliques”, so
G[Ai] is a clique for all i, and xiyi+1 is an edge (formally there should be three cases
depending whether As+1 has size 0, 1, or at least 2). To see that G is T -free, consider
the vertex v with m2(T ) = mT,2(v), i.e. the largest two connected components B1, B2 in
T − v have a total size of m2(T ). Suppose G contains a copy of T and the vertex playing
the role of v belongs to Ai. Then, as there are only two edges leaving Ai, T apart from
two components of T − v must be embedded into Ai. Moreover, since the two edges leave
from distinct vertices, at least one vertex of the two exceptional components must also be
embedded to Ai. So Ai should contain at least k −m2(T ) + 1 vertices — a contradiction.
(If i = s + 1 and xi = yi, then we have the same contradiction, as then As+1 should
contain at least k −m2(T ) vertices, but As+1 is strictly smaller than that.)

3 Proofs
We start by proving Theorem 1.6. We restate and prove its parts separately.

Theorem 3.1. For T = S2,1,...,1, the equality exc(n, T ) = ⌊n(∆(T )−1)
2 ⌋ holds if n ≥ |T |.

Proof. The constructions giving the lower bounds are connected (nearly) regular graphs of
degree ∆(T )− 1.

If T = S2,1,1,...,1, then the upper bound proof is a special case of Theorem 1.11, but for
completeness, we give a simpler proof of this case. If G is a connected, n-vertex, T -free
graph and for some x we have dG(x) ≥ ∆(T ), then G is the star. Indeed, the neighbors
of x can be adjacent only to other neighbors of x, otherwise T would be a subgraph of
G. So by connectivity NG[x] = V (G). But then if there is at least one edge between two
neighbors of x, then, as |V (G)| ≥ |V (T )|, again T would be a subgraph of G. The star has
fewer edges than the claimed maximum, so to have exc(n, T ) edges, G must be (nearly)
(∆(T )− 1)-regular.

Theorem 3.2. For any n ≥ 6, exc(n,D2,2) = 2n− 4 holds.

Proof. To see the lower bound, observe that K2,n−2 is D2,2-free as w(K2,n−2) = 2, while
w(D2,2) = 3.

To see the upper bound, observe first that all connected graphs with 6 vertices and at
least 9 edges contain a copy of D2,2 as can be checked in the table of graphs of [9] on pages
222–224.

Suppose there exists a minimum counterexample: a connected graph G on n ≥ 7
vertices and e(G) ≥ 2n− 3 edges with no copy of D2,2. We consider several cases.

CASE I: δ(G) ≤ 2 and there is a vertex v of degree at most 2 which is not a cut vertex.
Delete this vertex v of degree 1 or 2 to obtain a connected H = G\v with |H| ≥ 6. By

minimality e(H) ≤ 2(n−1)–4 and 2n−3 ≤ e(G) ≤ e(H)+2 ≤ 2(n−1)–4+2 = 2n−4
— a contradiction.

CASE II: δ(G) = 2 and every vertex of degree 2 is a cut vertex.
Consider v of degree 2 such that in H = G − v out of the two components A and B,

|A| is as small as possible. Let w be the vertex in A adjacent to v and let z be the vertex in
B adjacent to v.

If |A| ≥ 6 then by minimality of G, 2n − 3 ≤ e(G) ≤ 2|A| − 4 + 2|B| − 4 + 2 =
2(|A| + |B| + 1) − 8 = 2n − 8 — a contradiction. Otherwise 3 ≤ |A| ≤ 5 as |A| ≤ 2
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would imply δ(G) = 1 and we were in Case I. Also, |A| ≥ 4 as |A| = 3 would imply that
A must contain a vertex of degree 2 which is not a cut vertex and we were in Case I again.

Suppose |A| = 5. If dG(w) = 2 then |A| is not minimum, so in the induced subgraph
on A all vertices have degree at least 2 and dG(w) ≥ 3. But then the induced graph on
A either contains a vertex of degree 2 which is not a cut vertex and we are in Case I or
all degrees in G[A ∪ {v}] (except for v) are at least 3. Then one can find a copy of D2,2

with w being one of the centers and v being a leaf pending from w. Indeed, by the degree
condition, G[A \ {w}] contains a C4, so if N(w) contains two non-neighbor vertices x, y
of this C4, then x can be the other center of the copy of D2,2 and y the other leaf pending
from w. Otherwise w has exactly two neighbors in A, and then by the degree condition
G[A \ {w}] is K4 and it is trivial to embed D2,2.

Finally suppose |A| = 4. As |B| ≥ |A| = 4, it follows that B∗ = B ∪ {v, w} has at
least 6 vertices and |B∗| = n − 3, and hence by minimality of G, e(B∗) contains at most
2(n−3)−4 edges and together with at most 6 edges in A gives e(G) ≤ 2n−10+6 = 2n−4
— a contradiction.

CASE III: δ(G) ≥ 3.
If all vertices are of degree 3, we have 3n/2 edges, which is at most 2n− 4 for n ≥ 8.

For n = 7 this is impossible by parity, hence δ(G) ≥ 3 and ∆(G) ≥ 4. Consider an edge
e = xy with dG(y) = ∆(G) ≥ 4 and dG(x) ≥ 3.

If dG(y) ≥ 5, then for u, u′ ∈ N(x) we have |N(y) \ {x, u, u′}| ≥ 2, so x and y are
centers of a copy of D2,2. If dG(y) = 4 and dG(x) = 4 then either x and y have distinct
neighbors s not in N [y] and t not in N [x] and we find a copy of D2,2 with centers x, y, or
x and y are twins having the same neighbors a, b, c excluding themselves. But as |G| ≥ 7,
at least one vertex, say a, has a neighbor d not adjacent to the other 4 vertices and then a
and x can be centers of D2,2 with y and d pending from a.

So we can assume that all vertices have degree 3 or 4 and vertices of degree 4 form an
independent set Q. Let P = V \ Q, and consider the bipartite G[P,Q] where p + q = n,
|P | = p and |Q| = q. Clearly, 4q = e(P,Q) ≤ 3p. Hence 3n = 3q + 3p ≥ 7q and
q ≤ 3n/7, p ≥ 4n/7. But then

e(G) =
4q + 3p

2
≤ 12n/7 + 12n/7

2
=

12n

7
< 2n− 3

for n ≥ 11. So we are left with n = 7, 8, 9, 10.
For n = 7: q ≤ 3n/7 = 3 and q must be an integer. If q = 3, then G = K4,3

containing D2,2. The case q = 2 is impossible as the degree sum would be odd (by the
number p of odd-degree vertices). Hence q = 1 and p = 6. Consider a vertex v of degree 4
and its neighbors a, b, c, d all of degree 3. If say a is adjacent to a vertex outside {v, b, c, d},
then there is D2,2. But as this holds for all of a, b, c, d it means A = {v, a, b, c, d} has no
neighbor in V \A and G is not connected.

For n = 8, we still have q ≤ ⌊ 3n
7 ⌋ = 3 and p ≥ 5. But p = 5, 7 are impossible, again

due to parity, hence q = 2 and p = 6. Let Q = {a, b} be the set of vertices of degree
4. If some vertex x in P is adjacent to both a and b, then consider the only neighbor z
of x in P . Here a is adjacent to x and three more vertices in P , so at least two vertices
except x and z are neighbors of a and x can use z and b to obtain a copy of D2,2 with
centers x and a. Hence every vertex in P is adjacent to at most one vertex in Q, yielding
|P | ≥ e(P,Q) = 4|Q| — a contradiction.
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For n = 9, we have q ≤ ⌊ 3n
7 ⌋ = 3. The case q = 2 is impossible by parity and q = 1,

p = 8 implies e(G) = (4+24)/2 = 14 = 2n− 4 as stated by the theorem. So only q = 3,
p = 6 is to be checked. Let Q = {a, b, c} be the set of vertices of degree 4. If some vertex
v in P has at least two neighbors in Q, say a, b, then we have a copy of D2,2 with centers
v and a, as all the four neighbors of a are in P and at most two of them belong to N [x]. So
every vertex in P can have at most one neighbor in Q and as in the previous case we have
|P | ≥ e(P,Q) = 4|Q| — a contradiction.

For n = 10, q ≤ ⌊ 3n
7 ⌋ = 4, and so parity of the degree sum implies q = 4 or q = 2. If

q = 2 then e(G) = (8 + 24)/2 = 16 = 2n − 4 as stated in the theorem, so only q = 4,
p = 6 remains to be checked.

Let Q = {a, b, c, d} be the set of vertices of degree 4. If some vertex v in P has all its
neighbors in Q, say a, b, c, then we obtain a copy of D2,2 with centers v and a. Otherwise,
we have 4|Q| = e(P,Q) ≤ 2|P | — a contradiction.

Theorem 3.3. exc(n, S3,1,1) = ⌊ 3(n−1)
2 ⌋ if n ≥ 7 and exc(6, S3,1,1) = 9.

Proof. The lower bounds are shown by K1+Mn−1 for n ≥ 7 and by K3,3 for n = 6. The
former is S3,1,1-free as shown in Proposition 1.5(3) with m(S3,1,1) = 3. The graph K3,3

is S3,1,1-free as the bipartition of S3,1,1 has a part of size 4.
To obtain the upper bound, we consider an S3,1,1-free connected graph G. The general

idea is to choose a longest cycle C = v1v2, . . . , vk in G, and argue depending on its length
k.

If k = n, then C is a Hamiltonian cycle. It cannot have short chords; e.g. if v2v4
is an edge, then S3,1,1 can have center v2 and legs v2v1, v2v3, v2v4v5v6. Moreover if
n > 6, then longer chords cannot occur either. Indeed, if v2vj with j = 5, . . . , n − 2 is
an edge, then v2 with vj and its two successors can form the leg of length 3. Likewise for
j = 6, . . . , n − 1 such a leg can be formed using the two predecessors of vj , still keeping
the legs v2v1 and v2v3. This excludes all chords if n > 6, hence |E(G)| = n. If n = 6,
then antipodal vertices can be adjacent without creating any copy of S3,1,1, but no other
chords may occur. In this way we obtain the extremal graph K3,3.

Assume next that 4 < k < n. We show that this is impossible whenever n ≥ 6. Since
G is connected, there is a vertex x not in C but having at least one neighbor in C. If e.g.
xv2 is an edge, we find S3,1,1 with center v2 and legs xv2, v2v1, v2v3v4v5.

Assume now k = 4, C = v1v2v3v4, n ≥ 6. If P is any path with one end in C and
all its other vertices in V (G) \ V (C), then P can have no more than two edges, otherwise
S3,1,1 would be found, with the long leg in P and the two short legs in C. We are going to
prove that if P is shorter than 3, the number of edges in G is smaller than what is given in
the theorem.

If P has length 2, let xyv1 be a path attached to C. Then the edges xv2, xv3, xv4,
yv2, yv4 cannot be present because C is a longest cycle. Also the edges v1v3 and v2v4 are
excluded because G is S3,1,1-free. This implies |E(G)| ≤ 8 if n = 6. If n > 6, there
should be a further vertex z adjacent to C ∪P , but any edge from z to C ∪P would create
an S3,1,1. (For zx the center is v1, and for any other edge the center is the neighbor of z.)
Hence n > 6 is impossible in this case.

Suppose that P = yv1 is a single edge not extendable to a longer path outside C. Then
a sixth vertex x can only be adjacent to v2 or v4 (or both), otherwise an S3,1,1 would occur.
And also here, it is not possible to extend this graph to a connected graph of order 7 without
creating an S3,1,1 subgraph. Hence n = 6. Moreover, the diagonals of C must be missing;
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e.g. the edges xv2 and v2v4 would yield S3,1,1 with center v2 and legs xv2, v2v3, v2v4v1y.
Thus the number of edges is only 4 plus the degree sum of x and y, which is at most 7
because the presence of all four edges xv2, xv4, yv1, yv3 would make G Hamiltonian,
hence C would not be a longest cycle.

Finally we have to consider graphs without any cycles longer than 3. It means that
each block of G is K2 or K3. Let f(n) denote the maximum number of edges in such a
graph. We clearly have f(1) = 0, f(2) = 1, f(3) = 3. Let B be an endblock of G, with
cut vertex w. Deleting B − w from G we obtain a S3,1,1-free connected graph of order
n− |V (B)|+ 1, where |V (B)| is 2 or 3. Hence

f(n) ≤ max{f(n− 1) + 1, f(n− 2) + 3}.

This recursion implies f(n) ≤ ⌊3(n−1)/2⌋ for every n, completing the proof of the upper
bound for n ≥ 7.

Theorem 3.4. exc(n, S2,2,1) = 2n− 3 if n ≥ 6.

Proof. The lower bound is shown by K2 + En−2 as it has matching number 2, while
ν(S2,2,1) = 3.

To obtain the upper bound on exc(n, S2,2,1), we proceed by induction: for n = 6 every
connected graph on 6 vertices and 10 edges contains S2,2,1 (by inspecting the table of
graphs of [9] on pages 222–224).

For the induction step assume that the statement of the theorem holds for graphs of at
most n − 1 vertices and assume on the contrary that G is a connected graph on n vertices
and 2n− 2 edges without S2,2,1. Here 2n− 2 suffices as otherwise if e(G) ≥ 2n− 1, we
can delete an edge on a cycle.

If δ(G) ≤ 2 and there is a vertex v of degree at most 2 which is not a cut vertex, then we
can apply induction to H = F −v to obtain e(G) ≤ e(H)+2 ≤ 2(n−1)−3+2 = 2n−3
— a contradiction.

Suppose δ(G) = 2 and every vertex of degree 2 is a cut vertex. Then let v be such a
cut vertex with neighbors x and y. Consider H = G − v + (xy). Here |H| = n − 1 and
e(H) = 2n− 2− 2 + 1 = 2(n− 1)− 2 + 1, hence by induction H contains a copy S of
S2,2,1. If S does not use the edge xy, then S is also in G — a contradiction. If S uses xy
such that one of x and y, say x, is a leaf in S, then replace x by v and the edge xy by vy to
obtain a copy S′ of S2,2,1 in G — a contradiction. Finally, if xy is the edge of a 2-leg of S
containing the center, say x and the leg is xyz, then replace this leg by xvy to obtain S′ in
G — a contradiction.

So we can assume δ(G) ≥ 3. If all vertices are of degree 3, then e(G) = 3n/2 < 2n−2.
If all vertices are of degree at least 4, then e(G) ≥ 2n > 2n−2, hence there exists a vertex
y of degree 3 adjacent to a vertex x of degree at least 4. Let u, v be the other two neighbors
of y, and let z ̸= u, v, y be a neighbor of x. If u or v has a neighbor outside these 5
vertices, then we obtain a copy of S2,2,1 with center y. If not and N(x) = {u, v, y, z},
then z must have a neighbor outside these 5 vertices and we obtain a copy of S2,2,1 with
center x. Finally, if N(u) ∪ N(v) ⊆ {u, v, x, y, z} and z′ is another neighbor of x, then
dG(z

′) ≥ 3 implies that z′ must have a neighbor outside these 6 vertices, and we obtain a
copy of S2,2,1 with center x. This contradiction finishes the proof.

Proof of Theorem 1.7. The assertion is trivial for n < 7. For larger n the split graph
construction K2 + En−2 shows that 2n− 3 is a lower bound.
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To derive the same as an upper bound, assume n > 6 and consider any D∗
2,2-free graph

G of order n with more than 2n− 4 edges. Then, by Theorem 1.6(2), there is a D = D2,2

subgraph in G; let the central edge of D be xy.
If some vertex not in D is adjacent to a leaf of D, then a copy of D∗

2,2 arises — a
contradiction. More generally, there cannot exist any vertex at distance exactly 2 from
{x, y}. By the connectivity of G, it follows that every vertex of G is adjacent to at least
one of x and y. On this basis we partition V (G)− {x, y}, defining

X = N(x)−N [y], Y = N(y)−N [x], Z = N(x) ∩N(y).

Let us assume |Y | ≥ |X|. Due to the presence of D2,2 we know that |X|+ |Z| ≥ 2 holds.
Moreover, |Y | ≥ |X| with n ≥ 7 implies |Y |+ |Z| ≥ 3. Hence there cannot be any X−Y
edges, moreover Y ∪ Z is an independent set, both because G is D∗

2,2-free. For the same
reason, if |X|+ |Z| > 2, then also X ∪Z is independent. In this case the entire X ∪Y ∪Z
is independent and G cannot have more than 2n− 3 edges, yielding just the extremal split
graph K2 + En−2. Otherwise, if |X|+ |Z| = 2, there can be just one edge inside X ∪ Z,
hence we have 6 edges in the K4 subgraph induced by X∪Z∪{x, y}, and there are further
n−4 edges from Y to y. These are altogether n+2 edges only, i.e. fewer than the assumed
2n− 3. This contradiction completes the proof.

Proof of Theorem 1.8. To simplify notation, let f(n) = exc(n, S2,2,2). The lower bound
for n ≥ 7 is obtained by the following construction that works for all n. Take a complete
graph K4 on the vertex set {v1, v2, v3, v4} and join all vi for i = 5, 6, . . . , n to v1 and
v2. Equivalently, v1 and v2 are universal vertices, supplemented with the single edge v3v4.
This connected graph with 2n − 2 edges does not contain S2,2,2 because it is not possible
to delete two vertices from S2,2,2 to destroy all but one edges.

The argument for the upper bound applies induction on n, with base cases n ≤ 7, from
which only n = 7 is nontrivial. We note here that n = 5 and n = 6 are the only cases
where 2n− 2 is not an upper bound on the formula given for f(n).

For n = 7 the assertion is that every connected graph G with 7 vertices and at least
13 edges contains S2,2,2 as a subgraph. To prove it, suppose first that G has a cut vertex
x, and consider the vertex distribution between the components of G − x. If it is (3, 3)
— where we unite components if there are more than two, e.g. the distribution (3, 2, 1) is
also viewed as (3, 3) –– then already 9 nonadjacencies are found, hence G would have at
most 21 − 9 = 12 edges — a contradiction. If the distribution is (2, 4), then it forces 8
nonadjacencies, hence G must be the graph in which the two blocks incident with x are
K3 and K5. Obviously this graph contains S2,2,2. If the distribution is (1, 5), then x has
a pendant neighbor, say y, and G − y is a connected graph of order 6, having at least 12
edges. Routine inspection shows that all such graphs G contain S2,2,2.

Assume that G is 2-connected. If G has minimum degree 3, then G has a Hamiltonian
cycle, say C = v1v2v3v4v5v6v7. (More generally it is well known that a graph of order
2d + 1 and minimum degree d is non-Hamiltonian if and only if either it is the complete
bipartite graph Kd,d+1 or it has two blocks incident with a cut vertex, both blocks being
Kd+1; in our case both of them would have only 12 edges.) The presence of any long
chord in C, e.g. v3v6 immediately creates an S2,2,2 with center v3 and legs v3v2v1, v3v4v5,
v3v6v7. Moreover, any three consecutive short chords, e.g. v2v4, v3v5, v4v6 create an S2,2,2

with center v4 and legs v4v2v1, v4v3v5, v4v6v7. And now at least one of these situations
holds because in general a cycle of length n without three consecutive short chords and
with no other chords at all can have no more than n+ 2n/3 < 2n− 2 edges if n ≥ 7.
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Hence in the 2-connected case G has minimum degree exactly 2, and if we remove a
vertex x of degree 2, we obtain a graph on 6 vertices with at least 11 edges. If it is K5 with
a pendant edge, then the pendant vertex must be adjacent to x and we immediately find
S2,2,2. Otherwise there can be at most one vertex of degree 2 in G − x, hence it contains
a C6, say v1v2v3v4v5v6 (as a rather particular corollary of Pósa’s theorem). If the two
neighbors of x are antipodal in C, e.g. v3 and v6, we find S2,2,2 with center v3 and legs
v3xv6, v3v2v1, v3v4v5. If the two neighbors of x are consecutive in C, then C extends to
C7 which we already settled. Hence we can assume that the neighbors of x are v2 and v4.
Since C has at least 5 chords, some of the five chords v1v3, v1v4, v2v5, v3v5, v3v6 must
be present, and each of them creates S2,2,2 with x and the edges of C. This completes the
proof of f(7) = 12.

Turning now to the inductive step, assume that n ≥ 8 and that the upper bound 2n− 2
is valid for all smaller orders other than 5 and 6. Depending on the structure of the graph
under consideration, we will apply one of the following upper bounds:

f(n− 1) + 2, f(n− 3) + 6, f(n− 6) + 12.

Suppose that G is an S2,2,2-free connected graph of order n ≥ 8, and G is S2,2,2-saturated,
i.e. the insertion of any new edge inside V (G) would create an S2,2,2 subgraph. Under the
latter assumption we observe the following.

Claim 3.5. If x is a vertex of degree 2, say with neighbors y and z, then yz is also an edge
of G.

Proof of Claim 3.5. Otherwise yxz would be an induced path in G. Let then G′ be the
graph obtained by the insertion of edge yz. By assumption there is an S = S2,2,2 subgraph
in G′, which necessarily contains the edge yz. If yz is a leaf edge of S, then of course the
degree-3 center of S cannot be x, it must be another vertex w adjacent to y or to z. But then
z or y is a leaf vertex of S, and replacing yz with yx or zx we find another copy of S2,2,2

which is a subgraph of G — a contradiction. The other possibility would be that y or z is
the degee-3 vertex of S, and the edge yz is continued with a leaf edge zw or yw (allowing
also w = x). But then x cannot be a mid-vertex of any leg of S since x does not have a
neighbor other than y and z. Hence the leg yzw or zyw can be replaced with yxz or zxy,
and we would again find a copy of S2,2,2 as a subgraph of G.

As a consequence of Claim 3.5, if G has a vertex of degree 1 or 2, then |E(G)| ≤
f(n− 1)+2 ≤ 2n− 2 follows by induction, because deleting a vertex of minimum degree
the graph remains connected. Hence from now on we may assume that G has minimum
degree at least 3.

Let C = v1v2v3v4 . . . vs be a longest cycle in G. We have already seen that if s = n,
then |E(G)| ≤ 5n/3 < 2n− 2. Next, we observe that if n > s ≥ 5, then V (G) \ V (C) is
an independent set. Indeed, if xy is an edge outside C then there is a path P (possibly an
edge) from {x, y} to C and in this case a copy of S2,2,2 is easily found using edges of C,
with two edges from P ∪ {xy}. E.g., if v3x is an edge, then S2,2,2 can have center v3 and
legs v3xy, v3v2v1, v3v4v5. Thus, every vertex outside of C has at least three neighbors in
C. Moreover, no two of those neighbors are consecutive in C, because C is longest. This
immediately excludes s = 5. But also s > 5 is impossible because if e.g. v2, v4, v6 are
neighbors of x, then an S2,2,2 can have center x and legs xv2v1, xv4v3, xv6v5.
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As a consequence, investigations are reduced to S2,2,2-free connected graphs with min-
imum degree at least 3 and without any cycles longer than 4. Such a graph G cannot be
2-connected (because due to Dirac’s theorem, 2-connectivity would imply the presence of
a cycle longer than 5). Hence G contains at least two endblocks.

Let B be an endblock of G, attached with cut vertex w to the other part of G. We
argue that B induces K4 in G. All vertices of B except w have degree at least 3 inside B,
therefore B contains a 4-cycle, say C ′ = wxyz. If there is a vertex u in V (B) \ V (C ′),
then 2-connectivity of B and the exclusion of cycles longer than 4 imply that there are
exactly two neighbors of u in C’, either w and y, or x and z. But then there must exist a
third neighbor v of u not in C ′, and v also has two neighbors in C ′; and then a cycle longer
than 4 would occur. Thus B is a K4 indeed.

Now we are in a position to complete the proof of the theorem by induction on n.
Consider any maximal S2,2,2-free connected graph G of order n > 7 that has at least 2n−2
edges. If G has a vertex of degree at most 2, then apply the upper bound f(n− 1) + 2.

If G has minimum degree at least 3, we know that G is not 2-connected. Then we
distinguish cases according to n. If n = 8 or n = 9, remove all the 6 non-cutting vertices of
two K4 endblocks of G and apply the upper bound f(n−6)+12. This yields |E(G)| ≤ 13
for n = 8 and |E(G)| ≤ 15 for n = 9, both are smaller than 2n− 2.

If n ≥ 10, remove the 3 non-cutting vertices of a K4 endblock of G and apply the
upper bound f(n− 3) + 6. This yields |E(G)| ≤ 2n− 2.

Remark 3.6. The extremal graphs are not unique if n ≥ 7. In the graph constructed at
the beginning of the proof we can remove three vertices of degree 2 and attach a block K4

to one of the two high-degree vertices. As another alternative for n ≥ 10, we can remove
six vertices of degree 2 and attach two blocks isomorphic to K4, one block to each high-
degree vertex. A further extremal graph of order 7 can be obtained from K5 by attaching
two pendant edges to a vertex of K5.

Proof of Theorem 1.9. A lower bound for n ≥ 7 is the split graph K2+En−2 with 2n−3
edges which does not even contain S2,2,1 and hence S3,2,1 cannot be a subgraph either.

The proof of the upper bound proceeds by induction on n. The base case n = 7 is left
to the Reader. Assume G is a minimum connected counterexample with n ≥ 8 vertices
and has at least 2n − 2 edges but no copy of S3,2,1. If G contains a vertex v of degree at
most 2 such that H = G−v is connected, then, by minimality, e(H) ≤ 2(n−1)−3 hence
2n− 2 ≤ e(G) ≤ e(H) + 2 ≤ 2n− 3 — a contradiction.

Next, assume v is a cut vertex with neighbors x and y. Consider the graph H that we
obtain from G by deleting v and adding the edge xy. We will show that if H contains S3,2,1

then so does G. Let A be the component containing x and B the component containing y.
By symmetry we may assume that if H contains a copy S of S3,2,1, then its center is in A
and so B can contain vertices of at most one leg of S. We consider cases according to the
number of vertices in S ∩B. If A contains S3,2,1 completely, then so does G.

If A contains all of S3,2,1 except for a leaf played by y, then the same copy with v
replacing y is contained in G. If S ∩B = {y, w}, then the leg of S ending x− y − w can
be replaced in G with x− v − y to obtain a copy S′ of S3,2,1. If S ∩ B = {y, w, z}, then
the leg of S ending x−y−w− z can be replaced in G with x−v−y−w to obtain a copy
S′ of S3,2,1. So, as proved, H must be S3,2,1-free, hence 2n − 2 ≤ e(G) ≤ e(H) + 1 ≤
2(n− 1)− 3 + 1 ≤ 2n− 4 — a contradiction.
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Therefore, from now on we may assume δ(G) ≥ 3. By Theorem 1.6(4), we know
that G contains a copy S of S2,2,1. Let v be the center of S with legs v − u, v − x − y,
and v − a − b. If y or b has a neighbor not in S, then G contains a copy of S3,2,1 — a
contradiction.

Suppose x (or a) has a neighbor z not in S. Then z cannot be adjacent to any of v, y, a, b
as a copy of S3,2,1 would appear. Also, z cannot be adjacent to any vertex outside S as
again a copy of S3,2,1 would appear in G. By δ(G) ≥ 3, z must be adjacent to u, x, and a,
but then a copy of S3,2,1 (this time with center z) would appear in G.

We have shown so far that x, y, a, b cannot have neighbors outside S.
If u has at least two neighbors z and w outside S, then they cannot be adjacent (it would

create the leg v − u − z − w of a copy of S3,2,1) and none of them can have a neighbor
outside S as a copy of S3,2,1 would appear in G. As shown above, they cannot be adjacent
to any of x, y, a, b hence they have degree at most 2 (with neighbors u and possibly v)
contradicting δ(G) ≥ 3.

If u has just one neighbor, say z outside S, then z cannot have a neighbor outside S as
a copy of S3,2,1 would appear, and as before, z cannot be adjacent to any of x, y, a, b hence
z can be adjacent to at most u and v but then dG(z) ≤ 2 contradicts δ(G) ≥ 3.

So the only vertex of S that can have further neighbors outside S is v. We claim that
there cannot exist a path v − w − z with w, z /∈ S. Indeed, if w, z existed, then any of the
edges ax, ay would create a copy of S3,2,1 with center a. Similarly, any of the edges xa,
xb would create a copy of S3,2,1 with center b. But then δ(G) ≥ 3 implies the presence of
ua and ux in G creating a copy of S3,2,1 with center u. Therefore all vertices outside S
must have degree 1, which case has already been dealt with. This finishes the proof of the
induction step.

Proof of Theorem 1.10. It is enough to prove that if G is a connected n-vertex graph with
∆(G) ≥ ∆(T ), then G contains T or e(G) ≤ ⌊ (∆(T )−1)n

2 ⌋. So fix a vertex v with dG(v) =
∆(G) ≥ ∆(T ) and consider the partition {v}, N(v), X := V (G) \N [v].

If X contains an edge xy, then by connectivity of G, there must exist a path (maybe
a single edge) from xy to N(v) and we find a copy of T in G. So we may assume that
X is independent, and thus by connectivity of G, every x ∈ X is adjacent to at least one
u ∈ N(v).

CASE I: dG(v) = ∆(G) > ∆(T ).
Then any x ∈ X is adjacent to exactly one vertex u ∈ N(v) as if xu, xu′ are edges

in G, then uxu′ can form the long leg of a copy of T with center v and other neighbors
of v complete this copy of T . So dG(x) = 1 for all x ∈ X . Let u, u′ ∈ N(v) be two
vertices such that at least one of them has a neighbor in X . Then again if uu′ is an edge,
we find a copy of T . So if U ⊆ N(v) is the set of neighbors of v that are adjacent to a
vertex in X and U ′ = N(v) \U , then e(G) ≤ |U ∪X|+ e(U ′). If |U ′| ≤ ∆(T ) + 1, then
e(U ′) ≤

(
∆(T )+1

2

)
and so e(G) ≤ n − 1 +

(
∆(T )+1

2

)
≤ ⌊ (∆(T )−1)n

2 ⌋ as ∆(T ) − 1 ≥ 3.
Finally, if |U ′| ≥ ∆(T ) + 2, then either G[U ′] is a (partial) matching and thus e(G) ≤
(1 + |U |+ |X| − 1) + 3|U ′|

2 ≤ 3(n−1)
2 ≤ ⌊ (∆(T )−1)n

2 ⌋ (here we use ∆(T ) ≥ 4) or G[U ′]
contains a path on 3 vertices, and then by |U ′| ≥ ∆(T ) + 2 we find a copy of T in G.

CASE II: dG(v) = ∆(G) = ∆(T ).
As X is independent, we have e(G) ≤ (∆(G) + 1)∆(G) = (∆(T ) + 1)∆(T ) =

O(1).
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Proof of Theorem 1.11. The lower bound ⌊ (k−a)n
2 ⌋ follows from Remark 1.4(1), while, as

the diameter of B(k, a) is a, Remark 1.4(2) yields the lower bound
(⌈ a+1

2 ⌉
2

)
+ ⌊a−1

2 ⌋(n−
⌊a+1

2 ⌋).
To see the upper bound of (2), let G(V,E) be an n-vertex B(k, a)-free graph with

a ≤ k/3. Assume first that there exists a vertex x with dG(x) ≥ k − 1. We claim that
G[V \ {x}] does not contain a path on 2a − 3 vertices. Indeed, suppose to the contrary
that y1, y2, . . . , y2a−3 is a path in G[V \ {x}]. Then as G is connected, there exists a path
P from x to some yj that does not contain any other yi. Then either x, P, yj , yj−1, . . . , y1
or x, P, yj , yj+1, . . . , y2a−3 contains at least a vertices. So x and the first a − 1 of them
together with the other neighbors of x form a copy of B(k, a) — a contradiction. Theo-
rem 1.2 implies that if n is large enough, then e(G) ≤ n−1+e(G−x) ≤ n−1+⌊ 2a−5

2 ⌋n ≤
an ≤ ⌊k−a

2 n⌋ as a ≤ k/3. This finishes the proof in this case.
Assume finally that ∆(G) ≤ k − 2. Then if n is large enough, every vertex x of

G is the endpoint of a path on a · k vertices, since G is connected and have maximum
degree at most k − 2. Suppose towards a contradiction that G contains a vertex x with
dG(x) = d ≥ k − a+ 1. Let z1, z2, . . . zd be the neighbors of x and let x, y2, y3, . . . , ya·k
be a path P . Then y2 is one of the zj’s, and as d ≤ k − 2, there must exist zj such that
zj ∈ P , say zj = yi and either yi−1, yi−2, . . . , yi−a+2 or yi+1, yi+2, . . . , yi+a−2 are not
neighbors of x. Then x, these yis and the neighbors of x form a B(k, a).

We obtained that ∆(G) ≤ k−a must hold, which implies e(G) ≤ ⌊ (k−a)n
2 ⌋ as claimed.

Theorem 1.11 will provide the upper bound of Theorem 1.12. The next statement
gives a general lower bound on exc(n, T ) and thus will help us obtain the lower bound of
Theorem 1.12.

Theorem 3.7. For any ε > 0 there exists a positive integer k0 = k0(ε) such that for any
tree T on k ≥ k0 vertices, we have exc(n, T ) ≥ (k6 − ε)n if k ≥ k0 and n is large enough.

Proof. CASE I: m(T ) > ⌊k/3⌋.
Then by Proposition 1.5(3) we have

exc(n, T ) ≥ n− 1 +

⌊
n− 1

m(T )− 1

⌋(
m(T )− 1

2

)
≥ (n− 1)

(
1 +

⌊k/3⌋ − 1

2

)
≥ nk

(
1

6
− ε

)
,

if k and n are large enough.
CASE II: m(T ) ≤ ⌊k/3⌋.
Then m2(T ) ≤ 2m(T ) ≤ 2⌊k

3 ⌋, and thus k−m2(T ) ≥ ⌈k
3 ⌉. Proposition 1.5(4) yields

exc(n, T ) ≥

⌊
n

⌈k
3 ⌉

⌋(
1 +

(
⌈k
3 ⌉
2

))
≥ nk

(
1

6
− ε

)
,

if k and n are large enough.

Proof of Theorem 1.12. The lower bound follows from Theorem 3.7, the upper bound
from Theorem 1.11(2) with taking a = ⌊k/3⌋.
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4 Concluding remarks
Theorem 1.12 gave upper and lower bounds on γ. If the lower bound from Theorem 1.11(1)
turned out to be (asymptotically) sharp (which we believe to be the case) for a = (1/2−ε)k
or a = (1/2+ ε)k, then the upper bound on γ would improve from 2/3 to 1/2. Note that a
special case of Theorem 1.10 yields exc(n, S3,1,1,1) = ⌊ (∆(S3,1,1,1)−1)n

2 ⌋, so a small case
when a = ⌊k/2⌋. We have no evidence to believe that the lower bound of 1/3 on γ is best
possible.

In Remark 1.4 and Proposition 1.5, we enumerated several graph parameters based on
which one could define general constructions avoiding trees T for which these parameters
have small value. It would be nice to add other parameters to this list, and would be
wonderful to prove that it is enough to consider a finite set of parameters to determine the
asymptotics of exc(n, T ) for all trees T . Of particular interest is the characterization of
those trees for which ex(n, T ) − c(T ) ≤ exc(n, T ) ≤ ex(n, T ) holds for some constant
c(T ). As we have seen after Remark 1.4, balanced trees share this property assuming the
Erdős-Sós conjecture.

Proposition 1.5 gave constructions that do not contain any tree T on k vertices with
given p(T ), δ2(T ), m(T ), and m2(T ). It would be interesting to figure out whether these
constructions are best possible. For a family G of graphs, we write exc(n,G) to denote
the maximum number of edges in an n-vertex connected graph that does not contain any
G ∈ G as a subgraph.

Problem 4.1. (1) For any k and p let T 0
k,p denote the set of trees T on k vertices with

p(T ) ≤ p. Determine exc(n, T 0
k,p).

(2) For any k and d ≥ 3 let T 0
k,d denote the set of trees T on k vertices with δ2(T ) ≥ d.

Determine exc(n, T 0
k,d).

(3) For any k and m let T 1
k,m denote the set of trees T on k vertices with m(T ) ≥ m.

Determine exc(n, T 1
k,m).

(4) For any k and m let T 2
k,m denote the set of trees T on k vertices with m2(T ) ≤ m.

Determine exc(n, T 2
k,m).

As for special tree classes, one such class that could give some insight is the set of
spiders with all legs of at most 2 vertices. For the spider S = S2,2,...,2,1,1,...,1 with t legs of
two vertices and s legs consisting of a single vertex, we have |S| = 2t+ s+ 1, and

• ν(T ) = t+ 1 if s > 0,

• ∆(T ) = t+ s,

• m2(T ) = 4 if t ≥ 2.

The construction of Remark 1.4(1) based on maximum degree outperforms the one based
on the matching number in Remark 1.4(3) if s > t. But the one based on m2 in Proposi-
tion 1.5(4) is better than both previous ones once s ≥ 5 and t ≥ 2. It would be interesting
to see whether these constructions achieve the asymptotics of exc(n, S).

Classical Turán numbers are monotone with two respects: Firstly, if H is a subgraph of
F then ex(n,H) ≤ ex(n, F ). This inequality is preserved for the connected Turán number
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exc(n, F ) (excluding the small “undefined” cases K2 and P3). Secondly, if m < n, then
ex(m,F ) ≤ ex(n, F ). This property is not necessarily preserved by connected Turán
numbers for small values of n with respect to |T |. There are several examples given by
our results, of the following type: exc(|T | − 1, T ) =

(|T |−1
2

)
> exc(|T |, T ); see e.g.

T = S3,2,1.

Problem 4.2. Is it true that there exists a threshold n0(F ) such that exc(m,F ) ≤ exc(n, F )
holds whenever n0(F ) ≤ m < n?
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Abstract

This article aims to provide exponential lower bounds on the number of non-isomorphic
k-gonal face-2-colourable embeddings (sometimes called, with abuse of notation, biem-
beddings) of the complete multipartite graph into orientable surfaces.

For this purpose, we use the concept, introduced by Archdeacon in 2015, of Heffer
array and its relations with graph embeddings. In particular we show that, under certain
hypotheses, from a single Heffter array, we can obtain an exponential number of distinct
graph embeddings. Exploiting this idea starting from the arrays constructed by Cavenagh,
Donovan and Yazıcı in 2020, we obtain that, for infinitely many values of k and v, there

are at least k
k
2+o(k) ·2v·

H(1/4)

(2k)2
+o(v) non-isomorphic k-gonal face-2-colourable embeddings

of Kv , where H(·) is the binary entropy. Moreover about the embeddings of K v
t ×t, for

t ∈ {1, 2, k}, we provide a construction of 2v·
H(1/4)
2k(k−1)

+o(v,k) non-isomorphic k-gonal face-
2-colourable embeddings whenever k is odd and v belongs to a wide infinite family of
values.

Keywords: Topological embedding, non-isomorphic embedding, Heffter array.

Math. Subj. Class. (2020): 05C10, 05C15, 05B20, 54C25

1 Introduction
The purpose of this paper is to provide exponential lower bounds on the number of non-
isomorphic embeddings of the complete multipartite graph into orientable surfaces that
induce faces of a given length k (i.e. we investigate the so-called k-gonal embeddings). We
first recall some basic definitions, see [28].
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Definition 1.1. Given a graph Γ and a surface Σ, an embedding of Γ in Σ is a continuous
injective mapping ψ : Γ→ Σ, where Γ is viewed with the usual topology as 1-dimensional
simplicial complex.

The connected components of Σ \ψ(Γ) are said ψ-faces. Also, with abuse of notation,
we say that a closed walk F of Γ is a face (induced by the embedding ψ) if ψ(F ) is the
boundary of a ψ-face. Then, if each ψ-face is homeomorphic to an open disc, the embed-
ding ψ is called cellular. If the boundary of a face is homeomorphic to a circumference (i.e.
is a simple cycle), such a face is said to be simple and if all the faces are simple we say that
the embedding is circular (or simple, following the notation of [32]). If moreover, the em-
bedding is face-2-colourable sometimes, with abuse of notation, we call it a biembedding.
In this context, we say that two embeddings ψ : Γ → Σ and ψ′ : Γ′ → Σ′ are isomorphic
if and only if there is a graph isomorphism σ : Γ → Γ′ such that σ(F ) is a ψ′-face if and
only if F is a ψ-face.

The existence problem of cellular embeddings of a graph Γ into (orientable) surfaces
has been widely studied in the case of triangular embeddings, which are the ones whose
faces are triangular. This kind of embeddings has been investigated, at first, because their
construction was a major step in proving the Map Color Theorem [33]. Among the papers
related to this existence problem, we recall [3, 15, 16, 18, 19, 23, 26] where the natural
question of the rate growth of the number of non-isomorphic triangular embeddings of
complete graphs has been considered too. Moreover, due to the Euler formula, if there
exists a triangular embedding ψ from Γ to some surface Σ, ψ minimizes the genus of Σ.
For this reason, such kinds of embeddings are called genus embeddings. Two naturally
related questions are the investigation of the rate of the number of non-isomorphic genus
embeddings (see [21, 25]) and that of the k-gonal embeddings (see [17, 22, 24]).

In this paper, we consider the latter question and we study the rate growth of the number
of non-isomorphic k-gonal embeddings of the complete multipartite graph with m parts of
size t, denoted by Km×t. Here, we provide exponential lower bounds on this number for
several infinite classes of parameters k,m and t. Furthermore, our embeddings also realize
additional properties: the faces they induce are (in several cases) simple and it is possible
to color them within two colors, i.e. these embeddings are 2-face colorable. Finally, in the
cases where k is 3, we find new classes of genus embeddings.

The approach we use in this article is purely combinatorial and requires the notion of
combinatorial embedding, see [14, 34]. Here, we denote by D(Γ) the set of all the oriented
edges of the graph Γ and, given a vertex x of Γ, by N(Γ, x) the neighborhood of x in Γ.

Definition 1.2. Let Γ be a connected multigraph. A combinatorial embedding of Γ (into
an orientable surface) is a pair Π = (Γ, ρ) where ρ : D(Γ)→ D(Γ) satisfies the following
properties:

• for any y ∈ N(Γ, x), there exists y′ ∈ N(Γ, x) such that ρ(x, y) = (x, y′);

• we define ρx as the permutation of N(Γ, x) such that, given y ∈ N(Γ, x), ρ(x, y) =
(x, ρx(y)). Then the permutation ρx is a cycle of order |N(Γ, x)|.

It is well known that a combinatorial embedding of Γ is equivalent to a cellular embed-
ding of Γ in an orientable surface, see [1, 20, 29]. This observation leads us to study this
kind of embedding isomorphisms purely combinatorially. From the combinatorial point of
view, the faces are determined using the face-trace algorithm, see [1]. It is easy to see that
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the faces are closed walks (that is sequences of consecutive vertices and edges, denoted
by v1, v2, . . . , vk), the length of a closed walk is the number of its edges. If the faces are
simple then vi ̸= vj for any i ̸= j, so the closed walks are indeed cycles with k distinct
vertices and k edges. In this context, it is possible to rephrase the definition of embedding
isomorphism as done by Korzhik and Voss in [24], see page 61.

Definition 1.3. Let Π := (Γ, ρ) and Π′ := (Γ′, ρ′) be two combinatorial embeddings of,
respectively, Γ and Γ′. We say that Π is isomorphic to Π′ if there exists a graph isomor-
phism σ : Γ→ Γ′ such that, for any (x, y) ∈ D(Γ), we have either

σ ◦ ρ(x, y) = ρ′ ◦ σ(x, y) (1.1)

or
σ ◦ ρ(x, y) = (ρ′)−1 ◦ σ(x, y). (1.2)

We also say, with abuse of notation, that σ is an embedding isomorphism between Π and Π′.
Moreover, if Equation (1.1) holds, σ is said to be an orientation preserving isomorphism
while, if (1.2) holds, σ is said to be an orientation reversing isomorphism.

This combinatorial approach has been developed in the literature into two kinds of di-
rections. The first one is the use of recursive constructions and has been applied to construct
triangular embeddings of complete graphs from triangular embeddings of complete graphs
of a lesser order. Within this method, it was first shown that there are at least 2av

2−o(v2)

non-isomorphic face-2-colourable triangular embeddings of the complete graph Kv for
several congruence classes modulo 36, 60 and 84 (see [3, 16]) and then that, for an infinite
(but rather sparse) family of values of v, there are at least vbv

2−o(v2) non-isomorphic face-
2-colourable triangular embeddings ofKv (see [15, 18, 19]). Another consequence of these
kinds of recursive constructions is the existence of 2cv

2−o(v2) non-isomorphic Hamiltonian
embeddings of Kv for infinitely many values of v (see [17]).

The second approach uses the current graph technique. Within this method, it was pro-
vided the first exponential lower bound (of type 2dv) on the number of non-isomorphic
face-2-colourable triangular embeddings of Kv for infinitely many values of v. Then, sim-
ilar results have been also given in the cases of genus and quadrangular embeddings (see
[22, 23, 24, 25]). The approach used in this paper belongs to this second family. The main
tool we will use is the concept of Heffter array, introduced by Archdeacon in [1] to provide
constructions of current graphs. Section 2 of this paper will be dedicated to introducing
this kind of array, to reviewing the literature on this topic and to further investigating the
connection with face-2-colourable embeddings. Then, in Section 3, we will deal with the
following problem: given a family of embeddings each of which admits Zv as a regu-
lar automorphism group (i.e. embeddings that are Zv-regular), how many of its elements
can be isomorphic? Proposition 3.4 will provide an upper bound on this number. In the
last two sections, we will consider some of the known constructions of Heffter arrays and
we will show that, under certain hypotheses, from each of such arrays we can obtain a
family of Zv-regular embeddings that is exponentially big. These families, together with
Proposition 3.4, will allow us to achieve the existence of an exponential number of non-
isomorphic k-gonal face-2-colourable embeddings of Kv and K v

t ×t in several situations.
In particular, in Section 4 we will obtain that, when k is congruent to 3 modulo 4 and v
belongs to an infinite family of values, there are k

k
2+o(k) · 2g(k)v+o(v) non-isomorphic k-

gonal face-2-colourable embeddings of Kv where g(k) is a rational function of k. Finally,
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in Section 5, we will consider the embeddings of K v
t ×t. In this case, for t ∈ {1, 2, k},

we will provide a construction of 2h(k)v+o(v,k) non-isomorphic k-gonal face-2-colourable
embeddings whenever k is odd, v belongs to a wide infinite family of values and where
h(k) is a rational function of k.

2 Heffter arrays and face-2-colourable embeddings
In this section we introduce the classical concept of Heffter array and its generalizations,
showing how these notions are useful tools for getting face-2-colourable embeddings of the
complete multipartite graph into an orientable surface.

Anm×n partially filled array on a given set Ω is anm×nmatrix with elements in Ω in
which some cells can be empty. Archdeacon [1] introduced a class of partially filled arrays,
called Heffter arrays, and showed how it is related to several other mathematical concepts
such as difference families, graph decompositions, current graphs and face-2-colourable
embeddings. These arrays have been then generalized by Costa and al. in [9] as follows.

Definition 2.1. Let v = 2nk+ t be a positive integer, where t divides 2nk, and let J be the
subgroup of Zv of order t. A Heffter array over Zv relative to J , denoted by Ht(m,n;h, k),
is an m× n partially filled array with elements in Zv such that:

(1) each row contains h filled cells and each column contains k filled cells;

(2) for every x ∈ Zv \ J , either x or −x appears in the array;

(3) the elements in every row and in every column sum to 0 (in Zv).

Example 2.2. Below we have an H9(11; 9), say A. Hence the elements of A belongs to
Z207 and we avoid the elements of the subgroup of Z207 of order 9.

10 55 101 −90 13 −22 −78 67 −56
−37 −9 45 102 −91 21 −20 −79 68
58 −47 −8 54 103 −81 19 −18 −80
−70 59 −38 −7 44 93 −82 17 −16

−71 60 −48 −6 53 94 −83 15 −14
−33 −72 61 −39 11 49 95 −84 12
24 −25 −73 62 −43 4 40 96 −85

26 −27 −74 63 −52 3 50 97 −86
−87 28 −29 −75 64 −42 2 41 98
99 −88 30 −31 −76 65 −51 −5 57
36 100 −89 32 −34 −77 66 −35 1

If t = 1, namely, if J is the trivial subgroup of Z2nk+1, we find the classical Heffter
arrays defined by Archdeacon, which are simply denoted by H(m,n;h, k). It is immediate
that if there exists an Ht(m,n;h, k) then mh = nk, 3 ≤ h ≤ n and 3 ≤ k ≤ m.
Also, m = n implies k = h and an Ht(n, n; k, k) is simply denoted by Ht(n; k). The
most important result about the existence problem for Heffter arrays is the following, see
[2, 5, 13].

Theorem 2.3. An H(n; k) exists for every n ≥ k ≥ 3.
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For other existence results on classical and generalised Heffter arrays see [32].
In [10] we introduced the further generalization of a λ-fold Heffter array A over Zv

relative to J , denoted by λHt(m,n;h, k) replacing property (2) of Definition 2.1 with the
following one:

(2’) the multiset {±x | x ∈ A} contains λ times each element of Zv \ J , where v =
2nk
λ + t.

Note that if λ > 1 then h and k can also be equal to 2.

Example 2.4. The following array A is a 2H(2, 5; 5, 2), in fact the multiset {±x | x ∈ A}
contains 2 times each element of Z11 \ {0}.

1 −2 3 4 5
−1 2 −3 −4 −5

Anyway here we consider the case λ = 1, since several of our constructions cannot be
naturally extended to the case λ > 1, as it will be underlined in Remark 2.17.

The focus of this paper is not the existence problem of Heffter arrays, but their con-
nection with face-2-colourable embeddings. We point out that there are several papers
in which Heffter arrays have been investigated to obtain face-2-colourable embeddings see
[1, 4, 6, 8, 10, 11, 12]. To present such a connection, now we have to introduce the concepts
of simple and compatible orderings.

In the following, given two integers a ≤ b, by [a, b] we denote the interval containing
the integers {a, a + 1, . . . , b}. If a > b, then [a, b] is empty. The rows and the columns of
an m × n array A are denoted by R1, . . . , Rm and by C1, . . . , Cn, respectively. Also we
denote by E(A), E(Ri), E(Cj) the list of the elements of the filled cells of A, of the i-th
row and of the j-th column, respectively. Given a finite subset T of an abelian group G and
an ordering ω = (t1, t2, . . . , tk) of the elements of T , for any i ∈ [1, k] let si =

∑i
j=1 tj

be the i-th partial sum of T . The ordering ω is said to be simple if sa ̸= sb for all 1 ≤
a < b ≤ k. We point out that if sk = 0 an ordering ω is simple if no proper subsequence
of consecutive elements of ω sums to 0. Note also that, if ω is a simple ordering, then
ω−1 = (tk, tk−1, . . . , t1) is simple too. Given an m × n partially filled array A, by ωRi

and ωCj we denote an ordering of E(Ri) and E(Cj), respectively. If for any i ∈ [1,m] and
for any j ∈ [1, n], the orderings ωRi

and ωCj
are simple, we define by ωr = ωR1

◦· · ·◦ωRm

the simple ordering for the rows and by ωc = ωC1
◦ · · · ◦ ωCn

the simple ordering for the
columns. Also, by natural ordering of a row (column) of A one means the ordering from
left to right (from top to bottom).

Definition 2.5. A partially filled array A on an abelian group G is said to be

• simple if there exists a simple ordering for each row and each column of A;

• globally simple if the natural ordering of each row and each column of A is simple.

It is easy to see that if k ≤ 5 then every Ht(n; k) is globally simple. By a direct check
one can see that the array of Example 2.2 is globally simple.

Definition 2.6. Given a relative Heffter array A, the orderings ωr and ωc are said to be
compatible if ωc ◦ ωr is a cycle of order |E(A)|.

Reasoning as in [11], we get the following.
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Theorem 2.7. Let A be a relative Heffter array Ht(m,n;h, k) that admits two compati-
ble orderings ωr and ωc. Then there exists a cellular face-2-colourable embedding σ of
K 2nk+t

t ×t, such that every edge is on a face whose boundary has length h and on a face
whose boundary has length k, into an orientable surface of genus

g = 1 +
(nk − n−m− 1)(2nk + t)

2
.

Moreover, σ is Z2nk+t-regular.

Remark 2.8. As already remarked in the Introduction, in general, in Theorem 2.7, the
faces are closed walks, but if the array is simple with respect to the compatible orderings
ωr and ωc then the faces are cycles. Clearly, in this case the face-2-colourable embedding
is circular.

Now we recall the definition of the Archdeacon embedding, see [1]. Let A be an
Ht(m,n;h, k); we consider the permutation ρ0 on ±E(A) = Z2nk+t \ 2nk+t

t Z2nk+t,
where 2nk+t

t Z2nk+t denotes the subgroup of Z2nk+t of order t, so defined:

ρ0(a) =

{
−ωr(a) if a ∈ E(A);
ωc(−a) if a ∈ −E(A).

(2.1)

Note that the complete multipartite graph K 2nk+t
t ×t is nothing but the Cayley graph on

Z2nk+t with connection set ±E(A), denoted by Cay[Z2nk+t : ±E(A)]. Now, we define a
map ρ on the set of the oriented edges of this graph as follows:

ρ((x, x+ a)) = (x, x+ ρ0(a)). (2.2)

Since ρ0 acts cyclically on ±E(A), the map ρ is a rotation of Cay[Z2nk+t : ±E(A)].
Example 2.9. Let A be the H9(11; 9) given in Example 2.2. Consider the following order-
ing for the rows

ωr = (10, 55, 101,−90, 13,−22,−78, 67,−56)(−37,−9, 45, 102,−91, 21,−20,−79, 68)
(58,−47,−8, 54, 103,−81, 19,−18,−80)(−70, 59,−38,−7, 44, 93,−82, 17,−16)
(−71, 60,−48,−6, 53, 94,−83, 15,−14)(−33,−72, 61,−39, 11, 49, 95,−84, 12)
(24,−25,−73, 62,−43, 4, 40, 96,−85)(26,−27,−74, 63,−52, 3, 50, 97,−86)
(−87, 28,−29,−75, 64,−42, 2, 41, 98)(99,−88, 30,−31,−76, 65,−51,−5, 57)
(36, 100,−89, 32,−34,−77, 66,−35, 1)

and the following ordering for the columns

ωc = (10, 36, 99,−87, 24,−33,−70, 58,−37)(55,−9,−47, 59,−71,−25, 26,−88, 100)
(101, 45,−8,−38, 60,−72,−27, 28,−89)(−90, 102, 54,−7,−48, 61,−73,−29, 30)
(−91, 103, 44,−6,−39, 62,−74,−31, 32)(13,−81, 93, 53, 11,−43, 63,−75,−34)
(−22, 21,−82, 94, 49, 4,−52, 64,−76)(−20, 19,−83, 95, 40, 3,−42, 65,−77)
(−78,−18, 17,−84, 96, 50, 2,−51, 66)(67,−79,−16, 15,−85, 97, 41,−5,−35)
(−56, 68,−80,−14, 12,−86, 98, 57, 1).

Hence,
ωc ◦ ωr = (10,−9,−8,−7,−6, 11, 4, 3, 2,−5, 1, 99, 100, 101, 102, 103, 93, 94, 95, 96, 97,

98, 24, 26, 28, 30, 32, 13, 21, 19, 17, 15, 12,−70,−71,−72,−73,−74,−75,
−76,−77,−78,−79,−80,−37,−47,−38,−48,−39,−43,−52,−42,−51,
−35,−56, 36, 55, 45, 54, 44, 53, 49, 40, 50, 41, 57,−87,−89,−91,−82,−84,
−86,−88,−90,−81,−83,−85,−33,−27,−31,−22,−18,−14,−25,−29,
−34,−20,−16, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68).
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So, since ωc ◦ ωr is a cycle of order 99 = |E(A)| the orderings are compatible.

Looking for compatible orderings of a (globally simple) Heffter array leads us to con-
sider the following problem introduced in [7]. Given anm×n toroidal partially filled array
A, by ri we denote the orientation of the i-th row, precisely ri = 1 if it is from left to right
and ri = −1 if it is from right to left. Analogously, for the j-th column, if its orientation
cj is from top to bottom then cj = 1 otherwise cj = −1. Assume that an orientation
R = (r1, . . . , rm) and C = (c1, . . . , cn) is fixed. Given an initial filled cell (i1, j1) con-
sider the sequence LR,C(i1, j1) = ((i1, j1), (i2, j2), . . . , (iℓ, jℓ), (iℓ+1, jℓ+1), . . .) where
jℓ+1 is the column index of the filled cell (iℓ, jℓ+1) of the row Riℓ next to (iℓ, jℓ) in the
orientation riℓ , and where iℓ+1 is the row index of the filled cell of the column Cjℓ+1

next
to (iℓ, jℓ+1) in the orientation cjℓ+1

. Given an element (ik, jk) ∈ LR,C(i1, j1) we define
SR,C(ik, jk) as the element (ik+1, jk+1) ∈ LR,C(i1, j1). It is easy to see that SR,C is well
defined on the set of the filled cells of A.

The problem proposed in [7] is the following:

Crazy Knight’s Tour Problem. Given a toroidal partially filled array A, do there existR
and C such that the list LR,C covers all the filled cells of A?

The Crazy Knight’s Tour Problem for a given array A is denoted by P (A), known
results can be found in [7, 27]. Also, given a filled cell (i, j), if LR,C(i, j) covers all the
filled positions ofAwe will say that (R, C) is a solution of P (A). The relationship between
the Crazy Knight’s Tour Problem and (globally simple) relative Heffter arrays is explained
in the following result, see [11].

Corollary 2.10. Let A be a relative Heffter array Ht(m,n;h, k) such that P (A) admits a
solution (R, C). Then there exists a face-2-colourable embedding of K 2nk+t

t ×t, such that
every edge is on a face whose boundary has length h and on a face whose boundary has
length k, into an orientable surface.

Moreover if A is globally simple, then the face-2-colourable embedding is circular.

Example 2.11. Let A be the H9(11; 9) of Example 2.2. Let R = (1, 1, . . . , 1) and C =
(−1, 1, 1, . . . , 1). Now we consider SR,C(1, 1) and, in the following table, in each position
we write j if we reach that position after having applied SR,C to (1, 1) exactly j times.

↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ 0 56 13 73 27 80 41 97 54
→ 44 1 57 14 68 28 86 42 98
→ 88 45 2 58 15 74 29 81 43
→ 33 89 46 3 59 16 69 30 87
→ 34 90 47 4 60 17 75 31 82
→ 77 35 91 48 5 61 18 70 32
→ 22 83 36 92 49 6 62 19 76
→ 23 78 37 93 50 7 63 20 71
→ 66 24 84 38 94 51 8 64 21
→ 11 72 25 79 39 95 52 9 65
→ 55 12 67 26 85 40 96 53 10

Note that LR,C(1, 1) covers all filled cells of A, hence (R, C) is a solution of P (A).



592 Ars Math. Contemp. 24 (2024) #P4.02 / 585–608

Remark 2.12. The orderings ωr and ωc of A described in Example 2.9, correspond to the
vectorsR and C of Example 2.11, respectively. Hence, we also say that (R, C) induces the
cycle ωc ◦ ωr.

Clearly, given an array A, a pair (R, C) is a solution of P (A) if and only if the induced
permutation ωc ◦ ωr is a cycle of order |E(A)|.

Now, to present the results of this section we need some other definitions and notations.
By skel(A) we denote the skeleton of A, that is the set of the filled positions of A. Given
an n× n partially filled array A, for i ∈ [1, n] we define the i-th diagonal of A as follows:

Di = {(i, 1), (i+ 1, 2), . . . , (i− 1, n)}.

Here all the arithmetic on the row and column indices is performed modulo n, where
{1, 2, . . . , n} is the set of reduced residues. The diagonals Di+1, Di+2, . . . , Di+k are
called k consecutive diagonals. A set of t consecutive diagonals S = {Di+1, Di+2, . . . ,
Di+t} is said to be an empty strip of width t if Di+1, Di+2, . . . , Di+t are empty diagonals,
while Di and Di+t+1 are non-empty diagonals.

Definition 2.13. Let n, k be integers such that n ≥ k ≥ 1. An n× n partially filled array
A is said to be:

• k-diagonal if the non-empty cells of A are exactly those of k diagonals;

• cyclically k-diagonal if the non-empty cells of A are exactly those of k consecutive
diagonals;

• k-diagonal with width t1, t2, . . . , ts if it is k-diagonal and has s empty strips with
width t1, t2, . . . , ts, respectively;

• k-diagonal with width t if it is k-diagonal and all its empty strips have width t.

Clearly a cyclically k-diagonal array of size n is nothing but a k-diagonal array with
width n− k. Note that the array of Example 2.2 is 9-diagonal with width 1.

Lemma 2.14. Let A be a partially filled array. If (R, C) is a solution of P (A), then also
(−R,−C) is a solution of P (A).

Proof. By Remark 2.12, if (R, C) is a solution of P (A), then the induced cycle ωc ◦ωr has
order |E(A)|. Clearly also (ωc ◦ωr)

−1 = ω−1
r ◦ω−1

c is a cycle of the same order. The same
holds if we consider the conjugate ωr ◦ (ω−1

r ◦ω−1
c ) ◦ω−1

r = ω−1
c ◦ω−1

r , hence (−R,−C)
is a solution, too.

Lemma 2.15. LetA be a cyclically k-diagonal array of size n ≥k and letR=(1, 1, . . . , 1).
If (R, C) is a solution of P (A), then also (C,R) is a solution of P (A).

Proof. We can assume, without loss of generality, that (1, 1) is a filled cell of A. If (R, C)
is a solution of P (A), then the induced cycle ωc ◦ ωr has order |E(A)|. Now, since if we
commute ωr and ωc we still obtain a cycle of order |E(A)|, then (C,R) is a solution of
P (At), where by At we denote the transposed of A. Note that, in general, A and At do
not have the same skeleton. Before concluding the proof, we present an example in order
to illustrate this fact. Here A is a cyclically 4-diagonal array of size 6 (we put a “•” in the
filled cells),R = (1, 1, 1, 1, 1, 1), as in the hypothesis, and C = (1,−1,−1, 1,−1, 1).
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↓ ↑ ↑ ↓ ↑ ↓
→ • • • •
→ • • • •
→ • • • •
→ • • • •
→ • • • •
→ • • • •

↓ ↓ ↓ ↓ ↓ ↓
→ • • • •
← • • • •
← • • • •
→ • • • •
← • • • •
→ • • • •

↓ ↓ ↓ ↓ ↓ ↓
→ • • • •
← • • • •
← • • • •
→ • • • •
← • • • •
→ • • • •

Figure 1: Arrays A, At and B.

Note that, instead of At, we can consider the array B on the right obtained from At by
a translation on the rows of length k − 1. We point out that B has the same skeleton of
A. We remark that applying (C,R) to At is equivalent to apply (C,R) to B, where if
R = (r1, r2, . . . , rn), then R = (rk, . . . , rn, r1, . . . , rk−1). Since R = (1, 1, . . . , 1) then
also R = (1, 1, . . . , 1). Hence (C,R) is a solution of P (B), but skel(B) = skel(A), so
(C,R) is a solution of P (A) too.

Proposition 2.16. Let A and B be two distinct (globally simple) Ht(m,n;h, k)s such that
E(A) = E(B). Assume that both A and B admit compatible orderings and denote them,
respectively, by (ωA

r , ω
A
c ) and by (ωB

r , ω
B
c ). Then (ωA

r , ω
A
c ) and (ωB

r , ω
B
c ) determine the

same (circular) k-gonal face-2-colourable embedding ofK 2nk+t
t ×t if and only if ωA

r = ωB
r

and ωA
c = ωB

c .

Proof. Suppose, by contradiction, that there exists a ∈ E(A) = E(B) such that ωA
r (a) ̸=

ωB
r (a) or ωA

c (a) ̸= ωB
c (a). In the following we assume, without loss of generality, that

the previous condition holds for the rows. Hence, recalling Equations (2.1) and (2.2), from
ωA
r (a) ̸= ωB

r (a), it follows that the maps ρA and ρB are different. Therefore (ωA
r , ω

A
c ) and

(ωB
r , ω

B
c ) determine different k-gonal face-2-colourable embeddings of K 2nk+t

t ×t.
Conversely, if we have that ωA

r = ωB
r and ωA

c = ωB
c the maps ρA0 and ρB0 coincide and

hence also ρA = ρB . In this case the compatible orderings of A and of B determine the
same k-gonal face-2-colourable embedding of K 2nk+t

t ×t.

Remark 2.17. Let A be an Ht(m,n;h, k). It is not hard to see that distinct solutions of
P (A) induce distinct orderings ωr and ωc of the rows and columns of A, respectively.
Also, distinct permutations determine distinct face-2-colourable embeddings of K 2nk+t

t ×t.
These facts, in general, do not hold for λHt(m,n;h, k) with λ > 1. In the following ex-
ample we show how two distinct solutions of P (A), where A is a λ-fold Heffter array with
λ > 1, induce the same permutations ωr and ωc. Moreover, when λ > 1, the definition
of the Archdeacon embedding is more complicated since the complete multipartite multi-
graph λK( 2nk

λt +1)×t has repeated edges, see [10]. In this case, one could show that distinct
solutions of P (A) can induce the same face-2-colourable embedding.

Example 2.18. Let A be the 2H(2, 5; 5, 2) of Example 2.4. Set R = (1, 1), C1 =
(1, 1, 1, 1, 1), C2 = (1,−1,−1, 1,−1). It is easy to see that (R, C1) and (R, C2) are two
distinct solutions of P (A). Anyway they induce the same permutations:

ωr = (1,−2, 3, 4, 5)(−1, 2,−3,−4,−5),
ωc = (1,−1)(−2, 2)(3,−3)(4,−4)(5,−5).
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Corollary 2.19. Let A and B be two k-diagonal (globally simple) Ht(n; k)s such that:

(1) there exists a non-empty diagonal Dī where A and B coincide;

(2) E(A) = E(B) and skel(A) = skel(B);

(3) both P (A) and P (B) admit a solution denoted, respectively, by (RA, CA) and by
(RB , CB).

Then (RA, CA) and (RB , CB) determine the same (circular) k-gonal face-2-colourable
embeddings of K 2nk+t

t ×t if and only if A = B and (RA, CA) = (RB , CB).

Proof. Clearly, ifA = B and (RA, CA) = (RB , CB), we obtain the same face-2-colourable
embedding.

Now, assume that (RA, CA) and (RB , CB) determine the same k-gonal face-2-colourable
embedding of K 2nk+t

t ×t. We have to prove that A = B and (RA, CA) = (RB , CB). At
this purpose we will first suppose, by contradiction, that (RA, CA) ̸= (RB , CB), then we
will also consider the possibility thatA ̸= B. Our assumption means that eitherRA ̸= RB

or CA ̸= CB .
In the first case, there exists an index ℓ such that (rA)ℓ = −(rB)ℓ. Moreover, up to

translate on the torus the cells of the Heffter arrays A and B, we can assume, without loss
of generality that ℓ = ī = 1.

Here we set by ωA
r , ω

A
c the orderings induced by (RA, CA) on the elements of E(A)

and by ωB
r , ω

B
c the orderings induced by (RB , CB) on the elements of E(B). We also

denote the non-empty elements of the first row of A, following the natural ordering, by
(a1,1, a1,i2 , . . . , a1,ik). Then, since (rA)1 = −(rB)1 and since, due to Proposition 2.16,
ωA
r = ωB

r , we have that the non-empty elements of the first row of B are, following the
natural ordering, (a1,1, a1,ik , . . . , a1,i2) where a1,ik is in the i2-th column and a1,i2 is in
the ik-th column. Now we consider the element ai2,i2 in position (i2, i2) of A. Since,
in the diagonal D1, the arrays A and B coincide, we have that ai2,i2 is also the element
in position (i2, i2) of B. Here we note that, in the array A the elements ai2,i2 and a1,i2
belong both to the i2-th column. On the other hand, in the array B they belong to different
columns: ai2,i2 is in the i2-th and a1,i2 is in the ik-th. But this implies that the orbits of
ai2,i2 under the action of ωA

c and ωB
c are different and hence, due to Proposition 2.16, we

would obtain the contradiction that (RA, CA) and (RB , CB) determine different face-2-
colourable embeddings.

We obtain a similar contradiction also in the case CA ̸= CB and hence we have proved
that (RA, CA) = (RB , CB).

It is left to prove that A = B. At this purpose we suppose, by contradiction, that there
is a position (ℓ1, ℓ2) where A and B are different and we consider the element a of Dī

that belongs to the ℓ1-th row. Due to Proposition 2.16 we have that ωA
r (a) = ωB

r (a) and,
inductively, that (ωA

r )
j(a) = (ωB

r )j(a) for any j ∈ [1, k]. Since skel(A) = skel(B) and
RA = RB , it follows that the ℓ1-th row of A and that of B are equal. But this would
imply that also the elements in position (ℓ1, ℓ2) of A and B coincide that contradicts our
hypothesis. It follows that A = B.

3 On the maximum number of isomorphic embeddings
Given an embedding Π, we will denote by Aut(Π) the group of all automorphisms of Π
and by Aut+(Π) the group of the orientation preserving automorphisms. Similarly, we
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will denote by Aut0(Π) the subgroup of Aut(Π) of the automorphisms that fix 0 and by
Aut+0 (Π) the group of the orientation preserving automorphisms that fix 0. We remark that,
since an orientable surface admits exactly two orientations, Aut+(Π) (resp. Aut+0 (Π)) is a
normal subgroup of Aut(Π) (resp. Aut0(Π)) whose index is either 1 or 2. In the following,
when we consider a Zv-regular embedding Π of Γ, we identify the vertex set of Γ with Zv

and we assume that the translation action is regular. We denote by τg the translation by
g, i.e. τg : V (Γ) = Zv → V (Γ) = Zv is the map such that τg(x) = x + g. Applying
this convention, we have that τg ∈ Aut(Π) for any g ∈ Zv . Moreover, in the case of the
Archdeacon embedding, recalling Equation (2.2), the translations also belong to Aut+(Π).

Remark 3.1. Let Π and Π′ be two isomorphic Zv-regular embeddings of Km×t, where
v = mt. Given an embedding isomorphism σ : Π→ Π′ and g ∈ Zv , we define

ϕσ,g := σ ◦ τ−1
g ◦ σ−1 ◦ τσ(g).

Moreover, if σ(0) = 0 then, since ϕσ,g(0) = 0, we obtain that:

ϕσ,g ∈ Aut0(Π
′).

Proposition 3.2. Let Π0,Π1 and Π2 be Zv-regular embeddings of Km×t, where v = mt.
Let us suppose there exist two embedding isomorphisms σ1 : Π1 → Π0 and σ2 : Π2 → Π0

such that, considering σ1 and σ2 as maps from Zv to Zv , the following properties hold:

(1) σ1(0) = σ2(0) = 0;

(2) σ1(1) = σ2(1);

(3) ϕσ1,1 = ϕσ2,1.

Then the identity map from Π1 to Π2 is an isomorphism.

Proof. We note that, due to hypothesis (3), we have that:

ϕσ1,1 = σ1 ◦ τ−1
1 ◦ σ−1

1 ◦ τσ1(1) = σ2 ◦ τ−1
1 ◦ σ−1

2 ◦ τσ2(1) = ϕσ2,1.

Since, because of hypothesis (2), σ1(1) = σ2(1) the maps τσ1(1) and τσ2(1) coincide.
Reducing these maps from the composition, we obtain that:

σ1 ◦ τ−1
1 ◦ σ−1

1 = σ2 ◦ τ−1
1 ◦ σ−1

2 . (3.1)

Note that Equation (3.1) can be rewritten as:

(σ−1
2 ◦ σ1) ◦ τ

−1
1 = τ−1

1 ◦ (σ−1
2 ◦ σ1),

hence we have that:
τ1 ◦ (σ−1

2 ◦ σ1) = (σ−1
2 ◦ σ1) ◦ τ1. (3.2)

Setting σ1,2 := σ−1
2 ◦ σ1, by definition of τ1, it results

τ1 ◦ σ1,2(x) = σ1,2(x) + 1,

and
σ1,2 ◦ τ1(x) = σ1,2(x+ 1).
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Therefore, Equation (3.2) can be written as:

σ1,2(x+ 1) = σ1,2(x) + 1.

Since, for hypothesis (1), σ1(0) = σ2(0) = 0 we can prove, inductively, that σ1,2(x) = x
that is σ1,2 = id. It follows that the identity map from Π1 to Π2 is an isomorphism of
embeddings.

Proposition 3.3. Let Π be an embedding of Km×t where m ≥ 2. Then we have that:

|Aut0(Π)| ≤ 2|Aut+0 (Π)| ≤ 2|N(Km×t, 0)| = 2(m− 1)t.

Proof. Since Aut+0 (Π) is a normal subgroup of Aut0(Π) whose index is at most two, it suf-
fices to prove that |Aut+0 (Π)| ≤ |N(Km×t, 0)|. Because of the definition, σ ∈ Aut+0 (Π)
implies that, for any x ̸∈ N(Km×t, 0):

σ ◦ ρ(0, x) = ρ ◦ σ(0, x).

Recalling that ρ(0, x) = (0, ρ0(x)) for a suitable map ρ0 : N(Km×t, 0) → N(Km×t, 0),
we have that:

σ ◦ ρ(0, x) = (0, σ ◦ ρ0(x)) = (0, ρ0 ◦ σ(x)) = ρ ◦ σ(0, x). (3.3)

Since |N(Km×t, 0)| = (m−1)t, we can write ρ0 as the cycle (x1=1, x2, x3, . . . , x(m−1)t).
Then, setting σ(x1) = xi, Equation (3.3) implies that:

(0, σ(x2)) = (0, ρ0 ◦ σ(x1)) = ρ ◦ σ(0, x1) = (0, xi+1).

Therefore, we can prove, inductively, that:

σ(xj) = xj+i−1

where the indices are considered modulo (m − 1)t. This means that σ|N(Km×t,0) = ρi−1
0

and that σ is fixed in N(Km×t, 0) when the image of one element is given. In particular
since ρ0 has order (m − 1)t, there are at most |N(Km×t, 0)| possibilities for the map
σ|N(Km×t,0).

Now we need to prove that, if two automorphisms σ1 and σ2 of Aut0(Π) coincide in
N(Km×t, 0), they coincide everywhere. Set σ1,2 = σ−1

2 ◦ σ1, this is equivalently to prove
that σ1,2 is the identity. Given x ∈ N(Km×t, 0) we have that σ1,2(x) = x and hence σ1,2
belongs to the subgroup Aut+x (Π) of Aut+(Π) of the elements that fix x. Proceeding as
before we prove that σ1,2|N(Km×t,x) is fixed when the image of one element is given. But
now we note that 0 ∈ N(Km×t, x) and we have that σ1,2(0) = 0. It follows that

σ1,2|N(Km×t,x) = id.

Since σ1 and σ2 coincide in N(Km×t, 0), we also have that

σ1,2|N(Km×t,0) = id.

Now the thesis follows because, for m ≥ 2,

V (Km×t) = N(Km×t, 0) ∪N(Km×t, x).
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Proposition 3.4. Let F = {Πα : α ∈ A} be a family of Zv-regular distinct embeddings
of Km×t where v = mt and m ≥ 2. Then, if Πα is isomorphic to Π0 for any α ∈ A, we
have that:

|F| ≤ 2|Aut0(Π0)| · |N(Km×t, 0)| ≤ 4|N(Km×t, 0)|2 = 4((m− 1)t)2.

Moreover, if for any α ∈ A and any g ∈ Zv , the translation τg belongs to Aut+(Πα), then:

|F| ≤ 2|Aut+0 (Π0)| · |N(Km×t, 0)| ≤ 2|N(Km×t, 0)|2 = 2((m− 1)t)2.

Proof. We can assume Π0 ∈ F and let us denote by σα an isomorphism between Πα

and Π0 that fixes 0. Note that this isomorphism exists since F is a family of Zv-regular
embeddings. Let us assume, by contradiction that

|F| > 2|Aut0(Π0)| · |N(Km×t, 0)|.

We note that, for any α ∈ A, ϕσα,1 ∈ Aut0(Π0). Since σα is an isomorphism that fixes 0,
σα(1) belongs to N(Km×t, 0) if and only if 1 belongs to N(Km×t, 0). It follows that, we
have at most

max(|N(Km×t, 0)|, v − 1− |N(Km×t, 0)|) = max((m− 1)t, t− 1) = (m− 1)t

possibilities for σα(1). Therefore, due to the pigeonhole principle, we would have that
there exist Π1, Π2 and Π3 in F such that:

(1) σ1(1) = σ2(1) = σ3(1);

(2) ϕσ1,1 = ϕσ2,1 = ϕσ3,1.

Hence, due to Proposition 3.2, we would have that the identity is an isomorphism both from
Π1 = (Γ1, ρ1) to Π2 = (Γ2, ρ2) and from Π1 = (Γ1, ρ1) to Π3 = (Γ3, ρ3). It follows
from Definition 1.3 that Γ1 = Γ2 = Γ3 and ρ2, ρ3 ∈ {ρ1, ρ−1

1 }. But this means that either
Π1 = Π2 or Π1 = Π3 or Π2 = Π3. In each of these cases we would obtain that the
elements of F are not all distinct that contradicts the hypotheses.

We remark that, in case the translations are all elements of Aut+(Πα) (for every
α ∈ A), ϕσα,1 would be an element of Aut+0 (Π0) and hence we can substitute Aut0(Π0)
with Aut+0 (Π0) in the previous argument. This leads us to obtain:

|F| ≤ 2|Aut+0 (Π0)| · |N(Km×t, 0)|.

Remark 3.5. Clearly if t = 1 the complete multipartite graph Km×t is nothing but the
complete graph of order m. Hence the results of Propositions 3.3 and 3.4 hold also for the
complete graph.

4 Embeddings from Cavenagh, Donovan and Yazıcı’s arrays
We consider now the family of embeddings of Kv obtained by Cavenagh, Donovan, and
Yazıcı in [6]. In their constructions, all the face boundaries are cycles of length k.
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Set the binary entropy function byH(p) := −p log2 p−(1−p) log2(1−p) and denoted
byH(m) the cardinality of the derangements on [0,m−1], we will use the following, well
known, approximations:

m! ≈
√
2mπ

(m
e

)m

, (4.1)(
m

pm

)
≈ 1√

2mπ(1− p)p
2mH(p), (4.2)

H(m) ≈ m!/e, (4.3)

where the symbol ≈ means that the two quantities are asymptotic: their ratio tends to 1 as
m tends to infinity. We will also use the simbol ≳ in case the lim inf of the ratio between
two quantities, as m tends to infinity, is greater than or equal to 1.

Theorem 4.1 (Cavenagh, Donovan and Yazıcı [6]). Let v = 2nk + 1, k = 4t + 3 and let
n ≡ 1 (mod 4) be either a prime or n ≥ (7k + 1)/3. Moreover, if n ≡ 0 (mod 3), we
also assume that k ≡ 7 (mod 12). Then, the number of distinct circular k-gonal face-2-
colourable embeddings of Kv is, at least, of:

(n− 2)[H(t− 2)]2 ≈ (n− 2)[(t− 2)!/e]2.

Also, for all such embeddings and all g ∈ Zv , τg is an orientation preserving automor-
phism.

Using Proposition 3.4 and Theorem 4.1, we can prove the following result.

Theorem 4.2. Let v = 2nk + 1, k = 4t + 3 and let n ≡ 1 (mod 4) be either a prime
or n ≥ (7k + 1)/3. Moreover, if n ≡ 0 (mod 3), we also assume that k ≡ 7 (mod 12).
Then, the number of non-isomorphic circular k-gonal face-2-colourable embeddings ofKv

is, at least, of:

(n− 2)[H(t− 2)]2

2(2nk)2
≈ π(t− 2)2t−5

64e2t−2n
≈ kk/2+o(k)/v.

Proof. Let us consider, for given k and v, the distinct circular k-gonal face-2-colourable
embeddings of Kv provided in [6]. Let us partition these embeddings into families of iso-
morphic ones. The thesis easily follows because, due to Proposition 3.4, each of these
families has size at most 2(v − 1)2 = 8(nk)2. Then the lower bound on the number
of non-isomorphic circular k-gonal face-2-colourable embeddings of Kv can be approxi-
mated using the Stirling formula for the factorial, that is Equation (4.1), and the approxi-
mation (4.3).

Now we will show that, studying carefully the Crazy Knight’s Tour Problem for the
Heffter arrays found by Cavenagh, Donovan and Yazıcı it is possible to get many other
circular k-gonal face-2-colourable embeddings of Kv .

We consider here a k-diagonal array A of size n > k and vectors R = (1, . . . , 1) and
C ∈ {−1, 1}n, whose −1 are in positions E = (e1, . . . , er) where e1 < e2 < · · · < er.
We state a characterization, obtained with the same proof of Lemma 4.19 of [7], of the
solutions of P (A) that have a trivial vectorR, i.e. R = (1, . . . , 1).
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Lemma 4.3. Let k ≥ 3 be an odd integer and let A be a k-diagonal array of size n > k,
widths s1, s2, . . . , si and with non-empty diagonal D1. Then the vectors R = (1, . . . , 1)
and C ∈ {−1, 1}n, where the positions of each −1 in C are described by E, are a solution
of P (A) if and only if:

(1) for any j ∈ [1, n], the list E covers all the congruence classes modulo dj , where
dj = gcd(n, sj);

(2) the list LR,C(1, 1) covers all the positions of {(e, e)|e ∈ E}.

Proposition 4.4. Let k be an odd integer, n > 8k be a prime, and let A be a k-diagonal
Heffter array H(n; k) whose filled diagonals are D1, D2, . . . , Dk−3, Dk−1, Dk, Dk+1.
Then, the number of distinct solutions of P (A) is at least of:

2

(
⌈n/2k⌉
⌈n/8k⌉

)
≳

√
k√

3πn
2

n
2k ·H(1/4)+3.

Proof. Let us consider a subset E = (e1, . . . , er) of [1, n] where e1 < e2 < · · · < er that
satisfies the following properties:

(1) the elements e1, . . . , er of E are integers equivalent to 1 modulo 2k;

(2) r = |E| is coprime with k − 2.

A set E with such properties can be constructed as follows. Let r be a prime in the range
[ n
8k ,

n
4k ] that exists because of Bertrand’s postulate. Then we choose r elements e1, . . . , er

among the ⌈n/2k⌉ integers equivalent to 1 modulo 2k contained in [1, n]. The number of
such choices is at least of (

⌈n/2k⌉
r

)
≥

(
⌈n/2k⌉
⌈n/8k⌉

)
.

Note that, due to the approximation for the binomial coefficients, see Equation (4.2), this
number can be approximated to(

⌈n/2k⌉
⌈n/8k⌉

)
≳

√
k√

3πn
2

n
2k ·H(1/4)+2.

Hence, in order to obtain the thesis, it suffices to prove that, set R = (1, 1, . . . , 1) and
CE ∈ {−1, 1}n whose −1 are in positions E = (e1, . . . , er), (R, CE) is a solution for
P (A). Indeed, according to Lemma 2.14, the number of distinct solutions of P (A) would
be, at least, of

2

(
⌈n/2k⌉
⌈n/8k⌉

)
≳

√
k√

3πn
2

n
2k ·H(1/4)+3.

Since n is a prime, condition (1) of Lemma 4.3 is satisfied. We need to check that also con-
dition (2) of the same lemma holds. At this purpose, we consider an element
(e, e) ∈ D1 with e ∈ E, then there exists a minimum m ≥ 1 such that Sm

R,C((e, e)) =
(e′, e′) for some e′ ∈ E. We define the permutation ωC on E as ωC(e) = e′. We need to
prove that ωC is a cycle of order r. Given e ∈ E, the second cell of the form (e′, e′) with
e′ ∈ E we meet in the list LR,C(e, e) is reached after the following moves:

(1) from (e, e) we move backward into the diagonal D1 with steps of length k until we
reach a cell of the form (ei + k, ei + k) with ei ∈ E;
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(2) from SR,C(ei + k, ei + k) = (ei + (k − 1), ei) we move forward into the diagonal
Dk with steps of length 1 until we reach the cell (ei+1 − 1 + (k − 1), ei+1 − 1),
where the indices are considered modulo r (as for the rest of this proof);

(3) from SR,C(ei+1 − 1 + (k − 1), ei+1 − 1) = (ei+1 + (k − 4), ei+1) we move for-
ward into the diagonalDk−3 with steps of length 1 until we reach the cell (ei+2−1+
(k−4), ei+2−1); we reiterate this procedure into the diagonalsDk−5, Dk−7, . . . , D4;

(4) since k is odd, we arrive to the cell (ei+(k−3)/2+1, ei+(k−3)/2) ∈ D2 from which we
move forward with steps of length 1 until we reach the cell (ei+(k−1)/2,
ei+(k−1)/2 − 1);

(5) from SR,C(ei+(k−1)/2, ei+(k−1)/2−1) = (ei+(k−1)/2+k, ei+(k−1)/2) we move for-
ward into the diagonal Dk+1 with steps of length 1 until we reach the cell
(ei+(k+1)/2 − 1 + k, ei+(k+1)/2 − 1); we reiterate this procedure into the diagonals
Dk−1 (here with steps of length 2),Dk−4, . . . , D3;

(6) since k is odd, we arrive to the cell (ei+(k−1), ei+(k−1)) ∈ D1 that is the second one
of the form (e′, e′) ∈ D1 with e′ ∈ E we meet in the list LR,C(e, e).

We denote by γ the cyclic permutation of the elements of E defined by (e1, . . . , er). We
note that since the distances between elements of E are multiples of k, in the first step of
the above procedure we apply the permutation γ−1. Then, from the previous discussion,
it follows that ωC = γk−1 ◦ γ−1 = γk−2. Since r is coprime with k − 2 and γ is a cycle
of order r, then ωC is also a cycle of order r and hence condition (2) of Lemma 4.3 is
satisfied.

Remark 4.5. We note that, if n is sufficiently large, in the proof of Proposition 4.4, the
choice of r could also be done in the range [λn

k ,
n
4k ] where λ is smaller than 1/4. In fact,

if | n4k − λ
n
k | ≥ k − 2, we can find r coprime with k − 2 also in this range. It follows that,

given λ < 1/4, we can replace the exponent n
2k ·H(1/4) of the previous proposition with

n
2k · H(2λ). However, due to the complications in the notations, we believe it is better to
write the statement in the “clearest” case.

Theorem 4.6. Let v = 2nk + 1, k = 4t + 3 and let n ≡ 1 (mod 4) be a prime greater
than 8k. Then the number of distinct circular k-gonal face-2-colourable embeddings ofKv

is, at least, of:

2(n− 2)[H(t− 2)]2
(
⌈n/2k⌉
⌈n/8k⌉

)
≳

[(t− 2)!]2
√

(4t+ 3)n

e2
√
3π

2
n

2(4t+3)
·H(1/4)+3.

Also, for all such embeddings and all g ∈ Zv , τg is an orientation preserving automor-
phism.

Proof. We note that, if n is a prime, each array of the family Fn,k := {Ai : i ∈ An,k} of
globally simple H(n; k)s constructed in [6] satisfies (setting α = 2p + 2) the hypotheses
of Proposition 4.4. Therefore, for each array Ai of Fn,k the number of solutions of P (Ai)
is at least of:

2

(
⌈n/2k⌉
⌈n/8k⌉

)
≳

√
k√

3πn
2

n
2k ·H(1/4)+3.
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We also recall that, due to Theorem 4.1, the number of such arrays is at least of:

(n− 2)[H(t− 2)]2 ≈ (n− 2)[(t− 2)!/e]2.

Now we note that, given n and k, these arrays have all the same entries and skeleton,
and coincide in at least 5 diagonals. Therefore, because of Corollary 2.19, however we take
Ai ∈ Fi and a solution of P (Ai), we determine a different embedding.

It follows that the number of distinct circular k-gonal face-2-colourable embeddings of
Kv is, at least, of:

2(n− 2)[H(t− 2)]2
(
⌈n/2k⌉
⌈n/8k⌉

)
≳

[(t− 2)!]2
√
kn

e2
√
3π

2
n
2k ·H(1/4)+3.

By Proposition 3.4 and Theorem 4.6, it follows that:

Theorem 4.7. Let v = 2nk+1, k = 4t+3 and let n ≡ 1 (mod 4) be a prime greater than
8k. Then the number of non-isomorphic circular k-gonal face-2-colourable embeddings of
Kv is, at least, of:

(n− 2)

(2nk)2
[H(t− 2)]2

(
⌈n/2k⌉
⌈n/8k⌉

)
≈ [(t− 2)!]2

e2
√
3π(n(4t+ 3))3

2
n

2(4t+3)
·H(1/4)

≈ k k
2+o(k) · 2v·

H(1/4)

(2k)2
+o(v)

.

Proposition 4.8. Let k be an odd integer, s1 ≥ 1, and let A be a k-diagonal Heffter array
H(n; k) whose filled diagonals areD1, D2, . . . , Di, Di+s1 , Di+s1+2, Di+s1+3, . . . , Dk+s1 .
Assuming that gcd(n, 2) = gcd(n, s1) = gcd(n, k + s1 − 1) = 1, the number of distinct
solutions of P (A) is at least of 2

(
n
2

)
.

Proof. Let us consider a subset E = (e1, e2) where e1 < e2 of [1, n]. Hence in order
to obtain the thesis, it suffices to prove that, set R = (1, 1, . . . , 1) and CE ∈ {−1, 1}n
whose −1 are in positions E = (e1, e2), (R, CE) is a solution for P (A). Indeed, due to
Lemma 2.14, the number of distinct solutions of P (A) would be, at least, of 2

(
n
2

)
. Since

n is coprime with 2, s1 and k + s1 − 1, condition (1) of Lemma 4.3 is satisfied. We need
to check that also condition (2) holds. Defined ωC and γ as in the proof of Proposition 4.4,
we obtain that, also here, ωC = γk−2. Since γ is a cycle of order 2 and k − 2 is odd, ωC is
also a cycle of order 2. Hence condition (2) of Lemma 4.3 is satisfied.

Theorem 4.9. Let v = 2nk + 1, k = 4t + 3 and let n ≡ 1 (mod 4) be such that
n ≥ (7k + 1)/3. Moreover, if n ≡ 0 (mod 3), we also assume that k ≡ 7 (mod 12).
Then the number of distinct circular k-gonal face-2-colourable embeddings of Kv is, at
least, of:

2(n− 2)

(
n

2

)
[H(t− 2)]2 ≈ n3[(t− 2)!]2

e2
.

Also, for all such embeddings and all g ∈ Zv , τg is an orientation preserving automor-
phism.

Proof. The thesis follows from Proposition 4.8 reasoning as in the proof of Theorem 4.6.
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From Proposition 3.4, it follows that:

Theorem 4.10. Let v = 2nk + 1, k = 4t + 3 and let n ≡ 1 (mod 4) be such that
n ≥ (7k + 1)/3. Moreover, if n ≡ 0 (mod 3), we also assume that k ≡ 7 (mod 12).
Then the number of non-isomorphic circular k-gonal face-2-colourable embeddings of Kv

is, at least, of:

n− 2

(2nk)2

(
n

2

)
[H(t− 2)]2 ≈ n[(t− 2)!]2

8((4t+ 3)e)2
≈ v · kk/2+o(k).

5 Embeddings from cyclically k-diagonal Heffter arrays
We note that the bounds obtained in Theorems 4.7 and 4.10 grow more than exponentially
in k but they have some restrictions on the considered values of n. Furthermore, they grow
exponentially in n only when n is a prime. For this reason, in this section, we will provide
lower bounds that grow exponentially in n on the number of k-gonal face-2-colourable
embeddings not only of complete graphs but also of complete multipartite graphs.

First of all, we need to recall the following existence result reported in [31] (see Corol-
laries 3.4 and 3.6) on cyclically k-diagonal Heffter arrays.

Lemma 5.1. Given n ≥ k ≥ 3, then there exists a cyclically k-diagonal Heffter array
Ht(n; k) in each of the following cases:

(1) t ∈ {1, 2} and k ≡ 0 (mod 4) [2, 30];

(2) t ∈ {1, 2}, k ≡ 1 (mod 4) and n ≡ 3 (mod 4) [8, 13];

(3) t ∈ {1, 2}, k ≡ 3 (mod 4) and n ≡ 0, 1 (mod 4) [2];

(4) t = k, k ≡ 1 (mod 4) and n ≡ 3 (mod 4) [9];

(5) t = k, k ≡ 3 (mod 4) and n ≡ 0, 3 (mod 4) [9];

(6) t ∈ {n, 2n}, k = 3 and n is odd [11].

Moreover, in [8] and in [11], it is also proved the following existence result on globally
simple cyclically k-diagonal Heffter arrays.

Lemma 5.2. Given n ≥ k ≥ 3, then there exists a globally simple, cyclically k-diagonal
Heffter array Ht(n; k) in each of the following cases:

(1) t ∈ {1, 2}, k ∈ {3, 5, 7, 9} and nk ≡ 3 (mod 4);

(2) t = k, k ∈ {3, 5, 7, 9} and n ≡ 3 (mod 4);

(3) t ∈ {n, 2n}, k = 3 and n is odd.

The goal will be now to find an exponential family of solutions of P (A) whereA is one
of those arrays and then to proceed by using the following remark.

Remark 5.3. Let us assume we have M distinct solutions of P (A) where A is a given
(globally simple) cyclically k-diagonal Heffter array Ht(n; k) and k is an odd integer.
In this case we may assume, without loss of generality, that the filled diagonals are D1,
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D2, . . . , D(k+1)/2 and Dn, Dn−1, . . . , Dn−(k−3)/2. Then, if we consider At, we have that
skel(A) = skel(At) and hence any solution of P (A) is also a solution of P (At). More-
over, A and At coincide on D1 and E(A) = E(At). Therefore, due to Corollary 2.19, there
are at least 2M distinct Z2nk+t-regular (circular) k-gonal face-2-colourable embeddings
of K 2nk+t

t ×t. Then, because of Proposition 3.4, the number of non-isomorphic (circular)

k-gonal face-2-colourable embeddings of K 2nk+t
t ×t is, at least, of M

(2nk)2 .

For a cyclically k-diagonal array A, we recall a characterization, provided in [7], of the
solutions of P (A) that have vectorR = (1, . . . , 1).

We consider here a cyclically k-diagonal array of size n > k and vectorsR = (1, . . . , 1)
and C ∈ {−1, 1}n, whose−1 are in positionsE = (e1, . . . , er) where e1 < e2 < · · · < er.
We note that, given e ∈ E, there exists a minimum m ≥ 1 such that e −m(k − 1) ≡ e′′

(mod n) for some e′′ ∈ E. We define the permutation ω1,C on E as ω1,C(e) = e′′. Finally
we define the permutation ω2,C on E = (e1, . . . , er) as ω2,C(ei) = ei+(k−1) where the
indices are considered modulo r. Then, in [7], it is proven that:

Lemma 5.4. Let k ≥ 3 be an odd integer and letA be a cyclically k-diagonal array of size
n > k. Then the vectors R := (1, . . . , 1) and C ∈ {−1, 1}n, whose −1 are in positions
E = (e1, . . . , er) where e1 < e2 < · · · < er, are a solution of P (A) if and only if:

(1) the list E covers all the congruence classes modulo d, where d = gcd(n, k − 1);

(2) the permutation ω2,C ◦ ω1,C on E is a cycle of order r = |E|.

Proposition 5.5. Let A be a cyclically 3-diagonal Heffter array Ht(n; 3) where n ≥ 3 is
an odd integer. Then the number of distinct solutions of P (A) is, at least, of 2

1
2n+2.

Proof. Let us consider a subset E = (e1, . . . , er) of [1, n] where the elements e1, . . . , er
are odd integers such that e1 < e2 < · · · < er.

We note that the set O of odd elements in [1, n] has cardinality n+1
2 > 1

2n. The number
of subsets of O is then at least of 2

1
2n. It follows that the number of possible choices

for E is, at least, of 2
1
2n. Hence, in order to obtain the thesis, it suffices to prove that,

set R = (1, 1, . . . , 1) and CE ∈ {−1, 1}n whose −1 are in positions E = (e1, . . . , er),
(R, CE) is a solution for P (A). Indeed, due to Lemmas 2.14 and 2.15, the number of
distinct solutions of P (A) would be, at least, of 2

1
2n+2.

Here we denote by γ the cyclic permutation of the elements ofE defined by (e1, . . . , er).
In this case, since k − 1 = 2 we have that ω2,C = γ2. Similarly, since the elements of E
are all odd integers, ω1,C = γ−1. It follows that ω2,C ◦ ω1,C = γ. Since n is odd, we also
have that d = gcd(n, 2) = 1 and hence both the conditions of Lemma 5.4 are satisfied and
(R, CE) is a solution of P (A).

We can also provide a similar construction for arbitrary odd k. In this case, we still
obtain an exponential lower bound to the number of solutions of P (A) but, here, if we
consider k = 3, the exponent is worse than that of Proposition 5.5.

Proposition 5.6. LetA be a cyclically k-diagonal Heffter array Ht(n; k) where n ≥ 4k−3
and k are odd integers such that gcd(n, k − 1) = 1. Then the number of distinct solutions
of P (A) is, at least, of

4

(
⌈n/(k − 1)⌉
⌈n/(4k − 4)⌉

)
≳

√
2(k − 1)

3nπ
2

n
k−1 ·H(1/4)+3.
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Proof. Let us consider a subset E = (e1, . . . , er) of [1, n], where e1 < e2 < · · · < er, that
satisfies the following properties:

(1) the elements e1, . . . , er of E are integers equivalent to 1 modulo k − 1;

(2) r = |E| is an integer coprime with k − 2.

A set E with such properties can be constructed as follows. Let r be a prime in the range
[ n
4(k−1) ,

n
2(k−1) ] that exists because of Bertrand’s postulate. Then we choose r elements

e1, . . . , er among the ⌈n/(k−1)⌉ integers equivalent to 1 modulo k−1 contained in [1, n].
The number of such choices is at least of(

⌈n/(k − 1)⌉
r

)
≥

(
⌈n/(k − 1)⌉
⌈n/(4k − 4)⌉

)
.

Note that, due to the approximation for the binomial coefficients, see Equation (4.2), this
number can be so approximated(

⌈n/(k − 1)⌉
⌈n/(4k − 4)⌉

)
≳

√
8(k − 1)

3nπ
2

n
k−1 ·H(1/4).

Hence, also here, in order to obtain the thesis, it suffices to prove that, setR = (1, 1, . . . , 1)
and CE ∈ {−1, 1}n whose −1 are in positions E = (e1, . . . , er), (R, CE) is a solution for
P (A). Indeed, due to Lemmas 2.14 and 2.15, the number of distinct solutions of P (A)
would be, at least, of

4

(
⌈n/(k − 1)⌉
⌈n/(4k − 4)⌉

)
≳

√
2(k − 1)

3nπ
2

n
k−1 ·H(1/4)+3.

Now we proceed as in the proof of Proposition 5.5. We denote by γ the cyclic permu-
tation of the elements of E defined by (e1, . . . , er). In this case we have that ω2,C = γk−1.
Similarly, since the elements ofE are all integers equivalent to 1 modulo k−1, ω1,C = γ−1.
It follows that ω2,C ◦ ω1,C = γk−2 which is a cyclic permutation on E of order r because
r is coprime with k − 2. Since we have assumed that d = gcd(n, k − 1) = 1, both the
conditions of Lemma 5.4 are satisfied and hence (R, CE) is a solution of P (A).

Remark 5.7. As already noted in Remark 4.5, also here, if n is sufficiently large and given
λ < 1/2, we can replace the exponent n

k−1 · H(1/4) of the previous proposition with
n

k−1 ·H(λ). However, also in this case, we believe it is better to write the statement in the
“clearest” case.

Proposition 5.8. Let A be a cyclically 7-diagonal Heffter array Ht(n; 7) where n > 120
is an odd integer. Then the number of distinct solutions of P (A) is, at least, of

4

(
⌊n/6⌋
⌊n/24⌋

)
≳

1√
nπ

2⌊
n
6 ⌋·H(1/4)+4.

Proof. We divide the proof in two cases. If gcd(n, 6) = 1, the thesis follows from Propo-
sition 5.6. In fact, in this case, the number of distinct solutions of P (A) is, at least, of

4

(
⌈n/6⌉
⌈n/24⌉

)
≥ 4

(
⌊n/6⌋
⌊n/24⌋

)
.

Otherwise, we have that gcd(n, 6) = 3. In this case we consider a subset E =
(e1, . . . , er) of [1, n], where e1 < e2 < · · · < er, that satisfies the following properties:
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(1) e1 = 1 and e2 = 2;

(2) the elements e3, . . . , er of E are integers equivalent to 3 modulo 6;

(3) r = |E| is equivalent to 4 modulo 5.

We note that the number of integers equivalent to 3 modulo 6 in [1, n] is ⌊n+3
6 ⌋ ≥ ⌊

n
6 ⌋.

Now, we fix r ≡ 4 (mod 5) in [ n24 ,
n
12 ]. Then the number of possible choices for a set E

of cardinality r among the integers equivalent to 3 modulo 6 is, at least, of(
⌊n/6⌋
⌈n/24⌉

)
≥

(
⌊n/6⌋
⌊n/24⌋

)
≳

1√
nπ

2⌊
n
6 ⌋·H(1/4)+2.

As usual, we denote by γ the cyclic permutation of the elements of E defined by
(e1, . . . , er). Here we have that ω2,C = γ6 and that, for x ̸∈ {e1, e2, e3}, ω1,C = γ−1.
It follows that, if x ̸∈ {e1, e2, e3}, ω2,C ◦ ω1,C = γ5, that is ω2,C ◦ ω1,C(ei) = ei+5

for i ̸∈ {1, 2, 3} and where the indices are considered modulo r. Due to the definition,
we also have that ω1,C(e1) = e1, ω1,C(e2) = e2 and ω1,C(e3) = er. It means that
ω2,C ◦ ω1,C(e1) = γ6(e1) = e7, ω2,C ◦ ω1,C(e2) = γ6(e2) = e8 and ω2,C ◦ ω1,C(e3) = e6.

Since r ≡ 4 (mod 5), we have that:

γ5 = (e1, e6, e6+5, . . . , er−3, e2, e7, . . . , er−2, e3, e3+5, . . . , er−1, e4, . . . , er,

e5, . . . , er−4).

It follows that ω2,C ◦ ω1,C is the cycle of order r given by:

(e1, e7, . . . , er−2, e3, e6, e6+5, . . . , er−3, e2, e8, . . . , er−1, e4, . . . , er, e5, . . . , er−4).

Moreover, since E covers all the congruence classes modulo 3 in [1, n], both the conditions
of Lemma 5.4 are satisfied and (R, CE) is a solution of P (A). Finally, the thesis follows
because, due to Lemmas 2.14 and 2.15, from each such solution (R, CE) we obtain four
different solutions of P (A).

Theorem 5.9. Let n ≥ 3 and t be such that either t ∈ {1, 2} and n ≡ 1 (mod 4) or t = 3
and n ≡ 3 (mod 4) or t ∈ {n, 2n} and n is odd. Then, set v = 6n + t, the number of
non-isomorphic circular 3-gonal face-2-colourable embeddings ofK 6n+t

t ×t is, at least, of:

2n/2

9n2
≈


2v/12+o(v) if t ∈ {1, 2, 3};
2v/14+o(v) if t = n;

2v/16+o(v) if t = 2n.

Proof. For these sets of parameters n and t, Lemma 5.2 assures the existence of a cyclically
k-diagonal Ht(n; 3), sayA. Then, due to Proposition 5.5, the problem P (A) admits at least
2n/2+2 solutions. The thesis follows from Remark 5.3.

Remark 5.10. If t = 1, namely if we are considering the complete graph K6n+1, the
lower bound of Theorem 5.9 is surely worse than the ones already obtained in the literature
(see [3, 15, 16, 18, 19]). On the other hand, we want to underline that our result is still
exponential in v and holds also for other values of t.
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Theorem 5.11. Let k ∈ {5, 7, 9}, let n ≥ 120 and t be such that either t ∈ {1, 2} and
nk ≡ 3 (mod 4) or t = k and n ≡ 3 (mod 4). Then, set v = 2nk + t, the number of
non-isomorphic circular k-gonal face-2-colourable embeddings of K 2nk+t

t ×t is, at least,
of: ( ⌊n/(k−1)⌋

⌊n/(4k−4)⌋
)

(nk)2
≳

√
2(k−1)
3nπ 2⌊

n
k−1 ⌋·H(1/4)+1

(nk)2
≈ 2v·

H(1/4)
2k(k−1)

+o(v,k).

Proof. We proceed as in the proof of Theorem 5.9 by using Propositions 5.6 and 5.8 instead
of Proposition 5.5.

Theorem 5.12. Let k > 9 be odd, let n ≥ 4k − 3 and t be such that either t ∈ {1, 2} and
nk ≡ 3 (mod 4) or t = k and n ≡ 3 (mod 4). Assume also that gcd(n, k − 1) = 1 and
set v = 2nk + t. Then the number of non-isomorphic, non necessarily circular, k-gonal
face-2-colourable embeddings of K 2nk+t

t ×t is, at least, of:

( ⌈n/(k−1)⌉
⌈n/(4k−4)⌉

)
(nk)2

≳

√
2(k−1)
3nπ 2

n
k−1 ·H(1/4)+1

(nk)2
≈ 2v·

H(1/4)
2k(k−1)

+o(v,k).

Proof. We proceed as in the proof of Theorem 5.9 by using Lemma 5.1 instead of Le-
mma 5.2 and Proposition 5.6 instead of Proposition 5.5.
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isomorphic triangulations of complete graphs, J. Comb. Theory Ser. B 78 (2000), 169–184,
doi:10.1006/jctb.1999.1939, https://doi.org/10.1006/jctb.1999.1939.

[4] K. Burrage, D. M. Donovan, N. J. Cavenagh and E. Ş. Yazıcı, Globally simple Heffter arrays
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University of Niš, Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18106 Niš, Serbia and
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Abstract

A circulant nut graph is a non-trivial simple graph such that its adjacency matrix is
a circulant matrix whose null space is spanned by a single vector without zero elements.
Regarding these graphs, the order–degree existence problem can be thought of as the math-
ematical problem of determining all the possible pairs (n, d) for which there exists a d-
regular circulant nut graph of order n. This problem was initiated by Bašić et al. and the
first major results were obtained by Damnjanović and Stevanović, who proved that for each
odd t ≥ 3 such that t ̸≡10 1 and t ̸≡18 15, there exists a 4t-regular circulant nut graph
of order n for each even n ≥ 4t + 4. Afterwards, Damnjanović improved these results by
showing that there necessarily exists a 4t-regular circulant nut graph of order n whenever
t is odd, n is even, and n ≥ 4t + 4 holds, or whenever t is even, n is such that n ≡4 2,
and n ≥ 4t + 6 holds. In this paper, we extend the aforementioned results by completely
resolving the circulant nut graph order–degree existence problem. In other words, we fully
determine all the possible pairs (n, d) for which there exists a d-regular circulant nut graph
of order n.

Keywords: Circulant graph, nut graph, graph spectrum, graph eigenvalue, cyclotomic polynomial.

Math. Subj. Class. (2020): 05C50, 11C08, 12D05, 13P05

1 Introduction
In this paper we will consider all graphs to be undirected, finite, simple and non-null.
Thus, every graph will have at least one vertex and there shall be no loops or multiple
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edges. Also, for convenience, we will take that each graph of order n has the vertex set
{0, 1, 2, . . . , n− 1}.

A graph G is considered to be a circulant graph if its adjacency matrix A has the form

A =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3

...
...

...
. . .

...
a1 a2 a3 . . . a0

 .

Here, we clearly have a0 = 0, as well as aj = an−j for all j = 1, n− 1. A concise
way of describing a circulant graph is by taking into consideration the set of all the values
1 ≤ j ≤ n

2 such that aj = an−j = 1. We shall refer to this set as the generator set of a
circulant graph and we will use Circ(n, S) to denote the circulant graph of order n whose
generator set is S.

A nut graph is a non-trivial graph whose adjacency matrix has nullity one and is such
that its non-zero null space vectors have no zero elements, as first described by Sciriha in
[10]. Bearing this in mind, a circulant nut graph is simply a nut graph whose adjacency
matrix additionally represents a circulant matrix. The study of regular nut graphs was
initiated by Gauci et al. [7], who proved that there exists a cubic nut graph of order n if
and only if n = 12 or 2 | n, n ≥ 18 and that there exists a quartic nut graph of order n if
and only if n ∈ {8, 10, 12} or n ≥ 14. These results were later extended by Fowler et al.
[6, Theorem 7], who determined all the orders that a d-regular nut graph can have for any
5 ≤ d ≤ 11. In the aforementioned paper, the following question was also asked regarding
the existence of vertex-transitive nut graphs.

Problem 1.1 (Fowler et al. [6, Question 9]). For what pairs (n, d) does a vertex-transitive
nut graph of order n and degree d exist?

The necessary conditions for the existence of a d-regular vertex-transitive nut graph of
order n were further derived in the form of the next theorem.

Theorem 1.2 (Fowler et al. [6, Theorem 10]). Let G be a vertex-transitive nut graph on n
vertices, of degree d. Then n and d satisfy the following conditions. Either d ≡4 0, and
n ≡2 0 and n ≥ d+ 4; or d ≡4 2, and n ≡4 0 and n ≥ d+ 6.

Afterwards, Bašić et al. [2] demonstrated that there exists a 12-regular nut graph of
order n if and only if n ≥ 16. While doing so, the study of circulant nut graphs was ini-
tiated and several results concerning these graphs were disclosed, alongside the following
conjecture.

Conjecture 1.3 (Bašić et al. [2]). For every d, where d ≡4 0, and for every even n, n ≥
d+ 4, there exists a circulant nut graph Circ(n, {s1, s2, s3, . . . , s d

2
}) of degree d.

Damnjanović and Stevanović [4, Lemma 18] quickly disproved Conjecture 1.3 by
showing that for each d such that 8 | d, a d-regular circulant nut graph cannot have an
order that is below d + 6. However, Conjecture 1.3 did indirectly bring up an interesting
question which represents a natural follow-up of Question 1.1 and of an earlier question
regarding the existence of regular nut graphs [7, Problem 13]:
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Problem 1.4. What are all the pairs (n, d) for which there exists a d-regular circulant nut
graph of order n?

Henceforth, we shall refer to Question 1.4 as the circulant nut graph order–degree ex-
istence problem, and we will use Nd to denote the set of all the orders that a d-regular
circulant nut graph can have, for each d ∈ N0. Regarding the aforementioned problem,
there are several basic facts that can quickly be noticed, as demonstrated by Damnjanović
and Stevanović [4]. First of all, it is easy to show that every d-regular circulant nut graph
of order n must satisfy 4 | d and 2 | n. Moreover, for any odd t ∈ N, a 4t-regular circulant
nut graph cannot have an order below 4t+4, while for any even t ∈ N, such a graph cannot
have an order smaller than 4t+ 6, as already discussed.

Furthermore, Damnjanović and Stevanović [4] have managed to construct a 4t-regular
circulant nut graph of order n for each even n ≥ 4t + 4, provided t is odd, t ̸≡10 1 and
t ̸≡18 15. This result is disclosed in the following theorem.

Theorem 1.5 (Damnjanović and Stevanović [4]). For each odd t ≥ 3 such that t ̸≡10 1
and t ̸≡18 15, the circulant graph Circ(n, {1, 2, 3, . . . , 2t + 1} \ {t}) is a nut graph for
each even n ≥ 4t+ 4.

Thus, Theorem 1.5 fully determines N4t for infinitely many odd values of t. On top of
that, Damnjanović and Stevanović [4, Proposition 19] have also found the set

N8 = {14} ∪ {n ∈ N : 2 | n ∧ n ≥ 18}. (1.1)

In this scenario, it is interesting to notice that a surprising “irregularity” exists due to the
absence of an 8-regular circulant nut graph of order 16.

Afterwards, Damnjanović [3] succeeded in improving the previously disclosed results
by finding the set N4t for each odd t ∈ N:

N4t = {n ∈ N : 2 | n ∧ n ≥ 4t+ 4} (∀t ∈ N, 2 ∤ t).

This result is an immediate corollary of the next two theorems.

Theorem 1.6 (Damnjanović [3]). For each odd t ∈ N and n ≥ 4t+ 4 such that 4 | n, the
circulant graph

Circ
(
n, {1, 2, . . . , t− 1} ∪

{n

4
,
n

4
+ 1

}
∪
{n

2
− (t− 1), . . . ,

n

2
− 2,

n

2
− 1

})
must be a 4t-regular nut graph of order n.

Theorem 1.7 (Damnjanović [3]). For each t ∈ N and n ≥ 4t + 6 such that n ≡4 2, the
circulant graph

Circ

(
n, {1, 2, . . . , t− 1} ∪

{
n+ 2

4
,
n+ 6

4

}
∪
{n

2
− (t− 1), . . . ,

n

2
− 2,

n

2
− 1

})
must be a 4t-regular nut graph of order n.

In this paper, we fully resolve the circulant nut graph order–degree existence problem
by finding Nd for each d ∈ N0. The main result is given in the following theorem.
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Theorem 1.8 (Circulant nut graph order–degree existence theorem). For each
d ∈ N0, the set Nd can be determined via the following expression:

Nd =


∅, d = 0 ∨ 4 ∤ d,
{n ∈ N : 2 | n ∧ n ≥ d+ 4}, d ≡8 4,

{14} ∪ {n ∈ N : 2 | n ∧ n ≥ 18}, d = 8,

{n ∈ N : 2 | n ∧ n ≥ d+ 6}, 8 | d ∧ d ≥ 16.

(1.2)

The result given in the case d = 0 ∨ 4 ∤ d of Equation (1.2) is straightforward to see,
while the expression corresponding to the case d = 8 follows directly from Equation (1.1).
Given the fact that the case d ≡8 4 represents an immediate corollary of Theorems 1.6
and 1.7, as we have already mentioned, the only remaining case left to be proved is when
8 | d ∧ d ≥ 16. However, Theorem 1.7 tells us that for each such d, there does exist a
circulant nut graph of every order n such that n ≡4 2 and n ≥ d + 6. Thus, taking every-
thing into consideration, in order to complete the proof of Theorem 1.8, it only remains to
be shown that for each even t ≥ 4, there must exist a 4t-regular circulant nut graph of each
order n such that 4 | n and n ≥ 4t+ 8. This is precisely the task that the remainder of the
paper will solve.

The structure of the paper shall be organized in the following manner. After Section 1,
which is the introduction, Section 2 will serve to preview certain theoretical facts regarding
the circulant matrices, circulant nut graphs and cyclotomic polynomials which are required
to successfully finalize the proof of Theorem 1.8. Afterwards, we shall use three separate
constructions in order to show the existence of all the required circulant nut graphs. In
Section 3 we will construct a 4t-regular circulant nut graph of order 4t + 8, for each even
t ≥ 4, thereby showing that such a graph necessarily exists. After that, Section 4 will be
used to show that, for any even t ≥ 4, there exists a 4t-regular circulant nut graph of order
n for each n ≥ 4t + 16 such that 8 | n. Subsequently, Section 5 will demonstrate the
existence of a 4t-regular circulant nut graph of order n for each n ≥ 4t + 12 such that
n ≡8 4, where t ≥ 4 is an arbitrarily chosen even integer. Finally, Section 6 shall provide
a brief conclusion regarding all the obtained results and give two additional problems to be
examined in the future.

2 Preliminaries
It is known from elementary linear algebra theory (see, for example, [8, Section 3.1]) that
the circulant matrix

A =


a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3

...
...

...
. . .

...
a1 a2 a3 . . . a0


must have the eigenvalues

P (1), P (ω), P (ω2), . . . , P (ωn−1),

where ω = ei
2π
n is an n-th root of unity, and

P (x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1.
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Starting from the aforementioned result, Damnjanović and Stevanović [4] have man-
aged to give the necessary and sufficient conditions for a circulant graph to be a nut graph
in the form of the following lemma.

Lemma 2.1 (Damnjanović and Stevanović [4]). Let G = Circ(n, S) where n ≥ 2. The
graph G is a nut graph if and only if all of the following conditions hold:

• 2 | n;

• S consists of t odd and t even integers from
{
1, 2, 3, . . . , n

2 − 1
}

, for some t ≥ 1;

• P (ωj) ̸= 0 for each j ∈
{
1, 2, 3, . . . , n

2 − 1
}

.

Suppose that we are given an arbitrary circulant graph of even order n whose generator
set is non-empty and contains equally many odd and even integers, all of which are positive
integers smaller than n

2 . Taking into consideration Lemma 2.1, it becomes apparent that in
order to show that such a graph is a nut graph, it is sufficient to prove that it satisfies the
third condition given in the lemma. In other words, it is enough to demonstrate that, for
this graph, the polynomial P (x) ∈ Z[x] has no n-th roots of unity among its roots, except
potentially −1 or 1.

Furthermore, it is clear that ζn−j = 1
ζj for each j = 1, n− 1 and each n-th root of

unity ζ ∈ C. Bearing this in mind, we quickly obtain that

P (ζ) =

(
ζs0 +

1

ζs0

)
+

(
ζs1 +

1

ζs1

)
+ · · ·+

(
ζsk−1 +

1

ζsk−1

)
(2.1)

for an arbitrary n-th root of unity ζ and circulant graph G = Circ(n, S), where S =
{s0, s1, s2, . . . , sk−1}, provided all the generator set elements are lower than n

2 . Sections 3,
4 and 5 will all heavily rely on Equation (2.1), as well as Lemma 2.1, whilst proving that
the soon-to-be constructed circulant graphs are indeed nut graphs.

Last but not least, it is crucial to point out that the cyclotomic polynomials shall play a
key role in demonstrating whether or not certain polynomials of interest contain the given
roots of unity among their roots. The cyclotomic polynomial Φb(x) can be defined for each
b ∈ N via

Φb(x) =
∏
ξ

(x− ξ),

where ξ ranges over the primitive b-th roots of unity. It is known that these polynomials
have integer coefficients and that they are all irreducible in Q[x] (see, for example, [1]).
Hence, an arbitrary polynomial in Q[x] has a primitive b-th root of unity among its roots if
and only if it is divisible by Φb(x).

While inspecting whether certain integer polynomials are divisible by cyclotomic poly-
nomials, we will strongly rely on the following theorem on the divisibility of lacunary
polynomials by cyclotomic polynomials.

Theorem 2.2 (Filaseta and Schinzel [5]). Let P (x) ∈ Z[x] have N nonzero terms and let
Φb(x) | P (x). Suppose that p1, p2, . . . , pk are distinct primes such that

k∑
j=1

(pj − 2) > N − 2.

Let ej be the largest exponent such that pejj | b. Then for at least one j, 1 ≤ j ≤ k, we
have that Φb′(x) | P (x), where b′ = b

p
ej
j

.
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3 Construction for n = 4t + 8

In this section, we will demonstrate that for each even t ≥ 4 there does exist a 4t-regular
circulant nut graph of order 4t + 8. In order to achieve this, we shall provide a concrete
example of such a graph, for each even t ≥ 4, and then prove that the given graph is
indeed a circulant nut graph. While constructing these graphs, we will rely on two different
construction patterns. One pattern will be used for the scenario when 4 | t, while the second
will give us our desired result provided t ≡4 2. In the rest of the section we present the two
according lemmas.

Lemma 3.1. For each t ≥ 4 such that 4 | t, the circulant graph

Circ(4t+ 8, {1, 2, 3, . . . , 2t+ 3} \ {t+ 1, t+ 3, t+ 4})

must be a 4t-regular circulant nut graph of order 4t+ 8.

Proof. Let n = 4t+8. First of all, we know that t+1 and t+3 are odd, while t+4 is even,
which directly tells us that the given circulant graph does have a non-empty generator set
that contains equally many odd and even integers, all of which are positive, but smaller than
n
2 . Thus, by virtue of Lemma 2.1, in order to prove the given lemma, it is sufficient to show
that the polynomial P (x) has no n-th roots of unity among its roots, except potentially 1
or −1.

Let ζ ∈ C be an arbitrary n-th root of unity that is different from both 1 and −1. By
implementing Equation (2.1), we swiftly obtain

P (ζ) =

2t+3∑
j=1

(
ζj + ζ−j

)
−
(
ζt+1 + ζ−t−1

)
−
(
ζt+3 + ζ−t−3

)
−
(
ζt+4 + ζ−t−4

)
.

However, since ζ ̸= 1, we know that

n−1∑
j=0

ζj = 0

=⇒ ζ−2t−3
4t+7∑
j=0

ζj = 0

=⇒
2t+4∑

j=−2t−3

ζj = 0

=⇒ ζ2t+4 + 1 +

2t+3∑
j=1

(
ζj + ζ−j

)
= 0

=⇒
2t+3∑
j=1

(
ζj + ζ−j

)
= −1− ζ2t+4.
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Thus, the condition P (ζ) = 0 quickly becomes equivalent to

P (ζ) = 0

⇐⇒ −1− ζ2t+4 − ζt+1 − ζ−t−1 − ζt+3 − ζ−t−3 − ζt+4 − ζ−t−4 = 0

⇐⇒ −ζt+4(−1− ζ2t+4 − ζt+1 − ζ−t−1 − ζt+3 − ζ−t−3 − ζt+4 − ζ−t−4) = 0

⇐⇒ ζ3t+8 + ζ2t+8 + ζ2t+7 + ζ2t+5 + ζt+4 + ζ3 + ζ + 1 = 0.
(3.1)

We will finish the proof of the lemma by dividing the problem into two cases depending on
the value of ζ

n
2 .

Case ζ
n
2 = −1. In this case, we have ζ2t+4 = −1, hence ζ3t+8 = −ζt+4, which means

that Equation (3.1) leads us to

P (ζ) = 0

⇐⇒ ζ2t+8 + ζ2t+7 + ζ2t+5 + ζ3 + ζ + 1 = 0

⇐⇒ −ζ4 − ζ3 − ζ + ζ3 + ζ + 1 = 0

⇐⇒ 1− ζ4 = 0

⇐⇒ ζ4 = 1.

However, ζ4 = 1 cannot possibly hold. Moreover, ζ ̸= 1,−1 by definition, while i and −i
do not satisfy the conditions i

n
2 = −1 and (−i)

n
2 = −1 due to the fact that 4 | 2t + 4.

Thus, P (ζ) = 0 does not hold for any n-th root of unity ζ that is different from both 1 and
−1 and such that ζ

n
2 = −1.

Case ζ
n
2 = 1. In this scenario, we immediately see that ζ3t+8 = ζt+4, which further helps

us obtain from Equation (3.1)

P (ζ) = 0

⇐⇒ ζ2t+8 + ζ2t+7 + ζ2t+5 + 2ζt+4 + ζ3 + ζ + 1 = 0

⇐⇒ ζ4 + ζ3 + ζ + 2ζt+4 + ζ3 + ζ + 1 = 0

⇐⇒ 2ζt+4 + ζ4 + 2ζ3 + 2ζ + 1 = 0. (3.2)

We now divide the problem into two subcases depending on the value of ζ
n
4 .

Subcase ζ
n
4 = −1. Here, it is clear that ζt+4 = −ζ2, which means that Equation (3.2)

directly transforms to

P (ζ) = 0 ⇐⇒ ζ4 + 2ζ3 − 2ζ2 + 2ζ + 1 = 0.

However, the polynomial x4 +2x3 − 2x2 +2x+1 ∈ Q[x] has no roots of unity among its
roots, as demonstrated in Appendix D. This means that P (ζ) = 0 cannot possibly hold for
any ζ that is an n-th root of unity, as desired.
Subcase ζ

n
4 = 1. In this subcase, we obtain ζt+4 = ζ2. Thus, Equation (3.2) gives us

P (ζ) = 0

⇐⇒ ζ4 + 2ζ3 + 2ζ2 + 2ζ + 1 = 0

⇐⇒ (ζ2 + 1)(ζ + 1)2 = 0

⇐⇒ ζ2 + 1 = 0.



616 Ars Math. Contemp. 24 (2024) #P4.03 / 609–641

Now, by taking into consideration that i
n
4 = (−i)

n
4 = −1 due to the fact that n

4 = t+2 ≡4

2, we clearly see that for any n-th root of unity ζ ∈ C different from 1 and −1 and such
that ζ

n
4 = 1, the equality ζ2 + 1 = 0 truly cannot hold. Hence, we reach P (ζ) ̸= 0 once

again.

Lemma 3.2. For each t ≥ 6 such that t ≡4 2, the circulant graph

Circ(4t+ 8, {1, 2, 3 . . . , 2t+ 3} \ {t− 2, t+ 1, t+ 3})

must be a 4t-regular circulant nut graph of order 4t+ 8.

Proof. Let n = 4t + 8. It is clear that t − 2 is even, while t + 1 and t + 3 are odd,
which implies that the given circulant graph has a non-empty generator set that contains
equally many odd and even integers, all of which are positive and lower than n

2 . By relying
on Lemma 2.1, we know that in order to finalize the proof of the lemma, it is enough to
demonstrate that the polynomial P (x) has no n-th roots of unity among its roots, except
potentially 1 or −1.

We will use a very similar strategy to complete the proof as it was done in Lemma 3.1.
Let ζ ∈ C be an arbitrary n-th root of unity such that ζ ̸= 1,−1. By using Equation (2.1),
we immediately get

P (ζ) =

2t+3∑
j=1

(
ζj + ζ−j

)
−
(
ζt−2 + ζ−t+2

)
−
(
ζt+1 + ζ−t−1

)
−
(
ζt+3 + ζ−t−3

)
.

Now, we can use the same equality
∑2t+3

j=0

(
ζj + ζ−j

)
= −1 − ζ2t+4 that was proved in

Lemma 3.1 in order to conclude that

P (ζ) = 0

⇐⇒ −1− ζ2t+4 − ζt−2 − ζ−t+2 − ζt+1 − ζ−t−1 − ζt+3 − ζ−t−3 = 0

⇐⇒ −ζt+3(−1− ζ2t+4 − ζt−2 − ζ−t+2 − ζt+1 − ζ−t−1 − ζt+3 − ζ−t−3) = 0

⇐⇒ ζ3t+7 + ζ2t+6 + ζ2t+4 + ζ2t+1 + ζt+3 + ζ5 + ζ2 + 1 = 0.
(3.3)

We shall finish the proof by dividing the problem into two cases depending on the value of
ζ

n
2 .

Case ζ
n
2 = −1. Here, we see that ζ2t+4 = −1, hence ζ3t+7 = −ζt+3. On behalf of

Equation (3.3), P (ζ) = 0 becomes further equivalent to

P (ζ) = 0

⇐⇒ ζ2t+6 + ζ2t+4 + ζ2t+1 + ζ5 + ζ2 + 1 = 0

⇐⇒ −ζ2 − 1− 1

ζ3
+ ζ5 + ζ2 + 1 = 0

⇐⇒ ζ5 − 1

ζ3
= 0

⇐⇒ ζ8 = 1.
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However, n
2 = 2t+ 4, where t ≡4 2, which means that 8 | n

2 . This implies that whenever
some eighth root of unity is raised to the power of n

2 , it yields 1, not −1. Hence, the equality
ζ8 = 1 cannot possibly hold for any n-th root of unity ζ ∈ C such that ζ

n
2 = −1. Thus,

we obtain P (ζ) ̸= 0, as desired.

Case ζ
n
2 = 1. In this case, it is clear that ζ3t+7 = ζt+3, which allows us to implement

Equation (3.3) in order to reach

P (ζ) = 0

⇐⇒ ζ2t+6 + ζ2t+4 + ζ2t+1 + 2ζt+3 + ζ5 + ζ2 + 1 = 0

⇐⇒ ζ2 + 1 +
1

ζ3
+ 2ζt+3 + ζ5 + ζ2 + 1 = 0

⇐⇒ ζ3
(
2ζt+3 + ζ5 + 2ζ2 + 2 +

1

ζ3

)
= 0

⇐⇒ 2ζt+6 + ζ8 + 2ζ5 + 2ζ3 + 1 = 0. (3.4)

We now divide the problem into two subcases depending on the value of ζ
n
4 .

Subcase ζ
n
4 = −1. In this subcase, we know that ζt+6 = −ζ4, hence Equation (3.4)

quickly implies

P (ζ) = 0

⇐⇒ ζ8 + 2ζ5 − 2ζ4 + 2ζ3 + 1 = 0

⇐⇒ (ζ2 + 1)(ζ6 − ζ4 + 2ζ3 − ζ2 + 1) = 0.

Furthermore, we have i
n
4 = (−i)

n
4 = 1 due to the fact that n

4 = t+ 2 ≡4 0, which means
that ζ2 + 1 ̸= 0. This leads us to

P (ζ) = 0 ⇐⇒ ζ6 − ζ4 + 2ζ3 − ζ2 + 1 = 0.

However, the polynomial x6 − x4 + 2x3 − x2 + 1 ∈ Q[x] has no roots of unity among its
roots, as shown in Appendix D. This implies that P (ζ) ̸= 0 for any n-th root of unity ζ
such that ζ ̸= 1,−1 and ζ

n
4 = −1.

Subcase ζ
n
4 = 1. Here, we get ζt+6 = ζ4, which enables us to use Equation (3.4) to swiftly

obtain

P (ζ) = 0

⇐⇒ ζ8 + 2ζ5 + 2ζ4 + 2ζ3 + 1 = 0

⇐⇒ (ζ + 1)2(ζ6 − 2ζ5 + 3ζ4 − 2ζ3 + 3ζ2 − 2ζ + 1) = 0

⇐⇒ ζ6 − 2ζ5 + 3ζ4 − 2ζ3 + 3ζ2 − 2ζ + 1 = 0.

The polynomial x6−2x5+3x4−2x3+3x2−2x+1 ∈ Q[x] has no roots of unity among
its roots, as demonstrated in Appendix D. This clearly shows that P (ζ) = 0 cannot hold,
as desired.

4 Construction for 8 | n ∧ n ≥ 4t + 16

In this section we will give a constructive proof of the existence of a 4t-regular circulant
nut graph of any order n ∈ N such that n ≥ 4t+16 and 8 | n, for any even t ≥ 4. In order
to achieve this, we will prove the following theorem.
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Theorem 4.1. For any even t ≥ 4 and any n ≥ 4t+16 such that 8 | n, the circulant graph
Circ(n, S′

t,n) where

S′
t,n = {1, 2, . . . , t− 3} ∪ {t− 1, t} ∪

{n

4
,
n

4
+ 2

}
∪
{n

2
− t,

n

2
− (t− 1)

}
∪
{n

2
− (t− 3), . . . ,

n

2
− 2,

n

2
− 1

}
must be a 4t-regular circulant nut graph of order n.

For starters, it is clear that the set S′
t,n is well defined, given the fact that t < n

4 and
n
4 + 2 < n

2 − t for each even t ≥ 4 and each n ≥ 4t + 16 such that 8 | n. Moreover, it
is not difficult to see that this set necessarily contains equally many odd and even integers,
all of which are positive and smaller than n

2 . By virtue of Lemma 2.1, in order to prove
Theorem 4.1, it is sufficient to show that P (x) has no n-th roots of unity among its roots,
except potentially 1 or −1.

The proof of Theorem 4.1 will be carried out in a fashion that is very similar to the
strategy used by Damnjanović [3]. Thus, we will rely on a few auxiliary lemmas which will
be used in order to finalize the proof in a more concise manner. We start off by defining the
following two polynomials

Qt(x) = 2x2t+1 − 2x2t−1 + 2x2t−2 + xt+3 − xt+2 + xt−1 − xt−2 − 2x3 + 2x2 − 2,

Rt(x) = 2x2t+1 − 2x2t−1 + 2x2t−2 − xt+3 + xt+2 − 4xt+1

+ 4xt − xt−1 + xt−2 − 2x3 + 2x2 − 2,

for each even t ≥ 6. Now, since it is clear that 3 < t− 2 and t+ 3 < 2t− 2 hold for any
even t ≥ 6, we see that Qt(x) must have exactly 10 non-zero terms, while Rt(x) surely
has exactly 12 non-zero terms. Let L′

t and L′′
t be the sets containing the powers of these

terms, respectively, i.e.

L′
t = {0, 2, 3, t− 2, t− 1, t+ 2, t+ 3, 2t− 2, 2t− 1, 2t+ 1},

L′′
t = {0, 2, 3, t− 2, t− 1, t, t+ 1, t+ 2, t+ 3, 2t− 2, 2t− 1, 2t+ 1},

for each even t ≥ 6. In the next lemma we will show one valuable property regarding these
two sets.

Lemma 4.2. For each even t ≥ 6 and each β ∈ N, β ≥ 10, L′
t must contain an element

whose remainder modulo β is unique within the set. Also, for each even t ≥ 6 and each
β ∈ N, β ≥ 7 such that β ∤ t, L′′

t necessarily contains an element whose remainder modulo
β is unique within the set.

Proof. It is clear that, for any β ≥ 7, the elements t− 2, t− 1, t, t+1, t+2, t+3 must all
have mutually distinct remainders modulo β. If the element t − 1 were to have a distinct
remainder modulo β from all the remainders of the elements 0, 2, 3, 2t− 2, 2t− 1, 2t+ 1,
then this value would represent an element of the set L′

t, as well as the set L′′
t , which

has a unique remainder modulo β inside the said set. The lemma statement would swiftly
follow from here. Now, suppose otherwise, i.e. that the value t − 1 does have the same
remainder modulo β as some number from the set {0, 2, 3, 2t− 2, 2t− 1, 2t+ 1}. We will
finish the proof off by showing that the lemma statement holds in this scenario as well. For
convenience, we will divide the problem into six corresponding cases.
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t ≡β −2 t ≡β 0 t ≡β 1 t ≡β 3 t ≡β 4

0 ≡β 0 0 0 0 0
2 ≡β 2 2 2 2 2
3 ≡β 3 3 3 3 3

t− 2 ≡β −4 −2 −1 1 2
t− 1 ≡β −3 −1 0 2 3

t ≡β −2 0 1 3 4
t+ 1 ≡β −1 1 2 4 5
t+ 2 ≡β 0 2 3 5 6
t+ 3 ≡β 1 3 4 6 7

2t− 2 ≡β −6 −2 0 4 6
2t− 1 ≡β −5 −1 1 5 7
2t+ 1 ≡β −3 1 3 7 9

Table 1: The elements of the sets L′
t and L′′

t modulo β, for certain values of t mod β.

Case t − 1 ≡β 0. In this case we obtain t ≡β 1. From Table 1 it is now clear that the
element t− 2 must have a unique remainder modulo β in both L′

t and L′′
t .

Case t− 1 ≡β 2. In this case we get t ≡β 3. Once again, Table 1 tells us that the element
t− 2 must have a unique remainder modulo β in both L′

t and L′′
t .

Case t − 1 ≡β 3. Here, we conclude that t ≡β 4. According to Table 1, we see that the
element t necessarily has a unique remainder modulo β in L′′

t , whenever β ≥ 7. On the
other hand, if β ≥ 10, then the element 0 certainly has a unique remainder modulo β within
the set L′

t.

Case t−1 ≡β 2t−2. In this scenario we get t ≡β 1, hence this case is solved in absolutely
the same way as the previous case t− 1 ≡β 0.

Case t − 1 ≡β 2t − 1. Here, we immediately get t ≡β 0. By virtue of Table 1, we see
that the element 0 has a unique remainder modulo β in the set L′

t. On the other hand, the
set L′′

t contains no element with a unique remainder modulo β. In fact, we can group the
elements of L′′

t into six equivalence pairs according to their remainders modulo β. We will
rely on this fact later on.

Case t− 1 ≡β 2t+ 1. In this case, we obtain t ≡β −2. It is easy to see from Table 1 that
whenever β ≥ 10, the element t − 2 must have a unique remainder modulo β within the
set L′

t. Similarly, if β ≥ 7, then the element t+ 1 surely has a unique remainder modulo β
inside the set L′′

t .

Now, by implementing Lemma 4.2, we are able to prove the following lemma regarding
the divisibility of Qt(x) and Rt(x) polynomials by certain polynomials that shall be of later
use to us.

Lemma 4.3. For any even t ≥ 6 and each β ≥ 10, the polynomial Qt(x) cannot be
divisible by a polynomial V (x) ∈ Q[x] with at least two non-zero terms such that all of
its terms have powers divisible by β. Similarly, for any even t ≥ 6 and each β ≥ 7, the
polynomial Rt(x) also cannot be divisible by any such V (x).

Proof. Let t ≥ 6 be an arbitrarily chosen even integer and let β ≥ 10 be any positive
integer. Suppose that the polynomial Qt(x) is divisible by a V (x) with at least two non-
zero terms such that all of its terms have powers divisible by β. Now, we will use Q(β,j)

t (x)
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to denote the polynomial composed of all the terms of Qt(x) whose powers are congruent
to j modulo β, for each j = 0, β − 1. If we write

Qt(x) = V (x)V1(x)

and use the notation V
(β,j)
1 (x) in a manner analogous to the previously stated Q

(β,j)
t (x), it

becomes easy to notice that

Q
(β,j)
t (x) = V (x)V

(β,j)
1 (x)

must hold for each j = 0, β − 1. Hence, we obtain that V (x) | Q(β,j)
t (x) is true for each

j = 0, β − 1. However, by virtue of Lemma 4.2, we know that there exists an element of
L′
t that has a unique remainder modulo β within the set. This implies that there exists a j

such that Q(β,j)
t (x) has the form c xa for some c ∈ Z \ {0} and a ∈ N0. By taking this into

consideration, we get that V (x) | c xa, which further implies that V (x) cannot have more
than one non-zero term, thus yielding a contradiction.

Now, let t ≥ 6 be any even integer and let β ≥ 7 be some positive integer. Suppose that
Rt(x) is divisible by a V (x) with at least two non-zero terms such that all of its terms have
powers divisible by β. If β ∤ t, then we can obtain a contradiction by applying Lemma 4.2
in a manner that is entirely analogous to the technique previously used while dealing with
the Qt(x) polynomial. Thus, we choose to omit the proof details of this case and focus
solely on the remaining scenario when β | t holds.

By taking into consideration the remainders given in Table 1, we see that for β ≥ 7 and
β | t, the divisibility V (x) | Rt(x) further implies

V (x) | 4xt − 2,

V (x) | xt+2 + 2x2,

from which we swiftly obtain

V (x) | x2 (4xt − 2) + (xt+2 + 2x2)

=⇒ V (x) | 5xt+2,

thus yielding a contradiction once more, as desired.

We now turn our attention to the cyclotomic polynomials and investigate the divisibility
of Qt(x) and Rt(x) by these polynomials, for all possible even values t ≥ 6. By taking
into consideration that each cyclotomic polynomial Φb(x) must have at least two non-zero
terms, it becomes apparent that Lemma 4.3 will play a big role in our analysis to come. In
fact, its usage is immediately demonstrated within the next lemma.

Lemma 4.4. For each even t ≥ 6, the divisibility Φb(x) | Qt(x) for some b ∈ N implies

• p2 ∤ b for any prime number p ≥ 11;

• 73 ∤ b, 53 ∤ b, 34 ∤ b, 22 ∤ b.

Also, for each even t ≥ 6, the divisibility Φb(x) | Rt(x) for some b ∈ N implies

• p2 ∤ b for any prime number p ≥ 7;

• 53 ∤ b, 33 ∤ b, 22 ∤ b.
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Proof. Let b ∈ N be such that p2 | b for some prime number p. In this case, b
p is a positive

integer divisible by p, hence we get that Φb(x) = Φ b
p
(xp) (see, for example, [9, page 160]).

Similarly, if pk | b for some k ≥ 2, we inductively obtain that Φb(x) = Φ b

pk−1
(xpk−1

).

We will now implement this observation in order to complete the proof of the lemma by
dividing it into two separate cases for Qt(x) and Rt(x).

Case Qt(x). Suppose that Φb(x) | Qt(x) for some even t ≥ 6 and some b ∈ N. If p2 | b
for some prime number p ≥ 11, we then get that Φb(x) = Φ b

p
(xp), hence all the terms

of Φb(x) must have powers divisible by p ≥ 11. By virtue of Lemma 4.3, the divisibility
Φb(x) | Qt(x) cannot hold, hence we obtain a contradiction.

If we suppose that 73 | b or 53 | b or 34 | b, we get that all the terms of Φb(x) must have
powers divisible by 49 or 25 or 27, respectively. In each of these cases, Lemma 4.3 tells us
that the divisibility Φb(x) | Qt(x) does not hold, thus yielding a contradiction. In order to
prove the part of the lemma regarding the Qt(x) polynomial, it becomes sufficient to show
that 4 | b cannot be true.

Now, suppose that 4 | b holds. In this case, we immediately get that Φb(x) contains
only terms whose powers are even. By taking into consideration that the numbers 0, 2,
t− 2, t+ 2, 2t− 2 are even, while 3, t− 1, t+ 3, 2t− 1, 2t+ 1 are odd, we conclude that

Φb(x) | 2x2t−2 − xt+2 − xt−2 + 2x2 − 2,

Φb(x) | 2x2t+1 − 2x2t−1 + xt+3 + xt−1 − 2x3.

If we denote

A(x) = 2x2t−2 − xt+2 − xt−2 + 2x2 − 2,

B(x) = 2x2t+1 − 2x2t−1 + xt+3 + xt−1 − 2x3,

C(x) = xt+7 − xt+5 + xt+3 − xt+1 +
1

2
x9 + 2x7 − 3x5 + 4x3 − 3

2
x,

D(x) = −xt+4 − xt +
1

2
x8 − x4 + 2x2 − 3

2
,

then it can be further obtained that

Φb(x) | A(x)C(x) +B(x)D(x)

=⇒ Φb(x) | 3x9 − 8x7 + 10x5 − 8x3 + 3x

=⇒ Φb(x) | x(x− 1)2(x+ 1)2(3x4 − 2x2 + 3)

=⇒ Φb(x) | 3x4 − 2x2 + 3.

However, the polynomial 3x4 − 2x2 + 3 ∈ Q[x] has no roots of unity among its roots, as
demonstrated in Appendix D, thus yielding a contradiction. This means that 4 | b cannot
possibly be true, as desired.

Case Rt(x). Suppose that Φb(x) | Rt(x) for some even t ≥ 6 and some b ∈ N. It can
be shown that p2 ∤ b for any prime p ≥ 7, as well as 53 ∤ b and 33 ∤ b, by implementing
Lemma 4.3 in a completely analogous manner as done in the proof of the previous case.
For this reason, we choose to leave out the according details. Thus, in order to finalize the
proof, it is enough to show that 4 ∤ b.
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Suppose that 4 | b does hold. Similarly as in the previous case, we conclude that Φb(x)
contains only terms whose powers are even. Besides that, the numbers 0, 2, t − 2, t, t +
2, 2t− 2 are even, while 3, t− 1, t+ 1, t+ 3, 2t− 1, 2t+ 1 are odd. Bearing this in mind,
we get

Φ(b) | 2x2t−2 + xt+2 + 4xt + xt−2 + 2x2 − 2,

Φ(b) | 2x2t+1 − 2x2t−1 − xt+3 − 4xt+1 − xt−1 − 2x3.

Now, if we denote

A(x) = 2x2t−2 + xt+2 + 4xt + xt−2 + 2x2 − 2,

B(x) = 2x2t+1 − 2x2t−1 − xt+3 − 4xt+1 − xt−1 − 2x3,

C(x) = −xt+7 − 3xt+5 + 3xt+3 + xt+1 +
1

2
x9 + 6x7 + 5x5 + 8x3 − 3

2
x,

D(x) = xt+4 + 4xt+2 + xt +
1

2
x8 + 4x6 + 7x4 + 6x2 − 3

2
,

it is clear that

Φb(x) | A(x)C(x) +B(x)D(x)

=⇒ Φb(x) | 3x9 − 16x7 − 6x5 − 16x3 + 3x

=⇒ Φb(x) | x(x2 − 2x− 1)(x2 + 2x− 1)(3x4 + 2x2 + 3)

=⇒ Φb(x) | (x2 − 2x− 1)(x2 + 2x− 1)(3x4 + 2x2 + 3).

However, neither of the polynomials x2 − 2x − 1, x2 + 2x − 1, 3x4 + 2x2 + 3 contains
a root that represents a root of unity, which immediately leads us to a contradiction. Thus,
we reach 4 ∤ b.

Lemma 4.4 indicates that the cyclotomic polynomials which divide Qt(x) and Rt(x)
are very specific. Moreover, it can be shown that for any b ≥ 3, the cyclotomic polynomial
Φb(x) can divide neither Qt(x) nor Rt(x). In fact, our next step shall be to prove this exact
statement. In order to do this, we will need the following two short auxiliary lemmas.

Lemma 4.5. For each even t ≥ 6 and each prime number p ≥ 11, Qt(x) cannot be
divisible by Φp(x) or Φ2p(x). Similarly, for any even t ≥ 6 and any prime number p ≥ 13,
Rt(x) cannot be divisible by Φp(x) or Φ2p(x).

Proof. The lemma statement about the Qt(x) polynomial can be proved in a fairly anal-
ogous manner as the part regarding Rt(x). In fact, the proof of Φp(x) ∤ Rt(x) and
Φ2p(x) ∤ Rt(x) is slightly more difficult to perform due to the existence of one addi-
tional edge case which does not exist when we are dealing with Qt(x). For this reason,
we choose to leave out the proof details for Φp(x) ∤ Qt(x) and Φ2p(x) ∤ Qt(x) and focus
solely on the Rt(x) polynomial.

Now, let t ≥ 6 be an arbitrary even integer and let p ≥ 11 be some prime number. By
noticing that

Φp(x) =

p−1∑
j=0

xj , Φ2p(x) =

p−1∑
j=0

(−1)jxj ,
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we immediately see that degΦp = degΦ2p = p−1. We will finalize the proof by splitting
the problem into two cases depending on whether we are dealing with Φp(x) or Φ2p(x).

Case Φp(x). Let R mod p
t (x) be the following polynomial:

R mod p
t (x) = 2x(2t+1) mod p − 2x(2t−1) mod p + 2x(2t−2) mod p − x(t+3) mod p

+ x(t+2) mod p − 4x(t+1) mod p + 4xt mod p

− x(t−1) mod p + x(t−2) mod p − 2x3 + 2x2 − 2.

It is clear that Φp(x) | Rt(x) holds if and only if Φp(x) | R mod p
t (x) does, too. If we

suppose that Φp(x) | Rt(x) is true and take into consideration that

degR mod p
t ≤ p− 1 = degΦp,

we quickly obtain two possibilities:

• R mod p
t (x) ≡ 0;

• R mod p
t (x) = cΦp(x) for some c ∈ Q \ {0}.

It is not difficult to see that R mod p
t (x) ≡ 0 cannot hold. If p ∤ t, then Lemma 4.2

dictates that there exists an element of L′′
t that has a unique remainder modulo p within

that set. Hence, R mod p
t (x) must have at least one term corresponding to that element. On

the other hand, if p | t, then according to Table 1, in order for R mod p
t (x) ≡ 0 to be true,

we would need 4xt mod p − 2 = 0 to hold, which clearly does not. It is worth pointing out
that while performing the analogous proof for Qt(x), the edge case p | t does not exist,
which can immediately be noticed in the formulation itself of Lemma 4.2.

Now, suppose that R mod p
t (x) = cΦp(x) holds for some c ∈ Q \ {0}. The polynomial

Φp(x) has p non-zero terms, which means that R mod p
t (x) needs to have exactly p non-

zero terms as well. This is obviously not possible whenever p ≥ 13, since R mod p
t (x) can

have at most 12 non-zero terms.

Case Φ2p(x). Let R̂ mod p
t (x) be the following polynomial:

R̂ mod p
t (x) = 2(−1)⌊

2t+1
p ⌋x(2t+1) mod p − 2(−1)⌊

2t−1
p ⌋x(2t−1) mod p

+ 2(−1)⌊
2t−2

p ⌋x(2t−2) mod p − (−1)⌊
t+3
p ⌋x(t+3) mod p

+ (−1)⌊
t+2
p ⌋x(t+2) mod p − 4(−1)⌊

t+1
p ⌋x(t+1) mod p

+ 4(−1)⌊
t
p ⌋xt mod p − (−1)⌊

t−1
p ⌋x(t−1) mod p

+ (−1)⌊
t−2
p ⌋x(t−2) mod p − 2x3 + 2x2 − 2.

We know that each primitive 2p-th root of unity gives −1 when raised to the power of
p. For this reason, it is not difficult to conclude that Φ2p(x) | Rt(x) is equivalent to
Φ2p(x) | R̂ mod p

t (x). Now, if we suppose that Φ2p(x) | Rt(x) holds and bear in mind that

deg R̂ mod p
t ≤ p− 1 = degΦ2p,

we reach the same two possibilities as in the previous case:
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• R̂ mod p
t (x) ≡ 0;

• R̂ mod p
t (x) = cΦp(x) for some c ∈ Q \ {0}.

The rest of the proof can be carried out in a manner analogous to the previous case. Thus,
we choose to omit it.

Lemma 4.6. For each even t ≥ 6, Qt(x) cannot be divisible by a cyclotomic polynomial
Φb(x) where b ≥ 3 is a positive integer such that

• it does not have any prime factors outside of the set {2, 3, 5, 7};

• it does not contain all the prime factors from the set {3, 5, 7};

• 22 ∤ b, 34 ∤ b, 53 ∤ b, 73 ∤ b.

Also, for any even t ≥ 6, Rt(x) cannot be divisible by a cyclotomic polynomial Φb(x)
where b ≥ 3 is a positive integer such that

• it does not have any prime factors outside of the set {2, 3, 5, 7, 11};

• it does not contain both prime factors from the set {7, 11} or from the set {5, 11};

• 22 ∤ b, 33 ∤ b, 53 ∤ b, 72 ∤ b, 112 ∤ b.

Proof. Let Q mod b
t (x) and R mod b

t (x) be the next two polynomials:

Q mod b
t (x) = 2x(2t+1) mod b − 2x(2t−1) mod b + 2x(2t−2) mod b + x(t+3) mod b

− x(t+2) mod b + x(t−1) mod b − x(t−2) mod b

− 2x3 mod b + 2x2 mod b − 2,

R mod b
t (x) = 2x(2t+1) mod b − 2x(2t−1) mod b + 2x(2t−2) mod b − x(t+3) mod b

+ x(t+2) mod b − 4x(t+1) mod b + 4xt mod b − x(t−1) mod b

+ x(t−2) mod b − 2x3 mod b + 2x2 mod b − 2.

Here, it is crucial to point out that Φb(x) | Qt(x) ⇐⇒ Φb(x) | Q mod b
t (x) and

Φb(x) | Rt(x) ⇐⇒ Φb(x) | R mod b
t (x). However, for a fixed value of b ∈ N, it

is clear that there exist only finitely many polynomials Q mod b
t (x) and R mod b

t (x) as t
ranges over the even integers greater than or equal to 6. Thus, if we show that Φb(x) di-
vides none of these concrete Q mod b

t (x) polynomials, this is sufficient to prove that Φb(x)
does not divide Qt(x). The same can be said regarding Rt(x).

In order to prove the lemma, it is enough to demonstrate that Φb(x) ∤ Q mod b
t (x) and

Φb(x) ∤ R mod b
t (x) for all the required values of b and for all the possible remainders t mod

b. However, the lemma formulation specifies only a finite set of b values corresponding to
Qt(x) and to Rt(x). For this reason, it is trivial to perform the proof of the lemma via
computer. The required computational results are disclosed in Appendices A and B.

We now proceed to prove the aforementioned statement regarding the divisibility of
Qt(x) and Rt(x) polynomials by cyclotomic polynomials. In order to do this, we shall
heavily rely on Theorem 2.2. The reason why this theorem is so convenient to use is clear
— it is due to the sheer fact that the Qt(x) and Rt(x) polynomials have very few non-zero
terms.
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Lemma 4.7. For each even t ≥ 6, Qt(x) is not divisible by any cyclotomic polynomial
Φb(x) where b ≥ 3.

Proof. Suppose that Φb(x) | Qt(x) for some even t ≥ 6 and some b ≥ 3. We now divide
the problem into two cases depending on whether b is divisible by some prime number
from the set {3, 5, 7}.

Case 3 ∤ b ∧ 5 ∤ b ∧ 7 ∤ b. In this case, it is clear that b has at least one prime factor greater
than 7, since b /∈ {1, 2} and 22 ∤ b, according to Lemma 4.4. Now, since Qt(x) has exactly
10 non-zero terms, and p − 2 ≥ 10 − 2 for any prime p ≥ 11, we are able to repeatedly
apply Theorem 2.2 in order to cancel out any additional prime divisor of b greater than 7,
until exactly one is left. This leads us to

Φb′(x) | Qt(x),

where b′ has a single prime divisor greater than 7, and is potentially divisible by two as
well. Taking into consideration Lemma 4.4, we conclude that b′ must either be equal to
some prime p ≥ 11 or have the form 2p, where p ≥ 11 is a prime number. Either way,
Lemma 4.5 tells us that such a Φb′(x) cannot possibly divide Qt(x), hence we obtain a
contradiction.

Case 3 | b ∨ 5 | b ∨ 7 | b. In this scenario, we can apply Theorem 2.2 in a similar fashion
in order to cancel out any potential prime divisor of b greater than 7 until we reach

Φb′(x) | Qt(x),

where b′ ≥ 3 is such that all of its prime factors belong to the set {2, 3, 5, 7}, and 22 ∤ b′,
34 ∤ b′, 53 ∤ b′, 73 ∤ b′, by virtue of Lemma 4.4. Furthermore, we know that (3 − 2) +
(5 − 2) + (7 − 2) > 10 − 2, hence we can suppose without loss of generality that b′ is
not divisible by at least one prime number from the set {3, 5, 7}, in accordance with Theo-
rem 2.2. However, Lemma 4.6 dictates that such a Φb′(x) cannot divide Qt(x), yielding a
contradiction.

Lemma 4.8. For each even t ≥ 6, Rt(x) is not divisible by any cyclotomic polynomial
Φb(x) where b ≥ 3.

Proof. Suppose that Φb(x) | Rt(x) for some even t ≥ 6 and some b ≥ 3. We proceed
by dividing the problem into two cases depending on whether b is divisible by some prime
number from {3, 5, 7, 11}.

Case 3 ∤ b ∧ 5 ∤ b ∧ 7 ∤ b ∧ 11 ∤ b. Due to the fact that b ̸∈ {1, 2} and 22 ∤ b, by virtue of
Lemma 4.4, we deduce that b has at least one prime factor greater than 11. Since Rt(x) has
exactly 12 non-zero terms and p − 2 > 12 − 2 for any prime p ≥ 13, we can implement
Theorem 2.2 and Lemma 4.4 in an analogous fashion as in Lemma 4.7 in order to reach

Φb′(x) | Rt(x),

for some b′ that is either equal to a prime p ≥ 13 or has the form 2p, for some prime number
p ≥ 13. Once again, Lemma 4.5 tells us that such a divisibility cannot hold, leading to a
contradiction.
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Case 3 | b ∨ 5 | b ∨ 7 | b ∨ 11 | b. In this case, we apply Theorem 2.2 once more in order
to cancel out any potential prime divisor of b greater than 11 until we get

Φb′(x) | Rt(x),

where b′ ≥ 3 is such that all of its prime factors belong to the set {2, 3, 5, 7, 11}, and
22 ∤ b′, 33 ∤ b′, 53 ∤ b′, 72 ∤ b′, 112 ∤ b′ due to Lemma 4.4. Besides that, it is clear that
(7−2)+(11−2) > 12−2 and (5−2)+(11−2) > 12−2, which means that it is safe to
suppose that b′ is not divisible by both elements from {7, 11} or from {5, 11}. Bearing this
in mind, it is easy to reach a contradiction by taking into consideration Lemma 4.6.

Finally, we are able to put all the pieces of the puzzle together and complete the proof
of Theorem 4.1.

Proof of Theorem 4.1. From Equation (2.1) we immediately obtain

P (ζ) =

(
ζ

n
4 +

1

ζ
n
4

)
+

(
ζ

n
4 +2 +

1

ζ
n
4 +2

)
+

t∑
j=1,
j ̸=t−2

(
ζj +

1

ζj

)
+

n
2 −1∑

j=n
2 −t,

j ̸=n
2 −t+2

(
ζj +

1

ζj

)
,

where ζ is an arbitrarily chosen n-th root of unity different from 1 and −1. It is easy to
further conclude that

P (ζ) =

(
ζ

n
4 +

1

ζ
n
4

)
+

(
ζ

n
4 +2 +

1

ζ
n
4 +2

)
+

t∑
j=1,
j ̸=t−2

(
ζj +

1

ζj
+ ζ

n
2 −j +

1

ζ
n
2 −j

)
. (4.1)

We will finish the proof by showing that P (ζ) ̸= 0 must necessarily hold. For the purpose
of making the proof easier to follow, we shall divide it into two cases depending on whether
ζ

n
2 is equal to 1 or −1.

Case ζ
n
2 = −1. It is straightforward to see that ζ

n
2 −j = − 1

ζj and 1

ζ
n
2

−j = −ζj , which
swiftly gives

ζj +
1

ζj
+ ζ

n
2 −j +

1

ζ
n
2 −j

= 0

for any j = 1, t. Thus, Equation (4.1) simplifies to

P (ζ) = ζ
n
4 +2 + ζ

n
4 +

1

ζ
n
4
+

1

ζ
n
4 +2

.

The condition P (ζ) = 0 now becomes equivalent to

P (ζ) = 0

⇐⇒ ζ
n
4 +2

(
ζ

n
4 +2 + ζ

n
4 +

1

ζ
n
4
+

1

ζ
n
4 +2

)
= 0

⇐⇒ ζ
n
2 +4 + ζ

n
2 +2 + ζ2 + 1 = 0

⇐⇒ −ζ4 − ζ2 + ζ2 + 1 = 0

⇐⇒ ζ4 = 1.
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However, due to the fact that 4 | n
2 , it is evident that each fourth root of unity among ζ

cannot satisfy ζ
n
2 = −1. Thus, provided ζ

n
2 = −1, ζ4 ̸= 1 cannot be true, from which we

immediately obtain P (ζ) ̸= 0, as desired.

Case ζ
n
2 = 1. Here, we swiftly obtain ζ

n
2 −j = 1

ζj and 1

ζ
n
2

−j = ζj . This immediately
implies

ζj +
1

ζj
+ ζ

n
2 −j +

1

ζ
n
2 −j

= 2

(
ζj +

1

ζj

)
for any j = 1, t. By applying Equation (4.1), it is now clear that P (ζ) = 0 is equivalent to

P (ζ) = 0

⇐⇒
(
ζ

n
4 +2 + ζ

n
4 +

1

ζ
n
4
+

1

ζ
n
4 +2

)
+ 2

t∑
j=1,
j ̸=t−2

(
ζj +

1

ζj

)
= 0

⇐⇒
(
ζ

n
4 +2 + ζ

n
4 +

1

ζ
n
4
+

1

ζ
n
4 +2

)
− 2− 2ζt−2 − 2

ζt−2
+ 2

t∑
j=−t

ζj = 0

⇐⇒ ζt

ζ
n
4 +2 + ζ

n
4 +

1

ζ
n
4
+

1

ζ
n
4 +2

− 2− 2ζt−2 − 2

ζt−2
+ 2

t∑
j=−t

ζj

 = 0

⇐⇒ ζt+
n
4 +2 + ζt+

n
4 + ζt−

n
4 + ζt−

n
4 −2 − 2ζt − 2ζ2t−2 − 2ζ2 + 2

2t∑
j=0

ζj = 0.

Given the fact that

(ζ − 1)

ζt+
n
4 +2 + ζt+

n
4 + ζt−

n
4 + ζt−

n
4 −2 − 2ζt − 2ζ2t−2 − 2ζ2 + 2

2t∑
j=0

ζj

 =

= ζt+
n
4 +3 − ζt+

n
4 +2 + ζt+

n
4 +1 − ζt+

n
4 + ζt−

n
4 +1 − ζt−

n
4 + ζt−

n
4 −1 − ζt−

n
4 −2

− 2ζt+1 + 2ζt − 2ζ2t−1 + 2ζ2t−2 − 2ζ3 + 2ζ2 + 2ζ2t+1 − 2

= ζt+
n
4 +3 − ζt+

n
4 +2 + 2ζt+

n
4 +1 − 2ζt+

n
4 + ζt+

n
4 −1 − ζt+

n
4 −2

+ 2ζ2t+1 − 2ζ2t−1 + 2ζ2t−2 − 2ζt+1 + 2ζt − 2ζ3 + 2ζ2 − 2,

it is straightforward to see that P (ζ) = 0 is further equivalent to

ζt+
n
4 +3 − ζt+

n
4 +2 + 2ζt+

n
4 +1 − 2ζt+

n
4 + ζt+

n
4 −1 − ζt+

n
4 −2

+ 2ζ2t+1 − 2ζ2t−1 + 2ζ2t−2 − 2ζt+1 + 2ζt − 2ζ3 + 2ζ2 − 2 = 0.
(4.2)

We now divide the problem into two separate subcases depending on whether ζ
n
4 is equal

to 1 or −1.
Subcase ζ

n
4 = 1. In this subcase, it can be easily noticed from Equation (4.2) that P (ζ) = 0

is equivalent to

ζt+3 − ζt+2 + 2ζt+1 − 2ζt + ζt−1 − ζt−2

+ 2ζ2t+1 − 2ζ2t−1 + 2ζ2t−2 − 2ζt+1 + 2ζt − 2ζ3 + 2ζ2 − 2 = 0,
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that is

2ζ2t+1 − 2ζ2t−1 + 2ζ2t−2 + ζt+3 − ζt+2 + ζt−1 − ζt−2 − 2ζ3 + 2ζ2 − 2 = 0. (4.3)

Suppose that P (ζ) = 0 does hold for some n-th root of unity ζ different from 1 and −1.
For t = 4, Equation (4.3) simplifies to

2ζ9 − ζ7 + ζ6 − ζ3 + ζ2 − 2 = 0

⇐⇒ (ζ − 1)(ζ + 1)2(2ζ6 − 2ζ5 + 3ζ4 − 2ζ3 + 3ζ2 − 2ζ + 2) = 0

⇐⇒ 2ζ6 − 2ζ5 + 3ζ4 − 2ζ3 + 3ζ2 − 2ζ + 2 = 0.

However, the polynomial 2x6−2x5+3x4−2x3+3x2−2x+2 ∈ Q[x] has no roots of unity
among its roots, as shown in Appendix D. Thus, we reach a contradiction. On the other
hand, if t ≥ 6, then Equation (4.3) is equivalent to Qt(ζ) = 0, which immediately implies
that the polynomial Qt(x) must be divisible by a cyclotomic polynomial Φb(x) where
b ≥ 3. However, by virtue of Lemma 4.7, this is not possible, yielding a contradiction once
more.

Subcase ζ
n
4 = −1. Here, implementing Equation (4.2) means that P (ζ) = 0 is equivalent

to

− ζt+3 + ζt+2 − 2ζt+1 + 2ζt − ζt−1 + ζt−2

+ 2ζ2t+1 − 2ζ2t−1 + 2ζ2t−2 − 2ζt+1 + 2ζt − 2ζ3 + 2ζ2 − 2 = 0,

that is

2ζ2t+1 − 2ζ2t−1 + 2ζ2t−2 − ζt+3 + ζt+2

− 4ζt+1 + 4ζt − ζt−1 + ζt−2 − 2ζ3 + 2ζ2 − 2 = 0.
(4.4)

Now, suppose that P (ζ) = 0 is true for some n-th root of unity ζ ̸= 1,−1. If t = 4, then
Equation (4.4) transforms to

2ζ9 − 3ζ7 + 3ζ6 − 4ζ5 + 4ζ4 − 3ζ3 + 3ζ2 − 2 = 0

⇐⇒ (ζ − 1)(2ζ8 + 2ζ7 − ζ6 + 2ζ5 − 2ζ4 + 2ζ3 − ζ2 + 2ζ + 2) = 0

⇐⇒ 2ζ8 + 2ζ7 − ζ6 + 2ζ5 − 2ζ4 + 2ζ3 − ζ2 + 2ζ + 2 = 0.

However, the polynomial 2x8 + 2x7 − x6 + 2x5 − 2x4 + 2x3 − x2 + 2x+ 2 ∈ Q[x] has
no roots of unity among its roots, as demonstrated in Appendix D, hence P (ζ) = 0 leads
to a contradiction, as desired. On the other hand, whenever t ≥ 6, Equation (4.4) becomes
equivalent to Rt(ζ) = 0, which further implies that Rt(x) is divisible by some cyclotomic
polynomial Φb(x) where b ≥ 3. However, Lemma 4.8 dictates that this is impossible,
hence we reach a contradiction yet again.

5 Construction for n ≡8 4 ∧ n ≥ 4t + 12

In this section we shall give a constructive proof of the existence of a 4t-regular circulant
nut graph of any order n ∈ N such that n ≥ 4t+ 12 and n ≡8 4, for any even t ≥ 4. The
proof will be given in the form of the next theorem.
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Theorem 5.1. For any even t ≥ 4 and any n ≥ 4t + 12 such that n ≡8 4, the circulant
graph Circ(n, S′′

t,n) where

S′′
t,n = {1, 2, . . . , t− 1} ∪

{n

4
− 1,

n

4
+ 3

}
∪
{n

2
− (t− 1), . . . ,

n

2
− 2,

n

2
− 1

}
must be a 4t-regular circulant nut graph of order n.

We will show that Theorem 5.1 holds by using a similar strategy as with Theorem 4.1.
To begin with, it can be easily deduced that the set S′′

t,n is well defined, since t−1 < n
4 −1

and n
4 + 3 < n

2 − (t − 1) for each even t ≥ 4 and each n ≥ 4t + 12 such that n ≡8 4.
Besides that, the set S′′

t,n certainly contains equally many odd and even integers, all of
which are positive and smaller than n

2 . This means that, by implementing Lemma 2.1, we
can prove Theorem 5.1 if we simply show that P (x) has no n-th roots of unity among its
roots, except potentially 1 or −1.

To begin with, we shall define the following two polynomials

Ut(x) = 2x2t−1 + xt+3 − xt+2 + xt+1 − 3xt + 3xt−1 − xt−2 + xt−3 − xt−4 − 2,

Wt(x) = 2x2t−1 − xt+3 + xt+2 − xt+1 − xt + xt−1 + xt−2 − xt−3 + xt−4 − 2,

for each even t ≥ 4. Now, for t ≥ 6 we have 2t − 1 > t + 3 and t − 4 > 0, while the
equalities 2t − 1 = t + 3 and t − 4 = 0 hold for t = 4. This means that the polynomials
Ut(x) and Wt(x) have exactly 10 non-zero terms for any even t ≥ 6, and 8 non-zero terms
in case t = 4. We will use Mt to denote the set containing the powers of these terms, i.e.

Mt = {0, t− 4, t− 3, t− 2, t− 1, t, t+ 1, t+ 2, t+ 3, 2t− 1},

for each even t ≥ 4. We are now able to present the following lemma that demonstrates a
property of Mt similar to the one displayed in Lemma 4.2 regarding the sets L′

t and L′′
t .

Lemma 5.2. For each even t ≥ 4 and each β ∈ N, β ≥ 6, Mt must contain an element
whose remainder modulo β is unique within the set.

Proof. It is clear that the six consecutive integers t − 3, t − 2, t − 1, t, t + 1, t + 2 must
all have mutually distinct remainders modulo β for any β ≥ 6. Regardless of whether
t = 4 or t ≥ 6, it is easy to establish that at least two of these integers must have a distinct
remainder modulo β from all the elements of the set {0, t − 4, t + 3, 2t − 1}. Hence,
these integers must have a unique remainder modulo β within Mt and the lemma statement
follows swiftly from here.

By relying on Lemma 5.2, we can now prove another lemma regarding the divisibility
of Ut(x) and Wt(x) polynomials that is analogous to Lemma 4.3.

Lemma 5.3. For any even t ≥ 4 and each β ≥ 6, neither Ut(x) nor Wt(x) can be divisible
by a polynomial V (x) ∈ Q[x] with at least two non-zero terms such that all of its terms
have powers divisible by β.

Proof. This lemma can be proved in an absolutely analogous manner as Lemma 4.3. The
only difference is that Lemma 5.2 is implemented in place of Lemma 4.2. For this reason,
we choose to omit the proof details.



630 Ars Math. Contemp. 24 (2024) #P4.03 / 609–641

In a similar manner as done so in Section 4, we now investigate the divisibility of Ut(x)
and Wt(x) polynomials by cyclotomic polynomials. By directly implementing Lemma 5.3,
we are able to prove the following result.

Lemma 5.4. For each even t ≥ 4, if Φb(x) | Ut(x) or Φb(x) | Wt(x) hold for some b ≥ 3,
we then necessarily have

• p2 ∤ b for any prime number p ≥ 7;

• 53 ∤ b, 33 ∤ b;
• if 22 | b, then b ∈ {4, 8}.

Proof. The proof of this lemma can be carried out in a manner that is almost entirely
analogous to the proof of Lemma 4.4. To be more precise, the results p2 ∤ b for any prime
p ≥ 7, 53 ∤ b and 33 ∤ b can all be shown by simply implementing Lemma 5.3 together with
the same idea used in the aforementioned proof of Lemma 4.4. Thus, we decide to leave
out this part of the proof and focus solely on demonstrating 4 | b =⇒ b ∈ {4, 8}. We will
do this separately for Ut(x) and Wt(x) by splitting the remaining piece of the problem into
two corresponding cases.

Case Ut(x). For a given even t ≥ 4, suppose that Φb(x) | Ut(x) for some b ∈ N such that
4 | b. Since the integers 2t−1, t+3, t+1, t−1, t−3 are odd, while t+2, t, t−2, t−4, 0
are even, it is easy to use the same logic displayed in the proof of Lemma 4.4 in order to
deduce that

Φb(x) | 2x2t−1 + xt+3 + xt+1 + 3xt−1 + xt−3,

Φb(x) | −xt+2 − 3xt − xt−2 − xt−4 − 2.

If we denote

A(x) = 2x2t−1 + xt+3 + xt+1 + 3xt−1 + xt−3,

B(x) = −xt+2 − 3xt − xt−2 − xt−4 − 2,

we immediately obtain

Φb(x) | (x6 + 3x4 + x2 + 1)A(x) + 2xt+3 B(x)

=⇒ Φb(x) | xt+9 + 4xt+7 + 7xt+5 + 8xt+3 + 7xt+1 + 4xt−1 + xt−3

=⇒ Φb(x) | xt−3 (x2 + 1)4(x4 + 1)

=⇒ Φb(x) | (x2 + 1)4(x4 + 1).

From here, it follows that any b-th primitive root of unity must also be a root of at least one
of the two polynomials x2 + 1, x4 + 1 ∈ Q[x]. Hence, b ∈ {4, 8}.

Case Wt(x). In this case, let t ≥ 4 be some even integer and let Φb(x) | Wt(x) be true
for some b ∈ N such that 4 | b. In an absolutely analogous way as in the previous case, we
conclude that

Φb(x) | 2x2t−1 − xt+3 − xt+1 + xt−1 − xt−3,

Φb(x) | xt+2 − xt + xt−2 + xt−4 − 2.
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By denoting

A(x) = 2x2t−1 − xt+3 − xt+1 + xt−1 − xt−3,

B(x) = xt+2 − xt + xt−2 + xt−4 − 2,

we swiftly get

Φb(x) | (−x6 + x4 − x2 − 1)A(x) + 2xt+3 B(x)

=⇒ Φb(x) | xt+9 − xt+5 − xt+1 + xt−3

=⇒ Φb(x) | xt−3 (x− 1)2(x+ 1)2(x2 + 1)2(x4 + 1)

=⇒ Φb(x) | (x2 + 1)2(x4 + 1).

Thus, once again we see that any b-th primitive root of unity must also be a root of at
least one of the two polynomials x2 + 1, x4 + 1 ∈ Q[x], from which we quickly obtain
b ∈ {4, 8}, as desired.

Lemma 5.4 tells us that only certain cyclotomic polynomials could divide the Ut(x) and
Wt(x) polynomials. In fact, except potentially the four polynomials Φ1(x),Φ2(x),Φ4(x),
Φ8(x), no other cyclotomic polynomial can divide Ut(x) or Wt(x), for each even t ≥ 4.
We shall now prove this claim by strongly relying on the next two auxiliary lemmas that
greatly resemble the previously disclosed Lemmas 4.5 and 4.6.

Lemma 5.5. For each even t ≥ 4 and each prime number p ≥ 11, neither Ut(x) nor
Wt(x) can be divisible by Φp(x) or Φ2p(x).

Proof. This lemma can be proved in an absolutely analogous manner as Lemma 4.5, the
only difference being that Lemma 5.2 is used in place of Lemma 4.2. For this reason, we
choose to omit the proof details.

Lemma 5.6. For each even t ≥ 4, neither Ut(x) nor Wt(x) can be divisible by a cyclo-
tomic polynomial Φb(x) where b ≥ 3 is a positive integer such that

• it does not have any prime factors outside of the set {2, 3, 5, 7};

• it does not contain all the prime factors from the set {3, 5, 7};

• 22 ∤ b, 33 ∤ b, 53 ∤ b, 72 ∤ b.

Proof. This lemma can be proved in an absolutely analogous manner as Lemma 4.6, hence
we choose the leave out the proof details. The corresponding computational results can be
found in Appendix C.

We will now prove the previously mentioned statement regarding the divisibility of
Ut(x) and Wt(x) polynomials by cyclotomic polynomials. In order to accomplish this,
we shall strongly rely on Theorem 2.2 in a similar way as we have already done so while
proving Lemmas 4.7 and 4.8.

Lemma 5.7. For each even t ≥ 4 and each positive integer b ∈ N such that b /∈ {1, 2, 4, 8},
neither Ut(x) nor Wt(x) are divisible by Φb(x).
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Proof. Suppose that Φb(x) | Ut(x) or Φb(x) | Wt(x) for some even t ≥ 4 and some
b /∈ {1, 2, 4, 8}. We will now finalize the proof via contradiction by splitting the problem
into two separate cases depending on whether b is divisible by a prime number from the set
{3, 5, 7}.

Case 3 ∤ b ∧ 5 ∤ b ∧ 7 ∤ b. By implementing Lemma 5.4, it becomes evident that b has at
least one prime factor greater than 7, given the fact that b /∈ {1, 2, 4, 8}. Further on, we see
that both Ut(x) and Wt(x) have at most 10 non-zero terms, which means that Theorem 2.2
can be applied to any prime p ≥ 11 in an analogous manner as it was done in the proof of
Lemma 4.7. By cancelling out every single prime divisor of b greater than 7 until exactly
one is left, we conclude that

Φb′(x) | Ut(x) ∨ Φb′(x) | Wt(x)

where b′ has a single prime divisor greater than 7, and is potentially divisible by two as
well, but not by four. By virtue of Lemma 5.4, it is not difficult to deduce that b′ must
either represent a prime number p ≥ 11 or have the form 2p for some prime p ≥ 11. Either
way, Lemma 5.5 swiftly leads us to a contradiction.

Case 3 | b ∨ 5 | b ∨ 7 | b. In this case, Theorem 2.2 can be applied in an analogous manner
in order to cancel out any potential prime divisor of b greater than 7 until we obtain

Φb′(x) | Ut(x) ∨ Φb′(x) | Wt(x)

for some b′ ∈ N such that all of its prime factors belong to the set {2, 3, 5, 7} and 3 | b′ ∨
5 | b′ ∨ 7 | b′. It is clear that b′ ≥ 3. By using Lemma 5.4, we now see that 72 ∤ b′,
53 ∤ b′, 33 ∤ b′, as well as 22 ∤ b′. By virtue of Theorem 2.2, we can suppose without loss
of generality that b′ is not divisible by all the elements from the set {3, 5, 7}, due to the
fact that (3− 2) + (5− 2) + (7− 2) > 10− 2. Taking everything into consideration, we
conclude that b′ must satisfy the criteria given in Lemma 5.6, which immediately yields a
contradiction once more.

We shall now implement Lemma 5.7 in order to finalize the proof of Theorem 5.1 in a
similar manner as we have done so with Theorem 4.1.

Proof of Theorem 5.1. Equation (2.1) directly gives us

P (ζ) =

(
ζ

n
4 −1 +

1

ζ
n
4 −1

)
+

(
ζ

n
4 +3 +

1

ζ
n
4 +3

)
+

t−1∑
j=1

(
ζj +

1

ζj

)
+

n
2 −1∑

j=n
2 −t+1

(
ζj +

1

ζj

)
,

where ζ is an arbitrarily chosen n-th root of unity different from 1 and −1. From here, we
immediately get

P (ζ) =

(
ζ

n
4 −1 +

1

ζ
n
4 −1

)
+

(
ζ

n
4 +3 +

1

ζ
n
4 +3

)
+

t−1∑
j=1

(
ζj +

1

ζj
+ ζ

n
2 −j +

1

ζ
n
2 −j

)
.

(5.1)
We now divide the problem into two cases depending on whether ζ

n
2 is equal to 1 or −1.

We shall finalize the proof by showing that P (ζ) ̸= 0 is certainly true in both cases.
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Case ζ
n
2 = −1. It is obvious that ζ

n
2 −j = − 1

ζj and 1

ζ
n
2

−j = −ζj , from which we get

ζj +
1

ζj
+ ζ

n
2 −j +

1

ζ
n
2 −j

= 0

for any j = 1, t− 1. For this reason, Equation (5.1) simplifies to

P (ζ) = ζ
n
4 +3 + ζ

n
4 −1 +

1

ζ
n
4 −1

+
1

ζ
n
4 +3

.

The condition P (ζ) = 0 now becomes equivalent to

P (ζ) = 0

⇐⇒ ζ
n
4 +3

(
ζ

n
4 +3 + ζ

n
4 −1 +

1

ζ
n
4 −1

+
1

ζ
n
4 +3

)
= 0

⇐⇒ ζ
n
2 +6 + ζ

n
2 +2 + ζ4 + 1 = 0

⇐⇒ −ζ6 − ζ2 + ζ4 + 1 = 0

⇐⇒ −(ζ − 1)(ζ + 1)(ζ4 + 1) = 0

⇐⇒ ζ4 = −1.

Thus, P (ζ) = 0 holds if and only if ζ is a primitive eighth root of unity. However, 8 ∤ n,
hence no n-th root of unity can be a primitive eighth root of unity. Thus, P (ζ) ̸= 0, as
desired.

Case ζ
n
2 = 1. In this case, it is clear that ζ

n
2 −j = 1

ζj and 1

ζ
n
2

−j = ζj , which immediately
leads us to

ζj +
1

ζj
+ ζ

n
2 −j +

1

ζ
n
2 −j

= 2

(
ζj +

1

ζj

)
for any j = 1, t− 1. Bearing this in mind, it is straightforward to see that

P (ζ) = 0

⇐⇒
(
ζ

n
4 +3 + ζ

n
4 −1 +

1

ζ
n
4 −1

+
1

ζ
n
4 +3

)
+ 2

t−1∑
j=1

(
ζj +

1

ζj

)
= 0

⇐⇒
(
ζ

n
4 +3 + ζ

n
4 −1 +

1

ζ
n
4 −1

+
1

ζ
n
4 +3

)
− 2 + 2

t−1∑
j=−t+1

ζj = 0

⇐⇒ ζt−1

ζ
n
4 +3 + ζ

n
4 −1 +

1

ζ
n
4 −1

+
1

ζ
n
4 +3

− 2 + 2

t−1∑
j=−t+1

ζj

 = 0

⇐⇒ ζt+
n
4 +2 + ζt+

n
4 −2 + ζt−

n
4 + ζt−

n
4 −4 − 2ζt−1 + 2

2t−2∑
j=0

ζj = 0

⇐⇒ (ζ − 1)

ζt+
n
4 +2 + ζt+

n
4 −2 + ζt−

n
4 + ζt−

n
4 −4 − 2ζt−1 + 2

2t−2∑
j=0

ζj

 = 0,
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which finally means that P (ζ) = 0 must be equivalent to

ζt+
n
4 +3 − ζt+

n
4 +2 + ζt+

n
4 −1 − ζt+

n
4 −2 + ζt−

n
4 +1 − ζt−

n
4 + ζt−

n
4 −3 − ζt−

n
4 −4

+ 2ζ2t−1 − 2ζt + 2ζt−1 − 2 = 0.
(5.2)

We now split the problem into two separate subcases depending on whether ζ
n
4 is equal to

1 or −1.
Subcase ζ

n
4 = 1. In this subcase, the implementation of Equation (5.2) directly gives that

P (ζ) = 0 is further equivalent to

ζt+3 − ζt+2 + ζt−1 − ζt−2 + ζt+1 − ζt + ζt−3 − ζt−4

+ 2ζ2t−1 − 2ζt + 2ζt−1 − 2 = 0,

that is

2ζ2t−1 + ζt+3 − ζt+2 + ζt+1 − 3ζt + 3ζt−1 − ζt−2 + ζt−3 − ζt−4 − 2 = 0.

In other words, P (ζ) = 0 is equivalent to ζ being a root of Ut(x). Now, we know that
ζ ̸= 1,−1 and that ζ cannot be a primitive eighth root of unity, as discussed earlier. On
top of that, ζ ̸= i,−i given the fact that n

2 ≡4 2, hence i
n
2 = (−i)

n
2 = −1. Bearing this

in mind, it is clear that if were P (ζ) = 0 were to hold, then Ut(x) would be divisible by
some cyclotomic polynomial Φb(x) where b /∈ {1, 2, 4, 8}. However, this is not possible
according to Lemma 5.7. For this reason, P (ζ) ̸= 0 must hold.
Subcase ζ

n
4 = −1. In this scenario, Equation (5.2) can be quickly simplified to

− ζt+3 + ζt+2 − ζt−1 + ζt−2 − ζt+1 + ζt − ζt−3 + ζt−4

+ 2ζ2t−1 − 2ζt + 2ζt−1 − 2 = 0,

that is

2ζ2t−1 − ζt+3 + ζt+2 − ζt+1 − ζt + ζt−1 + ζt−2 − ζt−3 + ζt−4 − 2 = 0.

Thus, we get that P (ζ) = 0 is equivalent to ζ being a root of Wt(x). By using the analogous
logic as in the previous subcase, it is easy to establish that P (ζ) = 0 would imply that
Wt(x) is divisible by some cyclotomic polynomial Φb(x) where b /∈ {1, 2, 4, 8}, which is
again impossible due to Lemma 5.7. Hence, P (ζ) = 0 cannot be true, which completes the
proof.

6 Conclusion
Theorem 1.8 provides the full answer to Question 1.4 posed by the circulant nut graph
order–degree existence problem. It is evident that there exists a clear and rich pattern that
the orders and degrees of circulant nut graphs must follow, with the sole exception being
the case (n, d) = (16, 8). Bearing this in mind, it now becomes possible to explore other
types of nut graphs more easily.

For example, it is clear that each circulant graph is necessarily a Cayley graph, which
is, in turn, surely a vertex-transitive graph. For this reason, if we are trying to investigate
the existence of Cayley nut graphs or vertex-transitive nut graphs, Theorem 1.8 provides a
solid starting point. Taking all the aforementioned facts into consideration, we are able to
disclose the following corollary.
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Corollary 6.1. Let d ∈ N be such that 4 | d, and let n ∈ N be such that 2 | n and

• n ≥ d+ 4 if 8 ∤ d;

• n ≥ d+ 6 if 8 | d;

• (n, d) ̸= (16, 8).

There necessarily exists a d-regular Cayley nut graph of order n, as well as a d-regular
vertex-transitive nut graph of order n.

It becomes clear that Corollary 6.1 gives a partial answer to Question 1.1. One of the
possible ways of extending the research concerning the vertex-transitive nut graphs is by
providing a full answer to the aforementioned question. Another possibility is to consider
the order–degree existence problem regarding the Cayley nut graphs, whose conditions are
also less restrictive than those corresponding to the circulant nut graphs. Bearing this in
mind, we end the paper with the following open problem.

Problem 6.2. What are all the pairs (n, d) for which there exists a d-regular Cayley nut
graph of order n?
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Appendices

A Inspection for Φb(x) ∤ Qt(x)

In this appendix section, we will disclose the computational results that demonstrate
Φb(x) ∤ Qt(x) for all the required values of b ≥ 3, as stated in Lemma 4.6. First of
all, the set of all such values of b can be obtained in a plethora of ways. For example, the
following short Python script can be used.

1 import numpy as np
2
3
4 def main():
5 part_1 = np.multiply.outer([1, 2], [1, 3, 9, 27]).reshape(-1)
6 part_2 = np.multiply.outer([1, 5, 25], [1, 7, 49]).reshape(-1)
7
8 all_of_them = np.multiply.outer(part_1, part_2).reshape(-1)
9 all_of_them.sort()

10 all_of_them = all_of_them.tolist()
11
12 result = list(filter(lambda item: item % 105 != 0, all_of_them))
13 result = list(filter(lambda item: item >= 3, result))
14
15 print(len(result))
16 print(result)
17
18
19 if __name__ == "__main__":
20 main()

The said script quickly finds that there exist exactly 46 values of b that satisfy the given
criteria:

{3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 25, 27, 30, 35, 42, 45, 49, 50, 54, 63,
70, 75, 90, 98, 126, 135, 147, 150, 175, 189, 225, 245, 270, 294,

350, 378, 441, 450, 490, 675, 882, 1225, 1323, 1350, 2450, 2646}.

For each of these values, it can be determined that Φb(x) ∤ Q mod b
t (x) for any possible

remainder t mod b. In order to achieve this, we can use, for example, the following Math-
ematica command.

1 Min[Table[
2 Min[Table[
3 Length[CoefficientRules[
4 PolynomialRemainder[
5 2 xˆMod[2 t + 1, b] - 2 xˆMod[2 t - 1, b] +
6 2 xˆMod[2 t - 2, b] + xˆMod[t + 3, b] - xˆMod[t + 2, b] +
7 xˆMod[t - 1, b] - xˆMod[t - 2, b] - 2 xˆ3 + 2 xˆ2 - 2,
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8 Cyclotomic[b, x], x]]], {t, 0, b - 1}]], {b, {3, 5, 6, 7, 9,
9 10, 14, 15, 18, 21, 25, 27, 30, 35, 42, 45, 49, 50, 54, 63, 70,

10 75, 90, 98, 126, 135, 147, 150, 175, 189, 225, 245, 270, 294, 350,
11 378, 441, 450, 490, 675, 882, 1225, 1323, 1350, 2450, 2646}}]]

This command yields the minimum possible number of non-zero terms that the polynomial
Q mod b

t (x) mod Φb(x) can have, as b ranges through all the necessary values and t mod b
varies through all the possible remainders. It can be promptly checked that this number is
equal to one, which immediately means that the remainder Q mod b

t (x) mod Φb(x) is never
equal to the zero polynomial. From here, we quickly obtain our desired result.

B Inspection for Φb(x) ∤ Rt(x)

Here, we elaborate the computational results showing that Φb(x) ∤ Rt(x) for all the values
of b ≥ 3 given in Lemma 4.6. For starters, the set of all such values of b can be computed,
for example, by using the following Python script.

1 import numpy as np
2
3
4 def main():
5 part_1 = np.multiply.outer([1, 2], [1, 7, 11, 77]).reshape(-1)
6 part_2 = np.multiply.outer([1, 3, 9], [1, 5, 25]).reshape(-1)
7
8 all_of_them = np.multiply.outer(part_1, part_2).reshape(-1)
9 all_of_them.sort()

10 all_of_them = all_of_them.tolist()
11
12 result = list(filter(lambda item: item % 77 != 0, all_of_them))
13 result = list(filter(lambda item: item % 55 != 0, result))
14 result = list(filter(lambda item: item >= 3, result))
15
16 print(len(result))
17 print(result)
18
19
20 if __name__ == "__main__":
21 main()

The Python script easily concludes that there exist exactly 40 values of b that satisfy the
given criteria:

{3, 5, 6, 7, 9, 10, 11, 14, 15, 18, 21, 22, 25, 30, 33, 35, 42,
45, 50, 63, 66, 70, 75, 90, 99, 105, 126, 150, 175, 198,

210, 225, 315, 350, 450, 525, 630, 1050, 1575, 3150}.

For each of these values, it can be determined that Φb(x) ∤ R mod b
t (x) regardless of what

the remainder t mod b is. This can be done, for example, by using the next Mathematica
command.

1 Min[Table[
2 Min[Table[
3 Length[CoefficientRules[
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4 PolynomialRemainder[
5 2 xˆMod[2 t + 1, b] - 2 xˆMod[2 t - 1, b] +
6 2 xˆMod[2 t - 2, b] - xˆMod[t + 3, b] + xˆMod[t + 2, b] -
7 4 xˆMod[t + 1, b] + 4 xˆMod[t, b] - xˆMod[t - 1, b] +
8 xˆMod[t - 2, b] - 2 xˆ3 + 2 xˆ2 - 2, Cyclotomic[b, x],
9 x]]], {t, 0, b - 1}]], {b, {3, 5, 6, 7, 9, 10, 11, 14, 15, 18,

10 21, 22, 25, 30, 33, 35, 42, 45, 50, 63, 66, 70, 75, 90, 99, 105,
11 126, 150, 175, 198, 210, 225, 315, 350, 450, 525, 630, 1050, 1575,
12 3150}}]]

The said command computes the minimum possible number of non-zero terms that the
polynomial R mod b

t (x) mod Φb(x) can have, as b ranges through all the required values
and t mod b varies through all the possible remainders. The computation output is equal to
one, hence we obtain our desired result in the same way as in Appendix A.

C Inspection for Φb(x) ∤ Ut(x) and Φb(x) ∤ Wt(x)

We can use an analogous mechanism to disclose the computational results that demonstrate
Φb(x) ∤ Ut(x), as well as Φb(x) ∤ Wt(x), for all the values of b ≥ 3 stated in Lemma 5.6.
The set of all the required values of b can be determined, for example, by using the follow-
ing Python script.

1 import numpy as np
2
3
4 def main():
5 part_1 = np.multiply.outer([1, 2], [1, 3, 9]).reshape(-1)
6 part_2 = np.multiply.outer([1, 5, 25], [1, 7]).reshape(-1)
7
8 all_of_them = np.multiply.outer(part_1, part_2).reshape(-1)
9 all_of_them.sort()

10 all_of_them = all_of_them.tolist()
11
12 result = list(filter(lambda item: item % 105 != 0, all_of_them))
13 result = list(filter(lambda item: item >= 3, result))
14
15 print(len(result))
16 print(result)
17
18
19 if __name__ == "__main__":
20 main()

The given Python script finds that there exist exactly 26 values of b that satisfy the given
criteria:

{3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 25, 30, 35, 42, 45,
50, 63, 70, 75, 90, 126, 150, 175, 225, 350, 450}.

For each of these values, it can be promptly shown that Φb(x) ∤ U mod b
t (x) and

Φb(x) ∤ W mod b
t (x) for any possible remainder t mod b. This can be accomplished, for

example, by using the following two Mathematica commands.
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1 Min[Table[
2 Min[Table[
3 Length[CoefficientRules[
4 PolynomialRemainder[
5 2 xˆMod[2 t - 1, b] + xˆMod[t + 3, b] - xˆMod[t + 2, b] +
6 xˆMod[t + 1, b] - 3 xˆMod[t, b] + 3 xˆMod[t - 1, b] -
7 xˆMod[t - 2, b] + xˆMod[t - 3, b] - xˆMod[t - 4, b] - 2,
8 Cyclotomic[b, x], x]]], {t, 0, b - 1}]], {b, {3, 5, 6, 7, 9,
9 10, 14, 15, 18, 21, 25, 30, 35, 42, 45, 50, 63, 70, 75, 90, 126,

10 150, 175, 225, 350, 450}}]]

1 Min[Table[
2 Min[Table[
3 Length[CoefficientRules[
4 PolynomialRemainder[
5 2 xˆMod[2 t - 1, b] - xˆMod[t + 3, b] + xˆMod[t + 2, b] -
6 xˆMod[t + 1, b] - xˆMod[t, b] + xˆMod[t - 1, b] +
7 xˆMod[t - 2, b] - xˆMod[t - 3, b] + xˆMod[t - 4, b] - 2,
8 Cyclotomic[b, x], x]]], {t, 0, b - 1}]], {b, {3, 5, 6, 7, 9,
9 10, 14, 15, 18, 21, 25, 30, 35, 42, 45, 50, 63, 70, 75, 90, 126,

10 150, 175, 225, 350, 450}}]]

The given two commands yield the minimum possible number of non-zero terms that the
polynomials U mod b

t (x) and W mod b
t (x) can have, respectively, as b ranges through all the

required values and t mod b takes on any possible value. Both computation outputs are
equal to one, which means that none of the aforementioned remainders are equal to the
zero polynomial, as desired.

D Roots of certain polynomials
In this appendix section, we will demonstrate that none of the following polynomials

Z1(x) = x4 + 2x3 − 2x2 + 2x+ 1,

Z2(x) = x6 − x4 + 2x3 − x2 + 1,

Z3(x) = x6 − 2x5 + 3x4 − 2x3 + 3x2 − 2x+ 1,

Z4(x) = 3x4 − 2x2 + 3,

Z5(x) = x2 − 2x− 1,

Z6(x) = x2 + 2x− 1,

Z7(x) = 3x4 + 2x2 + 3,

Z8(x) = 2x6 − 2x5 + 3x4 − 2x3 + 3x2 − 2x+ 2,

Z9(x) = 2x8 + 2x7 − x6 + 2x5 − 2x4 + 2x3 − x2 + 2x+ 2,

contain a root of unity among its roots. This can be swiftly achieved by simply showing
that none of them are divisible by any cyclotomic polynomial Φb(x). In fact, it is clear
that, for each j = 1, 9, the polynomial Zj(x) cannot be divisible by a Φb(x) such that
degΦb > degZj . Thus, in order to prove the desired result, it is sufficient to show that
each given polynomial is not divisible by the corresponding cyclotomic polynomials whose
degrees do not exceed its own. This is trivial to accomplish via computer.
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For starters, it is not difficult to determine all 18 cyclotomic polynomials whose degree
is not above 8:

Φ1(x) = x− 1, Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1,

Φ2(x) = x+ 1, Φ9(x) = x6 + x3 + 1,

Φ3(x) = x2 + x+ 1, Φ14(x) = x6 − x5 + x4 − x3 + x2 − x+ 1,

Φ4(x) = x2 + 1, Φ18(x) = x6 − x3 + 1,

Φ6(x) = x2 − x+ 1, Φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1,

Φ5(x) = x4 + x3 + x2 + x+ 1, Φ16(x) = x8 + 1,

Φ8(x) = x4 + 1, Φ20(x) = x8 − x6 + x4 − x2 + 1,

Φ10(x) = x4 − x3 + x2 − x+ 1, Φ24(x) = x8 − x4 + 1,

Φ12(x) = x4 − x2 + 1, Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1.

The necessary computational results can be found on Tables 2, 3, 4 and 5. The disclosed
remainders clearly indicate that no given polynomial can be divisible by any cyclotomic
polynomial of interest, as desired.

b Z5(x) mod Φb(x) Z6(x) mod Φb(x)

1 −2 2
2 2 −2
3 −2 − 3x −2 + x
4 −2 − 2x −2 + 2x
6 −2 − x −2 + 3x

Table 2: The required remainders of Z5(x) and Z6(x).

b Z1(x) mod Φb(x) Z4(x) mod Φb(x) Z7(x) mod Φb(x)

1 4 4 8
2 −4 4 8
3 5 + 5x 5 + 5x 1 + x
4 4 8 4
6 1 − x 5 − 5x 1 − x
5 x − 3x2 + x3 −3x − 5x2 − 3x3 −3x − x2 − 3x3

8 2x − 2x2 + 2x3 −2x2 2x2

10 3x − 3x2 + 3x3 3x − 5x2 + 3x3 3x − x2 + 3x3

12 2x − x2 + 2x3 x2 5x2

Table 3: The required remainders of Z1(x), Z4(x) and Z7(x).
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b Z2(x) mod Φb(x) Z3(x) mod Φb(x) Z8(x) mod Φb(x)

1 2 2 4
2 −2 14 16
3 5 −1 1
4 −2x −2x −2x
6 1 −1 1
5 2 + 2x + 3x3 −4 − 4x − 5x3 −3 − 3x − 5x3

8 2 − 2x2 + 2x3 −2 + 2x2 − 2x3 −1 + x2 − 2x3

10 2 − 2x + x3 x3 1 − x + x3

12 1 − 2x2 + 2x3 −3 + 6x2 − 4x3 −3 + 6x2 − 4x3

7 −x − 2x2 + x3 − 2x4 − x5 −3x + 2x2 − 3x3 + 2x4 − 3x5 −4x + x2 − 4x3 + x4 − 4x5

9 −x2 + x3 − x4 −2x + 3x2 − 3x3 + 3x4 − 2x5 −2x + 3x2 − 4x3 + 3x4 − 2x5

14 x − 2x2 + 3x3 − 2x4 + x5 −x + 2x2 − x3 + 2x4 − x5 x2 + x4

18 −x2 + 3x3 − x4 −2x + 3x2 − x3 + 3x4 − 2x5 −2x + 3x2 + 3x4 − 2x5

Table 4: The required remainders of Z2(x), Z3(x) and Z8(x).

b Z9(x) mod Φb(x)

1 8
2 −8
3 −x
4 4
6 5x
5 6 + 3x + 3x2 + 6x3

8 6
10 2 + x − x2 − 2x3

12 5 − 2x − 5x2 + 4x3

7 5 + 5x + 3x3 − x4 + 3x5

9 3 − 3x2 + 3x3 − 4x4

14 1 − x + x3 − x4 + x5

18 3 − 3x2 + x3 + 4x5

15 4x − x2 − x6 + 4x7

16 2x − x2 + 2x3 − 2x4 + 2x5 − x6 + 2x7

20 2x + x2 + 2x3 − 4x4 + 2x5 + x6 + 2x7

24 2x − x2 + 2x3 + 2x5 − x6 + 2x7

30 −x2 + 4x3 + 4x5 − x6

Table 5: The required remainders of Z9(x).
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Abstract

A Cayley graph Cay(G,S) has the CI (Cayley Isomorphism) property if for every
isomorphic graph Cay(G,T ), there is a group automorphism α of G such that Sα = T .
The DCI (Directed Cayley Isomorphism) property is defined analogously on digraphs. A
group G is a CI-group if every Cayley graph on G has the CI property, and is a DCI-group
if every Cayley digraph on G has the DCI property. Since a graph is a special type of
digraph, this means that every DCI-group is a CI-group, and if a group is not a CI-group
then it is not a DCI-group.

In 2009, Spiga showed that Z8
3 is not a DCI-group, by producing a digraph that does

not have the DCI property. He also showed that Z5
3 is a DCI-group (and therefore also a

CI-group). Until recently the question of whether there are elementary abelian 3-groups
that are not CI-groups remained open. In a recent preprint with Dave Witte Morris, we
showed that Z10

3 is not a CI-group. In this paper we show that with slight modifications,
the underlying undirected graph of order 38 described by Spiga is does not have the CI
property, so Z8

3 is not a CI-group.

Keywords: Cayley graphs, elementary abelian groups, CI graphs, CI groups, isomorphism.

Math. Subj. Class. (2020): 05C25

1 Introduction
Let G be a group, and S ⊆ G. The Cayley digraph Cay(G,S) is the digraph whose ver-
tices are the elements of the group G, with an arc from g to h if and only if h − g ∈ S
(we are using additive notation in this paper, but Cayley graphs can be defined similarly on
nonabelian groups). If S = −S then for any arc from g to h there is a paired arc from h to
g; we replace these two arcs with a single undirected edge and call the resulting structure
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the Cayley graph Cay(G,S). It is well-known that Γ is isomorphic to a Cayley graph on G
if and only if Aut(Γ) has a regular subgroup isomorphic to G. Typically we abuse notation
by ignoring the isomorphism and simply saying that Γ is a Cayley graph onG in this event.

The Cayley graph Cay(G,S) has the CI (Cayley Isomorphism) property if for every
isomorphic graph Cay(G,T ), there is a group automorphism α of G such that Sα = T .
Note that whenever α is an automorphism of G, it induces a graph isomorphism from
Cay(G,S) to Cay(G,Sα). This means that essentially, a Cayley graph has the CI property
if all of its isomorphisms to other Cayley graphs on the same group have algebraic justifi-
cations: group automorphisms that induce not necessarily that particular isomorphism, but
an isomorphism to the same graph. The CI problem is the problem of determining which
graphs have the CI property. The DCI (Directed Cayley Isomorphism) property and the
DCI problem are defined analogously on digraphs.

Although work on the (D)CI problem dates back at least to 1967 [1], the standard
terminology was coined and fundamental results about the problem were proved by Babai
in [2]. A group G is a CI-group if every Cayley graph on G has the CI property, and is a
DCI-group if every Cayley digraph on G has the DCI property. Since a graph is a special
type of digraph, this means that every DCI-group is a CI-group, and if a group is not a
CI-group then it is not a DCI-group, but there are well-known examples of groups that are
CI-groups but not DCI-groups. For example, Muzychuk [8, 9] characterised cyclic groups
according to which are DCI and which are CI: the cyclic group of order n is a DCI-group
if and only if n ∈ {k, 2k, 4k} where k is odd and square-free. It is a CI-group if and only
if it is a DCI-group, or n ∈ {8, 9, 18}.

Once cyclic groups were completely understood with respect to the CI and DCI prob-
lems, elementary abelian groups became a natural class of groups to consider. This class of
groups has become even more fundamentally important in understanding the (D)CI prob-
lem over time, since the combined work of a number of researchers has shown that any
(D)CI group is a direct product of up to three factors, each of which is either small, abelian,
or the semidirect product of an abelian group with a small cyclic group. (See for example
[3, 4, 6], although Math Reviewers have noted some errors in the statements of the relevant
results.)

In a 2003 paper, Muzychuk [10] proved that an elementary abelian group of sufficiently
high rank is not a DCI-group. He did not consider the undirected problem in that paper, and
the rank he achieved for an elementary abelian p-group was 2p − 1 +

(
2p−1

p

)
. Spiga [13]

improved this rank to 4p − 2. Both of these papers may have introduced some confusion
into the problem as they talk about the CI problem and property but use directed graphs
throughout, so in fact prove that an elementary abelian p-group of sufficiently high rank
is not a DCI-group although the statement of their results say that this is not a CI-group.
Somlai [12] addressed this issue, and improved the previous results by showing that an
elementary abelian p-group of rank at least 2p + 3 is not a CI-group when p ≥ 5. He did
also prove a similar result when p = 3 but in this case was only able to show that the group
is not a DCI-group, and noted that the problem of the existence of a non-CI elementary
abelian 3-group remained open. For the p = 3 case, Spiga [14] had also previously shown
that Z8

3 is not a DCI-group, by producing a digraph that does not have the DCI property.
On the other side of things, the best known result [5] shows that Z5

p is a DCI-group. It
is known [11] that Z6

2 is not a CI-group, but there remains a gap in our knowledge for every
prime p > 2.

In a recent preprint with Dave Witte Morris [7], we show that Z10
3 is not a CI-group,
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and more generally demonstrate a method for using non-DCI digraphs to construct non-
CI graphs whose order is a fairly small multiple of the order of the original digraph, and
thereby find groups that are not CI-groups.

In this paper we show that a slightly modified version of the underlying undirected
graph of the non-CI digraph of order 38 described by Spiga in [14] does not have the CI
property, so Z8

3 is not a CI-group.

2 Two isomorphic Cayley graphs
Let {w1, w2, w3, v1, v2, v3, v4, v5} be a generating set forG ∼= Z8

3. We define the following
sets:

S0,0,0 = {v1 − v5, v2 + v3 − v4 + v5, v3 − v4 + v5, v4 + v5, v5}
S1,0,0 = {w1 + av1 + bv2 + cv5 : a, b, c ∈ Z3}
S0,1,0 = {w2 + av1 + bv3 + cv4 + dv5 : a, b, c, d ∈ Z3}
S0,0,1 = {w3 + av2 + bv3 + cv4 + dv5 : a, b, c, d ∈ Z3}
S1,1,0 = {w1 + w2 + av1 + bv2 + cv3 + bv4 + dv5 : a, b, c, d ∈ Z3}
S1,0,1 = {w1 + w3 + av1 + bv2 + av3 + cv4 + dv5 : a, b, c, d ∈ Z3}
S0,1,1 = {w2 + w3 + av1 + bv2 + cv3 + dv4 − (a+ b)v5 : a, b, c, d ∈ Z3}
S1,1,1 = {w1 + w2 + w3 + av1 + bv2 + cv3 + dv4 + (−a− b+ c+ d)v5 : a, b, c, d ∈ Z3}
S2,1,1 = {2w1 + w2 + w3 + av1 + bv2 + cv3 + dv4 − (a+ b+ c+ d)v5 : a, b, c, d ∈ Z3}
S1,2,1 = {w1 + 2w2 + w3 + av1 + bv2 + cv3 + dv4 + (a+ b− c+ d)v5 : a, b, c, d ∈ Z3}
S1,1,2 = {w1 + w2 + 2w3 + av1 + bv2 + cv3 + dv4 + (a+ b+ c− d)v5 : a, b, c, d ∈ Z3}

S = S2,1,1 ∪ S1,2,1 ∪ S1,1,2

⋃
0≤i,j,k≤1

Si,j,k.

For 0 ≤ i, j ≤ 1 let Ti,j,k = Si,j,k except let T1,1,1 = S1,1,1 + v5. Also let

T2,1,1 = S2,1,1 − v5, T1,2,1 = S1,2,1 − v5, T1,1,2 = S1,1,2 − v5.

Similar to S, let
T = T2,1,1 ∪ T1,2,1 ∪ T1,1,2

⋃
0≤i,j,k≤1

Ti,j,k.

The graphs we will be studying throughout this paper are Γ1 = Cay(G,S ∪ −S) and
Γ2 = Cay(G,T ∪ −T ). We will often abuse notation and terminology by conflating a
group element with the corresponding vertex in one or both of these Cayley graphs. We
use additive notation throughout, and use a bold 0 to denote the identity element of Z8

3.
For convenience of notation, we also define a partition of the elements ofG into subsets

of cardinality 35 by

Bi,j,k = {iw1 + jw2 + kw3 + av1 + bv2 + cv3 + dv4 + fv5 : a, b, c, d, f ∈ Z3}.

Although the proof in [14] uses Schur rings, it does explicitly provide a connection set
(the S on page 3398); if we use our S to define

−→
Γ′
1 = Cay(G, (S \ S0,0,0) ∪ {v1, v3, v4, v5})
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then the connection set of
−→
Γ′
1 is the one given in Spiga’s paper. He also explicitly (on

page 3397) defines a function f that is exactly the polynomial we will add to v in our
next proof when we define the map ψ; if we apply ψ to Spiga’s connection set, we get the
connection set for

−→
Γ′
2 = Cay(G, (T \ T0,0,0) ∪ {v1, v3, v4, v5}).

Extracting these two connection sets from Spiga’s paper and understanding these are the
connection sets for Cayley digraphs that are isomorphic via the map ψ but not via a group
automorphism, is a matter of translating the Schur ring language he uses into Cayley di-
graph language.

As we have made clear by our definitions of
−→
Γ′
1 and

−→
Γ′
2, the underlying graphs of these

digraphs differ from our Γ1 and Γ2 only in the elements of the connection set that lie in
B0,0,0. If we try to apply our arguments (in Section 3 below) to the underlying graphs
of Spiga’s digraphs, too many of the values produced in the table of Lemma 3.3 coin-
cide. Consequently, the arguments we use based on counting mutual neighbours do not
suffice to prove that no group automorphism can act as a graph isomorphism between these
graphs. Discovering the graphs Γ1 and Γ2 was a matter of making careful and intelligent
adjustments to the elements of S0,0,0 so as to produce more distinct values in Lemma 3.3
and thereby significantly reduce the number of group automorphisms that needed to be
considered as possibly inducing a graph isomorphism, ultimately eliminating all of them.
Computational evidence (directed using some counting arguments) suggests that the under-
lying graphs of Spiga’s digraphs are probably not isomorphic via a group automorphism
either. However, I could find no structure in them understandable without a computer that
gave any significant intuition as to why this might be so. Since Spiga has privately commu-
nicated to me that his example was found by a random search, I believe there is more value
in producing a new (but related) example with clearer structural rationale for the lack of a
group automorphism that could act as a graph isomorphism, than in either largely appealing
to computation to determine that Spiga’s underlying graphs also work, or coming up with
a much longer and more technical proof to explain his graphs.

Proposition 2.1. There is a map from S∪−S to T ∪−T that acts as a graph isomorphism
from Γ1 to Γ2.

Proof. According to [14], the map ψ : G→ G defined by

ψ(v) = v + x1x
2
2v1 + x1x

2
3v2 + x22x3v3 + x2x

2
3v4 + x1x2x3v5

for each

v =

3∑
i=1

xiwi +

5∑
j=1

yjvj ∈ G

is a digraph isomorphism from
−→
Γ′
1 to

−→
Γ′
2.

Our graphs Γ1 and Γ2 are very close to being the underlying undirected graphs of these
digraphs

−→
Γ′
1 and

−→
Γ′
2, which must be isomorphic via ψ since the digraphs are. Indeed, aside

from the edges and arcs that lie inside each Bi,j,k, they are the same. Since ψ fixes every
Bi,j,k, it must act as an isomophism from Γ1 to Γ2 with respect to every edge that is not
contained within someBi,j,k. It remains to be shown that the edges that come from ±S0,0,0

are preserved by ψ.
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For any fixed (i, j, k), ψ adds
∑5

m=1 cmvm to each vertex of Bi,j,k, for some constants
c1 through c5 that depend only on i, j, k. Thus the action of ψ on Bi,j,k is a translation
by some element of ⟨v1, . . . , v5⟩. This means that for any choice of S ∩ B0,0,0, as long as
T ∩ B0,0,0 = S ∩ B0,0,0, ψ must preserve the edges that lie within Bi,j,k (the edges that
come from ±S0,0,0). Thus, ψ is indeed an isomorphism from Γ1 to Γ2.

3 They are not isomorphic via a group automorphism
We begin with a number of assertions about the structure of mutual neighbours of vertices
in these graphs. These serve to limit how an arbitrary isomorphism between the graphs can
act, even more so in the case where the isomorphism must also be a group automorphism.

The bound provided in our first lemma will shortly allow us to show that any isomor-
phism between the graphs must have an action on the partition {Bi,j,k}: that is, for any
isomorphism φ, Bφ

i,j,k = Bi′,j′,k′ for some i′, j′, k′ that depends on i, j, k.

Lemma 3.1. Suppose (i, j, k) ̸= (0, 0, 0). Then for any element g ∈ Bi,j,k, the number of
mutual neighbours of 0 and g in either Γ1 or Γ2 is at most 587.

Proof. This can be verified by computer. To verify by hand, the following points may be
helpful:

• if {x, y, z} = {0, 1, 2} or (x, y, z) = (0, 0, 0) or (x, y, z) = ±(i, j, k) then the
number of mutual neighbours of 0 and g in this set is bounded by the minimum of
the number of neighbours of each, for a total of 101 over all these sets;

• otherwise, any of the other 18 possible sets Bx,y,z has at most 27 mutual neighbours
of g and 0 (this is tedious but straightforward to check using the definitions of the
sets).

This gives the bound of 101 + 18 · 27 = 587.

In Lemma 3.3 (which is somewhat tedious and technical) we will specify how many
mutual neighbours various vertices of B0,0,0 have with the identity vertex 0 in Γ1 and in
Γ2. Since any group automorphism of G fixes 0, to be a graph isomorphism from Γ1 to Γ2

it must map a vertex that has k mutual neighbours with 0 in Γ1 to a vertex that has k mutual
neighbours with 0 in Γ2, so this lemma will be critical in limiting the possible actions of
our group automorphism. Before we get there, we first prove an easy lemma showing that
as long as g ∈ B0,0,0, the number of mutual neighbours of g and 0 is the same in both
graphs, so we don’t have to calculate these values separately.

Lemma 3.2. Suppose g ∈ B0,0,0. Then the number of mutual neighbours of 0 and g in Γ1

is the same as the number of mutual neighbours of 0 and g in Γ2.

Proof. For every i, j, k, we have Ti,j,k = Si,j,k +mi,j,kv5 where mi,j,k ∈ {0, 1, 2}. Now,
h is a mutual neighbour of 0 and g in Γ1 iff h ∈ Si,j,k ∩ (Si,j,k + g). This is true if and
only if h +mi,j,kv5 ∈ Ti,j,k ∩ (Ti,j,k + g), which is true if and only if h +mi,j,kv5 is a
mutual neighbour of 0 and g in Γ2.

Lemma 3.3. The number of mutual neighbours that each vertex v in the table below has
with 0 in each of Γ1 and Γ2, is as given in the corresponding column.
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v v1 − v5 v2 + v3 − v4 + v5 v3 − v4 + v5 v4 + v5 v5 v2 + v5 v4 v5 − v4
# 865 163 487 811 703 702 650 812

v v1 −v1 − v5 v3 + v4 + v5 −v3 − v5 v2 − v3 − v4 + v5 −v2 + v4 − v5
# 380 704 486 810 648 486

Proof. By Lemma 3.2, the number of mutual neighbours of 0 with any vertex of B0,0,0 is
the same in Γ1 as in Γ2, so we need only count one of these. We will count the mutual
neighbours in Γ1.

• v1 − v5: Mutual neighbours with 0 are v5 − v1; ±S1,0,0; ±S0,1,0, ±S1,1,0, ±S0,1,1,
±S1,1,1, ±S2,1,1. The total number of these is 1 + 54 + 81 · 10 = 865.

• v2 + v3 − v4 + v5: Mutual neighbours with 0 are −v2 − v3 + v4 − v5; ±S0,0,1. The
total number of these is 1 + 81 · 6 = 163.

• v3−v4+v5: Mutual neighbours with 0 are −v3+v4−v5; ±S0,1,0, ±S0,0,1, ±S1,2,1.
The total number of these is 1 + 81 · 6 = 487.

• v4+v5: Mutual neighbours with 0 are −v4−v5; ±S0,1,0, ±S0,0,1, ±S1,0,1, ±S1,1,1,
±S1,2,1. The total number of these is 1 + 81 · 10 = 811.

• v5: Mutual neighbours with 0 are −v5; ±S1,0,0; ±S0,1,0, ±S0,0,1, ±S1,1,0, ±S1,0,1.
The total number of these is 1 + 54 + 81 · 8 = 703.

• v2 + v5: Mutual neighbours with 0 are ±S1,0,0; ±S0,0,1, ±S1,0,1, ±S1,2,1, ±S1,1,2.
The total number of these is 54 + 81 · 8 = 702.

• v4: Mutual neighbours with 0 are v4 + v5; −v5; ±S0,1,0, ±S0,0,1, ±S1,0,1, ±S0,1,1.
The total number of these is 2 + 81 · 8 = 650.

• v5 − v4: Mutual neighbours with 0 are −v5; −v4 − v5; ±S0,1,0, ±S0,0,1, ±S1,0,1,
±S2,1,1, ±S1,1,2. The total number of these is 2 + 81 · 10 = 812.

• v1: Mutual neighbours with 0 are v5; v1 − v5; ±S1,0,0; ±S0,1,0, ±S1,1,0. The total
number of these is 2 + 54 + 81 · 4 = 380.

• −v1 − v5: Mutual neighbours with 0 are v5; v5 − v1; ±S1,0,0; ±S0,1,0, ±S1,1,0,
±S1,2,1, ±S1,1,2. The total number of these is 2 + 54 + 81 · 8 = 704.

• v3 + v4 + v5: Mutual neighbours with 0 are ±S0,1,0, ±S0,0,1, ±S2,1,1. The total
number of these is 81 · 6 = 486.

• −v3−v5: Mutual neighbours with 0 are ±S0,1,0, ±S0,0,1, ±S1,1,0, ±S1,1,1, ±S1,1,2.
The total number of these is 81 · 10 = 810.

• v2−v3−v4+v5: Mutual neighbours with 0 are ±S0,0,1, ±S2,1,1, ±S1,2,1, ±S1,1,2.
The total number of these is 81 · 8 = 648.

• −v2 + v4 − v5: Mutual neighbours with 0 are ±S0,0,1, ±S1,0,1, ±S1,1,1. The total
number of these is 81 · 6 = 486.

With this result in hand, we can show that a group automorphism acting as a graph iso-
morphism must either fix some of the elements of ±S0,0,0 pointwise, and have very small
potential orbits on the other elements, or must have these properties after being combined
with another group automorphism that acts as a graph automorphism of Γ1.



J. Morris: Z8
3 is not a CI-group 649

Lemma 3.4. If there is a group automorphism α of G that maps S ∪ −S to T ∪ −T , then
there is one that fixes v5 and −v5. Moreover, any such automorphism fixes each of the sets
{v1−v5, v5−v1}, {v2+v3−v4+v5,−v2−v3+v4−v5}, {v3−v4+v5,−v3+v4−v5},
and {v4 + v5,−v4 − v5}.

Proof. Any group automorphism fixes 0. A group automorphism α that maps S ∪ −S to
T ∪−T must map any vertex that has a certain number of mutual neighbours with 0 in Γ1,
to a vertex that has that number of mutual neighbours with 0 in Γ2.

By Lemma 3.3, the vertices v1 − v5, v2 + v5, −v3 − v5, v4 + v5, and v5 each has more
than 587 mutual neighbours with 0, so by Lemma 3.1 each of these vertices must map to a
vertex in B0,0,0, and must be the image of a vertex in B0,0,0. Note that B0,0,0 is actually a
subgroup of G, and is generated by these five elements. This implies that α must map this
generating set for B0,0,0 to a generating set for B0,0,0, so Bα

0,0,0 = B0,0,0.
For convenience in this paragraph, let S0 = S0,0,0∪−S0,0,0 and T0 = T0,0,0∪−T0,0,0.

Since
(S ∪ −S) ∩B0,0,0 = S0 = T0 = (T ∪ −T ) ∩B0,0,0

and Bα
0,0,0 = B0,0,0, we must have Sα

0 = T0 = S0. In particular, since the numbers of
mutual neighbours that each vertex in each inverse-closed pair in S0 has with 0 is distinct
from the number of mutual neighbours that each vertex of any other inverse-closed pair
in S0 has with 0 (see Lemma 3.3), each inverse-closed pair in S0 must be mapped to the
same inverse-closed pair in S0. This completes the proof unless vα5 = −v5 (in which case
(−v5)α = v5), which we now assume.

Let σ be the automorphism of G that inverts every element of G; note that σ fixes
S ∪ −S, and therefore σα maps S ∪ −S to T ∪ −T . Now vσα5 = v5, and σα also fixes
each of the other inverse-closed pairs separately since α did, completing the proof.

In fact, we can now show that a group automorphism acting as a graph isomorphism
must fix every element of ±S0,0,0 pointwise (possibly after being combined in the preced-
ing lemma with another group automorphism that acts as a graph automorphism).

Lemma 3.5. If there is a group automorphism α of G that maps S ∪ −S to T ∪ −T and
fixes v5 and −v5, then it must also fix every other vertex of S0,0,0 ∪ −S0,0,0.

Proof. We first show that it fixes v4 + v5 and its inverse.
Any such α induces a graph automorphism from Γ1 to Γ2. Since Γ1 is a Cayley graph,

the number of mutual neighbours of v5 with v4 + v5 is the same as the number of mutual
neighbours of 0 with v4. Likewise, the number of mutual neighbours of v5 with −v4 − v5
is the same as the number of mutual neighbours of 0 with v5 − v4. Since we see from
Lemma 3.3 that these numbers are not equal, α must fix both v4 + v5 and −v4 − v5.

Next we show that v1 − v5 and its inverse are fixed.
Since Γ1 is a Cayley graph, the number of mutual neighbours of −v5 with v1−v5 is the

same as the number of mutual neighbours of 0 with v1. Likewise, the number of mutual
neighbours of −v5 with v5 − v1 is the same as the number of mutual neighbours of 0 with
−v1 − v5. Since we see from Lemma 3.3 that these numbers are not equal, α must fix both
v1 − v5 and v5 − v1.

Now we show that v3− v4+ v5 and its inverse are fixed. At this point, notice that since
α fixes v5 and v4 + v5, it also fixes v4.

Since Γ1 is a Cayley graph, the number of mutual neighbours of v4 with v3 − v4 + v5
is the same as the number of mutual neighbours of 0 with v3 + v4 + v5. Likewise, the
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number of mutual neighbours of v4 with −v3 + v4 − v5 is the same as the number of
mutual neighbours of 0 with −v3 − v5. Since we see from Lemma 3.3 that these numbers
are not equal, α must fix both v3 − v4 + v5 and −v3 + v4 − v5.

Finally, we must show that v2 + v3 − v4 + v5 and its inverse are fixed. At this point,
notice that since α fixes v4, v5, and v3 − v4 + v5, it also fixes −v3.

Since Γ1 is a Cayley graph, the number of mutual neighbours of −v3 with v2+v3−v4+
v5 is the same as the number of mutual neighbours of 0 with v2 − v3 − v4 + v5. Likewise,
the number of mutual neighbours of −v3 with −v2−v3+v4−v5 is the same as the number
of mutual neighbours of 0 with −v2 + v4 − v5. Since we see from Lemma 3.3 that these
numbers are not equal, α must fix both v2 + v3 − v4 + v5 and −v2 − v3 + v4 − v5.

At this point we have enough information to show the invariant action on the partition
{Bi,j,k}, as mentioned earlier.

Lemma 3.6. Any group automorphism α of G that fixes every vertex of B0,0,0 has an
invariant action on the collection {Bi,j,k : 0 ≤ i, j, k ≤ 2}.

Proof. Since α is an automorphism of G, once we know its action on a generating set for
G, this completely determines its action. Since α fixes every vertex of B0,0,0, it fixes each
vi for 1 ≤ i ≤ 5. This means that if g ∈ Bi,j,k with g = iw1 + jw2 + kw3 + h then
gα = iwα

1 + jwα
2 + kwα

3 + h since h ∈ B0,0,0. So Bα
i,j,k has the form Bi′,j′,k′ for some

0 ≤ i′, j′, k′ ≤ 2.

In fact, the invariant action on the partition can have only two possible forms.

Lemma 3.7. If there is a group automorphism α of G that maps S ∪ −S to T ∪ −T and
fixes every vertex of B0,0,0, then it must either leave every Bi,j,k invariant, or map every
Bi,j,k to B−i,−j,−k.

Proof. By Lemma 3.6, α must have an invariant action on the collection {Bi,j,k : 0 ≤
i, j, k ≤ 2}.

The sets B1,0,0 and B−1,0,0 are the only sets that have exactly 27 neighbours of 0 in
both Γ1 and Γ2, so must be left invariant by α.

The sets B0,1,0 and B0,−1,0 are the only sets for which all neighbours of 0 in both Γ1

and Γ2 are also neighbours of iv1 + jv3 + kv4 + ℓv5 for every 0 ≤ i, j, k, ℓ ≤ 2, so these
sets must be left invariant by α.

Similarly, the sets B0,0,1 and B0,0,−1 are the only sets for which all neighbours of 0 in
both Γ1 and Γ2 are also neighbours of iv2 + jv3 + kv4 + ℓv5 for every 0 ≤ i, j, k, ℓ ≤ 2,
so these sets must be left invariant by α.

Likewise, the setsB1,1,1 and B−1,−1,−1 are the only sets for which (in both Γ1 and Γ2)
all neighbours of 0 are also neighbours of iv1+jv2+kv3+ℓv4 for every 0 ≤ i, j, k, ℓ ≤ 2.
Notice this is true even though S1,1,1 ̸= T1,1,1. So these sets must be left invariant by α.

Taken together, these force wα
1 ∈ B±1,0,0; wα

2 ∈ B0,±1,0; and wα
3 ∈ B0,0,±1. How-

ever, the previous paragraph also tells us that (w1+w2+w3)
α ∈ B1,1,1∪B−1,−1,−1. This

forces the signs of each of the ± in our first three conclusions to be the same, yielding the
desired conclusion.

We can even show that after possibly combining with a group automorphism that acts
as a graph automorphism, the invariant action fixes every set in the partition.
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Lemma 3.8. If there is a group automorphism α of G that maps S ∪ −S to T ∪ −T and
fixes every vertex of B0,0,0, then there is one that leaves every Bi,j,k invariant.

Proof. By Lemma 3.7, the only other possibility is that α maps every Bi,j,k to B−i,−j,−k.
Let σW be the automorphism of G determined by wσW

i = −wi for every 1 ≤ i ≤ 3,
and vσW

i = vi for every 1 ≤ i ≤ 5. Note that σW fixes S, and therefore σWα maps S to
T . Also σW fixes every vertex of B0,0,0 and maps every Bi,j,k to B−i,−j,−k. Therefore
σWα has all of the properties we claimed.

In our final lemma, we show that a group automorphism that has all of the properties
we have been deducing, cannot exist.

Lemma 3.9. A group automorphism α of G that maps S ∪ −S to T ∪ −T , fixes ev-
ery vertex of B0,0,0, and leaves every Bi,j,k invariant must map (S \ S0,0,0) ∪ S′

0,0,0 to
(T \T0,0,0)∪S′

0,0,0 for any S′
0,0,0 ⊆ B0,0,0. In fact, there is no such group automorphism.

Proof. Notice that for every (i, j, k) ̸= (0, 0, 0) we have eitherBi,j,k∩Si,j,k = ∅ orBi,j,k∩
−Si,j,k = ∅ (or both), and Ti,j,k = ∅ if and only if Si,j,k = ∅. Since Bα

i,j,k = Bi,j,k, this
means that Sα

i,j,k = Ti,j,k. Hence, since α fixes B0,0,0 pointwise and S0,0,0 = T0,0,0, we
have Sα = T . In fact, since α fixes B0,0,0 pointwise, for any S′

0,0,0 ⊆ B0,0,0 we have

((S \ T0,0,0) ∪ S′
0,0,0)

α = (T \ T0,0,0) ∪ S′
0,0,0,

as claimed.
Since the connection sets of

−→
Γ′
1 and

−→
Γ′
2 have this form, such an α would act as a digraph

isomorphism between them, but since [14] proved these digraphs are not isomorphic via
any group automorphism, this is impossible. Hence no such α exists.

We pull all of our results in this section together in our conclusion.

Corollary 3.10. There is no automorphism of G that maps S ∪ −S to T ∪ −T .

Proof. By Lemma 3.4, if there were such an automorphism, then there must be one that
fixes v5 and −v5. Furthermore, by Lemma 3.5, any such automorphism fixes every vertex
of S0,0,0 ∪ −S0,0,0. Since it is a group automorphism and fixes every element of S0,0,0,
and this generates B0,0,0, it must fix every vertex of B0,0,0.

By Lemma 3.8, this would imply the existence of an automorphism that maps S ∪ −S
to T ∪ −T , fixes every vertex of B0,0,0, and leaves every Bi,j,k invariant. Finally, by
Lemma 3.9, no such automorphism exists.

Putting this result together with Proposition 2.1, and using the well-known fact that
every subgroup of a CI-group must be a CI-group, yields the main result of this paper.

Theorem 3.11. The group Z8
3 is not a CI-group. Neither is any group containing Z8

3 as a
subgroup. In particular, Zn

3 is not a CI-group for n ≥ 8.
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Department of Applied Mathematics, Faculty of Electrical Engineering and Computing,

University of Zagreb, Zagreb, Croatia

Received 3 May 2023, accepted 4 March 2024, published online 25 September 2024

Abstract

In this article, we determine the complexity function (configurational entropy) of
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Puljiz), stjepan.sebek@fer.unizg.hr (Stjepan Šebek), josip.zubrinic@fer.unizg.hr (Josip Žubrinić)
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1 Introduction
Rydberg atom is a name given to an atom which has been excited into a high energy level
so that one of its electrons is able to travel much farther from the nucleus than usual (up
to 106 times more, see [22]). In physics community, Rydberg atoms have been intensely
studied and have become a testing ground for various quantum mechanical problems in
quantum information processing, quantum computation and quantum simulation [58]. See
[29] for a comprehensive description of the physics of Rydberg atoms and their remarkable
properties. Due to their large size, Rydberg atoms can exhibit very large electric dipole
moments which results in strong interactions between two close Rydberg atoms. This
causes a blockage effect that prohibits the excitation of an atom located close to an atom
that is already excited to a Rydberg state [3, 12, 34, 37, 54, 63]. The simplest setting for
studying Rydberg atoms and their blockage effect is on a finite one-dimensional lattice. In
this setting, each atom occupies one site and each two excited atoms are at least b ≥ 1
sites apart. The positive integer b is referred to as the blockade range of the model. We
will be interested in maximal (or jammed) configurations where no further atoms can be
excited. Note that in such a configuration each two excited atoms are at most 2b sites apart.
In physics literature, jammed states in similar deposition models have the interpretation of
metastable states at low enough temperature and/or high enough density, and are referred
to as valleys, pure states, quasi-states, and inherent structures [4, 5, 17, 33, 38, 50, 62].

The main question related to maximal configurations concerns the expected density of
the atoms excited to a Rydberg state. There are two natural ways to interpret this question.
One way to look at this problem is to consider the set of all the possible maximal configu-
rations and to sample one such configuration at random (which implies that all the maximal
configurations are equiprobable). This is referred to as the static (or equilibrium) model.
The static model is usually described by the so-called complexity function (also known as
configurational entropy), and the expected density of particles in a jammed configuration
converges to the argument of the maximum of the complexity function. This is exactly
the approach we take in this paper and our main result is the derivation of the mentioned
complexity function. Static model can be compared with the random sequential adsorp-
tion (RSA) model (also refered to as the dynamic model) where initially all atoms are in
the ground state, and are excited sequentially, at random, until a jammed configuration is
reached. The expected density of excited atoms with this underlying probability space is
called jamming limit. Assumption that the two models result in the same distribution of
maximal configurations has come to be known as Edwards’s flatness hypothesis (see [2]
for a recent review). However, there seems to be no a priori reason for the two models to
have similar properties. It is interesting to note that there is a long history to the question
of how similar the two models are (see e.g. the discussion in [8, page 681], or, in a more
subtle continuum context, how a similar confusion of different probability models led to
some extended discussion over a false “proof” [53]).

The dynamic version of the problem was already studied in literature. In [28, 42, 48] it
was found that the jamming limit is

ρb-Ryd
∞ =

∫ 1

0

exp

−2

b∑
j=1

1− yj

j

 dy.

The jamming limit was also computed for an equivalent model of deposition of linear
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polymers (k-mers) in [44, §7.1]

ρk-mer
∞ = k

∫ ∞

0

exp

−u− 2

k−1∑
j=1

1− e−ju

j

 du = k

∫ 1

0

exp

−2

k−1∑
j=1

1− yj

j

 dy.

The equivalence of models is reflected in the fact that ρk-mer
∞ = k · ρb-Ryd

∞ for b = k − 1.
In the static model, it all comes down to counting the maximal configurations. It is

known that in similar models, the number of different maximal configurations with pre-
scribed density 0 ≤ ρ ≤ 1 tends to grow exponentially with the length L of configuration,
see [9, 10, 13, 14, 15, 16, 18, 23, 27, 35, 40, 45, 46, 49, 52, 55, 56, 59]. Denoting this
number by JL(ρ), it is common to describe it using the so-called complexity function (also
called configurational entropy) f(ρ) for which it holds that JL(ρ) ∼ eLf(ρ). It turns out
(see e.g. Figure 9) that the density ρb-Ryd

⋆ maximizing the complexity function is slightly
different than the expected density (jamming limit) of the dynamic model. This falsifies
the above mentioned Edward’s flatness hypothesis. Recall that ρb-Ryd

⋆ is the limit (as L
tends to infinity) of the most probable densities in the equilibrium models that assign equal
probabilities to all jammed configurations.

Our main goal is to compute the complexity f(ρ) of jammed configurations of Rydberg
atoms using direct combinatorial reasoning. The problem reduces to solving a constrained
optimization problem for the Shannon’s entropy function. We show that the complexity
function can be expressed explicitly in terms of the root of a certain polynomial of degree
b. This work has been carried out simultaneously with [43]. The authors there introduce a
novel method for determining the same complexity function. Their method is inspired by
the theory of renewal processes.

The described model of Rydberg atoms on a one-dimensional lattice is equivalent to
a number of other models already present in the literature. The case b = 1 is the famous
model introduced by Flory [26] describing the mechanism of vinyl polymerization. This is
in turn essentially equivalent to the Page-Rényi car parking problem [31, 51] (which is a
discrete version of the famous model introduced by Rényi in [57]) describing the jammed
configurations of cars of length 2. The equivalence is obtained by replacing each excited
atom with a car taking up both the atom’s and its right neighbor’s site. Clearly, this only
works for configurations not having an excited atom at the rightmost site. This means that
the total number of jammed configurations is actually different in these two models, but
only up to a constant factor, which does not affect the shape of the complexity function of
these models. In chemistry, this model appears in the context of the irreversible deposition
of dimers [26, 36], and in graph theory, the jammed configurations correspond to maximal
matchings in a path graph, see [21].

Similarly, the general case b > 1 corresponds to irreversible deposition of k-mers (k =
b + 1) in a linear polymer of length L. The equivalence (again, up to a constant factor)
is obtained by replacing each excited atom with a polymer taking up b + 1 consecutive
sites, starting from the atom’s position, see Figure 1. In this, and all the following figures,
bullets (•) represent Rydberg atoms (in the Rydberg model) or occupied sites (in the k-mer
deposition model), while empty bullets (◦) represent neutral atoms (in the Rydberg model)
or vacant sites (in the k-mer deposition model). Notice that the gaps between adjacent
k-mers in jammed configurations of this deposition model are of size at most k − 1. This
equivalence allows us to easily transfer our results on Rydberg atoms to the setting of k-
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mer deposition model. The problem of irreversible deposition of k-mers was extensively
studied in the literature, see [1, 6, 24, 32, 42, 44, 61].

◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
◦ • • • • ◦ • • • • ◦ ◦ ◦ • • • • • • • • • • • • ◦ ◦ ◦ • • • • • • • • ◦ ◦ • • • •

Figure 1: A jammed configuration of Rydberg atom model with blockade range b and the
corresponding jammed configuration of the k-mer deposition model when b = 3, k = 4.

In graph theory, the k-mer deposition model is equivalent to Pk-packings of a path
graph PL, and jammed configurations in the former correspond to maximal packings in the
latter. The maximal Pk-packings of PL were previously studied in [20].

Another equivalent formulation of the Rydberg atom model appeared recently in [19,
§3.2.1] where the authors of the present paper considered the settlement model consisting
of k-story buildings on a one-dimensional tract of land. The tract of land is oriented east-
west and each story of each building has to receive the sunlight from both east and west.

The rest of the paper is organized as follows. In Section 2 we calculate the asymp-
totics for the number of jammed configurations in the model of Rydberg atoms, which is
expressed in terms of the maximum of the Shannon’s entropy function over a certain finite
set determined by the constraints of the model. In Section 3 we use these results in order
to obtain the formula for the associated complexity function. We derive the expression
for the complexity f(ρ) which, for a chosen density ρ, depends explicitly on a positive
root of a certain polynomial whose degree coincides with the blockade range of the model.
Further on, in Section 4, we put our findings in relation with the model for the deposition
of k-mers on the linear polymer and draw conclusions from the obtained results. There,
we also provide some results on the qualitative properties of the maximizers of mentioned
complexity functions, for various blockade ranges b, and put them in comparison with their
counterparts in the theory of RSA. Finally, in Section 5 we recapitulate our findings and
indicate several possible directions of future research.

Notation

We write ML ∼ NL if the two positive sequences (ML)L and (NL)L have the same
growth, as L → ∞, up to a sub-exponential factor, i.e. if

lim
L→∞

lnML − lnNL

L
= 0.

2 Jammed configurations of Rydberg atoms
As already stated in the introduction, the main goal of this paper is to compute the complex-
ity function f(ρ) of jammed configurations of Rydberg atoms. Crucial step towards obtain-
ing a complexity function of such models in general is to inspect the set of all jammed con-
figurations of a model. Each configuration is a binary 0/1 sequence which we sometimes
interpret as a sequence of empty/occupied sites or, in Rydberg model, as neutral/excited
atoms. The total number of all configurations of length L in the model is denoted by JL.
The total number of configurations of length L consisting of N ones (occupied sites, excited
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atoms) is denoted by JN,L. The density (saturation, coverage) of any such configuration
of length L with N ones is defined as N/L ∈ [0, 1].

In order to determine the complexity function, it is not enough to work only with JL.
We need to be more precise. We need to know the behavior of the number of different
jammed configurations of length L, where precisely N atoms are excited to the Rydberg
state. The main result of this section (see Lemma 2.4) provides asymptotics of the quantity
JN,L for Rydberg atom model.

Let us first consider several concrete examples of jammed configurations of our model
to get a better feeling of their possible shapes. Figure 2 displays three different jammed
configurations in the chain of L = 16 atoms, where the blockade range b is equal to two,
i.e. each two excited atoms are at least two sites apart. Since Rydberg atoms in a jammed

• ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ •
◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ •
• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦

Figure 2: Three jammed configurations in the chain of L = 16 atoms with blockade range
b = 2. The number of Rydberg atoms in these configurations is N = 6, 5, 4 (from top to
bottom).

configuration are separated by clusters of empty sites whose length is at least b (so that the
constraint imposed by the blockage effect is satisfied), and at most 2b (since we can excite
another atom in the middle of an empty range of size 2b + 1, hence such a configuration
would not be jammed), it is easy to see that it holds⌈

L

2b+ 1

⌉
≤ N ≤

⌈
L

b+ 1

⌉
, (2.1)

where N is the number of excited atoms, L is the length of the configuration, and b is the
blockade range. In the particular case of L = 16 and b = 2, this implies that 4 ≤ N ≤ 6.
Hence, Figure 2 shows one jammed configuration for each possible value of N . Notice that
relation (2.1) implies that

1

2b+ 1
− 1

L
<

N

L
≤ 1

b+ 1
, (2.2)

and this in turn implies that in the limit, as L → ∞, the density ρ = N/L, of Rydberg
atoms in jammed configurations, lies within the bounds

1

2b+ 1
≤ ρ ≤ 1

b+ 1
. (2.3)

As a first result in the direction of better understanding the double sequence JN,L for
Rydberg atom model, we provide the bivariate generating function for this sequence in the
general case of blockade range b ≥ 1.

Lemma 2.1. The bivariate generating function of the sequence JN,L associated with
jammed configurations of Rydberg atoms, when the blockade range is equal to b, is given
by

Fb(x, y) =
∑
L

∑
N

JN,Lx
NyL =

(1− y)2 + xy − xyb+1 − xyb+2 + xy2b+2

(1− y)(1− y − xyb+1 + xy2b+2)
.
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Proof. As already mentioned, configurations of Rydberg atoms can be represented as 0/1
sequences. Due to the fact that we can determine whether the blockage effect has been
taken into account, and whether the configuration represented with such a sequence is
jammed, just by inspecting finite size patches of a given sequence, we can apply the so-
called transfer matrix method (see [60, §4.7] or [25, §V], and also [47, §2–4]). This is a
well known method for counting words of a regular language. Since Rydberg atoms in a
jammed configuration are separated with at least b, and at most 2b neutral atoms, every
jammed configuration will be composed of blocks that start with a Rydberg atom and then
have a cluster of neutral atoms of length between b and 2b. Such blocks are displayed in
Figure 3.

• ◦ · · · ◦︸ ︷︷ ︸
b atoms

• ◦ · · · ◦︸ ︷︷ ︸
b+1 atoms

· · · • ◦ · · · ◦︸ ︷︷ ︸
2b atoms

Figure 3: Building blocks of jammed configurations of Rydberg atoms with blockade range
b.

These building blocks are encoded with the polynomial

pb(x, y) = xyb+1 + xyb+2 + · · ·+ xy2b+1.

Now we only need to take care of the beginning and the end of jammed configurations.
Notice that in front of the first block we can have some neutral atoms. More precisely,
the number of neutral atoms that can appear at the left end of the jammed configuration is
between 0 and b. These starting blocks are encoded with the polynomial

sb(x, y) = 1 + y + y2 + · · ·+ yb.

Similarly, after the last block from the set of blocks shown in Figure 3 (if there are any, i.e.
if we want to have more than just one atom in the Rydberg state), we need to have a block
that again starts with a Rydberg atom, and then has a cluster of neutral atoms of length
between 0 and b. These ending blocks are encoded with the polynomial

eb(x, y) = xy + xy2 + · · ·+ xyb+1.

Notice that each of the blocks shown in Figure 3 can be glued to any other block listed
in this figure. This implies that we do not even need to work with powers of the transfer
matrix, but we can directly take powers of the polynomial pb(x, y) in order to obtain the
desired bivariate generating function. A simple calculation gives

Fb(x, y) = 1 +

∞∑
n=0

sb(x, y) · pb(x, y)n · eb(x, y)

= 1 +
sb(x, y) · eb(x, y)

1− pb(x, y)

=
(1− y)2 + xy − xyb+1 − xyb+2 + xy2b+2

(1− y)(1− y − xyb+1 + xy2b+2)
.
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Remark 2.2. By using the same technique, we can easily compute the bivariate generating
function enumerating the number of jammed configurations of prescribed length, and with
some fixed number of occupied sites, in the k-mer deposition model. The building blocks
here are composed of a cluster of k consecutive sites occupied by a single k-mer, followed
by a cluster of empty sites of length between 0 and k − 1 (see Figure 4). These building

• · · · •︸ ︷︷ ︸
k sites

• · · · •︸ ︷︷ ︸
k sites

◦ • · · · •︸ ︷︷ ︸
k sites

◦ ◦ · · · • · · · •︸ ︷︷ ︸
k sites

◦ · · · ◦︸ ︷︷ ︸
k−1 sites

Figure 4: Building blocks of jammed configurations of k-mer deposition model.

blocks are encoded with a polynomial

pk(x, y) = xkyk + xkyk+1 + · · ·+ xky2k−1,

where x is again a formal variable associated with the number of occupied sites, and y is
a formal variable associated with the length of a configuration. Similarly as in the case of
the Rydberg atom model, at the left end of a jammed configuration, we can have a cluster
of vacant sites of length between 0 and k − 1. These starting blocks are encoded with the
polynomial

sk(x, y) = 1 + y + y2 + · · ·+ yk−1.

It is clear that we can end a jammed configuration with any of the building blocks shown
in Figure 4, so we can set ek(x, y) = 1. Using again the fact that each of the blocks from
Figure 4 can be glued to any other block listed in that figure, we can work directly with
powers of the polynomial pk(x, y) to obtain

Fk(x, y) =

∞∑
n=0

ak(x, y) · pk(x, y)n =
ak(x, y)

1− pk(x, y)
=

1− yk

1− y − xkyk + xky2k
. (2.4)

Notice that we are not adding 1 to the bivariate generating function in (2.4). The reason
is that starting with a cluster of 0 vacant sites and setting n = 0 already counts the empty
configuration.

The sequence JN,L has already been studied in the literature, but in the context of
maximal Pk-packings of a path graph PL (see [20]). The bivariate generating function
enumerating the total number of maximal k-packings in PL, with exactly N copies of Pk,
is given in [20, Corollary 2.4], and the only difference between that bivariate generating
function and the one we obtained in (2.4), is that x is not raised to power k. The reason is
that the author in [20] is interested in the number of copies of Pk (i.e. the number of de-
posited k-mers) in jammed configurations, and we are interested in the total number of sites
occupied by those deposited k-mers. The bivariate generating function from (2.4) is also
obtained in [43, formula (5.3)], where authors use a novel approach inspired by the theory
of renewal processes. Using the same technique, they also obtain the bivariate generating
function which coincides with the one we obtained in Lemma 2.1, which enumerates the
total number of jammed configurations of length L of Rydberg atoms with blockade range
b, with precisely N excited atoms (see [43, formula (6.5)]).

It is easy to see from the bivariate generating function from Lemma 2.1 that, for b = 2,
J16 = 96 (i.e. there are 96 jammed configurations in the chain of L = 16 atoms, when
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the blockade range is b = 2). Out of those 96 jammed configurations, 45 of them have 4
Rydberg atoms (J4,16 = 45), 50 of them have 5 Rydberg atoms (J5,16 = 50), and only
one has 6 Rydberg atoms (J6,16 = 1). This particular one is exactly the first jammed
configuration shown in Figure 2.

We could now proceed like the authors in [43] and use the bivariate generating function
developed in Lemma 2.1 to obtain the complexity function of jammed configurations of
Rydberg atoms by means of the Legendre transform. However, we will use a direct combi-
natorial argument. To this end, we introduce a slightly different way of counting jammed
configurations in the Rydberg model with blockade range b, than the one introduced in
Lemma 2.1. Denote with B the block of b + 1 adjacent atoms where only the first one is
excited to the Rydberg state (see Figure 5). Using again the fact that each two Rydberg

B = • ◦ ◦ · · · ◦︸ ︷︷ ︸
b atoms

Figure 5: Block consisting of b+1 adjacent atoms where only the first one is excited to the
Rydberg state.

atoms have at least b and at most 2b neutral atoms separating them, it is clear that every
jammed configuration consists of blocks B separated by clusters of neutral atoms of length
0 ≤ a ≤ b (see Figure 6). Denote by Ma the number of gaps with a neutral atoms. The

◦ · · · ◦︸ ︷︷ ︸
a1 atoms

B ◦ · · · ◦︸ ︷︷ ︸
a2 atoms

B ◦ · · · ◦︸ ︷︷ ︸
a3 atoms

B · · ·B ◦ · · · ◦︸ ︷︷ ︸
aN atoms

B

Figure 6: The shape of jammed configurations in Rydberg model with blockade range b and
exactly N Rydberg atoms, ending with a block B (displayed in Figure 5). Gaps between
blocks B, and in front of the first block B, consist of neutral atoms and are of length
0 ≤ ai ≤ b.

total number of jammed configurations of the shape shown in Figure 6, with L atoms in
total, out of which precisely N atoms are excited to the Rydberg state, is given as(

N

M0,M1, . . . ,Mb

)
=

N !∏
0≤a≤b Ma!

, (2.5)

with Ma satisfying

b∑
a=0

Ma = N, (2.6)

b∑
a=0

aMa = L− (b+ 1)N. (2.7)

The constraint (2.6) expresses that the total number of gaps is N . Notice that we have
N blocks B (since we want to have precisely N Rydberg atoms), and that gaps of size
0 ≤ a ≤ b can be added in front of the first block B, and between each two blocks B.
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The constraint (2.7) implies that the total number of neutral atoms is L − N . Clearly
we need L − N neutral atoms in addition to N Rydberg atoms to have a configuration
of length L. Equation (2.5) accounts for the jammed configurations ending precisely on
B. There are also jammed configurations where the last block B is truncated, and there
are only 0 ≤ c < b neutral atoms after the last atom excited to the Rydberg state. The
contribution of such jammed configurations to the value of JN,L is comparable to (2.5),
but since complexity function ignores sub-exponential factors, it suffices to determine the
asymptotics of the sum

JN,L ∼
∑

(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)
, (2.8)

where

RN,L = {(M0,M1, . . . ,Mb) ∈ Nb+1
0 : M0 +M1 + · · ·+Mb = N and
M1 + 2M2 + · · ·+ bMb = L− (b+ 1)N}. (2.9)

We write H for the Shannon’s entropy function given as

H(p0, p1, . . . , pb) = −
b∑

i=0

pi ln pi, (2.10)

where pi ≥ 0, for 0 ≤ i ≤ b, and p0 + p1 + · · ·+ pb = 1.

Remark 2.3. In case pi = 0 for some i, we set 0 · ln 0 = 0.

The following lemma is the key result of this section, and it constitutes a crucial step in
computing the complexity function of our model as it provides the asymptotics of JN,L in
terms of the maximum of the entropy function.

Lemma 2.4.

JN,L ∼ exp

(
L · max

(M0,M1,...,Mb)∈RN,L

N

L
·H

(
M0

N
,
M1

N
, . . . ,

Mb

N

))
, as L → ∞.

where the set RN,L is defined in (2.9), and the function H is defined in (2.10).

Proof. Note that

max
(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)
≤

∑
(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)

≤ |RN,L| max
(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)
.

As the number |RN,L| of terms in the sum is at most (N + 1)b+1 ≤ (L+ 1)b+1, which is
polynomial in L, the sum, asymptotically, grows as its largest term. It is, therefore, enough
to determine the asymptotics of

JN,L ∼ max
(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)
, as L (and N) → ∞.
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By following the proof of Lemma 2.2 in [11] we can conclude that(
N + b

b

)−1
NN

M0
M0M1

M1 · · ·Mb
Mb

≤
(

N

M0,M1, . . . ,Mb

)
≤ NN

M0
M0M1

M1 · · ·Mb
Mb

.

Note that in case any Ma is zero, the expression 00 is to be interpreted as 1. Since
(
N+b
b

)
is of polynomial growth, we get(

N

M0,M1, . . . ,Mb

)
∼ NN

M0
M0M1

M1 · · ·Mb
Mb

=

(
N

M0

)M0
(

N

M1

)M1

· · ·
(

N

Mb

)Mb

,

(2.11)

as N → ∞. Note that(
N

M0

)M0
(

N

M1

)M1

· · ·
(

N

Mb

)Mb

= exp

(
N ·H

(
M0

N
,
M1

N
, . . . ,

Mb

N

))
.

Hence

JN,L ∼ max
(M0,M1,...,Mb)∈RN,L

exp

(
N ·H

(
M0

N
,
M1

N
, . . . ,

Mb

N

))
, as L → ∞,

and consequentially

JN,L ∼ exp

(
L · max

(M0,M1,...,Mb)∈RN,L

N

L
·H

(
M0

N
,
M1

N
, . . . ,

Mb

N

))
, as L → ∞,

which is exactly what we wanted to prove.

Remark 2.5. One could obtain the asymptotics in (2.11) from Stirling’s approximation
N ! ∼ (N/e)N , as N → ∞, where sub-exponential factors are ignored.

3 Complexity function of jammed configurations of Rydberg atoms
In this section we compute the complexity function, sometimes referred to as configura-
tional entropy, of jammed configurations of Rydberg atoms. We first recall the definition
of complexity function of a certain model.

Definition 3.1. For a fixed density ρ ∈ [0, 1], let J⌊ρL⌋,L denote the number of configu-
rations of length L with density ⌊ρL⌋ /L ≈ ρ. The complexity function f : [0, 1] → R is
then defined as

f(ρ) = lim
L→∞

ln J⌊ρL⌋,L
L

, (3.1)

for each ρ ∈ [0, 1] for which this limit exists.

Remark 3.2. If the limit above does not exist for a certain ρ, one can still define (upper)
complexity at that point by replacing lim in the definition with lim sup. And if there are no
configurations with a certain density ρ, we still write f(ρ) = 0.

Remark 3.3. This definition implies that the number of configurations with the density
⌊ρL⌋ /L ≈ ρ grows as eLf(ρ) for large L.
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The guiding idea behind introducing the complexity function is to describe what portion
of the total number of configurations take up configurations with a particular density. The
problem is that, as L grows to infinity, the actual proportions tend to the delta distribution
concentrated on the ‘most probable’ density ρ⋆.

As an example, the distribution of densities (the sum of digits divided by the length) of
binary sequences of length L is a symmetric binomial distribution re-scaled to the interval
[0, 1]. The limiting distribution is then the delta distribution δ0.5 which is, essentially, the
consequence of the law of large numbers.

This convergence to a delta distribution results from the fact that the number of config-
urations with a certain density grows exponentially with a rate that depends on the density.
For large L, the number of configurations with density having the largest rate overtakes, in
proportion, configurations having any other density. The complexity function then quan-
tifies the distribution of all configurations with respect to their densities in a more refined
way.

Another consequence of the fact that the number of configurations having density with
the largest rate dominates, in proportion, any other density is that the total number of all
configurations grows at the same exponential rate as the number of configurations having
this ‘most probable density’. To be precise, if ρ⋆ denotes the density at which the com-
plexity function f attains its maximum and if JL is the total number of all configurations
of length L, then JL ∼ eLf(ρ⋆) for large L.

Remark 3.4. In Lemma 2.1 we derived the generating function for the sequence JN,L

within the Rydberg atom model. Plugging x = 1 into this generating function gives the
generating function for JL, the total number of configurations of length L in Rydberg atom
model

Fb(1, y) =
(1− y)2 + y − yb+1 − yb+2 + y2b+2

(1− y)(1− y − yb+1 + y2b+2)

=
1 + y(1 + y + · · ·+ yb)(1 + y + · · ·+ yb−1)

1− yb+1(1 + y + · · ·+ yb)
.

From here, we can infer the asymptotics of JL for large L by inspecting the roots of the
polynomial 1− yb+1(1+ y+ · · ·+ yb) in the denominator. More precisely, if yb is the root
with the smallest modulus, then the logarithm of wb = |yb|−1 gives the exponential growth
rate of the sequence JL

JL ∼ wL
b = eL lnwb .

The discussion in the previous paragraph now implies the relation f(ρb-Ryd
⋆ ) = lnwb.

The following theorem is the main result of this paper and provides an elegant expres-
sion for the complexity function of jammed configurations of Rydberg atoms f(ρ) in terms
of a root of a certain polynomial.

Theorem 3.5. The complexity function of jammed configurations of Rydberg atoms with
blockade range b ∈ N is given as

f(ρ) =

{
ρ
[
− ln 1−z

1−zb+1 −
(

1
ρ − (b+ 1)

)
ln z

]
, if 1

2b+1 < ρ ≤ 1
b+1 ,

0, otherwise,



664 Ars Math. Contemp. 24 (2024) #P4.05 / 653–680

where z ≥ 0 is a real root of the polynomial

p(z) =

b∑
i=0

(
i+ b+ 1− 1

ρ

)
zi (3.2)

for which the expression f(ρ) is the largest.

Remark 3.6. When 1
2b+1 < ρ < 1

b+1 the leading coefficient of the polynomial p(z) given
in (3.2) is positive, while the constant term is negative. This guaranties the existence of
at least one positive real root z > 0. If ρ = 1

b+1 , then z = 0 is the root of p(z) and the
formula gives f( 1

b+1 ) = 0.

Remark 3.7. Since (3.2) is a polynomial of degree b, it is possible to find its roots explicitly
for b ≤ 4 and numerically for b > 4. The explicit expression for the complexity in case
b = 1 is

f1-Ryd(ρ) = ρ ln ρ− (1− 2ρ) ln(1− 2ρ)− (3ρ− 1) ln(3ρ− 1),

and for b = 2

f2-Ryd(ρ) = (3ρ− 1) ln

√
−44ρ2 + 24ρ− 3− 4ρ+ 1

10ρ− 2
−

ρ ln
−350ρ3 + (25ρ2 − 10ρ+ 1)

√
−44ρ2 + 24ρ− 3 + 215ρ2 − 44ρ+ 3

ρ2
√
−44ρ2 + 24ρ− 3− 134ρ3 + 57ρ2 − 6ρ

.

In the case b = 1, the function f1-Ryd(ρ) recovers the result from [44, formula (7.20)] and
[41, §VII]. The graphs of the complexity function of jammed configurations of Rydberg
atoms with blockade range 1 ≤ b ≤ 10 are given in Figure 7. In that figure we also see
that, for each b, the maximum of the complexity function matches lnwb, the growth rate of
all jammed configurations. This was already discussed in Remark 3.4.

Proof of Theorem 3.5. Recall that in (2.2) we showed that

1

2b+ 1
− 1

L
<

N

L
≤ 1

b+ 1
,

and therefore, there are no jammed configurations with densities ρ > 1
b+1 nor with densities

ρ < 1
2b+1 , for sufficiently large L. Thus, f(ρ) = 0 when ρ > 1

b+1 or ρ < 1
2b+1 . In case

ρ = 1
2b+1 , it is not hard to see that the number of configurations J⌊ L

2b+1⌋,L is

J⌊ L
2b+1⌋,L =

{
1, if (2b+ 1) | L,
0, otherwise.

This implies f( 1
2b+1 ) = 0 by the definition of complexity.

In the remainder, we fix 1
2b+1 < ρ ≤ 1

b+1 . By Lemma 2.4, and by using the definition
of the complexity function (3.1), we have

f(ρ) = lim
L→∞

max
(M0,M1,...,Mb)∈RN,L

N

L
·H

(
M0

N
,
M1

N
, . . . ,

Mb

N

)
, (3.3)
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Figure 7: The complexity function of jammed configurations of Rydberg atoms with block-
ade range 1 ≤ b ≤ 10.

where N = ⌊ρL⌋, provided that this limit exists. By rewriting (M0,M1, . . . ,Mb) ∈ RN,L

as

M0

N
≥ 0,

M1

N
≥ 0, . . . ,

Mb

N
≥ 0

M0

N
+

M1

N
+ · · ·+ Mb

N
= 1

M1

N
+ 2

M2

N
+ · · ·+ b

Mb

N
=

L

N
− (b+ 1)

and denoting pi =
Mi

N ∈ 1
⌊ρL⌋Z, the complexity (3.3) can be written as

f(ρ) = lim
L→∞

max
(p0,p1,...,pb)∈ 1

⌊ρL⌋R⌊ρL⌋,L

ρ̂H (p0, p1, . . . , pb) , (3.4)

where ρ̂ = ρ̂(L) = N
L = ⌊ρL⌋

L . We claim that this limit exists and is equal to the maximum
of the constrained optimization problem

max
p0,p1,...,pb≥0

p0+p1+···+pb=1
p1+2p2+···+bpb=

1
ρ−(b+1)

ρH (p0, p1, . . . , pb) , (3.5)

where pi ∈ R are no longer required to be fractions.
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We argue as follows. Denote by (p∗0, p
∗
1, . . . , p

∗
b) the point at which the maximum in

(3.5) is attained. For each L ∈ N, let (p0(L), p1(L), . . . , pb(L)) be the point at which
maximum in (3.4) is attained. Clearly,

ρ̂H (p0(L), p1(L), . . . , pb(L)) ≤ ρ̂H(p∗0, p
∗
1, . . . , p

∗
b) ≤ ρH(p∗0, p

∗
1, . . . , p

∗
b).

The first inequality follows by substituting ρ̂ for ρ in (3.5) and the fact that one is now
optimizing over a larger set. The second inequality follows from ρ̂ ≤ ρ. Note that the right
hand side no longer depends on L, and thus

lim sup
L→∞

ρ̂H (p0(L), p1(L), . . . , pb(L)) ≤ ρH(p∗0, p
∗
1, . . . , p

∗
b).

Next, for each L ∈ N, we consider the point (t0(L), t1(L), . . . , tb(L)) ∈ 1
⌊ρL⌋R⌊ρL⌋,L,

which is closest to the to the optimizer (p∗0, p
∗
1, . . . , p

∗
b). Note that, due to the density

argument, (t0(L), t1(L), . . . , tb(L)) → (p∗0, p
∗
1, . . . , p

∗
b) as L → ∞. This, along with the

continuity of H and the fact that ρ̂ → ρ implies the lower bound

ρH(p∗0, p
∗
1, . . . , p

∗
b) = lim

L→∞
ρ̂H(t0(L), t1(L), . . . , tb(L)) ≤

≤ lim inf
L→∞

ρ̂H (p0(L), p1(L), . . . , pb(L)) .

Putting everything together completes the argument that the limit

f(ρ) = lim
L→∞

ρ̂H (p0(L), p1(L), . . . , pb(L))

exists and that the complexity function is

f(ρ) = ρH(p∗0, p
∗
1, . . . , p

∗
b) = max

p0,p1,...,pb≥0
p0+p1+···+pb=1

p1+2p2+···+bpb=
1
ρ−(b+1)

ρ ·H (p0, p1, . . . , pb) .

In order to obtain the expression for complexity f(ρ), it only remains to solve the con-
strained optimization problem (3.5). We define the Lagrangian function

L(p0, . . . , pb;λ, µ) = ρ ·H(p0, p1, . . . , pb)− λ(p0 + p1 + · · ·+ pb − 1)

− µ(p1 + 2p2 · · ·+ bpb −
1

ρ
+ (b+ 1)),

and find the stationary point by solving the system

−ρ(ln pi + 1)− λ− µi = 0, for i = 0, 1, . . . , b;

p0 + p1 + · · ·+ pb = 1;

p1 + 2p2 · · ·+ bpb =
1

ρ
− (b+ 1).

(3.6)

By multiplying i-th of the first (b+ 1) equations by pi and adding them together we get

−ρ

b∑
i=0

(pi ln pi + pi)− λ

b∑
i=0

pi − µ

b∑
i=0

ipi = 0,
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and from here we obtain the expression for complexity in terms of the Lagrange multipliers
λ and µ which solve the system (3.6)

f(ρ) = ρH(p0, p1, . . . , pb) = ρ+ λ+ µ

(
1

ρ
− (b+ 1)

)
. (3.7)

Subtracting successive equations in (3.6) we get

−ρ(ln pi − ln pi−1)− µ = 0,

or equivalently
pi

pi−1
= e−µ/ρ.

Therefore pi = p0e
−µi/ρ, for i = 1, . . . , b. From the very first equation in (3.6) we get

p0 = e−λ/ρ−1,

and the whole system (3.6) now reduces to just two equations

e−λ/ρ−1
b∑

i=0

e−µi/ρ = 1; (3.8)

e−λ/ρ−1
b∑

i=0

ie−µi/ρ =
1

ρ
− (b+ 1). (3.9)

Setting z = e−µ/ρ, and eliminating e−λ/ρ−1 from equations (3.8) and (3.9), gives a single
polynomial equation of degree b

bzb + (b− 1)zb−1 + · · ·+ 2z2 + z =

[
1

ρ
− (b+ 1)

]
(zb + zb−1 + · · ·+ z + 1), (3.10)

which can be written as p(z) = 0 where p(z) is given in (3.2).
Now, in order to obtain the complexity, all we need is, for a fixed 1

2b+1 < ρ < 1
b+1 ,

to find a real root z > 0 of the polynomial p(z) for which the expression (3.7) is the
largest. The case ρ = 1

b+1 , which gives z = 0, has to be treated separately. From relation
z = e−µ/ρ and equation (3.8) we have

µ = −ρ ln z;

λ = −ρ

(
1 + ln

1− z

1− zb+1

)
.

(3.11)

Plugging (3.11) into (3.7), gives the complexity expressed in terms of the root of p(z)

f(ρ) = ρ

[
− ln

1− z

1− zb+1
−
(
1

ρ
− (b+ 1)

)
ln z

]
.

Lastly, in case ρ = 1
b+1 , already from the last two equations in (3.6) we can con-

clude p1 = p2 = · · · = pb = 0 and p0 = 1. This immediately gives f(ρ) = 0 as
H(1, 0, 0, . . . , 0) = 0, completing the proof.
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Remark 3.8. Using the standard summation formulas, we can rewrite (3.10) as

bzb+2 − (b+ 1)zb+1 + z

(1− z)2
=

[
1

ρ
− (b+ 1)

]
1− zb+1

1− z
, (3.12)

or equivalently[
(2b+ 1)− 1

ρ

]
zb+2 −

[
(2b+ 2)− 1

ρ

]
zb+1 −

[
b− 1

ρ

]
z +

[
(b+ 1)− 1

ρ

]
= 0.

As discussed in the introduction, the complexity function is associated to equilibrium
(or static) models of a certain phenomena and ρ⋆, the point at which the complexity func-
tion attains its maximum, is interpreted as the expected and most probable density observed
in such a model. This value ρ⋆ is sometimes called the equilibrium density of the model and
Theorem 3.9 below shows how to calculate it. A different (and perhaps more natural) way
to look at Rydberg atom model is dynamically, within the framework of random sequential
adsorption (RSA). Initially neutral atoms are sequentially and at random excited (obeying
the blockade range constraint) until the jammed configuration is reached. The expected
density of the reached jammed configuration (the jamming limit) in this dynamical version
of the model, denoted by ρb-Ryd

∞ , was computed in [42, §IV]

ρb-Ryd
∞ =

∫ 1

0

exp

−2

b∑
j=1

1− yj

j

 dy.

It is interesting to compare ρb-Ryd
⋆ and ρb-Ryd

∞ for different blockade ranges b. Even though

0 20 40 60 80 100

b

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

ρb-Ryd
∞

ρb-Ryd
?

Figure 8: Comparison of ρb-Ryd
⋆ and ρb-Ryd

∞ for 1 ≤ b ≤ 99.

they are not the same, they seem to match quite nicely, see Figure 8. Additionally, as one
would expect, they both tend to zero for large b. One can see their differences more clearly
in Figure 9. This violation of Edwards flatness hypothesis is even more pronounced when
one inspects the asymptotics of the two sequences more closely. In Figure 10 we see the
graph of quantities b · ρb-Ryd

⋆ and b · ρb-Ryd
∞ .
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Figure 9: Complexity function of Rydberg atom model with blockade range b, for b ∈
{1, 5, 20, 50}. Also plotted in each graph are the equilibrium density ρb-Ryd

⋆ and the jam-
ming density ρb-Ryd

∞ .
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Figure 10: Comparison of b · ρb-Ryd
⋆ and b · ρb-Ryd

∞ for 1 ≤ b ≤ 99.

It can be shown that these two sequences approach different constants as b grows large

lim
b→∞

b · ρb-Ryd
∞ =

∫ ∞

0

exp

[
−2

∫ y

0

1− e−x

x
dx

]
dy = 0.7475979202 . . .

lim
b→∞

b · ρb-Ryd
⋆ = 1.

(3.13)
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The constant appearing in the first limit is known as Rényi’s parking constant [57]. Both of
these two limits are easier to understand in the context of irreversible deposition of k-mers.
We deal with the k-mer deposition model in the following section where we revisit those
limits.

The calculation below, showing how to obtain the first limit in (3.13), and which we
provide for completeness, appears in [32]. First note

b∑
j=1

1− yj

j
=

b∑
j=1

∫ 1

y

tj−1 dt =

∫ 1

y

b∑
j=1

tj−1 dt =

∫ 1

y

1− tb

1− t
dt

=

[
x = b(1− t)
dx = −b dt

]
=

∫ b(1−y)

0

1− (1− x
b )

b

x
dx,

and therefore

b · ρb-Ryd
∞ = b

∫ 1

0

exp

−2

b∑
j=1

1− yj

j

 dy

= b

∫ 1

0

exp

[
−2

∫ b(1−y)

0

1− (1− x
b )

b

x
dx

]
dy

=

[
ỹ = b(1− y)
dỹ = −b dy

]
=

∫ b

0

exp

[
−2

∫ ỹ

0

1− (1− x
b )

b

x
dx

]
dỹ.

The dominated convergence theorem now implies

lim
b→∞

b · ρb-Ryd
∞ =

∫ ∞

0

exp

[
−2

∫ y

0

1− e−x

x
dx

]
dy = 0.7475979202 . . .

Before we calculate the second limit in (3.13), we give a characterization of the value
ρb-Ryd
⋆ in terms of a root of a certain polynomial. Compare this with the same results

obtained by Došlić [20, discussion after Theorem 2.10] and Krapivsky–Luck [43, (3.4),
(3.14) and (6.6)].

Theorem 3.9. The value ρb-Ryd
⋆ , at which the complexity of the Rydberg atom model with

blockade range b, given in Theorem 3.5, attains its maximum, can be calculated as

ρb-Ryd
⋆ =

(1− z)(1− zb+1)

1 + b− bz − 2zb+1 − 2bzb+1 + zb+2 + 2bzb+2
, (3.14)

where z is the unique root of the polynomial

z2b+1 + · · ·+ zb+2 + zb+1 − 1,

on the interval 0 < z < 1.

Proof. We seek to find the density 1
2b+1 < ρb-Ryd

⋆ < 1
b+1 at which the complexity f =

f b-Ryd in Theorem 3.5 attains its maximum. Again, we employ the Lagrangian function
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method by setting

L(ρ, z;λ) = ρ

[
− ln

1− z

1− zb+1
−
(
1

ρ
− (b+ 1)

)
ln z

]
− λ

b∑
i=0

(
i+ b+ 1− 1

ρ

)
zi

= ρ ln
1− zb+1

1− z
− (1− ρ(b+ 1)) ln z − λ

b∑
i=0

(
i+ b+ 1− 1

ρ

)
zi.

The stationary points of this function solve the following system

ln
1− zb+1

1− z
+ (b+ 1) ln z − λ

ρ2
· 1− zb+1

1− z
= 0

−ρ(b+ 1)zb

1− zb+1
+

ρ

1− z
− (1− ρ(b+ 1))

z
− λ

b∑
i=1

i

(
i+ b+ 1− 1

ρ

)
zi−1 = 0

b∑
i=0

(
i+ b+ 1− 1

ρ

)
zi = 0.

Using standard summation formulas, as in (3.12), it is possible to express ρ from the third
equation as

ρ =
(1− z)(1− zb+1)

1 + b− bz − 2zb+1 − 2bzb+1 + zb+2 + 2bzb+2
.

Plugging this into the second equation gives

0 = λ

b∑
i=1

i

(
i+ b+ 1− 1

ρ

)
zi−1.

From here, we conclude λ = 0. Finally, from the first equation we get

λ = ρ2
1− z

1− zb+1
ln

zb+1(1− zb+1)

1− z

and, combining this with λ = 0, gives

ln
zb+1(1− zb+1)

1− z
= 0,

or
zb+1(1− zb+1) = 1− z.

We know from Theorem 3.5 that z ̸= 1, so we can rewrite this equation as

z2b+1 + · · ·+ zb+2 + zb+1 − 1 = 0.

Clearly, there is a unique 0 < z < 1 solving this equation, and the corresponding

ρb-Ryd
⋆ =

(1− z)(1− zb+1)

1 + b− bz − 2zb+1 − 2bzb+1 + zb+2 + 2bzb+2

is the density at which the complexity in the Rydberg atom model with blockade range b is
the largest.
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The previous theorem can be used to give a proof of the second limit in (3.13).

Corollary 3.10.
lim
b→∞

b · ρb-Ryd
⋆ = 1.

Proof. Since 0 < z = z(b) < 1 solves the equation

zb+1(1− zb+1)

1− z
= z2b+1 + · · ·+ zb+2 + zb+1 = 1 (3.15)

it follows
bz2b+1 < 1 < bzb+1

and therefore
lim
b→∞

z2b+1 = 0.

Multiplying by z and taking square root we also get

lim
b→∞

zb+1 = 0.

Finally, letting b → ∞ in the identity zb+1(1− zb+1) = 1− z, gives

lim
b→∞

z = 1.

Note that

b · ρb-Ryd
⋆ =

b(1− z)(1− zb+1)

1 + b(1− z)[1− 2zb+1]− 2zb+1 + zb+2

so in order to get limb→∞ b · ρb-Ryd
⋆ = 1, it suffices to show limb→∞ b(1− z) = ∞. To see

this, note that from (3.15) it follows

(b+ 1) ln z = ln(1− z)− ln(1− zb+1)

and hence

lim
b→∞

(b+ 1)(1− z) = lim
b→∞

1− z

ln z
·
[
ln(1− z)− ln(1− zb+1)

]
= −1 · [−∞− 0] = +∞

which completes the argument.

4 Complexity function of jammed configurations for irreversible de-
position of k-mers

It is easy to see that the Rydberg atom model with blockade range b is, up to scaling all
densities by a factor b+1, equivalent to the irreversible deposition of k-mers model where
k = b+1. As an immediate consequence of Theorem 3.5 we get the complexity of jammed
configurations for irreversible deposition of k-mers.

Corollary 4.1. For k ∈ N, k > 1, the complexity function of jammed configurations for
irreversible deposition of k-mers is

f(ρ) =

{
ρ
k

[
− ln 1−z

1−zk −
(

k
ρ − k

)
ln z

]
, if k

2k−1 < ρ ≤ 1,

0, otherwise,
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where z ≥ 0 is a real root of the polynomial

k−1∑
i=0

(
i+ k − k

ρ

)
zi

for which the expression f(ρ) is the largest.
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Figure 11: The complexity function of jammed configurations for irreversible deposition
of k-mers, for 2 ≤ k ≤ 11.

Figure 11 shows the complexity function for all 2 ≤ k ≤ 11. Note that the support of
the complexity function is now contained in the interval [1/2, 1]. In Figure 12 we compare
the equilibrium density ρk-mer

⋆ and the jamming density ρk-mer
∞ , for 2 ≤ k ≤ 100. In this

model it is even more obvious that the Edwards hypothesis is violated. The limits of these
two sequences as k grows large are

lim
k→∞

ρk-mer
∞ =

∫ ∞

0

exp

[
−2

∫ y

0

1− e−x

x
dx

]
dy = 0.7475979202 . . .

lim
k→∞

ρk-mer
⋆ = 1.

(4.1)

Note that these limits are equivalent to those in (3.13). The convergence of jamming limits
of k-mer deposition models (as k grows to infinity) to the Rényi’s parking constant is
discussed in [44, §7.1] (see also [28, 32]).

Clearly, the second limit from (4.1) follows from Corollary 3.10 as ρk-mer
⋆ = k · ρb-Ryd

⋆

for b = k − 1. Below, we provide a direct alternative proof of this fact.
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Theorem 4.2.

lim
k→∞

ρk-mer
⋆ = 1.

Proof. The quantity we are interested in, ρk-mer
⋆ , is equivalent to the quantity called the

efficiency ε(k) in the context of packing Pk into Pn. It was shown in [20] that the efficiency
is determined by the smallest singularity wk of the generating function Fk(1, y), i.e., by
the smallest zero of its denominator. Hence we start by setting x = 1 into the rightmost
expression in (2.4),

Fk(1, y) =
1− yk

1− y − yk − y2k
=

1−yk

1−y

1− yk 1−yk

1−y

.

We rewrite its denominator as 1− qk(y), where qk(y) = qk 1−yk

1−y , and denote the smallest
solution of equation qk(y) = 1 by wk. This equation has only one positive solution, since
qk(0) = 0, qk(1) = k > 1 for large k and q′k(y) > 0 for all y > 0. Moreover, the same
reasoning provides a better lower bound for wk, since qk(

1
2 ) = 2(1−k)(1 − 2−k) < 1.

Hence 1/2 < wk < 1.
Consider now the expression

ε(k) = ρk-mer
⋆ =

k

wkq′k(x)

derived in [20]. First we rewrite q′k(wk) as

q′k(x) = xk 1− xk

1− x

[
2k

x
− k

x(1− xk)
+

1

1− x

]
.

After plugging in x = wk, the term outside the brackets becomes equal to one, and by
multiplying through by wk we arrive at

wkq
′
k(wk) =

(
2− 1

1− wk
k

)
k +

wk

1− wk
.

We are seeking upper bounds to the right-hand side. The first term is bounded from above
by k, since the expression in parentheses cannot exceed one. It remains to bound the second
term. As mentioned before, wk is the only positive solution of the equation 1− qk(x) = 0.
We claim that, for a given (large) positive a, wk < 1 − a

k for large enough k. So let us
suppose otherwise, that for a given a > 0, wk > 1− a

k is valid for all k. It means that the
function 1− qk(x) has a positive value for x = 1− a

k . By evaluating both sides, we obtain
that (

1− a

k

)k

−
(
1− a

k

)2k

<
a

k

is valid for all k. This is a contradiction, since the left-hand side has a positive limit,
e−a − e−2a > 0, while the right-hand side tends to zero as k tends to infinity. Hence,
wk < 1 − a

k for large enough k. Now the second term can be bounded from above by a
k ,

and the whole expression for wkq
′
k(wk) is bounded from above by a+1

a k. Since a can be
taken arbitrarily large, it means that the reciprocal value of wkq

′
k(wk), which is equal to

our ρk-mer
⋆ , comes arbitrarily close to one, and our claim follows.
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The convergence is quite slow, most likely logarithmic. We note another unusual thing
in Figure 12. The equilibrium density ρk-mer

⋆ attains the minimum value for k = 9. The
interpretation being that the polymers of length 9 pack the least efficiently of all polymers
assuming the equilibrium model. This phenomenon was previously observed in [20].

0 20 40 60 80 100

k

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

ρk-mer
∞
ρk-mer
?

Rényi’s parking constant

Figure 12: Comparison of ρk-mer
⋆ and ρk-mer

∞ for 2 ≤ k ≤ 100.

5 Conclusions
In this paper we have computed the complexity function (or configurational entropy) of
jammed configurations of Rydberg atoms with a given blockade range on a one-dimensional
lattice. We employed a purely combinatorial method which allowed us to compute the com-
plexity function by solving a constrained optimization problem. Along the way we have
explored and elucidated numerous connections between the considered problem and other
models, such as, e.g., the random sequential adsorption and packings of blocks of a given
length into one-dimensional lattices. In most cases, we have not followed those links very
far. We believe that many interesting results could be obtained by deeper investigations
of those connections. As an example, we mention here that explicit expressions for the
number of maximal packings of given size from reference [20] could be directly translated
into expressions for the number of jammed configurations of Rydberg atoms. By the same
reasoning one can show that the total number of all jammed configurations of N Rydberg
atoms with blockade range b on all one-dimensional lattices is given by (b+ 1)N+1.

The methods employed here could be easily adapted for other one-dimensional struc-
tures with low connectivity such as, e.g., cactus chains. Another class of promising struc-
tures could be various simple graphs decorated by addition of certain number of vertices of
degree one to each of their vertices.

Similar problems were considered under various guises also for finite portions of rect-
angular lattices, mostly for narrow strips of varying length. Among the best known prob-
lems of this type are the so-called unfriendly seating arrangements. See [7, 30] for their
history and some recent developments. To the same class belong the problems concerned
with privacy, such as the ones considered in [39]. All cited references were concerned with
one-dimensional lattices and/or narrow strips in the square grid, mostly with ladders. It
would be interesting to consider those problems in finite portions of the regular hexagonal
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lattice.
Another interesting thing to do would be to study the behavior (and the difference) of

ρ∞ and ρ⋆ for different lattices/substrates. In other words, to investigate the difference
between the jamming limit of dynamical models and the most probable densities in the
equilibrium models. A drastic example is presented by the expected density of independent
sets in stars: there are exactly two maximal independent sets in Sn = K1,n−1, one of them
with size 1 and the other with size n−1. If both of them are equally probable, the expected
size is n/2. Under dynamical model, however, the smaller one is much less probable than
the bigger one, and the expected size is 1

n + n−1
n (n − 1) = n − 2 + 2

n . It would be
interesting to know more about such differences and to know for which classes of graphs
they are extremal.

Our final remark is that the jammed configurations of Rydberg atoms with a given
blockade range b are known as maximal b-independent sets in the language of graph theory.
It might be worth investigating to what extent can similar problems be formulated also in
terms of b-dominance in graphs.
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[19] T. Došlić, M. Puljiz, S. Šebek and J. Žubrinić, On a variant of Flory model, Discrete Appl. Math.
356 (2024), 269–292, doi:10.1016/j.dam.2024.06.011, https://doi.org/10.1016/j.
dam.2024.06.011.
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[21] T. Došlić and I. Zubac, Counting maximal matchings in linear polymers, Ars Math. Contemp.
11 (2016), 255–276, doi:10.26493/1855-3974.851.167, https://doi.org/10.26493/
1855-3974.851.167.

[22] F. B. Dunning and T. C. Killian, Rydberg atoms: Giants of the atomic world, Scientia (2021),
doi:10.33548/scientia679, https://doi.org/10.33548/SCIENTIA679.

[23] Y. Elskens and H. L. Frisch, Aggregation kinetics for a one-dimensional zero-degree
Kelvin model of spinodal decomposition, J. Stat. Phys. 48 (1987), 1243–1248, doi:10.1007/
BF01009543, https://doi.org/10.1007/BF01009543.



678 Ars Math. Contemp. 24 (2024) #P4.05 / 653–680

[24] J. W. Evans, Random and cooperative sequential adsorption, Rev. Mod. Phys. 65 (1993), 1281,
doi:10.1103/RevModPhys.65.1281, https://doi.org/10.1103/RevModPhys.65.
1281.

[25] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press,
Cambridge, 2009, doi:10.1017/CBO9780511801655, https://doi.org/10.1017/
CBO9780511801655.

[26] P. J. Flory, Intramolecular reaction between neighboring substituents of vinyl polymers, J.
Am. Chem. Soc. 61 (1939), 1518–1521, doi:10.1021/ja01875a053, https://doi.org/
10.1021/ja01875a053.

[27] G. H. Fredrickson and H. C. Andersen, Kinetic Ising model of the glass transition, Phys. Rev.
Lett. 53 (1984), 1244, doi:10.1103/PhysRevLett.53.1244, https://doi.org/10.1103/
PhysRevLett.53.1244.

[28] H. D. Friedman, D. Rothman and J. K. MacKenzie, Problem 62-3, SIAM Review 6 (1964),
180–182, http://www.jstor.org/stable/2028090.

[29] T. F. Gallagher, Rydberg Atoms, Cambridge Monographs on Atomic, Molecular and Chemi-
cal Physics, Cambridge University Press, Cambridge, 1994, doi:10.1017/CBO9780511524530,
https://doi.org/10.1017/CBO9780511524530.

[30] K. Georgiou, E. Kranakis and D. Krizanc, Random maximal independent sets and the un-
friendly theater seating arrangement problem, Discrete Math. 309 (2009), 5120–5129, doi:
10.1016/j.disc.2009.03.049, https://doi.org/10.1016/j.disc.2009.03.049.

[31] L. Gerin, The Page-Rényi parking process, Electron. J. Combin. 22 (2015), Paper 4.4, 13 pp.,
doi:10.37236/5150, https://doi.org/10.37236/5150.

[32] J. J. González, P. C. Hemmer and J. S. Høye, Cooperative effects in random sequential polymer
reactions, Chem. Phys. 3 (1974), 228–238, doi:10.1016/0301-0104(74)80063-7, https://
doi.org/10.1016/0301-0104(74)80063-7.

[33] W. Gotze and L. Sjogren, Relaxation processes in supercooled liquids, Rep. Prog. Phys.
55 (1992), 241–376, doi:10.1088/0034-4885/55/3/001, https://doi.org/10.1088/
0034-4885/55/3/001.

[34] C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de Saint-Vincent, M. Gärttner, J. Ev-
ers, S. Whitlock and M. Weidemüller, Sub-poissonian statistics of Rydberg-interacting dark-
state polaritons, Phys. Rev. Lett. 110 (2013), 203601, doi:10.1103/PhysRevLett.110.203601,
https://doi.org/10.1103/PhysRevLett.110.203601.

[35] J. Jäckle and S. Eisinger, A hierarchically constrained kinetic Ising model, Z. Physik B - Con-
densed Matter 84 (1991), 115–124, doi:10.1007/BF01453764, https://doi.org/10.
1007/BF01453764.

[36] J. L. Jackson and E. W. Montroll, Free radical statistics, J. Chem. Phys. 28 (1958), 1101–1109,
doi:10.1063/1.1744351, https://doi.org/10.1063/1.1744351.

[37] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté and M. D. Lukin, Fast quantum gates for
neutral atoms, Phys. Rev. Lett. 85 (2000), 2208, doi:10.1103/PhysRevLett.85.2208, https:
//doi.org/10.1103/PhysRevLett.85.2208.

[38] S. Kirkpatrick and D. Sherrington, Infinite-ranged models of spin-glasses, Phys. Rev.
B 17 (1978), 4384, doi:10.1103/PhysRevB.17.4384, https://doi.org/10.1103/
PhysRevB.17.4384.

[39] E. Kranakis and D. Krizanc, Maintaining privacy on a line, Theory Comput. Syst.
50 (2012), 147–157, doi:10.1007/s00224-011-9338-3, https://doi.org/10.1007/
s00224-011-9338-3.
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Abstract

We work with simple graphs in ZF (i.e., the Zermelo–Fraenkel set theory without the
Axiom of Choice (AC)) and assume that the sets of colors can be either well-orderable
or non-well-orderable, to prove that the following statements are equivalent to Kőnig’s
Lemma:

(a) Any infinite locally finite connected graph G such that the minimum degree of G is
greater than k, has a chromatic number for any fixed integer k greater than or equal
to 2.

(b) Any infinite locally finite connected graph has a chromatic index.

(c) Any infinite locally finite connected graph has a distinguishing number.

(d) Any infinite locally finite connected graph has a distinguishing index.

The above results strengthen some recent results of Stawiski since he assumed that the sets
of colors can be well-ordered. We formulate new conditions for the existence of irreducible
proper coloring, minimal edge cover, maximal matching, and minimal dominating set in
connected bipartite graphs and locally finite connected graphs, which are either equivalent
to AC or Kőnig’s Lemma. Moreover, we show that if the Axiom of Choice for families of
2-element sets holds, then the Shelah-Soifer graph has a minimal dominating set.
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1 Introduction
In 1991, Galvin–Komjáth proved that the statements “Any graph has a chromatic num-
ber” and “Any graph has an irreducible proper coloring” are equivalent to AC in ZF using
Hartogs’s theorem (cf. [7]). In 1977, Babai [1] introduced distinguishing vertex colorings
under the name asymmetric colorings, and distinguishing edge colorings were introduced
by Kalinowski–Pilśniak [14] in 2015. Recently, Stawiski [20] proved that the statements
(b)–(d) mentioned in the abstract above and the statement “Any infinite locally finite con-
nected graph has a chromatic number” are equivalent to Kőnig’s Lemma (a weak form
of AC) by assuming that the sets of colors can be well-ordered (cf. [20, Lemma 3.3 and
Section 2]).

1.1 Proper and distinguishing colorings

An infinite cardinal in ZF can either be an ordinal or a set that is not well-orderable.
Herrlich–Tachtsis [10, Proposition 23] proved that no Russell graph has a chromatic num-
ber in ZF. We refer the reader to [10] for the details concerning Russell graph and Russell
sequence. In Theorem 4.2, the first and the second authors study new combinatorial proofs
(mainly inspired by the arguments of [10, Proposition 23]) to show that the statements (a)–
(d) mentioned in the abstract above are equivalent to Kőnig’s Lemma (without assuming
that the sets of colors can be well-ordered).1

1.2 New equivalents of Kőnig’s lemma and AC

The role of AC and Kőnig’s Lemma in the existence of graph-theoretic properties like ir-
reducible proper coloring, chromatic numbers, maximal independent sets, spanning trees,
and distinguishing colorings were studied by several authors in the past (cf. [2, 3, 5, 6, 7,
11, 19, 20]). We list a few known results apart from the above-mentioned results due to
Galvin–Komjáth [7] and Stawiski [20]. In particular, Friedman [6, Theorem 6.3.2, Theo-
rem 2.4] proved that AC is equivalent to the statement “Any graph has a maximal indepen-
dent set”. Höft–Howard [11] proved that the statement “Any connected graph contains a
partial subgraph which is a tree” is equivalent to AC. Fix any even integer m ≥ 4 and any
integer n ≥ 2. Delhommé–Morillon [5] studied the role of AC in the existence of span-
ning subgraphs and observed that AC is equivalent to “Any connected bipartite graph has a
spanning subgraph without a complete bipartite subgraph Kn,n” as well as “Any connected
graph admits a spanning m-bush” (cf. [5, Corollary 1, Remark 1]). They also proved that
the statement “Any locally finite connected graph has a spanning tree” is equivalent to
Kőnig’s lemma in [5, Theorem 2]. Banerjee [2, 3] observed that the statements “Any infi-

E-mail addresses: banerjee.amitayu@gmail.com (Amitayu Banerjee), mozaag@gmail.com (Zalán Molnár),
alexa279e@gmail.com (Alexa Gopaulsingh)

1We note that statement (a) mentioned in the abstract is a new equivalent of Kőnig’s Lemma. Stawiski’s graph
from [20, Theorem 3.6] shows that Kőnig’s Lemma is equivalent to “Every infinite locally finite connected graph
G such that δ(G) (the minimum degree of G) is 2 has a chromatic number”.



A. Banerjee et al.: Distinguishing colorings, proper colorings, and covering properties . . . 683

nite locally finite connected graph has a maximal independent set” and “Any infinite locally
finite connected graph has a spanning m-bush” are equivalent to Kőnig’s lemma. However,
the existence of maximal matching, minimal edge cover, and minimal dominating set in ZF
were not previously investigated. The following table summarizes the new results (cf. The-
orem 5.1, Theorem 6.4).2

New equivalents of Kőnig’s lemma New equivalents of AC
Plf,c(irreducible proper coloring)
Plf,c(minimal dominating set) Pc(minimal dominating set)
Plf,c(maximal matching) Pc,b(maximal matching)
Plf,c(minimal edge cover) Pc,b(minimal edge cover)

In the table, Plf,c(property X) denotes “Any infinite locally finite connected graph has
property X”, Pc,b(property X) denotes “Any connected bipartite graph has property X”
and Pc(property X) denotes “Any connected graph has property X”.

2 Basics
Definition 2.1. Suppose X and Y are two sets. We write:

1. X ⪯ Y , if there is an injection f : X → Y .

2. X and Y are equipotent if X ⪯ Y and Y ⪯ X , i.e., if there is a bijection f : X → Y .

3. X ≺ Y , if X ⪯ Y and X is not equipotent with Y .

Definition 2.2. Without AC, a set m is called a cardinal if it is the cardinality |x| of some
set x, where |x| = {y : y ∼ x and y is of least rank} where y ∼ x means the existence of a
bijection f : y → x (see [15, Definition 2.2, page 83] and [13, Section 11.2]).

Definition 2.3. A graph G = (VG, EG) consists of a set VG of vertices and a set EG ⊆
[VG]

2 of edges.3 Two vertices x, y ∈ VG are adjacent vertices if {x, y} ∈ EG, and two
edges e, f ∈ EG are adjacent edges if they share a common vertex. The degree of a vertex
v ∈ VG, denoted by deg(v), is the number of edges emerging from v. We denote by δ(G)
the minimum degree of G. Given a non-negative integer n, a path of length n in G is a one-
to-one finite sequence {xi}0≤i≤n of vertices such that for each i < n, {xi, xi+1} ∈ EG;
such a path joins x0 to xn.

(1) G is locally finite if every vertex of G has a finite degree.

(2) G is connected if any two vertices are joined by a path of finite length.

(3) A dominating set of G is a set D of vertices of G, such that any vertex of G is either
in D, or has a neighbor in D.

(4) An independent set of G is a set of vertices of G, no two of which are adjacent
vertices. A dependent set of G is a set of vertices of G that is not an independent set.

2We note that Theorem 5.1 is a combined effort of the first and the second authors. Moreover, all remarks in
Section 6 including Theorem 6.4 are due to all the authors.

3i.e., EG is a subset of the set of all two-element subsets of VG.
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(5) A vertex cover of G is a set of vertices of G that includes at least one endpoint of
every edge of the graph G.

(6) A matching M in G is a set of pairwise non-adjacent edges.

(7) An edge cover of G is a set C of edges such that each vertex in G is incident with at
least one edge in C.

(8) A minimal dominating set (minimal vertex cover, minimal edge cover) is a dominat-
ing set (a vertex cover, an edge cover) that is not a superset of any other dominating
set (vertex cover, edge cover). A maximal independent set (maximal matching) is
an independent set (a matching) that is not a subset of any other independent set
(matching).

(9) A proper vertex coloring of G with a color set C is a mapping f : VG → C such
that for every {x, y} ∈ EG, f(x) ̸= f(y). A proper edge coloring of G with a color
set C is a mapping f : EG → C such that for any two adjacent edges e1 and e2,
f(e1) ̸= f(e2).

(10) Let |C| = κ. We say G is κ-proper vertex colorable or C-proper vertex colorable if
there is a proper vertex coloring f : VG → C and G is κ-proper edge colorable or
C-proper edge colorable if there is a proper edge coloring f : EG → C. The least
cardinal κ for which G is κ-proper vertex colorable (if it exists) is the chromatic
number of G and the least cardinal κ for which G is κ-proper edge colorable (if it
exists) is the chromatic index of G.

(11) A proper vertex coloring f : VG → C is a C-irreducible proper coloring if f−1(c1)∪
f−1(c2) is a dependent set whenever c1, c2 ∈ C and c1 ̸= c2 (cf. [7]).

(12) An automorphism of G is a bijection ϕ : VG → VG such that {u, v} ∈ EG if and only
if {ϕ(u), ϕ(v)} ∈ EG. Let f be an assignment of colors to either vertices or edges of
G. We say that an automorphism ϕ of G preserves f if each vertex of G is mapped to
a vertex of the same color or each edge of G is mapped to an edge of the same color.
We say that f is a distinguishing coloring if the only automorphism that preserves
f is the identity. Let |C| = κ. We say G is κ-distinguishing vertex colorable or C-
distinguishing vertex colorable if there is a distinguishing vertex coloring f : VG →
C and G is κ-distinguishing edge colorable or C-distinguishing edge colorable if
there is a distinguishing edge coloring f : EG → C. The least cardinal κ for which
G is κ-distinguishing vertex colorable (if it exists) is the distinguishing number of G
and the least cardinal κ for which G is κ-distinguishing edge colorable (if it exists)
is the distinguishing index of G.

(13) The automorphism group of G, denoted by Aut(G), is the group consisting of auto-
morphisms of G with composition as the operation. Let τ be a group acting on a set
S and let a ∈ S. The orbit of a, denoted by Orbτ (a), is the set {ϕ(a) : ϕ ∈ τ}.

(14) G is complete if each pair of vertices is connected by an edge. We denote by Kn, the
complete graph on n vertices for any natural number n ≥ 1.

(15) Kőnig’s Lemma states that every infinite locally finite connected graph has a ray.
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Let ω be the set of natural numbers, Z be the set of integers, Q be the set of rational
numbers, R be the set of real numbers, and Q+a = {a+r : r ∈ Q} for any a ∈ R. Shelah–
Soifer [17] constructed a graph whose chromatic number is 2 in ZFC and uncountable in
some model of ZF (e.g. in Solovay’s model from [18, Theorem 1]).

Definition 2.4 (cf. [17]). The Shelah–Soifer Graph G = (R, ρ) is defined by xρy ⇔
(x− y) ∈ (Q+

√
2) ∪ (Q+ (−

√
2)).

Definition 2.5. A set X is Dedekind-finite if it satisfies the following equivalent conditions
(cf. [10, Definition 1]):

• ω ̸⪯ X ,4

• A ≺ X for every proper subset A of X .

Definition 2.6. For every family B = {Bi : i ∈ I} of non-empty sets, B is said to have a
partial choice function if B has an infinite subfamily C with a choice function.

Definition 2.7 (A list of choice forms).

(1) AC2: Every family of 2-element sets has a choice function.

(2) ACfin: Every family of non-empty finite sets has a choice function.

(3) ACω
fin: Every countably infinite family of non-empty finite sets has a choice function.

We recall that ACω
fin is equivalent to Kőnig’s Lemma as well as the statement “The

union of a countable family of finite sets is countable”.

(4) ACω
k×fin for k ∈ ω\{0, 1}: Every countably infinite family A = {Ai : i ∈ ω} of

non-empty finite sets, where k divides |Ai|, has a choice function.

(5) PACω
k×fin for k ∈ ω\{0, 1}: Every countably infinite family A = {Ai : i ∈ ω} of

non-empty finite sets, where k divides |Ai| has a partial choice function.

Definition 2.8. From the point of view of model theory, the language of graphs L consists
of a single binary relational symbol E depicting edges, i.e., L = {E} and a graph is an
L-structure G = ⟨V,E⟩ consisting of a non-empty set V of vertices and the edge relation
E on V . Let G = ⟨V,E⟩ be an L-structure, ϕ(x1, ..., xn) be a first-order L-formula, and
let a1, ..., an ∈ V for some n ∈ ω\{0}. We write G |= ϕ(a1, ..., an), if the property
expressed by ϕ is true in G for a1, ..., an. Let G1 = ⟨VG1 , EG1⟩ and G2 = ⟨VG2 , EG2⟩
be two L-structures. We recall that if j : VG1 → VG2 is an isomorphism, φ(x1, ..., xr) is a
first-order L-formula on r variables for some r ∈ ω\{0}, and ai ∈ VG1

for each 1 ≤ i ≤ r,
then by induction on the complexity of formulae, one can see that G1 |= φ(a1, ..., ar) if
and only if G2 |= φ(j(a1), ..., j(ar)) (cf. [16, Theorem 1.1.10]).

3 Known and basic results
3.1 Known results

Fact 3.1 (ZF). The following hold:

4i.e., there is no injection f : ω → X .
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(1) (Galvin–Komjáth; cf. [7, Lemma 3 and the proof of Lemma 2]). Any graph based
on a well-ordered set of vertices has an irreducible proper coloring and a chromatic
number.

(2) (Delhommé–Morillon; cf. [5, Lemma 1]). Given a set X and a set A which is the
range of no mapping with domain X , consider a mapping f : A → P(X)\{∅} (with
values non-empty subsets of X). Then there are distinct a and b in A such that
f(a) ∩ f(b) ̸= ∅.

(3) (Herrlich–Rhineghost; cf. [9, Theorem]). For any measurable subset X of R with a
positive measure there exist x ∈ X and y ∈ X with y − x ∈ Q+

√
2.

(4) (Stawiski; cf. [20, proof of Theorem 3.8]). Any graph based on a well-ordered set of
vertices has a chromatic index, a distinguishing number, and a distinguishing index.

3.2 Basic results

Proposition 3.2 (ZF). The Shelah-Soifer Graph G = (R, ρ) has the following properties:

(1) If AC2 holds, then G has a minimal dominating set.

(2) Any independent set of G is either non-measurable or of measure zero.

Proof. First, we note that each component of G is infinite, since x, y ∈ R are connected if
and only if x− y = q +

√
2z for some q ∈ Q and z ∈ Z, and G has no odd cycles.

(1). Under AC2, G has a 2-proper vertex coloring f : VG → 2 (see [9]). This is
because, since G has no odd cycles, each component of G has precisely two 2-proper
vertex colorings. Using AC2 one can select a 2-proper vertex coloring for each component,
in order to obtain a 2-proper vertex coloring of G. We claim that f−1(i) (which is an
independent set of G) is a maximal independent set (and hence a minimal dominating set) of
G for any i ∈ {0, 1}. Fix i ∈ {0, 1} and assume that f−1(i) is not a maximal independent
set. Then f−1(i)∪{v} is an independent set for some v ∈ R\f−1(i) = f−1(1− i) and so
{v, x} ̸∈ ρ for any x ∈ f−1(i). Since f−1(1− i) is an independent set, {v, x} ̸∈ ρ for any
x ∈ f−1(1− i). This contradicts the fact that G has no isolated vertices.

(2). Let M be an independent set of G. Pick any x, y ∈ M such that x ̸= y. Then,

¬(yρx) =⇒ (y−x) ̸∈ (Q+
√
2)∪(Q+(−

√
2)) = {r+

√
2 : r ∈ Q}∪{r−

√
2 : r ∈ Q}.

Thus, there are no x, y ∈ M where x ̸= y such that y − x ∈ Q+
√
2. By Fact 3.1(3),

M is not a measurable set of R with a positive measure.

Proposition 3.3 (ZF). The following hold:

(1) Any graph based on a well-ordered set of vertices has a minimal vertex cover.

(2) Any graph based on a well-ordered set of vertices has a minimal dominating set.

(3) Any graph based on a well-ordered set of vertices has a maximal matching.

(4) Any graph based on a well-ordered set of vertices with no isolated vertex, has a
minimal edge cover.



A. Banerjee et al.: Distinguishing colorings, proper colorings, and covering properties . . . 687

Proof. (1). Let G = (VG, EG) be a graph based on a well-ordered set of vertices and let
< be a well-ordering of VG. We use transfinite recursion, without invoking any form of
choice, to construct a minimal vertex cover. Let M0 = VG. Clearly, M0 is a vertex cover.
Assume that M0 is not a minimal vertex cover. Now, assume that for some ordinal number
α we have constructed a sequence (Mβ)β<α of vertex covers such that Mβ is not a minimal
vertex cover for any β < α. If α = γ + 1 is a successor ordinal for some ordinal γ, then
let Mα = Mγ+1 = Mγ\{vγ} where vγ is the <-minimal element of the well-ordered set
{v ∈ Mγ : Mγ\{v} is a vertex cover}. If α is a limit ordinal, we use Mα =

⋂
β∈α Mβ .

For any ordinal α, if Mα is a minimal vertex cover, then we are done. Since the class of
all ordinal numbers is a proper class, it follows that the recursion must terminate at some
ordinal stage, say λ. Then, Mλ is the minimal vertex cover.

(2). This follows from (1) and the fact that if I is a minimal vertex cover of G, then
VG\I is a maximal independent set (and hence a minimal dominating set) of G.

(3). If VG is well-orderable, then EG ⊆ [VG]
2 is well-orderable as well. Thus, similar

to the arguments of (1) we can obtain a maximal matching by using transfinite recursion in
ZF and modifying the greedy algorithm to construct a maximal matching.

(4). Let G = (VG, EG) be a graph on a well-ordered set of vertices without isolated
vertices. Let ≺′ be a well-ordering of EG. By (3), we can obtain a maximal matching M in
G. Let W be the set of vertices not covered by M . For each vertex w ∈ W , the set Ew =
{e ∈ EG : e is incident with w} is well-orderable being a subset of the well-orderable set
(EG,≺′). Let fw be the (≺′↾ Ew)-minimal element of Ew. Let F = {fw : w ∈ W} and
let M1 = {e ∈ M : at least one endpoint of e is not covered by F}. Then F ∪ M1 is a
minimal edge cover of G.

Remark 3.4. We remark that the direct proofs of items (1)–(3) of Proposition 3.3 do not
adapt immediately to give a proof of item (4); the issue is in the limit steps, where a vertex
of infinite degree might not be covered anymore by the intersection of edge covers.

4 Proper and distinguishing colorings
Definition 4.1. Let A = {An : n ∈ ω} be a disjoint countably infinite family of non-
empty finite sets and T = {tn : n ∈ ω} be a countably infinite sequence disjoint from A =⋃

n∈ω An. Let G1(A, T ) = (VG1(A,T ), EG1(A,T )) be the infinite locally finite connected
graph such that

VG1(A,T ) := (
⋃
n∈ω

An) ∪ T,

EG1(A,T ) :=
{
{tn, tn+1} : n ∈ ω

}
∪
{
{tn, x} : n ∈ ω, x ∈ An

}
∪
{
{x, y} : n ∈ ω, x, y ∈ An, x ̸= y

}
.

We denote by C the statement “For any disjoint countably infinite family of non-empty
finite sets A, and any countably infinite sequence T = {tn : n ∈ ω} disjoint from A =⋃

n∈ω An, the graph G1(A, T ) has a chromatic number” and we denote by Ck the statement
“Any infinite locally finite connected graph G such that δ(G) ≥ k has a chromatic number”.

Theorem 4.2 (ZF). Fix a natural number k ≥ 3. The following statements are equivalent:

(1) Kőnig’s Lemma.
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(2) C.

(3) Ck.

(4) Any infinite locally finite connected graph has a chromatic number.

(5) Any infinite locally finite connected graph has a chromatic index.

(6) Any infinite locally finite connected graph has a distinguishing number.

(7) Any infinite locally finite connected graph has a distinguishing index.

Proof. (1)⇒(2)–(7) Let G = (VG, EG) be an infinite locally finite connected graph. Pick
some r ∈ VG. Let V0(r) = {r}. For each integer n ≥ 1, define Vn(r) = {v ∈ VG :
dG(r, v) = n} where “dG(r, v) = n” means there are n edges in the shortest path joining
r and v. Each Vn(r) is finite by the local finiteness of G, and VG =

⋃
n∈ω Vn(r) since G

is connected. By ACω
fin, VG is countably infinite (and hence, well-orderable). The rest fol-

lows from Fact 3.1(1), (4) and the fact that G1(A, T ) is an infinite locally finite connected
graph for any given disjoint countably infinite family A of non-empty finite sets and any
countably infinite sequence T = {tn : n ∈ ω} disjoint from A =

⋃
n∈ω An.

(2)⇒(1) Since ACω
fin is equivalent to its partial version PACω

fin (Every countably infinite
family of non-empty finite sets has an infinite subfamily with a choice function) (cf. [12],
[4, the proof of Theorem 4.1(i)] or footnote 5), it suffices to show that C implies PACω

fin. In
order to achieve this, we modify the arguments of Herrlich–Tachtsis [10, Proposition 23]
suitably. Let A = {An : n ∈ ω} be a countably infinite set of non-empty finite sets without
a partial choice function. Without loss of generality, we assume that A is disjoint. Pick a
countably infinite sequence T = {tn : n ∈ ω} disjoint from A =

⋃
i∈ω Ai and consider

the graph G1(A, T ) = (VG1(A,T ), EG1(A,T )) as in Figure 1.

• • • ...
A0

•
t0

• • • ...
A1

•
t1

...

...

Figure 1: Graph G1(A, T ), an infinite locally finite connected graph.

Let f : VG1(A,T ) → C be a C-proper vertex coloring of G1(A, T ), i.e., a map such
that if {x, y} ∈ EG1(A,T ) then f(x) ̸= f(y). Then for each c ∈ C, the set Mc = {v ∈
f−1(c) : v ∈ Ai for some i ∈ ω} must be finite, otherwise Mc will generate a partial
choice function for A.

Claim 4.3. f [
⋃

n∈ω An] is infinite.

Proof. Otherwise,
⋃

n∈ω An =
⋃

c∈f [
⋃

n∈ω An]
Mc is finite since the finite union of finite

sets is finite in ZF and we obtain a contradiction.

Claim 4.4. f [
⋃

n∈ω An] is Dedekind-finite.
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Proof. First, we note that
⋃

n∈ω An is Dedekind-finite since A has no partial choice func-
tion. For the sake of contradiction, assume that C = {ci : i ∈ ω} is a countably infinite
subset of f [

⋃
n∈ω An]. Fix a well-ordering < of A (since A is countable, and hence well-

orderable). Define di to be the unique element of Mci ∩An where n is the <-least element
of {m ∈ ω : Mci ∩Am ̸= ∅}. Such an n exists since ci ∈ f [

⋃
n<ω An] and Mci ∩An has a

single element since f is a proper vertex coloring. Then {di : i ∈ ω} is a countably infinite
subset of

⋃
n∈ω An which contradicts the fact that

⋃
n∈ω An is Dedekind-finite.

The following claim states that C fails.

Claim 4.5. There is a C1-proper vertex coloring f : VG1(A,T ) → C1 of G1(A, T ) such
that C1 ≺ C. Thus, G1(A, T ) has no chromatic number.

Proof. Fix some c0 ∈ f [
⋃

n∈ω An]. Then Index(Mc0) = {n ∈ ω : Mc0 ∩ An ̸= ∅} is
finite. By Claim 4.3, there exists some b0 ∈ (f [

⋃
n∈ω An]\

⋃
m∈Index(Mc0

) f [Am]) since
the finite union of finite sets is finite. Define a proper vertex coloring g :

⋃
n∈ω An →

(f [
⋃

n∈ω An]\c0) as follows:

g(x) =

{
f(x) if f(x) ̸= c0,

b0 otherwise.

Similarly, define a proper vertex coloring h :
⋃

n∈ω An → (f [
⋃

n∈ω An]\{c0, c1, c2})
for some c0, c1, c2 ∈ f [

⋃
n∈ω An]. Let h(t2n) = c0 and h(t2n+1) = c1 for all n ∈ ω.

Thus, h : VG1
→ (f [

⋃
n∈ω An]\{c2}) is a f [

⋃
n∈ω An]\{c2}-proper vertex coloring of

G1. We define C1 = f [
⋃

n∈ω An]\{c2}. By Claim 4.4, C1 ≺ f [
⋃

n∈ω An] ⪯ C.

Similarly, we can see (4)⇒(1).
(3)⇒(1) Let A = {An : n ∈ ω} be a disjoint countably infinite set of non-empty

finite sets without a partial choice function, such that k divides |An| for each n ∈ ω and
k ∈ ω\{0, 1}. Assume T and G1(A, T ) as in the proof of (2)⇒(1). Then δ(G1(A, T )) ≥
k. By the arguments of (2)⇒(1), C implies PACω

k×fin. Following the arguments of [4,
Theorem 4.1], we can see that PACω

k×fin implies ACω
fin.5

(5)⇒(1) Let A = {An : n ∈ ω} be a disjoint countably infinite set of non-empty finite
sets without a partial choice function and T = {tn : n ∈ ω} be a sequence disjoint from
A =

⋃
n∈ω An. Let H1 be the graph obtained from the graph G1(A, T ) of (2)⇒(1) after

deleting the edge set {{x, y} : n ∈ ω, x, y ∈ An, x ̸= y}. Clearly, H1 is an infinite locally
finite connected graph.

Claim 4.6. H1 has no chromatic index.
5For the reader’s convenience, we write down the proof. First, we can see that PACω

k×fin implies ACω
k×fin.

Fix a family A = {Ai : i ∈ ω} of disjoint nonempty finite sets such that k divides |Ai| for each i ∈ ω. Then
the family

B = {Bi : i ∈ ω} where Bi =
∏

j≤i Aj

is a disjoint family such that k divides |Bi| and any partial choice function on B yields a choice function for A.
Finally, fix a family C = {Ci : i ∈ ω} of disjoint nonempty finite sets. Then D = {Di : i ∈ ω} where

Di = Ci × k is a pairwise disjoint family of finite sets where k divides |Di| for each i ∈ ω. Thus ACω
k×fin

implies that D has a choice function f which determines a choice function for C.
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Proof. Assume that the graph H1 has a chromatic index. Let f : EH1 → C be a proper
edge coloring with |C| = κ, where κ is the chromatic index of H1. Let B = {{tn, x} : n ∈
ω, x ∈ An}. Similar to Claims 4.3, 4.4, and 4.5, f [B] is an infinite, Dedekind-finite set
and there is a proper edge coloring h : B → f [B] \ {c0, c1, c2} for some c0, c1, c2 ∈ f [B].
Finally, define h({t2n, t2n+1}) = c0 and h({t2n+1, t2n+2}) = c1 for all n ∈ ω. Thus, we
obtain a f [B] \ {c2}-proper edge coloring h : EH1 → f [B] \ {c2}, with f [B] \ {c2} ≺
f [B] ⪯ C as f [B] is Dedekind-finite, contradicting the fact that κ is the chromatic index
of H1.

(6)⇒(1) Assume A and T as in the proof of (5)⇒(1). Let H1
1 be the graph obtained

from H1 of (5)⇒(1) by adding two new vertices t′ and t′′ and the edges {t′′, t′} and {t′, t0}
(see Figure 2).

• • • ...
A0

•
t0

• • • ...
A1

•
t1

...

...

•
t′

•
t′′

Figure 2: Graph H1
1 , an infinite locally finite connected graph.

It suffices to show that H1
1 has no distinguishing number. We recall that whenever

j : VH1
1
→ VH1

1
is an automorphism, φ(x1, ..., xr) is a first-order L-formula on r variables

(where L is the language of graphs) for some r ∈ ω\{0} and ai ∈ VH1
1

for each 1 ≤ i ≤ r,
then H1

1 |= φ(a1, ..., ar) if and only if H1
1 |= φ(j(a1), ..., j(ar)) (cf. Definition 2.8).

Claim 4.7. t′, t′′, and tm are fixed by any automorphism for each non-negative integer m.

Proof. Fix non-negative integers n,m, r. The first-order L-formula

Degn(x) := ∃x0. . .∃xn−1

( n−1∧
i ̸=j

xi ̸= xj∧
∧
i<n

x ̸= xi∧
∧
i<n

Exxi∧∀y(Exy→
∨
i<n

y=xi)
)

expresses the property that a vertex x has degree n, where Eab denotes the existence of an
edge between vertices a and b. We define the following first-order L-formula:

φ(x) := Deg1(x) ∧ ∃y(Exy ∧ Deg2(y)).

It is easy to see the following:

(i) t′′ is the unique vertex such that H1
1 |= φ(t′′). This means t′′ is the unique vertex

such that deg(t′′) = 1 and t′′ has a neighbor of degree 2.

(ii) t′ is the unique vertex such that H1
1 |= Deg2(t

′). So t′ is the unique vertex with
deg(t′) = 2.

Fix any automorphism τ . Since every automorphism preserves the properties mentioned in
(i)–(ii), t′ and t′′ are fixed by τ . The vertices tm are fixed by τ by induction as follows:
Since ti is the unique vertex of path length i+1 from t′′ such that the degree of ti is greater
than 1, where i ∈ {0, 1}, we have that t0 and t1 are fixed by τ . Assume that τ(tl) = tl for
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all l < m− 1. We show that τ(tm) = tm. Now, τ(tm) is a neighbour of τ(tm−1) = tm−1

which is of degree at least 2, so τ(tm) must be either tm−2 or tm, but tm−2 = τ(tm−2) is
already taken. So, τ(tm) = tm.

Claim 4.8. Fix m ∈ ω and x ∈ Am. Then OrbAut(H1
1 )
(x) = {g(x) :g∈Aut(H1

1 )} = Am.

Proof. This follows from the fact that each y ∈
⋃

n∈ω An has path length 1 from tm if and
only if y ∈ Am.

Claim 4.9. H1
1 has no distinguishing number.

Proof. Assume that the graph H1
1 has a distinguishing number. Let f : VH1

1
→ C be a

distinguishing vertex coloring with |C| = κ, where κ is the distinguishing number of H1
1 .

Similar to Claims 4.3 and 4.4, f [
⋃

n∈ω An] is infinite and Dedekind-finite. Consider a col-
oring h :

⋃
n∈ω An → f [

⋃
n∈ω An]\{c0, c1, c2} for some c0, c1, c2 ∈ f [

⋃
n∈ω An], just as

in Claim 4.5. Let h(t) = c0 for all t ∈ {t′′, t′}∪T . Then, h : VH1
1
→ (f [

⋃
n∈ω An]\{c1, c2})

is a f [
⋃

n∈ω An] \ {c1, c2}-distinguishing vertex coloring of H1
1 . Finally, f [

⋃
n∈ω An] \

{c1, c2} ≺ f [
⋃

n∈ω An] ⪯ C contradicts the fact that κ is the distinguishing number of
H1

1 .

(7)⇒(1) Assume A, T , and H1
1 as in the proof of (6)⇒(1). By Claim 4.7, every auto-

morphism fixes the edges {t′′, t′}, {t′, t0} and {tn, tn+1} for each n ∈ ω. Moreover, if H1
1

has a distinguishing edge coloring f , then for each n ∈ ω and x, y ∈ An such that x ̸= y,
f({tn, x}) ̸= f({tn, y}).

Claim 4.10. H1
1 has no distinguishing index.

Proof. This follows modifying the arguments of Claims 4.6 and 4.9.

5 Irreducible proper coloring and covering properties
Theorem 5.1 (ZF). The following statements are equivalent:

(1) Kőnig’s Lemma.

(2) Every infinite locally finite connected graph has an irreducible proper coloring.

(3) Every infinite locally finite connected graph has a minimal dominating set.

(4) Every infinite locally finite connected graph has a minimal edge cover.

(5) Every infinite locally finite connected graph has a maximal matching.

Proof. Implications (1)⇒(2)–(5) follow from Proposition 3.3, and the fact that ACω
fin im-

plies every infinite locally finite connected graph is countably infinite.
(2)⇒(1) In view of the proof of Theorem 4.2((2)⇒(1)), it suffices to show that the given

statement implies PACω
fin. Let A = {An : n ∈ ω\{0}} be a disjoint countably infinite set

of non-empty finite sets without a partial choice function. Pick t ̸∈
⋃

i∈ω\{0} Ai. Let
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A0 = {t}. Consider the following infinite locally finite connected graph G2 = (VG2 , EG2)
(see Figure 3):

VG2
:=

⋃
n∈ω

An,

EG2
:=

{
{t, x} : x ∈ A1

}
∪
{
{x, y} : n ∈ ω\{0}, x, y ∈ An, x ̸= y

}
∪
{
{x, y} : n ∈ ω\{0}, x ∈ An, y ∈ An+1

}
.

•t
•
•
•

A1 •
•

A2 •
•
•

A3 •
•
•

A4

...

Figure 3: The graph G2 when |A1| = |A3| = |A4| = 3, and |A2| = 2.

Claim 5.2. G2 has no irreducible proper coloring.

Proof. Let f : VG2
→ C be a C-irreducible proper coloring of G2, i.e., a map such that

f(x) ̸= f(y) if {x, y} ∈ EG2
and (∀c1, c2 ∈ C)f−1(c1) ∪ f−1(c2) is dependent. Similar

to the proof of Theorem 4.2((2)⇒(1)), f−1(c) is finite for all c ∈ C, and f [
⋃

n∈ω\{0} An]

is infinite. Fix c0 ∈ f [
⋃

n∈ω\{0} An]. Then Index(f−1(c0)) = {n ∈ ω\{0} : f−1(c0) ∩
An ̸= ∅} is finite. So there exists some

c1 ∈ f [
⋃

n∈ω\{0} An]\
⋃

m∈Index(f−1(c0))
(f [Am] ∪ f [Am−1] ∪ f [Am+1])

as
⋃

m∈Index(f−1(c0))
(f [Am]∪ f [Am−1]∪ f [Am+1]) is finite. Clearly, f−1(c0)∪ f−1(c1)

is independent, and we obtain a contradiction.

(3)⇒(1) Assume A as in the proof of (2)⇒(1). Let G1
2 be the infinite locally finite

connected graph obtained from G2 of (2)⇒(1) after deleting t and {{t, x} : x ∈ A1}.
Consider a minimal dominating set D of G1

2. The following conditions must be satisfied:

(i) Since D is a dominating set, for each n ∈ ω \ {0, 1}, there is an a ∈ D such that
a ∈ An−1 ∪ An ∪ An+1 (otherwise, no vertices from An belongs to D or have a
neighbor in D).

(ii) By the minimality of D, we have |An ∩D| ≤ 1 for each n ∈ ω \ {0}.

Clearly, (i) and (ii) determine a partial choice function over A, contradicting the assumption
that A has no partial choice function.

(4)⇒(1) Let A = {An : n ∈ ω} be a disjoint countably infinite set of non-empty
finite sets and let A =

⋃
n∈ω An. Consider a countably infinite family (Bi, <i)i∈ω of

well-ordered sets such that the following hold (cf. the proof of [5, Theorem 1, Remark 6]):
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(i) |Bi| = |Ai|+k for some fixed 1 ≤ k ∈ ω and thus, there is no mapping with domain
Ai and range Bi.

(ii) for each i ∈ ω, Bi is disjoint from A and the other Bj’s.

Let B =
⋃

i∈ω Bi. Pick a countably infinite sequence T = {ti : i ∈ ω} disjoint from A
and B and consider the following infinite locally finite connected graph G3 = (VG3

, EG3
)

(see Figure 4):

VG3
:= A ∪B ∪ T,

EG3 :=

{
{ti, ti+1} : i ∈ ω

}
∪
{
{ti, x} : i ∈ ω, x ∈ Ai

}
∪
{
{x, y} : i ∈ ω, x ∈ Ai, y ∈ Bi

}
.

• • ...
A0

•
t0

(B0, <0)
• • ...

• • ...
A1

•
t1

(B1, <1)
• • ...

• • ...
A2

(B2, <2)
• • ...

•
t2

...

...

...

Figure 4: Graph G3.

By assumption, G3 has a minimal edge cover, say G′
3. For each i ∈ ω, let fi : Bi →

P(Ai)\{∅} map each vertex of Bi to its neighborhood in G′
3.

Claim 5.3. Fix i ∈ ω. For any two distinct ϵ1 and ϵ2 in Bi, |fi(ϵ1) ∩ fi(ϵ2)| ≤ 1.

Proof. This follows from the fact that G′
3 does not contain a complete bipartite subgraph

K2,2. In particular, each component of G′
3 has at most one vertex of degree greater than 1.

If any edge e ∈ G′
3 has both of its endpoints incident on edges of G′

3\{e}, then G′
3\{e} is

also an edge cover of G3, contradicting the minimality of G′
3.

By Fact 3.1(2) and (i), there are tuples (ϵ′1, ϵ
′
2) ∈ Bi×Bi such that fi(ϵ′1)∩fi(ϵ

′
2) ̸= ∅.

Consider the first such tuple (ϵ′′1 , ϵ
′′
2) with respect to the lexicographical ordering of Bi×Bi.

Then {fi(ϵ′′1) ∩ fi(ϵ
′′
2) : i ∈ ω} is a choice function of A by Claim 5.3.

(5)⇒(1) Assume A, and A as in the proof of (4)⇒(1). Let R = {rn : n ∈ ω} and
T = {tn : n ∈ ω} be two disjoint countably infinite sequences disjoint from A. We define
the following locally finite connected graph G4 = (VG4

, EG4
) (see Figure 5):

VG4
:= (

⋃
n∈ω

An) ∪R ∪ T,

EG4
:=

{
{tn, tn+1} : n ∈ ω

}
∪
{
{tn, x} : n ∈ ω, x ∈ An

}
∪
{
{rn, x} : n ∈ ω, x ∈ An

}
.
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• • • ...

•
r0

A0

•
t0

• • • ...

•
r1

A1

•
t1

...

...

Figure 5: Graph G4.

Let M be a maximal matching of G4. For all i ∈ ω, there is at most one x ∈ Ai

such that {ri, x} ∈ M since M is a matching and there is at least one x ∈ Ai such that
{ri, x} ∈ M since M is maximal. These unique x ∈ Ai determine a choice function for
A.

This concludes the proof of the Theorem.

6 Remarks on new equivalents of AC
Remark 6.1. We remark that the statement “Any connected graph has a minimal dominat-
ing set” implies AC.6 Consider a family A = {Ai : i ∈ I} of pairwise disjoint non-empty
sets. For each i ∈ I , let B0

i = Ai×{0} and B1
i = Ai×{1}. Pick t ̸∈

⋃
i∈I B

0
i ∪

⋃
i∈I B

1
i

and consider the following connected graph G5 = (VG5
, EG5

) in Figure 6:

VG5
:= {t} ∪

⋃
i∈I

B0
i ∪

⋃
i∈I

B1
i ,

EG5
:=

{
{x, t} : i ∈ I, x ∈ B0

i

}
∪
{
{x, y} : i ∈ I, x ∈ B0

i , y ∈ B1
i

}
∪
{
{x, y} : i ∈ I, x, y ∈ B0

i , x ̸= y

}
∪
{
{x, y} : i ∈ I, x, y ∈ B1

i , x ̸= y

}
.

• • • ...

B1
0

• • • ...

B1
1

• • • ...

B1
2

• • • ...
B0

0 • • • ...
B0

1 • • • ...
B0

2

•
t

...

...

Figure 6: Graph G5, a connected graph. If each Ai is finite, then G5 is rayless.

6The authors are very thankful to one of the referees for pointing out to us an error that appeared in this remark
in a former version of the paper and especially for guiding us to eliminate the error.
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Let D be a minimal dominating set of G5. Define Mi = (B0
i ∪ B1

i ) ∩ D for every
i ∈ I . We claim that for every i ∈ I , |Mi| = 1.

Case (i): If there exists an i ∈ I such that Mi = ∅, then any member of B1
i is neither in

D nor it has a neighbour in D. This contradicts the fact that D is a dominating set of G5.
Case (ii): If there exists an i ∈ I such that |Mi| ≥ 2, then pick x, y ∈ Mi.

• Case (ii(a)): If x, y ∈ B0
i , or x, y ∈ B1

i , then D\{x} is a dominating set, which
contradicts the minimality of D.

• Case (ii(b)): If x ∈ B0
i , and y ∈ B1

i , then D\{y} is a dominating set, which contra-
dicts the minimality of D. Similarly, we can obtain a contradiction if y ∈ B0

i , and
x ∈ B1

i .

Let Mi = {ai} for every i ∈ I . Define,

g(i) =

{
p1i (ai) if ai ∈ B1

i ∩D,

p0i (ai) if ai ∈ B0
i ∩D,

where for m ∈ {0, 1}, pmi : Bm
i → Ai is the projection map to the first coordinate for

each i ∈ I . Then, g is a choice function for A.

Remark 6.2. The statement “Any connected bipartite graph has a minimal edge cover”
implies AC. Assume A = {Ai : i ∈ I} as in the proof of Remark 6.1. Consider a
family {(Bi, <i) : i ∈ I} of well-ordered sets with fixed well-orderings such that for each
i ∈ I , Bi is disjoint from A =

⋃
i∈I Ai and the other Bj’s, and there is no mapping with

domain Ai and range Bi (see the proofs of [5, Theorem 1] and Theorem 5.1((4)⇒(1))).
Let B =

⋃
i∈I Bi. Then given some t ̸∈ B ∪ (

⋃
i∈I Ai), consider the following connected

bipartite graph G6 = (VG6
, EG6

) in Figure 7:

VG6
:= {t} ∪B ∪ (

⋃
i∈I

Ai),

EG6
:=

{
{x, t} : i ∈ I, x ∈ Ai

}
∪
{
{x, y} : i ∈ I, x ∈ Ai, y ∈ Bi

}
.

• • ...
A1

(B1, <1)
• • ...

• • ...
A2

• ...t

(B2, <2)
• • ...

...

...

...

...

• • ...
An

(Bn, <n)
• • ...

Figure 7: Graph G6, a connected bipartite graph. If each Ai is finite, then G6 is rayless.

The rest follows from the arguments of the implication (4)⇒(1) in Theorem 5.1.
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Remark 6.3. The statement “Any connected bipartite graph has a maximal matching”
implies AC. Assume A as in the proof of Remark 6.1. Pick a sequence T = {tn : n ∈ I}
disjoint from

⋃
i∈I Ai, a t ̸∈

⋃
i∈I Ai ∪ T and consider the following connected bipartite

graph G7 = (VG7
, EG7

) in Figure 8:

VG7
:=

⋃
i∈I

Ai ∪ T ∪ {t}, EG7
:=

{
{ti, x} : x ∈ Ai

}
∪
{
{t, ti} : i ∈ I

}
.

• • • ...
A0

•t0

• • • ...
A1

•t1

• • • ...
A2

•t2
...

...

t
•

Figure 8: Graph G7, a connected rayless bipartite graph.

Let M be a maximal matching of G7. Clearly, S = {i ∈ I : {ti, t} ∈ M} has at
most one element and for each j ∈ I\S, there is exactly one x ∈ Aj (say xj) such that
{x, tj} ∈ M . Let f(Aj) = xj for each j ∈ I\S. If S ̸= ∅, pick any r ∈ Ai if i ∈ S,
since selecting an element from a set does not involve any form of choice. Let f(Ai) = r.
Clearly, f is a choice function for A.

Theorem 6.4 (ZF). The following statements are equivalent:

(1) AC

(2) Any connected graph has a minimal dominating set.

(3) Any connected bipartite graph has a maximal matching.

(4) Any connected bipartite graph has a minimal edge cover.

Proof. Implications (1)⇒(2)–(4) are straightforward (cf. Proposition 3.3). The other di-
rections follow from Remarks 6.1, 6.2, and 6.3.

Remark 6.5. The locally finite connected graphs forbid those graphs that contain vertices
of infinite degrees but may contain rays. There is another class of connected graphs that
forbid rays but may contain vertices of infinite degrees. For a study of some properties of
the class of rayless connected graphs, the reader is referred to Halin [8].

(1). We can see that the statement “Every connected rayless graph has a minimal dom-
inating set” implies ACfin. Consider a non-empty family A = {Ai : i ∈ I} of pairwise
disjoint finite sets and the graph G5 from Remark 6.1. Clearly, G5 is connected and rayless.
The rest follows by the arguments of Remark 6.1.

(2). By applying Remark 6.3 and Proposition 3.3, we can see that the statement “Every
connected rayless graph has a maximal matching” is equivalent to AC.

(3). The statement “Every connected rayless graph has a minimal edge cover” implies
ACfin. Let A = {Ai : i ∈ I} be as in (1) and G6 be the graph from Remark 6.2. Then G6

is connected and rayless. By the arguments of Remark 6.2, the rest follows.
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7 Questions
Question 7.1. Do the following statements imply AC (without assuming that the sets of
colors can be well-ordered)?

(1) Any graph has a chromatic index.

(2) Any graph has a distinguishing number.

(3) Any graph without a component isomorphic to K1 or K2 has a distinguishing index.

Stawiski [20, Theorem 3.8] proved that the statements (1)–(3) mentioned above are equiv-
alent to AC by assuming that the sets of colors can be well-ordered.
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[15] A. Lévy, Basic Set Theory, Dover Publications, Inc., Mineola, NY, 2002, reprint of the 1979
original [Springer, Berlin].

[16] D. Marker, Model Theory: An Introduction, volume 217 of Graduate Texts in Mathematics,
Springer-Verlag, New York, 2002, doi:10.1007/b98860, https://doi.org/10.1007/
b98860.

[17] S. Shelah and A. Soifer, Axiom of choice and chromatic number of the plane, J. Comb. Theory
Ser. A 103 (2003), 387–391, doi:10.1016/S0097-3165(03)00102-X, https://doi.org/
10.1016/S0097-3165(03)00102-X.

[18] R. M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable,
Ann. of Math. (2) 92 (1970), 1–56, doi:10.2307/1970696, https://doi.org/10.2307/
1970696.

[19] C. Spanring, Axiom of choice, maximal independent sets, argumentation and dialogue games,
in: 2014 Imperial College Computing Student Workshop (ICCSW 2014), Schloss Dagstuhl –
Leibniz Zentrum für Informatik, Wadern, pp. 91–98, 2014, doi:10.4230/OASIcs.ICCSW.2014.
91, https://doi.org/10.4230/OASIcs.ICCSW.2014.91.

[20] M. Stawiski, The role of the axiom of choice in proper and distinguishing colourings, Ars
Math. Contemp. 23 (2023), Paper No. 10, 8 pp., doi:10.26493/1855-3974.2863.4b9, https:
//doi.org/10.26493/1855-3974.2863.4b9.



ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 24 (2024) #P4.07 / 699–729
https://doi.org/10.26493/1855-3974.3077.63a

(Also available at http://amc-journal.eu)

Selected topics on Wiener index*

Martin Knor †

Faculty of Civil Engineering, Department of Mathematics, Bratislava, Slovakia
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1 Introduction
The Wiener index, W (G), is a topological index of a connected graph, defined as the sum
of the lengths of the shortest paths between all unordered pairs of vertices in the graph. In
other words, for a connected graph

W (G) =
∑

{u,v}∈V (G)

d(u, v),

where d(u, v) denotes the distance between vertices u and v in G. This graph invariant has
been investigated by numerous authors (see e.g. [24, 26, 27, 52, 56, 81]) under a variety of
other names like transmission, total status, sum of all distances, path number and Wiener
number of a graph. Due to its basic character and applicability, it has arisen in diverse
contexts, including efficiency of information, sociometry, mass transport, cryptography,
theory of communication, molecular structure, complex network topology and many more.

The index was originally introduced in 1947 by Harold Wiener for the purpose of de-
termining the approximation formula of the boiling point of paraffin [80]. The defini-
tion of Wiener index in terms of distances between vertices of a graph was first given by
Hosoya [40].

The transmission (also called the distance) of u ∈ V (G) is tG(u)=
∑

v∈V (G) dG(u, v).
Thus the Wiener index can be expressed as

W (G) =
1

2

∑
v∈V (G)

tG(v).

Another view on the Wiener index was presented in [3] as follows. Suppose that
{tG(u) |u ∈ V (G} = {d1, d2, . . . , dk}. Assume in addition that G contains ti vertices
whose transmission is di, 1 ≤ i ≤ k. Then the Wiener index of G can be expressed as

W (G) =
1

2

k∑
i=1

tidi.

We therefore say that the Wiener dimension dimW (G) of G is k. That is, the Wiener
dimension of a graph is the number of different transmissions of its vertices.

Fundamental properties regarding extremal values of Wiener index are already a part
of the folklore. In [30] and later in many subsequent papers (e.g. [36, 37]) it was shown
that for trees on n vertices, the maximum Wiener index is obtained for the path Pn, and the
minimum for the star Sn. Thus, for every tree T on n vertices, it holds

(n− 1)2 = W (Sn) ≤ W (T ) ≤ W (Pn) =

(
n+ 1

3

)
.

Since the distance between any two distinct vertices is at least one, we have that among all
graphs on n vertices Kn has the smallest Wiener index. In general, removing (resp. adding)
of an edge from a connected graph results in increased (resp. decreased) Wiener index,
which leads to the observation that Wiener index of a connected graph is less than or equal
to the Wiener index of its spanning tree. Therefore, for any connected graph G on n
vertices, it holds (

n

2

)
= W (Kn) ≤ W (G) ≤ W (Pn) =

(
n+ 1

3

)
.
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Despite extensive literature on the Wiener index, many interesting and basic questions
remain open. In our previous survey [56] we have exposed some of them that mainly
pertain to extremal values of Wiener index in different settings. In this paper we continue
with summarizing knowledge accumulated since then, and integrate some new conjectures,
problems and ideas for possible future work.

2 Minimum Wiener index for chemical graphs
The degree degG(v) of a vertex v ∈ V (G) in a graph G is |NG(v)|, where NG(v) denotes
the neighborhood of v in G. The maximum degree of a graph G, maxv∈V (G) degG(v), is
denoted by ∆(G), and the minimum degree, minv∈V (G) degG(v), is denoted by δ(G).

Since every atom has a certain valency, chemists are often interested in graphs with
restricted degrees, which correspond to valencies. Particularly interesting is the class of
chemical graphs, i.e. graphs for which the degrees of its vertices do not exceed 4. In [60] the
authors addressed an “overlooked” problem of determining the minimum value of Wiener
index and corresponding extremal graphs among chemical graphs with prescribed number
of vertices. Note that the upper bound for this class of graphs is attained by paths.

Problem 2.1. Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

Inserting of an edge in a graph decreases the Wiener index, thus one would expect
that its minimum in the class of chemical graphs is attained by 4-regular graphs. Using a
computer it was verified that for n ∈ {1, 2, . . . , 5} minimum is attained for Kn. Extremal
graphs in cases n = 6, 7 are presented in Figure 1. Observe that the first two graphs in
this figure are circulant graphs C6(1, 2) and C7(1, 2), respectively, and they are vertex-
transitive. There are 1929 simple connected graphs on 8 vertices and the minimum Wiener
index value is 40, which is attained by only 6 graphs depicted in Figure 2. Note that the
first three graphs, which are the circulant graph C8(1, 2), the Cartesian product K42P2

and the complete bipartite graph K4,4 = C8(1, 3), respectively, are vertex-transitive. The
above cases support the following conjecture.

Conjecture 2.2. Every chemical graph G on n ≥ 5 vertices with the minimum value of
Wiener index is 4-regular.

Figure 1: Extremal graphs for n = 6 and n = 7.

Although computer results indicate the above conjecture to be true, the problem seems
to be far from tractable. In [60] it is shown that a chemical graph with the minimum value
of Wiener index has at most 3 vertices of degree smaller than 4. In fact, a more general
statement holds.
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Figure 2: Extremal graphs for n = 8.

Observation 2.3. If G is a graph on n vertices with maximum degree ∆, n ≥ ∆+ 1, and
with the minimum possible value of Wiener index, then G contains at most ∆− 1 vertices
whose degree is strictly smaller than ∆, and these vertices induce a clique.

3 Prescribed degrees
As mentioned earlier, among n-vertex graphs with minimum degree at least 1, the maxi-
mum Wiener index is attained by Pn. But when restricting to minimum degree at least 2,
the extremal graph is different. Observe that with the reasonable assumptions ∆ ≥ 2 and
δ ≤ n− 1, the following holds:

• W (Pn) = max{W (G); G has maximum degree at most ∆ and n vertices},

• W (Kn) = min{W (G); G has minimum degree at least δ and n vertices}.

Analogous reasons motivate the following two problems from [56].

Problem 3.1. What is the maximum Wiener index among n-vertex graphs with minimum
degree at least δ?

Problem 3.2. What is the minimum Wiener index among n-vertex graphs with maximum
degree at most ∆?

Both problems are still on the list of unsolved problems, but several results were ob-
tained under additional requirements. Fischermann et al. [33], and independently Jelen
and Trisch [44, 45] solved Problem 3.2 for trees. In addition, they determined the trees
which maximize the Wiener index among all trees of given order whose vertices are either
end-vertices or of maximum degree ∆.
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Stevanović [73] solved Problem 3.1 for trees (where δ = 1) under the assumption that
the maximum degree is precisely ∆. Let Tn,∆ be the tree on n vertices obtained by taking
a path on n−∆+1 vertices and joining new ∆− 1 vertices to one end-vertex of the path,
see Figure 3.

Theorem 3.3. For every n-vertex graph G with maximum degree ∆ ≥ 2 it holds that
W (G) ≤ W (Tn,∆) with equality if and only if G is Tn,∆.

Figure 3: Graph T9,4.

Dong and Zhou [29] determined the maximum Wiener index of unicyclic graphs with
fixed maximum degree and they characterized the unique extremal graph.

Lin [62] characterized trees with the maximal Wiener index in the class of trees of or-
der n with exactly k vertices of maximum degree, and proposed analogous problem for the
minimum. The solution of this problem was recently presented by Božović et al. in [13].
The same authors considered a similar problem with a predetermined value of the max-
imum degree, i.e. they obtained the maximal value of Wiener index in the class of trees
of order n with exactly k vertices of a given maximum degree and showed that the corre-
sponding maximal trees are caterpillars with certain properties.

Recently Alochukwu and Dankelmann [4] obtained the following asymptotically sharp
upper bound in terms of given minimum and maximum degree.

Theorem 3.4. Let G be a graph of order n, minimum degree δ and maximum degree ∆.
Then W (G) ≤

(
n−∆+δ

2

)
n+2∆
δ+1 +2n(n−1), and this bound is sharp apart from an additive

constant.

Another interesting class of graphs with restrictions on degrees is the class of regular
graphs, i.e. graphs for which ∆(G) = δ(G). In general, introducing edges in a graph
decreases the Wiener index, but in the class of r-regular graphs on n vertices the number
of edges is fixed, therefore the following conjecture from [54] seems to be reasonable. The
diameter, diam(G), of a graph G is the maximum distance between all pairs of vertices,
i.e. diam(G) = max{d(u, v)| u, v ∈ V (G)}.

Conjecture 3.5. Among all r-regular graphs on n vertices, the maximum Wiener index is
attained by a graph with the maximum possible diameter.

The above conjecture can be supported by the fact that in the case of trees, where the
number of edges is fixed as well, the maximum Wiener index is attained by Pn which has
the largest diameter. In fact, Chen et al. [18] recently proved that the conjecture is valid for
r = 3. More precisely, they proved a conjecture from [54], that cubic graphs of the form
Ln, presented in Figure 4, have maximum Wiener index among all cubic graphs of order n.

The minimum Wiener index in the class of trees is attained by Sn, which has the small-
est diameter. A similar claim may hold for regular graphs [54].
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Figure 4: Graphs L4k+2 (above) and L4k+4 (below).

Conjecture 3.6. Among all r-regular graphs on n vertices, the minimum Wiener index is
attained by a graph with the minimum possible diameter.

Finally, the following problem from [60] is of a special interest.

Problem 3.7. Find all k-regular graphs on n vertices with the smallest value of Wiener
index.

As observed in [60], Problem 3.7 is surprisingly related to the cages and the following
famous degree-diameter problem (see [66] for details).

Problem 3.8 (The degree-diameter problem). Given positive integers d and k, find the
largest possible number n(d, k) of vertices in a graph of maximum degree d and diameter
k.

Computer results in [60] (see also [65]) showed that among graphs with the minimum
Wiener index there are graphs achieving n(k, d) for pairs (k, d) from {(3, 2), (3, 3), (4, 2)}.
There might appear graphs achieving n(k, d) also for higher values of diameter d, but for
those we could not search the space of k-regular graphs of order n exhaustively. Anyway,
for higher diameters the graphs achieving n(k, d) do not need to be those with the small-
est Wiener index. Among extremal graphs found by a computer, n(3, 2) and n(3, 3) are
realized by the well-known Petersen graph and the Flower snark J5. Interestingly, there
appears also the Heawood graph, which is the Cage(3, 6), i.e., the smallest graph of degree
3 and girth 6, see [31].

The following conjectures were proposed in [60] (probably, it suffices to choose nk =
k + 1 therein).

Conjecture 3.9 (The even case conjecture). Let k ≥ 3, and let n be large enough with
respect to k, say n ≥ nk. Suppose that G is a graph on n vertices with the maximum
degree k, and with the smallest possible value of Wiener index. If kn is even, then G is
k-regular.

Conjecture 3.10 (The odd case conjecture). Let k ≥ 3, and let n be large enough with
respect to k, say n ≥ nk. Suppose that G is a graph on n vertices with the maximum
degree k, and with the smallest possible value of Wiener index. If kn is odd, then G has a
unique vertex of degree smaller than k and in that case this smaller degree is k − 1.

4 Wiener index of digraphs
A directed graph (a digraph) D is given by a set of vertices V (D) and a set of ordered
pairs of vertices A(D) called directed edges or arcs. If uv is an arc in D, we say that
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u dominates v. The out-degree d+(u) of a vertex u ∈ V (D) is the number of its out-
neighbors, i.e. the vertices, dominated by u. A (directed) path in D is a sequence of
vertices v0, v1, . . . , vk such that vi−1vi is an arc of D for each i ∈ {1, 2, . . . , k}, and by
adding the arc vkv0 we obtain a directed cycle. An orientation of a graph G is said to be
acyclic if it has no directed cycles. The distance d(u, v) between vertices u, v ∈ V (D) is
the length of a shortest path from u to v. Notice that d(u, v) is usually distinct from d(v, u).

Early studies of Wiener index of digraphs were limited to strongly connected digraphs,
i.e. digraphs in which a directed path between every pair of vertices exists. However, in
the studies of real directed networks it is possible that there is no directed path connecting
some pairs of vertices, thus the convention d(u, v) = 0 is used if there is no directed path
from u to v [11, 12]. Under this assumption, in analogy to graphs, the Wiener index W (D)
of a digraph D is defined as the sum of all distances, where each ordered pair of vertices is
taken into account. Hence,

W (D) =
∑

(u,v)∈V (D)×V (D)

d(u, v).

Let Wmax(G) and Wmin(G) be the maximum possible and the minimum possible,
respectively, Wiener index among all digraphs obtained by orienting the edges of a graph
G. If an orientation of G achieves the minimum Wiener index Wmin(G), we call this
orientation a minimum Wiener index orientation of G.

Problem 4.1. For a given graph G find Wmax(G) and Wmin(G).

In [58] there was posed a question if it is NP-hard to find an orientation of a given graph
which maximizes the Wiener index. Dankelmann [19] answered it affirmatively. Plesnı́k
[69] proved that finding a strongly connected orientation of a given graph G that minimizes
the Wiener index is NP-hard too, but the case for non-necessarily strongly connected di-
graphs is unsolved [58] in general. However, it can be decided in polynomial time if a given
graph with m edges has an orientation for which the Wiener index is precisely m (note that
it cannot be less).

Problem 4.2. What is the complexity of finding Wmin(G) for an input graph G?

The following conjecture from [58] remains unsolved as well, but it is known to hold
for bipartite graphs, unicyclic graphs, the Petersen graph and prisms.

Conjecture 4.3. For every graph G, the value Wmin(G) is achieved by some acyclic ori-
entation of G.

In [67, 69] Plesnı́k and Moon found strongly connected tournaments (orientations of
Kn) with the maximum and the second maximum Wiener index. In [57] it was shown that
the same tournaments solve the problem if we drop out the requirement that the digraph
should be strongly connected. In the same paper oriented Θ-graphs are studied. By Θa,b,c

we denote a graph obtained when two distinct vertices u1 and u2 are connected by three
internally vertex-disjoint paths of lengths a + 1, b + 1 and c + 1, respectively, where
a ≥ b ≥ c and b ≥ 1 (see Figure 5 where a non-strongly connected orientation of Θ3,2,1

is depicted). Although intuitively one may expect that Wmax is attained for some strongly
connected orientation, this is not the case. Namely, in [57] it is shown that the orientation
of Θa,b,c which achieves the maximum Wiener index is not strongly connected if c ≥ 1.
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For strongly connected orientations of Θa,b,c, it was shown that the maximum Wiener
index is achieved by the one in which the union of the u1, u2-paths of lengths a + 1 and
b + 1 forms a directed cycle. Li and Wu [61] confirmed the conjecture from [57], that the
same holds if we drop the assumption that orientations are strongly connected.

Theorem 4.4. Let a ≥ b ≥ c. Then Wmax(Θa,b,c) is attained by an orientation of Θa,b,c

in which the union of the paths of lengths a+ 1 and b+ 1 forms a directed cycle.

u2u1

z1

Figure 5: An orientation of Θ3,2,1.

However, the following conjecture remains open.

Conjecture 4.5. Let G be a 2-connected chordal graph. Then Wmax(G) is attained by an
orientation which is strongly connected.

Among digraphs on n vertices, the directed cycle
−→
C n (in which all edges are directed

in the same way, say clockwise) achieves the maximum Wiener index. In [55] digraphs
with the second maximum Wiener index were investigated. In [58] the Wiener theorem
was generalized to directed graphs, as well as a relation between the Wiener index and
betweenness centrality.

An orientation of a graph G is called k-coloring-induced, if it is obtained from a proper
k-coloring of G such that each edge is oriented from the end-vertex with the bigger color
to the end-vertex with the smaller color. In [58] it was proved that graphs with at most
one cycle and prisms attain the minimum Wiener index for k-coloring-induced orienta-
tion with k being the chromatic number χ(G). The same holds for bipartite graphs,
complete graphs, Petersen graph and others. These observations lead to the conjecture
that Wmin(G) of an arbitrary graph is achieved for a χ(G)-coloring-induced orientation,
which Fang and Gao [32] showed to be false. They expressed the Wiener index of a di-
graph D as W (D) =

∑
u∈V (D) w(u) where w(u) =

∑
v∈V (D) d(u, v), and defined the

notion of Wiener increment. For u ∈ V (D) the Wiener increment of u is defined as
∆w(u) = w(u) − d+(u). The Wiener increment of D, ∆W (D), is the sum of Wiener
increments of all vertices of D. Fang and Gao observed that the comparison of Wiener
indices of two different orientations of a graph is equal to the comparison of their Wiener
increments. Using this observation they found that for the graph G in Figure 6, Wmin(G)
cannot be achieved for any χ(G)-coloring-induced orientation of G, and this is not the
only counterexample. Moreover, their investigations lead them to pose the following two
conjectures.

Conjecture 4.6. For any given constant k ≥ 3, there exists a 3-colorable graph G such
that any minimum Wiener index orientation of G has a directed path of length k.



M. Knor et al.: Selected topics on Wiener index 707

Figure 6: A graph G, for which Wmin(G) is not achieved for any χ(G)-coloring-induced
orientation of G.

Conjecture 4.7. For any given constant k ≥ 3, there exists a 3-colorable graph G such
that Wmin(G) cannot be achieved by any k-coloring-induced orientation.

Figure 7: A no-zig-zag path (left) and a zig-zag path (right) on six vertices.

In [58] orientations of trees with the maximum Wiener index were considered. An ori-
entation of a tree is called zig-zag if there is a subpath in which edges change the orientation
twice. If an orientation is not zig-zag, it is no-zig-zag, see Figure 7. A different view on
no-zig-zag trees can be described as follows. A vertex v in a directed tree T is core, if for
every vertex u of T there exists either a directed path from u to v or a directed path from
v to u, see Figure 8. Notice that then in each component C of T − v all edges point in the
direction towards v or all edges point in the direction from v.

Figure 8: The graph on the left-hand side has two core vertices, while the right-hand side
one has no core vertex.

In [58] the following conjecture was proposed.

Conjecture 4.8. Let T be a tree. Then every orientation of T achieving the maximum
Wiener index is no-zig-zag (i.e. has a core vertex).

It was supported by showing that it holds for trees on at most 10 vertices, subdivision of
stars, and trees constructed from two stars whose central vertices are connected by a path.
Furthermore, since it is reasonable to expect that an orientation of a tree maximizing the
Wiener index also maximizes the number of pairs of vertices (u, v) between which there
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exists a path, Conjecture 4.8 is supported also by a result of Henning and Oellermann [39].
They proved that if T is a tree and D is an orientation of T that maximizes the number of or-
dered pairs (u, v) of vertices of D for which there exists a (u, v)-path in D, then D contains
a core vertex. However, Li and Wu [61] constructed a tree of order 85 contradicting Con-
jecture 4.8. Independently, Dankelmann [19] found an infinite family of counter-examples.
For k ∈ N, where k is a multiple of 3, let Tk be the tree obtained from a path of order k
with vertices w1, w2, . . . , wk, by connecting vertices u1, u2, . . . , uk2/9 to w1, connecting
x1 from the path x1x2x3x4x5 to w2, and a single vertex y1 to w3. Now let Dk be the
orientation of Tk such the edges of the path w1w2 . . . wk are oriented towards wk, each
edge uiw1 is oriented towards w1, the edges of the path x1x2x3x4x5 are oriented towards
x5, and the edge y1w3 is oriented towards w3, see Figure 9 for an example. Observe that
the edges of the (x5, y1)-path change their direction twice as the path is traversed, thus Dk

is a zig-zag orientation. Dankelmann proved that if k is sufficiently large, then Dk and its
converse (i.e., a digraph obtained by reversing the direction of every arc in Dk) are the only
orientations of Tk that maximize the Wiener index, which contradicts Conjecture 4.8.

u4

u3

u2

u1

w1 w2 w3 w4 w5 w6

y1
x1

x2

x3

x4

x5

Figure 9: A no-zig-zag tree T6.

The Cartesian product Pm2Pn of paths on m and n vertices, respectively, is called the
grid and is denoted by Gm,n. If m = 2, it is a called the ladder graph Ln. Kraner Šumenjak
et al. [75] proved a conjecture from [59] by showing that the maximum Wiener index of
a digraph whose underlying graph is Ln is (8n3 + 3n2 − 5n + 6)/3, and is obtained
for the orientation presented in Figure 10. In addition, they proved a lower bound for
Wmax(G2H) for general graphs G and H , and posed a question regarding its sharpness.
Let τ(G) =

∑
x∈V (G) σ(x), where σ(x) denotes the number of vertices x′ ∈ V (G) for

which there is a path from x to x′ in G.

Theorem 4.9. For any graphs G and H ,

Wmax(G2H) ≥ Wmax(G)τ(H) +Wmax(H)|V (G)|2.

Problem 4.10. Is the bound given in Theorem 4.9 sharp? Find a sharp lower bound.

Another problem from [75] concerns a comparison of the maximum Wiener index of
an orientation of G with the Wiener index of the undirected graph G.

Problem 4.11. Find functions f and g so that f(W (G)) ≤ Wmax(G) ≤ g(W (G)) for all
graphs G. In particular, can f and g be linear functions?



M. Knor et al.: Selected topics on Wiener index 709

Figure 10: An orientation of the ladder P62P2 with the maximum Wiener index.

Note that the orientation of Ln in Figure 10 is obtained when all layers isomorphic
to one factor are directed paths directed in the same way, except one which is a directed
path directed in the opposite way. Kraner Šumenjak et al. considered the following natural
generalization of this orientation to general grids. Let Dm,n be the orientation of Gm,n

with all Pm-layers oriented up except the last Pm-layer which is oriented down, and all
Pn-layers oriented to the left except the first Pn-layer which is oriented to the right, see the
left graph in Figure 11.

(4, 1) (4, 2) (4, 6)

(1, 1) (1, 2) (1, 6)

(4, 1) (4, 2) (4, 6)

(1, 1) (1, 2) (1, 6)

Figure 11: Two orientations, D4,6 (left) and C4,6 (right), of P42P6.

The authors of [75] conjectured that for every m,n ≥ 2, it holds Wmax(Gm,n) =
W (Dm,n). However, it turns out that a comb-like orientation has significantly bigger
Wiener index. Let Cm,n be an orientation of Gm,n in which the top Pn-layer is directed
to the right and this layer is completed to a directed Hamiltonian cycle C in a zig-zag way
as shown by blue arrows on the right graph in Figure 11. Moreover, the other edges are
directed in such a way that they do not shorten directed blue path starting at the vertex
(1, 1). Of course, Cm,n exists only if n is even. In [53] it was shown that if n ≥ 4 is even,
and m ≥ 3, then W (Cm,n) > W (Dm,n), and further observations led the authors to the
following problem.

Problem 4.12. Find the biggest possible constant c, such that Wmax(Gm,n) ≥ c(mn)3 +
o
(
(mn)3

)
.

To sum up, the following is still open.

Problem 4.13. Find an orientation of Gm,n with the maximum Wiener index.

The authors think the above problem might be difficult as the extremal graphs in the
cases m = 3 and n ∈ {4, 5, 6} do not have any obvious simple property, but they are
strongly connected. Thus they ask the following.

Question 4.14. Let Mm,n be an orientation of Gm,n with the maximum Wiener index. Is
Mm,n strongly connected?
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5 Maximum Winer index of graphs with prescribed diameter
Recall that the eccentricity of a vertex in a connected graph G is the maximum distance
between this vertex and any other vertex of G, and the maximum eccentricity is the graph
diameter. Similarly, the radius of G, denoted by rad(G), is the minimum graph eccen-
tricity. In 1984 Plesnı́k identified graphs as well as digraphs with a given diameter that
minimize the Wiener index (see also [14] for a recent alternative proof), and posed the
opposite problem regarding the maximum [69].

Problem 5.1. What is the maximum Wiener index among graphs of order n and diame-
ter d?

In general this question remains unsolved, but there has been progress and important re-
sults were obtained. First, Wang and Guo [79] determined the trees with maximum Wiener
index among trees of order n and diameter d for some special values of d, 2 ≤ d ≤ 4 or
n − 3 ≤ d ≤ n − 1. Mukwembi and Vetrı́k [68] independently considered trees with the
diameter up to 6 and gave asymptotically sharp upper bounds.

DeLaViña and Waller [22] posed a conjecture with additional restrictions in Prob-
lem 5.1.

Conjecture 5.2. Let G be a graph with diameter d > 2 and order 2d+ 1. Then W (G) ≤
W (C2d+1), where C2d+1 denotes the cycle of length 2d+ 1.

Sun et al. [76] considered general small-diameter and large-diameter graphs. They
observed that if G is a graph on n vertices with diameter equal to 2, then the maximum
Wiener index is attained by the star Sn. For diameter 3 they proposed a conjecture, that the
extremal graph is isomorphic to Kc

n, which is a graph of order n that consists of a complete
graph on c vertices and has the rest of the vertices attached to these c vertices as uniformly
as possible (meaning that each of the c vertices of the complete graph has either ⌊(n−c)/c⌋
or ⌈(n− c)/c⌉ pendant vertices attached, see Figure 12 where K15

4 is depicted.

Figure 12: The graph K15
4 .

Conjecture 5.3. Let G be a graph on n vertices with diameter equal to 3. Then W (G) ≤
W (Kc

n) where c =
⌊√

n2

2(n−1)

⌋
or c =

⌈√
n2

2(n−1)

⌉
.

To explain the results pertaining to trees and a conjecure on general graphs with diam-
eter 4, we need the following definition. Let k = ⌊

√
n− 1⌋. For k2 + k ≥ n − 1 we

denote by Tn the rooted tree on n vertices in which the root has degree k, n− k2 − 1 of its
neighbours are of degree k + 1 and the rest of them of degree k. When k2 + k ≤ n− 1 let
T ′
n denote the rooted tree on n vertices in which the root has degree k+ 1, n− k2 − k− 1
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of its neighbours are of degree k + 1 and the rest of them of degree k. Wang and Guo [79]
gave a complete description of trees with diameter 4 that maximize the Wiener index.

Theorem 5.4. Let T be a tree on n vertices with diameter 4 and let k = ⌊
√
n− 1⌋. Then

the following holds:

• if k2 + k > n− 1, then W (T ) ≤ W (Tn), with equality holding only when T ∼= Tn;

• if k2 + k < n− 1, then W (T ) ≤ W (T ′
n), with equality holding only when T ∼= T ′

n;

• if k2+k = n−1, then W (T ) ≤ W (Tn) = W (T ′
n), with equality holding only when

T ∼= Tn or T ∼= T ′
n.

The authors of [76] suspect that the extremal graphs from the theorem above are ex-
tremal also for general graphs.

Conjecture 5.5. The trees Tn and T ′
n remain the unique optima in the class of graphs of

diameter 4 on n vertices as it is described in Theorem 5.4 with the only exception of n = 9,
in which case C9 is also an optimal graph.

An interested reader is referred to [76] for computer results supporting Conjectures 5.2,
5.3 and 5.5. The role of extremal graphs in the case of large-diameter graphs play the so
called double brooms D(n, a, b), i.e. graphs consisting of a path on n − a − b vertices
together with a leaves adjacent to one of its end-vertices and b leaves adjacent to the other
end-vertex (see Figure 13 for an example).

Figure 13: Double broom D(12, 4, 3).

Theorem 5.6. Let G be a graph of order n and diameter n− c, where c ≥ 1 is a constant
and n is large enough relative to c. Then W (G) ≤ W (D(n, ⌊(c + 1)/2⌋, ⌈(c + 1)/2⌉))
with equality if and only if G ∼= D(n, ⌊(c+ 1)/2⌋, ⌈(c+ 1)/2⌉).

Further details on diameters n − 3 and n − 4 can be found in [76]. A different ap-
proach to Problem 5.1 was recently used by Cambie [14] who gave asymptotically sharp
upper bounds for Wiener index. As the main first step towards the proof of his result he
constructed an almost extremal graph, in which there are many pairs of vertices which are
of distance d from each other. This is achieved by having many subtrees with many leaves,
and, when the diameter is even, combining them into one tree. When the diameter is odd,
a central clique is used so that the distance between leaves of different subtrees are of dis-
tance d. Now if we take two vertices at random, the probability that both vertices are leaves
is large since the number of leaves is large. Similarly, since we have many subtrees, the
probability that both leaves are in different subtrees is large. Hence the probability that two
vertices are at maximal distance is large, implying that the average distance is close to d.
The above is a foundation of the following asymptotic solution to the problem of Plesnı́k.
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Theorem 5.7. There exist positive constants c1 and c2 such that for any d ≥ 3 the following
holds. The maximum Wiener index among all graphs of diameter d and order n is between
d− c1

d3/2
√
n

and d− c2
d3/2
√
n

, i.e. it is of the form d−Θ
(

d3/2
√
n

)
.

In addition, Cambie [14] gives slightly stronger upper bound for trees, by which he
extends a result of Mukwembi and Vetrı́k [68]. Moreover, the results he obtained lead him
to the following question.

Question 5.8. For even d and large n, are the graphs of order n and diameter d with the
largest Wiener index all trees?

Digraphs were considered in [14] as well, where the problem of Plesnı́k is solved ex-
actly if the order is large comparing to the diameter. For the sake of completeness we
also mention that trees of order n and diameter d with the minimum Wiener index were
presented in [63].

Having in mind the close relationship between the diameter and the radius of a con-
nected graph, rad(G) ≤ diam(G) ≤ 2 rad(G), it is natural to consider the above problems
with radius instead of diameter. Chen et al. [17] posed the following question.

Problem 5.9. What is the maximum Wiener index among graphs of order n and radius r?

They succeeded to characterize graphs with the maximum Wiener index among all
graphs of order n with radius 2. Das and Nadjafi-Arani [21] gave an upper bound on
Wiener index of trees and graphs in terms of number of vertices n and radius r. In ad-
dition, they presented an upper bound on the Wiener index in terms of order, radius and
maximum degree of trees and of graphs. The authors concluded that these results are not
enough to solve Problem 5.9. Stevanović et al. [74] provide examples obtained by com-
puter experiments, which suggest that a simple characterization of the structure of trees
with maximum Wiener index among trees with a given number of vertices and radius will
probably be out of our reach in some foreseeable future.

Analogous problem for the minimum Wiener index was posed by You and Liu [84].

Problem 5.10. What is the minimum Wiener index among all graphs of order n and ra-
dius r?

If r ∈ {1, 2}, the extremal graphs attaining the minimum total distance among all
graphs of order n are easily characterized: they are complete graphs when r = 1, complete
graphs minus a maximum matching when r = 2 and n is even, and complete graphs minus
a maximum matching and an additional edge adjacent to the vertex not in the maximum
matching, when r = 2 and n is odd.

A conjecture for n ≥ 3 was posed by Chen et al. [17]. The notation Gn,r,s, where n, r
and s are positive integers such that n ≥ 2r, r ≥ 3, and n− 2r+1 ≥ s ≥ 1, stands for the
graph obtained in the following way: let v1, v2, v3 and v4 be four consecutive vertices on a
2r-cycle. Replace v2 with a clique of order s, replace v3 with a clique of order n−2r+2−s,
join each vertex of one clique to all vertices of the other clique, join v1 to all vertices of
Ks, and join v4 to all vertices of Kn−2r+2−s. Notice that the resulting graph has n vertices
and radius r, and W (Gn,r,s) = W (Gn,r,s′) for any s, s′ ∈ {1, . . . , r − 1}.

Conjecture 5.11. Let n and r be two positive integers with n ≥ 2r and r ≥ 3. For any
graph G of order n with radius r, W (G) ≥ W (Gn,r,1). Equality is attained if and only if
G = Gn,r,s for s ∈ {1, . . . , r − 1}.
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Cambie showed that the hypercube Q3 is a counterexample to the above conjecture, so
it does not hold when n is small, but he demonstrated that the conjecture is true asymptoti-
cally, i.e. if the order is sufficiently large compared to the radius [15].

Theorem 5.12. For any r ≥ 3, there exists a value n1(r) such that for all n ≥ n1(r) it
holds that any graph G of order n with radius r satisfies W (G) ≥ W (Gn,r,1). Equality
holds if and only if G = Gn,r,s for s ∈ {1, . . . , r − 1}.

We refer to [15] for an analog of this result for directed graphs, and to [69] for a char-
acterization of digraphs of given order and diameter with the minimum Wiener index.

6 Šoltés problem and its relaxed variations
An interesting question regarding the Wiener index is to study how Wiener index is affected
by small changes in a graph. Clearly, by removing an edge Wiener index is increased. On
the other hand, the effect of deleting a vertex is far from obvious, and it was first studied
by Šoltés. In his paper from 1991, Šoltés posed the following problem [71].

Problem 6.1. Find all graphs G in which the equality W (G) = W (G − v) holds for all
v ∈ V (G).

Therefore, if for a vertex v in a graph G it holds that W (G) = W (G− v), we say that
v satisfies the Šoltés property in G, and a graph in which every vertex satisfies the Šoltés
property is referred to as a Šoltés graph. The only known Šoltés graph so far is the cycle on
11 vertices. The above problem appears to be difficult, thus in subsequent studies relaxed
variations were considered. The authors of [50] showed that the class of graphs for which
the Wiener index does not change when a particular vertex is removed is rich, even when
restricted to unicyclic graphs with fixed length of the cycle. More precisely:

• there is a unicyclic graph G on n vertices containing a vertex v with W (G) = W (G−
v) if and only if n ≥ 9;

• there is a unicyclic graph G with a cycle of length c and a vertex satisfying the Šoltés
property if and only if c ≥ 5;

• for every graph G there are infinitely many graphs H such that G is an induced
subgraph of H and W (H) = W (H − v) for some v ∈ V (H) \ V (G).

If a vertex v has degree 1 in G, then clearly W (G) > W (G− v). In the construction of the
above mentioned infinite class of graphs G with a vertex v satisfying the Šoltés property the
vertex v is of degree 2. In [49] the authors extended their research to graphs in which v is of
arbitrary degree. They showed that for a fixed positive integer k ≥ 2 there exist infinitely
many graphs G with a vertex v such that degG(v) = k and W (G) = W (G−v). Moreover,
if n ≥ 7, there exists an n-vertex graph G with a vertex v so that degG(v) = n − 2 or
degG(v) = n − 1, and W (G) = W (G − v). By proving the next theorem they showed
that dense graphs cannot be a solution of Problem 6.1.

Theorem 6.2. If G is an n-vertex graph for which δ(G) ≥ n/2, then W (G) ̸= W (G− v)
for every v ∈ V (G).

In the results above, removal of one vertex only was considered. So the authors pro-
posed the study of graphs G in which a given number of vertices satisfying the Šoltés
property exist [49, 51].
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Problem 6.3. For a given k, find (infinitely many) graphs G for which W (G) = W (G −
v1) = W (G− v2) = · · · = W (G− vk) for some distinct vertices v1, . . . , vk in G.

This problem was considered by Bok et al. [9, 10] who showed the existence of:

• infinitely many cactus graphs (i.e. graphs in which every edge belongs to at most
one cycle) with exactly k cycles of length at least 7 that contain exactly 2k vertices
satisfying the Šoltés property; and

• infinitely many cactus graphs with exactly k cycles of length c ∈ {5, 6} that contain
exactly k vertices satisfying the Šoltés property.

In addition, they proved that G contains no vertex with the Šoltés property if the length of
the longest cycle in G is at most 4. Another infinite family of graphs satisfying the condition
from Problem 6.3 was constructed by Hu et al. [43]. Furthermore, Hu et al. settled another
problem from [49, 51] by proving that for any k ≥ 2, there exist infinitely many graphs G
such that W (G) = W (G − {v1, v2, . . . , vk}) for some distinct vertices v1, v2, . . . , vk ∈
V (G).

Akhmejanova et. al [1] considered a relaxation of the original Šoltés problem from
another point of view. They asked for graphs with a large proportion of vertices satisfying
the Šoltés property. More precisely, they defined the function ∆v(G) = W (G)−W (G−v).
Then

|{v ∈ V (G);∆v(G) = 0}|
|V (G)|

is the proportion of vertices satisfying the Šoltés property. So Akhmejanova et. al asked
the following.

Problem 6.4. For a fixed α ∈ (0, 1] construct an infinite series S of graphs such that for
all G = (V (G), E(G)) from S the following holds:

|{v ∈ V (G);∆v(G) = 0}|
|V (G)|

≥ α.

Note that a solution to this problem for α = 1 would give an infinite series of solutions to
Problem 6.1. The authors noted that a slight modification of a construction from [9] yields
an infinite series of graphs with the proportion of vertices satisfying the Šoltés property
tending to 1

3 , and improved this constant by finding another two constructions. The first
construction contains many 11-cycles as induced subgraphs: given k ∈ N, k > 1, they
defined a graph B(k) on 5k+6 vertices by taking two vertices and connecting them with k
distinct paths of length 6 and one path of length 5. It turns out that for B(k) the proportion
of vertices satisfying the Šoltés property equals 2k

5k+6 , thus this proportion tends to 2
5 as k

tends to infinity. Another construction of so called lily-shaped graphs involves graphs that
are not 2-connected and whose proportion tends to 1

2 , see [1] for details. Furthermore, the
authors found a graph with the proportion 2

3 and expect that there exist an infinite series of
graphs with a proportion α > 1

2 , or perhaps even α tending to 1. Furthermore, they propose
the following problems.

Problem 6.5. For a fixed z ∈ Z, find all graphs G, for which the equality W (G)−W (G−
v) = z holds for all vertices v.
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Problem 6.6. For a fixed z ∈ Z and α ∈ (0, 1], construct an infinite series S of graphs
such that for all G = (V (G), E(G)) from S the following inequality takes place:

|{v ∈ V (G);∆v(G) = z}|
|V (G)|

≥ α.

In [49, 51] the problem of finding k-regular connected graphs G other than C11 for
which the equality W (G) = W (G− v) holds for at least one vertex v ∈ V (G) was posed.
The answer is affirmative, see Figure 14 for 3-regular and 4-regular graphs with 4 and 2,
respectively, (blue) vertices satisfying the Šoltés property. Using computer software and
counting cubic graphs of orders n ≤ 26, Bašić et al. [5] found that cubic graphs of order 12
or less do not contain Šoltés vertices. Cubic graphs with two Šoltés vertices first appear at
the order 14 (there are three such graphs), and examples with three and four Šoltés vertices
appear at the order 16. Moreover, they proved the following.

Theorem 6.7. There exist infinitely many cubic 2-connected graphs which contain two
Šoltés vertices.

Figure 14: Regular graphs with blue vertices satisfying the Šoltés property.

In the same paper, graphs where the ratio between the number of Šoltés vertices and the
order of the graph is at least α are called α-Šoltés graphs. So Problem 6.1 asks to find all
1-Šoltés graphs. The authors believe the solution to this problem should be graphs having
all vertices of the same degree.

Conjecture 6.8. If G is a Šoltés graph, then it is regular.

For a general regular graph G, the values W (G − u) and W (G − v) might be signif-
icantly different for two different vertices u and v from G. It may happen that removal
of one vertex increases the Wiener index, while removal of the other vertex descreases it.
However, W (G−u) and W (G− v) are equal if vertices u and v belong to the same vertex
orbit. This led the authors to believe the following.

Conjecture 6.9. If G is a Šoltés graph, then G is vertex-transitive.

Further, the authors report that a computer search on publicly available collections of
vertex-transitive graphs did not reveal any 1-Šoltés graphs. All examples of 1

3 -Šoltés graphs
are obtained by truncating certain cubic vertex-transitive graphs, and there are no Šoltés



716 Ars Math. Contemp. 24 (2024) #P4.07 / 699–729

graphs among vertex-transitive graphs with less than 48 vertices. Recall that if v is a vertex
of degree 3 adjacent to u1, u2 and u3, then by truncation of v we mean the replacement of
v by a triangle v1v2v3, where vi is adjacent to ui, and by truncation of a cubic graph we
mean the truncation of all its vertices. Therefore it is reasonable to consider the following
conjectures and a problem.

Conjecture 6.10. If G is a Šoltés graph, then G is a Cayley graph.

Problem 6.11. Find an infinite family of cubic vertex-transitive graphs {Gi}∞i=1, such that
the truncation of Gi is a 1

3 -Šoltés graph for all i ≥ 1.

Conjecture 6.12. The cycle on eleven vertices is the only Šoltés graph.

7 Wiener index of signed graphs
A signed graph is a pair (G, σ) where G is a graph and σ is a function from E(G) to
{−1, 1}, called a signature function (also called signing in the literature). A path P is a
uv-path if its end-vertices are u and v. If P is a path in G and σ is a signature function
of G then the notation σ(P ) stands for the sum

∑
e∈P σ(e). For u, v ∈ V (G) the signed

distance dG,σ(u, v) equals minP |σ(P )| where the minimum ranges over all uv-paths P .
Spiro [72] recently introduced the Wiener index Wσ(G) of the signed graph (G, σ) as

Wσ(G) =
∑

{u,v}⊆V (G)

dG,σ(u, v).

If σ is a constant function, then dG,σ(u, v) = d(u, v), and therefore Wσ(G) = W (G). In
particular, if W (G) = W (G− v) for all v ∈ V (G), then there exists a (constant) signature
function σ of G such that Wσ(G) = Wσ(G − v). In this sense the problem of finding
signed graphs (G, σ) with Wσ(G) = Wσ(G − v) can be viewed as a relaxation of Šoltés
problem. Note that in the signed setting, it is possible to have Wσ(G) = 0. Spiro used this
fact to provide many examples of signed graphs satisfying Wσ(G) = Wσ(G − v) for all
v ∈ V (G), and even with Wσ(G) = Wσ(G−S) for any set S of size less than some value
k. To present his results, a signature function σ of a graph G is called k-canceling if for
any set S ⊆ V (G) of size less than k, we have Wσ(G−S) = 0. A graph G is k-canceling
if there exists a k-canceling signature function σ of G, and graphs with Wσ(G) = 0 are
simply referred to as canceling graphs. For instance, a complete graph Kn is k-canceling
if n ≥ 2k + 4. Furthermore, he proved the following.

Proposition 7.1. Let G′ be a bipartite graph with partite sets U and V , where |U |, |V | ≥
k+ 2, and minimum degree at least k+ 1. Let G be the graph obtained from G′ by adding
every edge between two vertices of U and every edge between two vertices of V . Then G is
k-canceling.

Another family of examples is obtained from the blowups of odd cycles: if G is a graph
on {v1, . . . , vt}, then the {n1, . . . , nt}-blowup of G is defined to be the t-partite graph on
sets V1, . . . Vt with |Vi| = ni and with u ∈ Vi and w ∈ Vj adjacent if and only if vi, vj are
adjacent in G.

Proposition 7.2. Let G be the (n1, . . . , n2t+1)-blowup of a cycle C2t+1 with t ≥ 1. If
ni ≥ 2k for all i, then G is k-canceling.
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Furthermore, the following holds.

Theorem 7.3. If n is sufficiently large and G is an n-vertex graph with minimum degree at
least 2n

3 , then there exists a signature function σ of G such that Wσ(G) = Wσ(G− v) = 0
for all v ∈ V (G).

For necessary conditions for a graph to be canceling and several interesting open ques-
tions we refer to [72]. One of the conjectures pertains to the well known fact that in the
class of n-vertex trees the star Sn and the path Pn are extremal graphs for the Wiener in-
dex. Let (T, σ) be a signed n-vertex tree and let + be the constant signature function that
assigns +1 to every edge of Pn. Then the fact that Wσ(T ) ≤ W+(Pn) follows from the
result for the classical Wiener index since W+(Pn) = W (Pn). It remains to prove the
lower bound.

Conjecture 7.4. If (T, σ) is a signed n-vertex tree, then

Wα(Pn) ≤ Wσ(T ),

where α is the alternating signature function which assigns the first edge of the path +1,
the second −1, the third +1, and so on.

Another possible direction for future study according to Spiro is the minimum signed
Wiener index W∗(G) = minσ(G), where the minimum ranges over all signature functions
σ of G. Note that this concept is analogous to the minimum digraph Wiener index of
all orientations of a graph G presented in Section 4. Spiro proposed a conjecture in which
double stars appear as extremal graphs; a double star is a tree T in which there exist vertices
x, y ∈ V (T ) such that every edge of T has at least one of the vertices x, y as an end-vertex.
Note that by this definition a star is also a double star.

Conjecture 7.5. If T is an n-vertex tree, then

W∗(Pn) ≤ W∗(T ) ≤ max
D∈D

W∗(D),

where D is the set of all n-vertex double stars.

The conjecture was verified for n ≤ 9, and noted that it is false if one considers stars
instead of double stars. We refer to [72] for more interesting questions related to the pre-
sented topic.

8 Variable Wiener index vs. variable Szeged index
For an edge uv in a graph, let nv(u) denote the number of vertices strictly closer to u than
v, and analogously, let nu(v) be the number of vertices strictly closer to v than u. In his
original paper [80] Wiener observed that the Wiener index of a tree can be computed as
the sum of products nv(u) · nu(v) over all edges uv in the tree, but this is not the case in
general graphs, owing to the fact that shortest paths are typically not unique. By relaxing
the condition that the graph is a tree, the Szeged index of a graph G was defined in [34, 46]
as

Sz(G) =
∑

uv∈E(G)

nv(u) · nu(v).

Klavžar et al. [47] proved that Sz(G) ≥ W (G) for every graph G, and in [25] all graphs
for which the equality holds were classified.
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Theorem 8.1. For every graph G we have Sz(G) ≥ W (G), and equality holds if and only
if every block of G is a complete graph.

The variable Wiener index (also known as the generalized Wiener index) of a graph G
is defined as

Wα(G) =
∑

{u,v}⊆V (G)

d(u, v)α,

and the variable Szeged index of a graph G is

Szα(G) =
∑

uv∈E(G)

(nv(u) · nu(v))
α
.

Note that in [38] the quantity
∑

uv∈E(T ) (nv(u) · nu(v))
α was named as the variable

Wiener index for trees, but referring to it as the variable Szeged index seems to be more
natural. By Theorem 8.1, for trees it holds W (T ) = Sz(T ). Using Karamata’s inequality
Hriňáková et al. [42] proved the following statement.

Theorem 8.2. Let T be a tree on n vertices. Then

(1) Wα(T ) ≤ Szα(T ) if α > 1,

(2) Wα(T ) ≥ Szα(T ) if 0 ≤ α < 1.

Moreover, equalities hold if and only if n = 2.

In the case when α > 1, they extended this result to the class of bipartite graphs.

Theorem 8.3. Let G be a bipartite graph on n vertices and α > 1. Then Wα(G) ≤
Szα(G) with equality if and only if n = 2.

If G is a complete graph, we have Szα(G) =
(|V (G)|

2

)
= Wα(G) for every α. Note

that α is non-negative in the above results. If α < 0 then for non-complete graphs we have
the following strict inequality [42].

Proposition 8.4. Let G be a non-complete graph. Then for every α < 0 we have Szα(G) <
Wα(G).

Based on Theorem 8.2 and examples provided in [42], Hriňáková et al. proposed the
following conjecture.

Conjecture 8.5. For every non-complete graph G there is a constant αG ∈ (0, 1] such that

Szα(G) > Wα(G), if α > αG,

Szα(G) = Wα(G), if α = αG,

Szα(G) < Wα(G), if 0 ≤ α < αG.

In other words, the conjecture states that for any non-complete graph there is a critical
exponent in (0, 1], below which the variable Wiener index is larger and above which the
variable Szeged index is larger. As seen above, this holds for trees. However, Cambie and
Haslegrave [16] found infinitely many counterexamples by constructing a family of graphs
Gk,ℓ as follows: take a complete graph Kk, remove a k-cycle from it, and connect all its
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vertices with one end-vertex of a path of length l, see Figure 15 where G8,3 is depicted.
By fixing a connected non-complete graph G, h(α) = Szα(G) −Wα(G) is a continuous
function with h(0) < 0 and h(1) ≥ 0, which by intermediate value theorem implies that
there is at least one value of α for which h(α) = 0, and at least one such value lies in
(0, 1]. Therefore Conjecture 8.5 is equivalent to α being unique, which is not the case
for many graphs of the form Gk,ℓ. It turns out that if k is reasonably large, then there exist
some corresponding values of ℓ having three values of α for which Szα(Gk,ℓ)−Wα(Gk,ℓ)
equals 0.

Figure 15: The graph Gk,ℓ for k = 8 and ℓ = 3.

On the other hand, the authors found further families of graphs for which the statement
in Conjecture 8.5 does hold. In fact, they showed its validity for almost all graphs.

Theorem 8.6. Conjecture 8.5 holds for

• block graphs,

• edge-transitive graphs,

• bipartite graphs,

• graphs with diameter 2,

• graphs with diameter 3, n vertices and at most 1
2

(
n
2

)
edges,

• graphs with n vertices and m edges whenever m ≤ 1
4 (n

4/3 − n1/3).

They also proved that Conjecture 8.5 holds for almost all random graphs in 2 models
of random graphs, see [16] for more detailed explanation. Anyway, it is an open problem
if there exist graphs G, other than complete ones, for which |{α;Szα(G)−Wα(G) = 0}|
is larger than 3. So we have the following problem.

Problem 8.7. Let G be the class of graphs which contain at least one block which is not
complete. Is |{α;Szα(G)−Wα(G) = 0}| bounded for G ∈ G? If so, what is its maximum
value?

By showing that for every graph G, the sequence (nv(u) ·nu(v))uv∈E(G) majorizes the
sequence (d(u, v))u,v∈V (G), Cambie and Haslegrave proved that a weaker version of Con-
jecture 8.5 holds. Using a different approach the same result was independently obtained
by Kovijanić Vukićević and Bulatović [78].
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Theorem 8.8. For every non-complete graph G and α > 1, we have Szα(G) > Wα(G).

We conclude this section with the following question.

Question 8.9. Does Conjecture 8.5 hold for triangle-free graphs?

9 Wiener index of apex graphs
An apex graph is a graph that becomes planar by removal of a single vertex. Along these
lines a graph G is called an apex tree if it contains a vertex x such that G − x is a tree.
Furthemore, a graph G is called an ℓ-apex tree if there exists a vertex subset A ⊂ V (G) of
cardinality ℓ such that G − A is a tree and there is no other subset of smaller cardinality
with this property [82, 83].

In [82] extremal values of (additively and multiplicatively) weighted Harary indices
of apex and ℓ-apex trees were studied. Extremal values of some other topological indices
of ℓ-apex trees were recently explored in [2] and [48]. In the later authors studied the
generalized Wiener index and derived the following result in which Kℓ + T denotes the
join of a complete graph Kℓ and a tree T on n− ℓ vertices.

Theorem 9.1. Let G be an ℓ-apex tree on n vertices, where ℓ ≥ 1 and n ≥ ℓ + 2, and let
α ̸= 0. Then, the following two claims hold:

• If α > 0 then Wα(G) has the minimum value if and only if G = Kℓ + T , where T
is any tree on n− ℓ vertices;

• If α < 0 then Wα(G) has the maximum value if and only if G = Kℓ + T , where T
is any tree on n− ℓ vertices.

Moreover, in the extremal case

Wα(G) = (n2 − 2nℓ− 3n+ ℓ2 + 3ℓ+ 2) 2α−1 + (2nℓ+ 2n− ℓ2 − 3ℓ− 2) 2−1.

Observe that for α = 1 the invariant Wα is the Wiener index, and by Theorem 9.1 the
extremal value is

W (G) = (2n2 − 2nℓ− 4n+ ℓ2 + 3ℓ+ 2) 2−1.

Recall that a dumbbell graph is a graph comprised of two disjoint cliques connected
by a path. More precisely, a dumbbell graph Dc(a, b) is a graph obtained from a path
Pc = v1v2 · · · vc and disjoint complete graphs Ka and Kb by connecting v1 to a vertex
of Ka and connecting vc to a vertex of Kb, see Figure 16 for D5(3, 4). The order of so
constructed graph is a+ b+ c. Note that without loss of generality, we can always assume
that a, b ̸= 2.

Theorem 9.2. Let G be an apex tree on n ≥ 3 vertices, and let α ̸= 0.

• If α > 0 then Wα(G) has the maximum value if and only if G = Dn−4(3, 1);

• If α < 0 then Wα(G) has the minimum value if and only if G = Dn−4(3, 1).

Moreover, in the extremal case

Wα(G) = 1 +

n−2∑
i=1

(n− i)iα.
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Figure 16: The graph D5(3, 4).

In [48] the following conjecture was proposed.

Conjecture 9.3. Let G be an ℓ-apex tree on n vertices, where ℓ ≥ 3 and n ≥ ℓ + 1,
such that G has maximum Wiener index. Then G is the balanced dumbbell graph, i.e.
G ∼= Dc(a, b), where a = ⌈ℓ/2⌉, b = ⌊ℓ/2⌋, and c = n− ℓ.

10 Wiener index of line graphs
The line graph L(G) of a graph G is defined as a graph whose vertex set coincides with the
set of edges of G and two vertices of L(G) are adjacent if and only if the corresponding
edges are incident in G. Higher iterations of the line graph are defined recursively.

Lk(G) =

{
G for k = 0,
L(Lk−1(G)) for k > 0.

Van Rooij and Wilf [77] showed that for the sequence

G,L(G), L(L(G)), L(L(L(G))), . . .

only four options are possible. If G is a cycle graph, then L(G) and each subsequent graph
in this sequence is isomorphic to G itself. If G is a claw K1,3, then L(G) = C3 and
consequently the same holds for all subsequent graphs in the sequence. For a path we have
L(Pn) = Pn−1, L2(Pn) = Pn−2, . . . , Ln−1(Pn) = P1 and Lk(Pn) is an empty graph if
k ≥ n. In all the remaining cases the order of the graphs in the sequence increases without
bound.

The following problem was proposed by Gutman [35].

Problem 10.1. Find an n-vertex graph G whose line graph L(G) has maximum Wiener
index.

Supported by a result from [20], we pose the following conjecture (see also [56]).

Conjecture 10.2. Among all graphs G on n vertices, W (L(G)) attains maximum for some
dumbbell graph on n vertices.

Similar conjecture was proposed for bipartite graphs [56]. Let us call a graph a barbell
graph if it is comprised of two disjoint complete bipartite graphs connected by a path.

Conjecture 10.3. Let n be large. Among all bipartite graphs G on n vertices, W (L(G))
attains maximum for some barbell graph on n vertices.

A related question we pose is the following.
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Problem 10.4. For given n and k, find graphs G on n vertices with the extremal value of
W (Lk(G)).

Dobrynin and Mel’nikov [27] proposed to estimate the extremal values for the ratio
W (Lk(G))

W (G) , for a graph G on n vertices and explicitly stated the case k = 1 as a problem.
The minimum value was given in [54].

Theorem 10.5. Among all connected graphs on n vertices, the fraction W (L(G))
W (G) is mini-

mum for the star Sn, in which case W (L(G))
W (G) = n−2

2(n−1) .

The problem was recently solved also for the maximal value [70] .

Theorem 10.6. For a graph G on n vertices it holds that W (L(G))
W (G) ≤

(
n−1
2

)
with equality

if and only if G = Kn.

For k > 1 the problem remains open.

Problem 10.7. Find n-vertex graphs G with extremal values of W (Lk(G))
W (G) for k ≥ 2.

Note that the line graph of Kn has the greatest number of vertices, and restricting to
bipartite graphs, the (almost) balanced complete bipartite graphs have line graphs with most
vertices, so K⌊n/2⌋,⌈n/2⌉ could be the graph attaining maximal value in this class of graphs.
It is expected that the minimum value should be attained by Pn, since this is the only graph
whose line graph decreases in size, see a conjecture from [56].

Conjecture 10.8. Let k ≥ 2 and let n be large. Among all graphs G on n vertices,
W (Lk(G))

W (G) attains the maximum for Kn, and it attains the minimum for Pn.

The above conjecture is supported by a result from [41], where it was proved that among
all trees on n vertices the path Pn has the smallest value of this ratio for k ≥ 3, and it was
conjectured that the same holds also in the case k = 2. Another related problem is the
following.

Problem 10.9. For various ℓ and k find the extremal graphs for the ratio W (Lk(G))
W (Ll(G))

.

11 Graphs with prescribed number of blocks
A graph is non-separable if it is connected and has no cut-vertices, i.e. either it is 2-
connected or it is K2. A block of G is a maximal non-separable subgraph of G. As known,
the n-path Pn, which has n − 1 blocks, has the maximum Wiener index in the class of
graphs on n vertices, and among graphs on n vertices that have just one block, the n-cycle
has the largest Wiener index. The ordering of trees with respect to decreasing Wiener index
is known up to the 17th maximum Wiener index [23, 64], and the increasing ordering up to
the 15th maximum Wiener index [28].

Bessy et al. [8] studied the ordering of n-vertex graphs with just one block (i.e. 2-vertex
connected graphs) with respect to decreasing Wiener index. Let 1 ≤ p ≤ q ≤ n−p−q+1
and q > 1. The notation Hn,p,q stands for the graph on n vertices comprised of three
internally disjoint paths with the same end-vertices, where the first path has length p, the
second one has length q, and the last one has length n− p− q + 1. Obviously Hn,1,2 is a
graph obtained from Cn by introducing a new edge connecting two vertices at distance two
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on the cycle, and Hn,2,2 is a graph that is obtained from a 4-cycle by connecting opposite
vertices by a path of length n− 3, see Figure 17.

In [8] it was shown that among graphs on n vertices that have just one block, Hn,1,2

has the second largest Wiener index if n ̸= 6. If n ≥ 11, the third extremal graph is Hn,2,2.
The authors also give conjectures on the graphs with 4th and 5th greatest Wiener index in
the class of 2-connected graphs. Let H+

n,2,2 be the graph obtained from Hn,2,2 by inserting
an edge between two vertices that are at distance 1 from the vertices of degree 3, see the
third graph in Figure 17. Then H+

n,2,2 has Wiener index exactly 1 less than Hn,2,2, so it is
the fourth 2-connected graph by decreasing Wiener index for n = 9 and n ≥ 11, but it may
not be unique. However, the following can be true.

Conjecture 11.1. For n large enough, H+
n,2,2 is the graph with the 4th largest Wiener index

among blocks on n vertices.

Conjecture 11.2. For n large enough, Hn,1,3 is the graph with the 5th largest Wiener index
among blocks on n vertices.

Figure 17: Graphs Hn,1,2, Hn,2,2 and H+
n,2,2.

Bessy et al. [7] studied a general problem of finding the maximum possible value of
Wiener index among graphs on n vertices with fixed number of blocks. They showed that
among all graphs on n vertices which have p ≥ 2 blocks, the maximum Wiener index is
attained by a graph comprised of two cycles joined by a path, where one or both cycles can
be replaced by a single edge. To be more specific, we need the following notation.

If G is a connected graph and v is a cut-vertex that partitions G into subgraphs G1 and
G2, i.e., G = G1 ∪G2 and G1 ∩G2 = {v}, then we write G = G1 ◦v G2. For simplicity
reasons, by C2 we mean the complete graph K2.

Theorem 11.3. Let n and p be numbers such that n > p > 1. Among all graphs on n
vertices with p blocks, the maximum Wiener index is attained by the graph Ca◦uPp−1◦vCb

for some integers a ≥ 2 and b ≥ 2, where a + b = n − p + 3, and u and v are distinct
end-vertices of Pp−1.

Note that Ca or Cb can also be edges, and then we obtain Cn−p+1 ◦u Pp, which is a
graph composed of one cycle with an attached path, or Pn if both Ca and Cb are edges.

In [6] the authors provide further details by determining the sizes of a and b in the
extremal graphs for each n and p. Roughly speaking, if n is bigger than 5p − 7, then the
extremal graph is obtained for a = 2, i.e. the graph is a path glued to a cycle. For values
n = 5p− 8 and 5p− 7, there is more than one extremal graph. And when n < 5p− 8, the
extremal graph is again unique with a and b being equal or almost equal depending on the
congruence of n− p modulo 4.
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Riste Škrekovski https://orcid.org/0000-0001-6851-3214
Aleksandra Tepeh https://orcid.org/0000-0002-2321-6766

References
[1] M. Akhmejanova, K. Olmezov, A. Volostnov, I. Vorobyev, K. Vorob’ev and Y. Yarovikov,

Wiener index and graphs, almost half of whose vertices satisfy Šoltés property, Discrete
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graphs with prescribed number of blocks, Appl. Math. Comput. 380 (2020), 125274, 7 pp., doi:
10.1016/j.amc.2020.125274, https://doi.org/10.1016/j.amc.2020.125274.
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1 Introduction
A signed graph (or briefly sigraph) Γ is an ordered pair (G, σ), where G = (V (G), E(G))
is a graph (called the underlying graph), and σ : E(G) −→ {−1, 1} is a sign function
defined on the edge set of G. A signed graph is all-positive (resp. all-negative) if all of its
edges are positive (resp. negative) and is denoted by Γ = (G,+) (resp. Γ = (G,−)). The
sign of a cycle in a signed graph is the product of the signs of its edges. A signed cycle is
said to be positive (resp. negative) if its sign is positive (resp. negative). A signed graph is
said to be balanced if none of its cycles is negative, otherwise unbalanced.

Let A(G) = (aij) be the adjacency matrix of G. The adjacency matrix of a signed
graph Γ = (G, σ) is a square matrix A(Γ) = A(G, σ) =

(
aσij

)
, where aσij = σ (vivj) aij .

For a matrix Z, the characteristic polynomial |xI − Z| will be denoted by ϕ(Z, x). If Γ
is a signed graph, we use ϕ(Γ, x) instead of ϕ(A(Γ), x). The eigenvalues of A(Γ) are the
eigenvalues of the signed graph Γ. The set of all distinct eigenvalues of Γ along with their
multiplicities is called the spectrum of Γ. If the distinct eigenvalues of Γ are µ1 > · · · > µk,
and their multiplicities are m (µ1) , . . . ,m (µk), then we write

Spec(Γ) =

(
µ1 . . . µk

m (µ1) . . . m (µk)

)
.

The nullity of a signed graph Γ is the multiplicity of the eigenvalue 0 in its spectrum. It is
denoted by η(Γ).

Two signed graphs Γ1 = (G1, σ1) and Γ2 = (G2, σ2) are isomorphic if there is a graph
isomorphism f : G1 → G2 that preserves signs of the edges. If θ : V (G) → {+1,−1} is
the switching function, then switching of the signed graph Γ = (G, σ) by θ means changing
σ to σθ defined by

σθ(uv) = θ(u)σ(uv)θ(v).

For more information about switching and recent work on signed graphs, we refer to
[1, 3, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17].

We note that the sign function for the signed subgraph is the restriction of the original
function. For Γ = (G, σ) and X ⊆ V (G), Γ[X] denotes the signed subgraph induced by
X , while Γ − X = Γ[V (G)\X]. Sometimes, we also write Γ − Γ[X] instead of Γ − X .
Let (G,K−) (resp. (G,K+)) be the signed graph whose negative edges (resp. positive
edges) induce a subgraph K. As usual, Kn denotes the complete graph of order n. The
complete bipartite graph with two parts Up = {u1, u2, . . . , up} and Vq = {v1, v2, . . . , vq}
as a partition of its vertex set is denoted by Kp,q . Also, Pn denotes the path on n vertices.
Jr×s denotes an all-one matrix of size r × s and Or×s denotes an all-zero matrix of size
r × s.

In the recent years, several researchers have shown interest in signed graphs, including
complete bipartite signed graphs and complete signed graphs, which have a variety of ap-
plications, see [1, 2] and the references therein.

The remainder of the paper is organized as follows. In Section 2, we give some pre-
liminary results which will be used in the sequel. In Section 3, we show that the nullity of
(Kp,q, σ) is at least p + q − 2k − 2, where k = min(r, s) and (Kp,q, σ)[Ur ∪ Vs], r ≤ p
and s ≤ q, is an induced signed subgraph on minimum vertices r + s, which contain all
negative edges of the signed graph (Kp,q, σ). In Section 4, we determine the spectrum of
a complete bipartite signed graph whose negative edges (positive edges) induce (i) disjoint
complete bipartite subgraphs and (ii) a path. In Section 5, we determine the spectrum of



S. Pirzada et al.: On the eigenvalues of complete bipartite signed graphs 733

a complete bipartite signed graph whose negative edges (positive edges) induce an regular
subgraph H . Also, we obtain a relation between the eigenvalues of this complete bipar-
tite signed graph and the non-negative eigenvalues of H . For definitions and notations of
graphs, we refer to [10].

2 Preliminaries
Consider µ1, µ2, . . . , µn as the eigenvalues of the signed graph Γ. If for each i there exists
some j such that µi+µj = 0, then we say that the spectrum is symmetric with respect to 0.
It is well known that an unsigned graph which contains at least one edge is bipartite if and
only if its spectrum considered as a set of points on the real axis is symmetric with respect
to the origin. There exist nonbipartite signed graphs with this property as can be seen in
[14]. The following result can be seen in [7].

Lemma 2.1 ([7, Theorem 2.1]). Let Γ be a signed graph of order n. Then the following
statements are equivalent.

(i) Spectrum of Γ is symmetric about the origin,

(ii) ϕ(Γ, x) = xn +
∑⌊n

2 ⌋
k=1 (−1)kc2kx

n−2k, where c2k are non negative integers for all
k = 1, 2, . . . ,

⌊
n
2

⌋
,

(iii) Γ and −Γ are cospectral, where −Γ is the signed graph obtained by negating sign
of each edge of Γ.

Consider the matrix M having the block form as follows.

M =


A β · · · β β
β⊤ B · · · C C

...
... · · ·

...
...

β⊤ C · · · B C
β⊤ C · · · C B

 (2.1)

where A ∈ Rt×t, β ∈ Rt×s and B,C ∈ Rs×s, such that n = t + cs, with c being the
number of copies of B. The spectrum of this matrix can be obtained as the union of the
spectrum of smaller matrices using the following technique given in [9]. In the statement of
the following result, Spec(k)(Z) denotes the multi-set formed by k copies of the spectrum
of Z, denoted by Spec(Z).

Lemma 2.2. Let M be a matrix of the form given in (2.1) with c ≥ 1 copies of the block
B. Then

(i) Spec(B − C) ⊆ Spec(M) with multiplicity c− 1,

(ii) Spec(M)\ Spec(c−1)(B − C) = Spec (M ′) is the set of the remaining t+ s eigen-
values of M , where

M ′ =

(
A

√
c · β√

c · β⊤ B + (c− 1)C

)
.

The next two results are concerned with the spectrum of special 2× 2 block matrices.
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Lemma 2.3. Let X =

(
Op×p Ap×q

A⊤
q×p Oq×q

)
be a real symmetric matrix of order p + q,

q ≥ p. Then

(i) m(0) ≥ q − p,

(ii) ±√
µ ∈ Spec(X), where µ is an eigenvalue of a positive semidefinite square matrix

Ap×qA
⊤
q×p.

Proof. By the Schur complement formula, the determinant of a 2× 2 block matrix is given
by ∣∣∣∣ A B

C D

∣∣∣∣ = ∣∣D∥A−BD−1C
∣∣ ,

where A and D are square blocks and D is nonsingular. So, we have

ϕ(X,x) =

∣∣∣∣ xIp −Ap×q

−A⊤
q×p xIq

∣∣∣∣ = xq
∣∣∣(xIp)−Ap×q (xIq)

−1
A⊤

q×p

∣∣∣
= xq

∣∣∣∣ 1x (
x2Ip −Ap×qA

⊤
q×p

)∣∣∣∣
= xq−pϕ

(
Ap×qA

⊤
q×p, x

2
)
.

This completes the proof.

Corollary 2.4. Let X =

(
Op×p Ap×p

Ap×p Op×p

)
be a real symmetric matrix of order 2p. Then

±µ ∈ Spec(X), where µ is an eigenvalue of the square matrix Ap×p.

We conclude this section with the following remark.

Remark 2.5. Let (Kp,q, σ) be a complete bipartite signed graph with bipartition (Up, Vq),
where Up = {u1, u2, . . . , up} and Vq = {v1, v2, . . . , vq}. Then with a suitable labelling of
the vertices of (Kp,q, σ), its adjacency matrix is given by

A(Kp,q, σ) =

(
Op×p Bp×q

B⊤
q×p Oq×q

)
.

In view of Lemma 2.3, we observe that the spectrum of (Kp,q, σ) is related with the
spectrum of the matrix Bp×qB

⊤
q×p. Thus from here onwards, we focus on the matrix Bp×q

and we call it as the spectral block of the adjacency matrix of the signed graph (Kp,q, σ).

3 Nullity of the signed graph (Kp,q, σ)

In this section, we obtain a lower bound for the nullity of Γ = (Kp,q, σ) for any sign
function σ, subject to the given condition.

Theorem 3.1. Let (Kp,q, σ), p ≤ q, be a complete bipartite signed graph and let
(Kp,q, σ)[Ur ∪ Vs], r ≤ p and s ≤ q, be its induced signed subgraph on minimum
vertices r + s, which contains all negative edges of the signed graph (Kp,q, σ). Then
η((Kp,q, σ)) ≥ p+ q − 2k − 2, where k = min(r, s).
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Proof. Note that the order of (Kp,q, σ)[Ur ∪ Vs] is r + s. With a suitable labelling of the
vertices of (Kp,q, σ), the adjacency matrix is given by

A(Kp,q, σ) =

(
Op×p Bp×q

B⊤
q×p Oq×q

)
,

where Bp×q is the spectral block of the adjacency matrix of the signed graph (Kp,q, σ). By
Lemma 2.3, we get

ϕ(A(Kp,q, σ), x) = xq−pϕ
(
Bp×qB

⊤
q×p, x

2
)
. (3.1)

Without loss of generality, we may assume that r < p and s < q. As (Kp,q, σ)[Ur∪Vs]
is an induced signed subgraph on minimum vertices r+s, which contain all negative edges
of the signed graph (Kp,q, σ), we have

Bp×q =

(
Xr×s Jr×q−s

Jp−r×s Jp−r×q−s

)
,

where Xr×s is the spectral block of the adjacency matrix of the signed graph
(Kp,q, σ)[Ur ∪ Vs]. The transpose of a 2× 2 block matrix is given by(

A B
C D

)⊤

=

(
A⊤ C⊤

B⊤ D⊤

)
.

Together with the fact that Jm×nJn×m = nJm×m, this yields

Bp×qB
⊤
q×p =

(
Xr×s Jr×q−s

Jp−r×s Jp−r×q−s

)
×
(

X⊤
s×r Js×p−r

Jq−s×r Jq−s×p−r

)
=

(
Xr×sX

⊤
s×r + (q − s)Jr×r Xr×sJs×p−r + (q − s)Jr×p−r

Jp−r×sX
⊤
s×r + (q − s)Jp−r×r sJp−r×p−r + (q − s)Jp−r×p−r

)
=

(
Xr×sX

⊤
s×r + (q − s)Jr×r Xr×sJs×p−r + (q − s)Jr×p−r

Jp−r×sX
⊤
s×r + (q − s)Jp−r×r qJp−r×p−r

)
.

Now, it is easy to see that Xr×sJs×1 + (q − s)Jr×1 = Y + (q − s)Jr×1, where Y is
the column vector of the row sums of the matrix Xr×s. Let Z = [Y + (q − s)Jr×1 Y +
(q − s)Jr×1 · · · Y + (q − s)Jr×1] ∈ Rr×p−r be a matrix of order r × p− r. Then, we
have

Bp×qB
⊤
q×p =

(
Xr×sX

⊤
s×r + (q − s)Jr×r Z

Z⊤ qJp−r×p−r

)
. (3.2)

The matrix Bp×qB
⊤
q×p has a special kind of symmetry. Taking A = Xr×sX

⊤
s×r +

(q − s)Jr×r, β = Y + (q − s)Jr×1, B = [q] and C = [q] in (2.1), from Lemma 2.2, we
get Specp−r−1(B−C) = Specp−r−1([0]) ⊆ Spec(Bp×qB

⊤
q×p). Again by Equation (3.1),

Equation (3.2) and Lemma 2.2, we obtain

ϕ(A(Kp,q, σ), x) = xαϕ
(
Z1, x

2
)
, (3.3)

where α = q + p− 2r − 2 and

Z1 =

(
Xr×sX

⊤
s×r + (q − s)Jr×r

√
p− r(Y + (q − s)Jr×1)√

p− r(Y + (q − s)Jr×1)
⊤ q(p− r)

)
.
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Also, we have

B⊤
q×pBp×q =

(
X⊤

s×rXr×s + (p− r)Js×s X⊤
s×rJr×q−s + (p− r)Js×q−s

Jq−s×rXr×s + (p− r)Jq−s×s pJq−s×q−s

)
.

Now, X⊤
s×rJr×1 +(p− r)Js×1 = Y ′ +(p− r)Js×1, where Y ′ is the column vector of the

column sums of the matrix Xr×s. Let Z ′ = [Y ′+(p−r)Js×1 Y ′+(p−r)Js×1 · · · Y ′+
(p− r)Js×1] ∈ Rs×q−s be a matrix of order s× q − s. Then,

B⊤
q×pBp×q =

(
X⊤

s×rXr×s + (p− r)Js×s Z ′

Z ′⊤ pJq−s×q−s

)
. (3.4)

Taking A = X⊤
s×rXr×s+(p−r)Js×s, β = Y ′+(p−r)Js×1, B = [p] and C = [p] in (2.1),

from Lemma 2.2, we get Specq−s−1(B − C) = Specq−s−1([0]) ⊆ Spec(B⊤
p×qBp×q).

Note that the eigenvalues of B⊤
q×pBp×q are given by the eigenvalues of Bp×qB

⊤
q×p, to-

gether with the eigenvalue 0 of multiplicity q − p. Therefore, by Equation (3.1), Equa-
tion (3.4) and Lemma 2.2, we obtain

ϕ(A(Kp,q, σ), x) = xζϕ
(
Z2, x

2
)
, (3.5)

where ζ = q + p− 2s− 2 and

Z2 =

(
X⊤

s×rXr×s + (p− r)Js×s
√
q − s(Y ′ + (p− r)Js×1)√

q − s(Y ′ + (p− r)Js×1)
⊤ p(q − s)

)
.

Hence the result follows by Equation (3.3) and Equation (3.5).

As (Kp,q, σ) is a bipartite signed graph, therefore its spectrum is symmetric about the
origin. Thus, the following is an immediate consequence of Theorem 3.1 and Lemma 2.1.

Figure 1: The signed graph (K4,6, σ).

Corollary 3.2. Let (Kp,q, σ), p ≤ q, be a complete bipartite signed graph and let
(Kp,q, σ)[Ur ∪ Vs], r ≤ p and s ≤ q, be its induced subgraph on minimum vertices r + s,
which contains all positive edges of the signed graph (Kp,q, σ). Then η((Kp,q, σ)) ≥
p+ q − 2k − 2, where k = min(r, s).

We end this section with an example which shows that the lower bound for the nullity,
given in Theorem 3.1, of (Kp,q, σ) is best possible.
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Example 3.3. Consider the complete bipartite signed graph (K4,6, σ) as shown in Fig-
ure 1. Plain lines denote the positive edges and dashed lines denote the negative edges.
It contains an induced signed subgraph (K4,6, σ)[U2, V4] on 6 vertices which contains all
negative edges of (K4,6, σ). Here, we have p = 4, q = 6 and k = 2. Therefore, by
Theorem 3.1, η((K4,6, σ)) ≥ 4. The spectral block of the adjacency matrix of the induced
signed subgraph (K4,6, σ)[U2, V4] is given as

X2×4 =

(
−1 −1 −1 1
−1 1 −1 −1

)
.

Therefore, by Equation (3.3), we get

ϕ(A(K4,6, σ), x) = x4ϕ

 6 2 0
2 6 0
0 0 12

 , x2

 .

Thus, it is easy to see that

Spec((K4,6, σ)) =

(
2
√
3 2

√
2 2 0 −2 −2

√
2 −2

√
3

1 1 1 4 1 1 1

)
.

4 Spectrum of (Kp,q, σ) when negative edges induce either a disjoint
complete bipartite subgraphs or a path

We begin this section with the computation of the spectrum of the complete bipartite signed
graph

(
Kp,q,K

−
r,s

)
whose negative edges induce a subgraph Kr,s.

Theorem 4.1. Let
(
Kp,q,K

−
r,s

)
, p ≤ q, r ≤ p and s ≤ q, be a complete bipartite signed

graph whose negative edges induce a subgraph Kr,s of order r + s. Then the spectrum of(
Kp,q,K

−
r,s

)
is given as

Spec(
(
Kp,q,K

−
r,s

)
) =

(
µ1 µ2 0 −µ2 −µ1

1 1 p+ q − 4 1 1

)
,

where

µ1, µ2 =

√
pq ±

√
p2q2 − 16rs(p− r)(q − s)

2
.

Proof. By Equation (3.3), we have

ϕ
(
(Kp,q,K

−
r,s

)
, x) = xαϕ

((
Xr×sX

⊤
s×r + (q − s)Jr×r

√
p− rβ√

p− rβ⊤ q(p− r)

)
, x2

)
, (4.1)

where α = q + p− 2r − 2, β = Y + (q − s)Jr×1, and Y is the column vector of the row
sums of spectral block Xr×s of the adjacency matrix of an induced signed subgraph Kr,s,
whose all edges are negative. Clearly, Xr×sX

⊤
s×r + (q − s)Jr×r = −Jr×s × −Js×r +

(q − s)Jr×r = qJr×r and Y + (q − s)Jr×1 = (q − 2s)Jr×1. Therefore, Equation (4.1)
takes the form

ϕ
(
(Kp,q,K

−
r,s

)
, x) = xαϕ

((
qJr×r

√
p− r(q − 2s)Jr×1√

p− r(q − 2s)J1×r q(p− r)

)
, x2

)
.

(4.2)
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For p ̸= r, it can be easily seen that the real symmetric matrix

Z1 =

(
qJr×r

√
p− r(q − 2s)Jr×1√

p− r(q − 2s)J1×r q(p− r)

)
has rank 2. Now, let x1 and x2 be the non zero eigenvalues of Z1. We have

x1 + x2 = tr(Z1) = rq + q(p− r) = pq. (4.3)

Also,
x2
1 + x2

2 = tr(Z2
1 ) = p2q2 − 16rs(p− r)(q − s). (4.4)

Equations (4.3) and (4.4), imply that

x1, x2 =
pq ±

√
p2q2 − 16rs(p− r)(q − s)

2
. (4.5)

Thus, Equation (4.2) yields that

ϕ
(
(Kp,q,K

−
r,s

)
, x) = xp+q−4(x4 − (x1 + x2)x

2 + x1x2),

where x1 and x2 are given in Equation (4.5). This proves the result.

As a consequence, we compute the spectrum of a complete bipartite signed graph whose
positive edges induce a complete bipartite subgraph.

Corollary 4.2. Let
(
Kp,q,K

+
r,s

)
, p ≤ q, r ≤ p and s ≤ q, be a complete bipartite signed

graph whose positive edges induce a subgraph Kr,s of order r + s. Then the spectrum of(
Kp,q,K

+
r,s

)
is given as

Spec(
(
Kp,q,K

+
r,s

)
) =

(
µ1 µ2 0 −µ2 −µ1

1 1 p+ q − 4 1 1

)
,

where

µ1, µ2 =

√
pq ±

√
p2q2 − 16rs(p− r)(q − s)

2
.

Now, we obtain the characteristic polynomial of the complete bipartite signed graph
(Kp,q, σ) whose negative edges form the disjoint subgraphs Kr,s of different orders.

Theorem 4.3. Let (Kp,q, σ), p ≤ q, be a complete bipartite signed graph whose negative
edges induce disjoint complete bipartite subgraphs of orders r1 + s1, r2 + s2, . . ., rk + sk
such that

∑k
i=1 ri = r,

∑k
i=1 si = s, r ≤ p and s ≤ q. Then the characteristic polynomial

of (Kp,q, σ) is given as

ϕ ((Kp,q, σ) , x) = xp+q−2k−2ϕ
(
Z ′, x2

)
,

where

Z ′ =


r1c11 r2c12 · · · rkc1k c(q − 2s1)
r1c21 r2c22 · · · rkc2k c(q − 2s2)

...
...

. . .
...

...
r1ck1 r2ck2 · · · rkckk c(q − 2sk)

r1c(q − 2s1) r2c(q − 2s2) · · · rkc(q − 2sk) q(p− r)


is a matrix of order k+1, c =

√
p− r, cij = q if i = j and cij = q− 2si− 2sj otherwise.
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Proof. Consider the matrix given in Equation (3.3)

Z1 =

(
Xr×sX

⊤
s×r + (q − s)Jr×r

√
p− r(Y + (q − s)Jr×1)√

p− r(Y + (q − s)Jr×1)
⊤ q(p− r)

)
, (4.6)

where Y is the column vector of the row sums of the spectral block Xr×s of the adjacency
matrix of an induced signed subgraph of (Kp,q, σ) which contains all its negative edges.
Hence, with a suitable relabelling of vertices of the induced signed subgraph, we have

Xr×s =


−Jr1×s1 Jr1×s2 · · · Jr1×sk

Jr2×s1 −Jr2×s2 · · · Jr2×sk
...

...
. . .

...
Jrk×s1 Jrk×s2 · · · −Jrk×sk

 ,

where Jri×si is the spectral block of the adjacency matrix of the complete bipartite sub-
graph Kri,si , i = 1, 2, . . . , k,

∑k
i=1 ri = r and

∑k
i=1 si = s. Now, it is easy to obtain

Xr×sX
⊤
s×r =


b11Jr1×r1 b12Jr1×r2 · · · b1kJr1×rk

b21Jr2×r1 b22Jr2×r2 · · · b2kJr2×rk
...

...
. . .

...
bk1Jrk×r1 bk2Jrk×r2 · · · bkkJrk×rk

 ,

where, bij =
∑k

i=1 si = s if i = j and bij = s− 2si− 2sj , otherwise. As Y is the column
vector of the row sums of the spectral block Xr×s, therefore the matrix Z1 given in (4.6)
takes the form

Z1 =


c11Jr1×r1 c12Jr1×r2 · · · c1kJr1×rk c(q − 2s1)Jr1×1

c21Jr2×r1 c22Jr2×r2 · · · c2kJr2×rk c(q − 2s2)Jr2×1

...
...

. . .
...

...
ck1Jrk×r1 ck2Jrk×r2 · · · ckkJrk×rk c(q − 2sk)Jrk×1

c(q − 2s1)J1×r1 c(q − 2s2)J1×r2 · · · c(q − 2sk)J1×rk q(p− r)J1×1

 ,

where c =
√
p− r, cij = q if i = j and cij = q− 2si − 2sj otherwise. Clearly, the matrix

Z1 has equitable quotient matrix Z ′, where

Z ′ =


r1c11 r2c12 · · · rkc1k c(q − 2s1)
r1c21 r2c22 · · · rkc2k c(q − 2s2)

...
...

. . .
...

...
r1ck1 r2ck2 · · · rkckk c(q − 2sk)

r1c(q − 2s1) r2c(q − 2s2) · · · rkc(q − 2sk) q(p− r)

 .

Now by [18, Theorem 3.1], Spec(Z1) = Spec(Z ′) ∪
(

0
r − k

)
, where Z ′ is equitable

quotient matrix of Z1 and is given as

Z ′ =


r1c11 r2c12 · · · rkc1k c(q − 2s1)
r1c21 r2c22 · · · rkc2k c(q − 2s2)

...
...

. . .
...

...
r1ck1 r2ck2 · · · rkckk c(q − 2sk)

r1c(q − 2s1) r2c(q − 2s2) · · · rkc(q − 2sk) q(p− r)

 ,
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Figure 2: Signed graph whose negative edges induce two disjoint complete bipartite sub-
graphs.

where c =
√
p− r, cij = q if i = j and cij = q − 2si − 2sj otherwise. As Spec(Z1) =

Spec(Z ′) ∪
(

0
r − k

)
, therefore the result follows by Equation (3.3) and Equation (4.6).

An application of Theorem 4.3 can be seen in the following example.

Example 4.4. Consider the complete bipartite signed graph (K5,7, σ) as shown in Figure 2.
Here, we have p = 5, q = 7, r1 = 2, s1 = 2, r2 = 2, s2 = 3, r = r1 + r2 = 4 and
s = s1 + s2 = 5. Therefore, by Theorem 4.3, we get

ϕ(A(K5,7, σ), x) = x6ϕ

 14 −6 3
−6 14 1
6 2 7

 , x2

 .

Thus, it is easy to see that

Spec((K5,7, σ)) =

(
4.50 3.37 1.82 0 −1.82 −3.37 −4.50
1 1 1 6 1 1 1

)
.

The next corollary follows from Lemma 2.1 and Theorem 4.3 which gives the spectrum
of a complete bipartite signed graph whose positive edges induce the disjoint complete
bipartite subgraphs of different orders.

Corollary 4.5. Let (Kp,q, σ), p ≤ q, be a complete bipartite signed graph whose positive
edges induce disjoint complete bipartite subgraphs of orders r1 + s1, r2 + s2, . . ., rk + sk
such that

∑k
i=1 ri = r,

∑k
i=1 si = s, r ≤ p and s ≤ q. Then the characteristic polynomial

of (Kp,q, σ) is given as

ϕ ((Kp,q, σ) , x) = xp+q−2k−2ϕ
(
Z ′, x2

)
,

where

Z ′ =


r1c11 r2c12 · · · rkc1k c(q − 2s1)
r1c21 r2c22 · · · rkc2k c(q − 2s2)

...
...

. . .
...

...
r1ck1 r2ck2 · · · rkckk c(q − 2sk)

r1c(q − 2s1) r2c(q − 2s2) · · · rkc(q − 2sk) q(p− r)


is a matrix of order k+1, c =

√
p− r, cij = q if i = j and cij = q− 2si− 2sj otherwise.
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We conclude this section with the following result whose proof can be obtained in a
similar way as in Theorem 4.3.

Theorem 4.6. (i) Let
(
Kp,q, P

−
2r

)
, p ≤ q and r ≥ 1, be a complete bipartite signed graph

whose negative edges induce a path on 2r vertices. Then the characteristic polynomial of(
Kp,q, P

−
2r

)
is given as

ϕ
(
(Kp,q, P

−
2r

)
, x) = xp+q−2r−2ϕ

(
Z ′, x2

)
,

where

Z ′ =



q q − 2 q − 6 q − 6 · · · q − 6 c(q − 2)
q − 2 q q − 4 q − 8 · · · q − 8 c(q − 4)

q − 6 q − 4 q q − 4
. . .

...
...

q − 6 q − 8 q − 4 q
. . . q − 8 c(q − 4)

...
...

. . .
. . .

. . . q − 4 c(q − 4)
q − 6 q − 8 . . . q − 8 q − 4 q c(q − 4)

c(q − 2) c(q − 4) . . . c(q − 4) c(q − 4) c(q − 4) q(p− r − 1)


is a positive semidefinite matrix of order r + 1 and c =

√
p− r − 1.

(ii) Let
(
Kp,q, P

−
2r+1

)
, p ≤ q and r ≥ 1, be a complete bipartite signed graph whose

negative edges induce a path on 2r + 1 vertices with both pendent vertices of the path
P2r+1 in Up. Then the characteristic polynomial of

(
Kp,q, P

−
2r+1

)
is given as

ϕ
(
(Kp,q, P

−
2r+1

)
, x) = xp+q−2r−4ϕ

(
Z ′, x2

)
,

where

Z ′ =



q q − 2 q − 6 q − 6 · · · q − 6 q − 4 c(q − 2)
q − 2 q q − 4 q − 8 · · · q − 8 q − 6 c(q − 4)

q − 6 q − 4 q q − 4
. . .

...
...

...

q − 6 q − 8 q − 4 q
. . . q − 8 q − 6 c(q − 4)

...
...

. . .
. . .

. . . q − 4 q − 6 c(q − 4)
q − 6 q − 8 . . . q − 8 q − 4 q q − 2 c(q − 4)
q − 4 q − 6 . . . q − 6 q − 6 q − 2 q c(q − 2)

c(q − 2) c(q − 4) . . . c(q − 4) c(q − 4) c(q − 4) c(q − 2) q(p− r)


is a positive semidefinite matrix of order r + 2 and c =

√
p− r.

(iii) Let
(
Kp,q, P

−
2r+1

)
, p ≤ q and r ≥ 1, be a complete bipartite signed graph whose

negative edges induce a path on 2r + 1 vertices with both pendent vertices of the path
P2r+1 in Vq . Then the characteristic polynomial of

(
Kp,q, P

−
2r+1

)
is given as

ϕ
(
(Kp,q, P

−
2r+1

)
, x) = xp+q−2r−2ϕ

(
Z ′, x2

)
,
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where

Z ′ =



q q − 4 q − 8 q − 8 · · · q − 8 c(q − 4)
q − 4 q q − 4 q − 8 · · · q − 8 c(q − 4)

q − 8 q − 4 q q − 4
. . .

...
...

q − 8 q − 8 q − 4 q
. . . q − 8 c(q − 4)

...
...

. . .
. . .

. . . q − 4 c(q − 4)
q − 8 q − 8 . . . q − 8 q − 4 q c(q − 4)

c(q − 4) c(q − 4) . . . c(q − 4) c(q − 4) c(q − 4) q(p− r)


is a positive semidefnite matrix of order r + 1 and c =

√
p− r.

The next example gives the spectrum of a complete bipartite signed graph whose nega-
tive edges induce a path on 5 vertices.

Example 4.7. Let
(
Kp,q, P

−
5

)
, p ≤ q, be a complete bipartite signed graph whose negative

edges induce a path on 5 vertices with both pendent vertices of the path P5 in Vq . By
Theorem 4.6 (Part (iii)), the characteristic polynomial of

(
Kp,q, P

−
5

)
is given by

ϕ
(
(Kp,q, P

−
5

)
, x) = xp+q−6ϕ

 q q − 4 c(q − 4)
q − 4 q c(q − 4)

c(q − 4) c(q − 4) q(p− 2)

 , x2

 ,

where c =
√
p− 2. To determine the spectrum of (Kp,q, P

−
5 ), it is enough to consider the

matrix

Z ′ =

 q q − 4 c(q − 4)
q − 4 q c(q − 4)

c(q − 4) c(q − 4) q(p− 2)

 .

Clearly, 4 is an eigenvalue of the matriz Z ′ corresponding to an eigenvector (1,−1, 0)⊤.
To compute the other two eigenvalues of Z ′, we use the fact that the sum and product of
the eigenvalues of Z ′ are equal to the trace and determinant, respectively. Then, we obtain
the eigenvalues as

pq − 4±
√

p2q2 − 56pq + 128p+ 96q − 240

2
.

Thus, the spectrum of (Kp,q, P
−
5 ) is given as

Spec((Kp,q, P
−
5 )) =

(
µ1 µ2 2 0 −2 −µ2 −µ1

1 1 1 p+ q − 6 1 1 1

)
,

where

µ1, µ2 =

√
pq − 4±

√
p2q2 − 56pq + 128p+ 96q − 240

2
.

5 Eigenvalues of
(
Kp,q,H

−
r,n

)
The complete bipartite signed graph Γ whose negative edges induce a 1-regular graph of
different orders has been studied in [2]. In this section, we consider the complete bipartite
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signed graph
(
Kp,q, H

−
r,n

)
, p ≤ q, whose negative edges induce an r-regular subgraph

H (not necessarily connected) of order n. We find a relation between the eigenvalues of
this complete bipartite signed graph and the non-negative eigenvalues of H . The other
eigenvalues of

(
Kp,q, H

−
r,n

)
are also determined. We start with the following lemma.

Lemma 5.1. Let
(
Kk,k, H

−
r,2k

)
be a complete bipartite signed graph whose negative edges

induce an r-regular subgraph H of order 2k. If the eigenvalues of H are µ1 = r ≥ µ2 ≥
· · · ≥ µ2k = −r, then −2µi is an eigenvalue of

(
Kk,k, H

−
r,2k

)
for i = 2, . . . , 2k − 1.

Moreover, the other two eigenvalues of
(
Kk,k, H

−
r,2k

)
are k − 2r and −k + 2r.

Proof. Let A(H,−) = −A(H) be the adjacency matrix of (H,−). Therefore, with a
suitable labelling of the vertices of

(
Kk,k, H

−
r,2k

)
, we observe that

A
(
Kk,k, H

−
r,2k

)
=

(
Ok×k Ak×k

Ak×k Ok×k

)
= A(Kk,k)− 2A(H), (5.1)

where the (k − 2r)-regular symmetric matrix Ak×k is the spectral block of the adjacency
matrix of the signed graph

(
Kk,k, H

−
r,2k

)
. As the matrices A(Kk,k) and A(H) commute,

therefore they are simultaneously diagonalizable. Let {x1, x2, . . . , x2k} be an orthogonal
basis of R2k consisting of the eigenvectors of A(H) and A(Kk,k) with x1 = J2k×1 =
(1, . . . , 1)T ∈ R2k. Then, we have

(A(Kk,k)− 2A(H))x1 = (k − 2r)x1.

Thus, (k − 2r) is an eigenvalue of A(Kk,k) − 2A(H). To find the other eigenvalues of
A(Kk,k) − 2A(H), we use the facts that Spec(A(Kk,k) − 2A(H)) ⊆ Spec(A(Kk,k)) +
Spec(−2A(H)) and the spectrum of

(
Kk,k, H

−
r,2k

)
is symmetric with respect to origin.

Thus,
(A(Kk,k)− 2A(H))xi = −2µixi, i = 2, 3, . . . , 2k − 1

and
(A(Kk,k)− 2A(H))x2k = (−k + 2r)x2k.

This proves the result.

The eigenvalues of a complete bipartite signed graph whose negative edges induce a
regular graph H is completely determined by the non-negative eigenvalues of H and can
be seen in the following result.

Theorem 5.2. Let
(
Kp,q, H

−
r,2k

)
, p ≤ q, be a complete bipartite signed graph whose

negative edges induce an r-regular subgraph H of order 2k. Then the following statements
hold:

(i) η(
(
Kp,q, H

−
r,2k

)
) ≥ p+ q − 2k − 2.

(ii) If the first k largest non-negative eigenvalues of H are µ1 = r ≥ µ2 ≥ · · · ≥ µk ≥
0, then

(a) ± 2µi is an eigenvalue of
(
Kp,q, H

−
r,2k

)
, for i = 2, . . . , k when p+q ≥ 2k+2.

(b) ± 2µi is an eigenvalue of
(
Kp,q, H

−
r,2k

)
, for i = 2, . . . , k − 1 when p + q <

2k + 2.
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Moreover, the other four eigenvalues of
(
Kp,q, H

−
r,2k

)
are

±
√

pq + (k − 2r)2 − k2 ± θ

2
,

where

θ =
√

(pq + (k − 2r)2 − k2)2 − 4((k − 2r)2 + k(q − k)− k(q−2r)2

q )(q(p− k)).

Proof. Consider the matrix which is given in Equation (3.3)

Z1 =

(
Xr×sX

⊤
s×r + (q − s)Jr×r

√
p− r(Y + (q − s)Jr×1)√

p− r(Y + (q − s)Jr×1)
⊤ q(p− r)

)
, (5.2)

where Y is the column vector of the row sums of the spectral block Xr×s of the adjacency
matrix of the induced signed subgraph

(
Kk,k, H

−
r,2k

)
of

(
Kp,q, H

−
r,2k

)
which contains all

the negative edges. By Equation (5.1), it is easy to see that r = s = k, Xr×sX
⊤
s×r = A2

k×k

and Y = (k − 2r)Jk×1. Now, the matrix Z1 takes the form

Z1 =

(
A2

k×k + (q − k)Jk×k

√
p− k(q − 2r)Jk×1√

p− k(q − 2r)J⊤
1×k q(p− k)

)
.

The matrix A2
k×k is (k − 2r)2-regular and hence commutes with (q − k)Jk×k. Thus, it is

easy to see that (k−2r)2−k(q−k) is an eigenvalue of A2
k×k+(q−k)Jk×k corresponding

to an eigenvector Jk×1. Also, by Equation (5.1), Corollary 2.4 and Lemma 5.1, we have

(A2
k×k + (q − k)Jk×k)xi = 4µ2

ixi, i = 2, . . . , k,

where {x1, x2, . . . , xk} is an orthogonal basis of Rk with x1 = Jk×1 and µi is non-negative
eigenvalue of H . Define yi = [xi 0]⊤ ∈ Rk+1, i = 2, . . . , k. Then

Z1yi = 4µ2
i yi, i = 2, . . . , k.

Therefore, 4µ2
i , i = 2, . . . , k is an eigenvalue of Z1. Let α1 and α2 be the other two

eigenvalues of Z1. We have

α1 + α2 +

k∑
i=2

4µ2
i = tr(Z1) = k(q − 2r) + q(p− k)

and

(k − 2r)2 +

k∑
i=2

4µ2
i = tr(A2

k×k) = k(k − 2r).

This yields that
α1 + α2 = pq + (k − 2r)2 − k2. (5.3)

By the Schur complement formula, the determinant of a 2× 2 block matrix Z1 is given by∣∣∣∣ A2
k×k + (q − k)Jk×k

√
p− k(q − 2r)Jk×1√

p− k(q − 2r)J⊤
1×k q(p− k)

∣∣∣∣ = |q(p− k)| |M | ,
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where M = A2
k×k + (q − k)Jk×k − (q−2r)2

q Jk×k. Now, clearly the eigenvalues of the

matrix A2
k×k +(q− k)Jk×k − (q−2r)2

q Jk×k are (k− 2r)2 + k(q− k)− k(q−2r)2

q and 4µ2
i ,

i = 2, . . . , k, where µi is the non-negative eigenvalue of H . Thus, we have

α1α2 = ((k − 2r)2 + k(q − k)− k(q − 2r)2

q
)(q(p− k)). (5.4)

Equations (5.3) and (5.4) imply that

α1, α2 =
pq + (k − 2r)2 − k2 ± θ

2
,

where θ =
√

(pq + (k − 2r)2 − k2)2 − 4((k − 2r)2 + k(q − k)− k(q−2r)2

q )(q(p− k)).

Hence, by Equation (3.3), we have η(
(
Kp,q, H

−
r,2k

)
) ≥ p + q − 2k − 2 and with the fact

that ±α is an eigenvalue of
(
Kp,q, H

−
r,2k

)
whenever α2 is an eigenvalue of Z1, the proof

follows.

The eigenvalues of a complete bipartite signed graph whose positive edges induce a
regular graph H is completely determined by the non-negative eigenvalues of H as can be
seen in the following corollary.

Corollary 5.3. Let
(
Kp,q, H

+
r,2k

)
, p ≤ q, be a complete bipartite signed graph whose

positive edges induce an r-regular subgraph H of order 2k. Then the following statements
hold:

(i) η(
(
Kp,q, H

+
r,2k

)
) ≥ p+ q − 2k − 2.

(ii) If the first k largest non-negative eigenvalues of H are µ1 = r ≥ µ2 ≥ · · · ≥ µk ≥
0, then

(a) ± 2µi is an eigenvalue of
(
Kp,q, H

+
r,2k

)
, for i = 2, . . . , k when p+q ≥ 2k+2.

(b) ± 2µi is an eigenvalue of
(
Kp,q, H

+
r,2k

)
, for i = 2, . . . , k − 1 when p + q <

2k + 2.

Moreover, the other four eigenvalues of
(
Kp,q, H

+
r,2k

)
are

±
√

pq + (k − 2r)2 − k2 ± θ

2
,

where

θ =
√

(pq + (k − 2r)2 − k2)2 − 4((k − 2r)2 + k(q − k)− k(q−2r)2

q )(q(p− k)).

Finally, the necessary and sufficient condition for a complete bipartite signed graph
whose negative edges induce a regular graph to be nonsingular is given below.

Corollary 5.4. Let
(
Kp,q, H

−
r,2k

)
(resp.

(
Kp,q, H

+
r,2k

)
) be a complete bipartite signed

graph whose negative edges (resp. positive edges) induce an r-regular subgraph H of
order 2k. Then the signed graph

(
Kp,q, Hr,2k

)
is nonsingular if and only if the graph H is

nonsingular and p = q = k ̸= 2r or p = q = k + 1.
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Conclusion and future research work
In this paper, we obtained a lower bound for the nullity of a complete bipartite signed graph
and proved that

η((Kp,q, σ)) ≥ p+ q − 2k − 2, (5.5)

where k = min(r, s) and (Kp,q, σ)[Ur ∪ Vs], r ≤ p and s ≤ q, is an induced signed
subgraph on minimum r + s vertices, which contains all the negative edges of the signed
graph (Kp,q, σ). We showed that this lower bound is best possible for a complete bipartite
signed graph as shown in Figure 1. Therefore, the following becomes interesting.

Problem 1. To characterize all complete bipartite signed graphs for which the equality
holds in inequality (5.5).
Furthermore, we determine, (1) the spectrum of a complete bipartite signed graph whose
negative edges induce either disjoint complete bipartite subgraphs or a path, (2) the spec-
trum of a complete bipartite signed graph whose negative edges (positive edges) induce a
regular subgraph, along with a relation between the eigenvalues of this complete bipartite
signed graph and the non-negative eigenvalues of the regular subgraph. Thus, the following
becomes interesting.

Problem 2. To determine the spectrum of a complete bipartite signed graph whose negative
edges induce either co-regular graph, threshold graph, tree or k-cyclic graph.
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Abstract

We characterize all permutations which occur as the z-monodromies of faces in con-
nected simple finite graphs embedded in surfaces whose duals are also simple.

Keywords: Central circuit, chess coloring, embedded graph, zigzag, z-monodromy.

Math. Subj. Class. (2020): 05C38, 05C10

1 Introduction
Zigzags are closed walks in embedded graphs which generalize the concept of Petrie poly-
gons in regular polyhedra [2]. They were used in computer graphics [6] and in enumerating
all combinatorial possibilities for fullerenes in mathematical chemistry [1, 4]. Zigzags are
also closely related to Gauss code problem: if an embedded graph contains a single zigzag,
then this zigzag is a geometrical realization of a certain Gauss code (see [5, Section 17.7]
for the planar case and [3, 9] for the case when a graph is embedded in an arbitrary surface).
More results on zigzags can be found in [8, 10, 13, 15].

We will consider zigzags in connected simple finite graphs embedded in surfaces whose
duals are also simple. The latter condition guarantees that for any two consecutive edges
on a face there is a unique zigzag containing them. This property is the crucial tool in the
concept of z-monodromy. For a face F , the z-monodromy MF is a permutation on the set
of all oriented edges obtained by orienting each edge of F in the two possible ways. If e0, e
is a pair of consecutive edges in F , then MF (e) is the first oriented edge of F that occurs
in the zigzag containing e0, e after e.

Such z-monodromies were introduced in [12] and exploited to prove that any triangu-
lation of an arbitrary (not necessarily oriented) closed surface can be shredded to a triangu-
lation with a single zigzag. There are precisely 7 types of z-monodromies for triangle faces
and each of them is realized. The properties and some applications of z-monodromies of

E-mail address: adam.tyc@matman.uwm.edu.pl (Adam Tyc)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/
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triangle faces can be found in [11, 16]. See also [14] for a generalization of z-monodromies
on pairs of edges.

Faces of embedded graph under consideration contains at least three edges. We char-
acterize permutations that occur as z-monodromies of k-gonal faces for any k ≥ 3. More
precisely, a permutation σ on the set

[k]± = {1, . . . , k,−k, . . . ,−1}

occurs as the z-monodromy if and only if it satisfies the following conditions:

• if σ(i) = j, then σ(−j) = −i;

• σ(i) ̸= −i.

In the plane case, our construction is based on the chess coloring of 4-regular plane graphs.
For every permutation σ satisfying the above conditions there is a plane graph with a face
F whose z-monodromy is σ; furthermore, this graph contains a unbounded triangle face T
such that every zigzag passing through F does not pass through T . To extend the construc-
tion on the general case, we take any graph embedded in a surface with a triangle face and
replace this face by the above plane graph.

We consider the case when an embedded graph and its dual both are simple. In the
general case, zigzags cannot be reconstructed from pairs of consecutive edges. This shows
that the concept of z-monodromy cannot be generalized in a direct way.

2 Zigzags in embedded graphs
Let S be a connected closed 2-dimensional (not necessarily orientable) surface. Let Γ be
a 2-cell embedding of a connected finite graph in S, in other words, a map [7, Defini-
tion 1.3.6]. The difference S \ Γ is a disjoint union of open disks and the closures of these
disks are the faces. We say that a face is k-gonal if it contains precisely k edges. We will
always assume that the following condition is satisfied:

(SS) Γ and the dual map Γ∗ (see [7, p.52]) both are embeddings of simple graphs.

The fact that one of the graphs is simple does not implies that the same holds for the other
graph. For example, Γ∗ is not simple if Γ contains a vertex of degree 2 or two distinct faces
with intersection containing more than one edge. The condition (SS) implies that each face
in our graphs is k-gonal with k ≥ 3.

A zigzag in Γ is a sequence of edges {ei}i∈N satisfying the following conditions for
every i ∈ N:

• ei and ei+1 are distinct, they have a common vertex and belong to the same face,

• the faces containing ei, ei+1 and ei+1, ei+2 are distinct and the edges ei and ei+2 are
non-intersecting.

Since Γ is finite, there is a natural number n > 1 such that ei+n = ei for every natural
i. Thus, every zigzag will be represented as a cyclic sequence e1, . . . , en, where n is the
smallest number satisfying this condition.

Any zigzag is completely determined by every pair of consecutive edges contained in
this zigzag. Conversely, for every pair of distinct edges e, e′ which have a common vertex
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and belong to the same face there is a unique zigzag containing the sequence e, e′. This
property will be used in the next section.

If Z = {e1, . . . , en} is a zigzag, then the reversed sequence Z−1 = {en, . . . , e1} also
is a zigzag. A zigzag cannot contain a sequence e, e′, . . . , e′, e which implies that Z ̸= Z−1

for any zigzag Z. In other words, a zigzag cannot be self-reversed (see [12] for the proof
for triangulations; in our case the proof is similar).

Example 2.1. Consider the cube Q3 whose vertices are 1, . . . , 8, see Fig. 1.

1 2

4 3

5 6

8 7

Figure 1: The cube Q3

It contains precisely 4 zigzags up to reversing:

12, 23, 37, 78, 85, 51; 12, 26, 67, 78, 84, 41; 14, 43, 37, 76, 65, 51; 23, 34, 48, 85, 56, 62.

Let BPn be the n-gonal bipyramid, where 1, . . . , n are the consecutive vertices of the base
and the remaining two vertices are a, b.

3

2

1

a

b

.

Figure 2: The bipyramid BP3

If n = 3 (see Fig. 2), then it contains a single zigzag (up to reversing):

a1, 12, 2b, b3, 31, 1a, a2, 23, 3b, b1, 12, 2a, a3, 31, 1b, b2, 23, 3a.

The same holds for BPn if n is odd. If n is even, then BPn contains 2 or 4 zigzags up to
reversing.

Every zigzag in Γ induces in a natural way a zigzag in Γ∗ and vice versa.

Remark 2.2. Zigzags can be defined in maps of non-simple graphs [8]. In this case,
there are simple examples showing that a zigzag cannot be determined by any pair of its
consecutive edges.
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3 Main result
Let Γ be as in the previous section and let F be a k-gonal face of Γ. Denote by v0, . . . , vk−1

the consecutive vertices of F in a fixed orientation on the boundary of this face (it is possi-
ble that vi = vj if |i− j| ≥ 3). Consider the set of all oriented edges of F

Ω(F ) = {e1, . . . , ek,−ek, . . . ,−e1},

where ei = vi−1vi and −ei = vivi−1 are mutually reversed oriented edges of F (the
indices are taken modulo k); it is clear that Ω(F ) consists of 2k mutually distinct elements.
Let DF be the following permutation on Ω(F )

DF = (e1, e2, . . . , ek)(−ek, . . . ,−e2,−e1).

In other words, DF transfers every oriented edge of F to the next oriented edge in the
corresponding orientation on the boundary.

The z-monodromy of F is the mapping MF : Ω(F ) → Ω(F ) defined as follows. For
any e ∈ Ω(F ) we take e0 ∈ Ω(F ) such that DF (e0) = e. There is a unique zigzag, where
e0, e are consecutive edges. The first element of Ω(F ) contained in this zigzag after e0, e
is denoted by MF (e).

Remark 3.1. The z-monodromy is defined when (SS) is satisfied. This concept cannot be
carried out on the general case immediately.

Lemma 3.2. The following assertions are fulfilled:

(1) If MF (e) = e′ for some e, e′ ∈ Ω(F ), then MF (−e′) = −e.

(2) MF is bijective.

(3) MF (e) ̸= −e for every e ∈ Ω(F ).

Proof. (1). Let e ∈ Ω(F ). Consider e0 ∈ Ω(F ) satisfying DF (e0) = e. If Z is the zigzag
containing the pair e0, e, then

e′ = MF (e) and e′0 = DFMF (e)

are the next two elements of Ω(F ) in Z. Observe that DF (−e′0) = −e′. The reversed
zigzag Z−1 contains the sequence −e′0,−e′ and −e is the first element of Ω(F ) contained
in Z−1 after this pair. This means that MF (−e′) = −e.

(2). It is sufficient to show that MF is injective. Suppose that MF (e) = MF (e
′) = e′′.

By (1), we have −e = MF (−e′′) = −e′ which implies that e = e′.
(3). Let e and e0 be as in the proof of (1). If MF (e) = −e, then there is a zigzag Z

containing the sequences e0, e and −e,DF (−e). Since DF (−e) = −e0, Z passes through
both pairs e0, e and −e,−e0. This implies that Z = Z−1 which is impossible.

The set Ω(F ) is naturally identified with

[k]± = [k]+ ∪ [k]−

where
[k]+ = {1, . . . , k}, and [k]− = {−k, . . . ,−1}

(ei and −ei correspond to i and −i, respectively). Then, by Lemma 3.2, the z-monodromy
MF is a permutation σ of [k]± satisfying the following conditions:
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(M1) if σ(i) = j, then σ(−j) = −i;

(M2) σ(i) ̸= −i.

Our main result is the following.

Theorem 3.3. Let S be a connected closed 2-dimensional (not necessarily orientable)
surface and let k ≥ 3. Let also σ be a permutation of [k]± satisfying (M1) and (M2).
There is a connected finite graph Γ embedded in S and satisfying (SS) which contains a
k-gonal face F whose z-monodromy is σ.

In Section 4, we prove Theorem 3.3 for plane graphs (graphs embedded in a sphere).
Graphs on surfaces different from a sphere will be considered in Section 5.

4 The plane case
4.1 Preliminary

Let G be a 4-regular plane graph. The dual graph G∗ is bipartite and there exists a chess
coloring of faces of G in two colors b and w. For c ∈ {b, w} we take a vertex inside
every face of G assigned with the color c and join two such vertices by an edge if the
corresponding faces have a common vertex at theirs boundaries. The obtained plane graph
will be denoted by Rc(G). The graphs Rb(G) and Rw(G) are dual (see Fig. 3).

Figure 3: The chess coloring and the related graphs

Consider a plane graph Γ. The medial graph of Γ is the graph M(Γ) whose vertex set
is the edge set of Γ and two vertices of M(Γ) are joined by an edge if they have a common
vertex and belong to the same face in Γ. The graph M(Γ) is also plane. This graph is
4-regular and its face set is the union of the vertex set and the face set of Γ. Thus, M(Γ) is
chess colored. Let b be the color used to coloring the faces of M(Γ) corresponding to the
vertices of Γ. The remaining faces of M(Γ) (corresponding to the faces of Γ) are colored
in w. Then

Rb(M(Γ)) = Γ and Rw(M(Γ)) = Γ∗.

For example, the graph marked in black in Fig. 3 is the medial graph of the graphs marked
in red and blue.

A central circuit is a circuit in the medial graph which is obtained by starting with an
edge and continuing at each vertex by the edge opposite to the entering one [4, p.5]. We will
consider central circuits as cyclic sequences of vertices and distinguish each central circuit
from the reversed. If Γ and Γ∗ both are simple, then there is a one-to-one correspondence
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between zigzags in Γ and central circuits in M(Γ): a sequence formed by edges of Γ is a
zigzag if and only if this sequence is a central circuit in M(Γ). In Fig. 4. the part of the
zigzag is marked by the bold red line and the corresponding part of the central circuit is
marked by the bold black line.

Figure 4: A zigzag and the corresponding central circuit

4.2 Main construction

Let σ be a permutation on [k]± satisfying (M1) and (M2). We construct a 4-regular plane
graph G which is the medial graph of a plane graph, where σ occurs as the z-monodromy
of a face F (this plane graph contains a k-gonal face F such that σ is MF ).

Consider a circle C embedded in the plane. We take mutually distinct points p1, . . . , pk
from C such that these points occur along C in the clockwise order; these points will be the
edges of the mentioned above face F . Next, denote by C ′ a circle inside the part of the plane
bounded by C and take mutually distinct points a12, a23, . . . , a(k−1)k, ak1 occurring on C ′

in the clockwise order. Similarly, let C ′′ be a circle inside the part of the plane bounded
by C ′ and let r1, lk, r2, l1, . . . , rk, lk−1 be mutually distinct points that occur along C ′′ in
the clockwise order. For every aij we take two segments that intersect precisely in aij and
join pi with li and pj with rj , respectively. Note that all such segments intersect each of
C,C ′, C ′′ in precisely one point and the interiors of any two of these segments are disjoint
if they contain distinct points aij . Denote by Si the union of the segment joining ri with
pi, the arc of C between pi and pi+1 and the segment joining pi+1 with li+1 if i < k; for
i = k we replace every index i+ 1 by 1. See Fig. 5 for the case k = 6.

p1

p2

p3p4

p5

p6

a12

a61

a56

a45

a34

a23

l1

l2
l3

l4

l5
l6r1

r2

r3

r4
r5

r6

S1

S2

S3

S4

S5

S6

Figure 5: The beginning of construction for k = 6
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We will work with the relation ∼ on the set

O =

k⋃
i=1

{li, ri}

such that for any i, j ∈ [k]± satisfying σ(i) = j one of the following possibilities is
realized:

(1) li ∼ rj if i, j ∈ [k]+,

(2) r−i ∼ l−j if i, j ∈ [k]−,

(3) li ∼ l−j if i ∈ [k]+ and j ∈ [k]−,

(4) r−i ∼ rj if i ∈ [k]− and j ∈ [k]+.

The relation ∼ is irreflexive and symmetric. Indeed, if li ∼ li (the case (3)) or ri ∼ ri
(the case (4)), then we get σ(i) = −i which contradicts (M2). Thus, ∼ is irreflexive.
Now, we show that if li ∼ lj , then lj ∼ li (the remaining three cases are similar). If
li ∼ lj with i, j ∈ [k]+ (the case (3)), then σ(i) = −j and, by (M1), σ(j) = −i and
j ∈ [k]+,−i ∈ [k]−; i.e. lj ∼ li. Note that for each x ∈ O there is a unique x′ ∈ O such
that x ∼ x′.

If a pair of points from O is in the relation ∼, then we join them by a curve homeo-
morphic to the segment [0, 1] inside the part of the plane bounded by C ′′. The following
conditions must be satisfied:

• the curves have no more than finitely many intersections and self-intersections,
• for every such intersection point either there are precisely two distinct curves passing

once through this point or there is a single curve passing twice through it,
• all intersections are transversal.

Let L1, . . . , Lk be the curves described above (we take an arbitrary numeration that does
not depend on the endpoints from O).

Note that each of l1, r1, . . . , lk, rk is a common point of a unique Si and a unique Lj .
Thus, we obtain a family C of closed curves

Si1 ∪ Li1 ∪ Si2 ∪ Li2 ∪ . . .

such that every Si and Lj is contained in precisely one of these curves. Let V be the set of
all intersection and self-intersection points of curves from C. In particular, all pi and all aij
belong to V .

Example 4.1. Let k = 6 and

σ = (1,−6,−4, 2)(3,−5)(5,−3)(−2, 4, 6,−1).

The relation ∼ on the set O = {l1. . . . , l6, r1, . . . , r6} is as follows

l1 ∼ l6, r6 ∼ l4, r4 ∼ r2, l2 ∼ r1, l3 ∼ l5, r5 ∼ r3.

One of suitable connections between points from O is presented in Fig. 6.
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Figure 6: A suitable connection between points of O

In this case, C consists of precisely 3 closed curves with 17 intersection points, i.e. |V | =
17.

Let G = G(C) be the graph whose vertex set is V and two vertices are joined by an
edge if they are two consecutive points on one of curves from C. In fact, we consider G as
a graph whose vertices are points on the plane and edges are parts of curves from C joining
these points. It is easy to see that G is a 4-regular and the curves from C correspond to pairs
of mutually reversed central circuits from G. We make the chess coloring of G and split
the set of its faces into the two sets corresponding to the colors. Let b be the color of faces
whose boundaries are cycles with vertices pi, pj , aij ; as above, w is the other color.

As in Subsection 4.1, we obtain the dual graphs Rb(G) and Rw(G). These graphs are
not necessarily simple; they may contain the following fragments:

(A) loops,

(B) multiple edges,

(C) edges that belong to the boundary of one face only (in particular, edges with vertices
of degree 1),

(D) pairs of faces whose intersection of boundaries contains more than one edge.

If one of the cases (A) or (B) occurs in one of the graphs Rb(G),Rw(G), then the case (C)
or (D), respectively, occurs in the dual graph.

Example 4.2. Let C be as in Example 4.1. The graphs Rb(G) and Rw(G) are presented
in Fig. 7a and Fig. 7b, respectively.



A. Tyc: On z-monodromies in embedded graphs 757

p1

p2

p3p4

p5

p6

a12

a61

a56

a45

a34

a23

l1

l2l3

l4

l5
l6r1
r2

r3

r4
r5

r6

p1

p2

p3p4

p5

p6

a12

a61

a56

a45

a34

a23

l1

l2
l3

l4

l5
l6r1

r2

r3

r4

r5

r6

(a) (b)

Figure 7: The dual graphs Rb(G) and Rw(G)

The graph Rb(G) contains a pair of faces with two common edges (the case (D)) which
corresponds to a double edge in Rw(G) (the case (B)).

Now, we show how modify the graph G such that the connections between the points
from O induced by the relation ∼ do not change and the graphs Rb(G),Rw(G) become
simple.

Suppose that e is an edge joining the vertices v′ and v′′ in Rb(G) or Rw(G) (both the
cases are similar). We consider separately the cases v′ ̸= v′′ and v′ = v′′ (see Fig. 8a
and 8b, respectively). If v′ ̸= v′′, then we consider the following edges in the same graph
(Rb(G) or Rw(G)):

• e′+ and e′− which occur directly after e in the clockwise and the anticlockwise order
on edges incident to v′, respectively;

• e′′+ and e′′− which occur directly after e in the clockwise and the anticlockwise order
on edges incident to v′′, respectively.

If v′ = v′′, then we exclude the case when the loop e is the boundary of a face (this case
will be considered separately). The edge e splits the plane into two parts and we consider
the following edges:

• e′+ and e′− are the edges contained in one of these parts which occur directly after e
in the clockwise and the anticlockwise order on edges incident to v′, respectively;

• e′′+ and e′′− are the edges contained in the other part of the plane which occur directly
after e in the clockwise and the anticlockwise order on edges incident to v′′, respectively.

There are precisely two parts of central circuits in G (up to reversing) that pass through e
(since e, e′δ, e

′′
δ are vertices of G, where δ ∈ {+,−}):

. . . , e′+, e, e
′′
+, . . . and . . . , e′−, e, e

′′
−, . . .

which are marked in blue and red in Fig. 8.
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Figure 8: Parts of central circuits

For each of these cases we replace e by the graphs presented in Fig. 9a and Fig. 9b,
respectively.

v′ v′′

e′+ e′′−

e′− e′′+ e′−

e′+

e′′+

e′′−

v′

(a) (b)

Figure 9: Two types of expansion

This operation will be called the expansion of e. It replaces the edge e by an intersecting
trail Eδ , δ ∈ {+,−}, joining e′δ and e′′δ . So, the mentioned above parts of central circuits
will be replaced by

. . . , e′+, E+, e
′′
+, . . . and . . . , e′−, E−, e

′′
−, . . . ,

respectively (they are marked in blue and red in Fig. 9). Thus, central circuits do not
change in a significant way.

Remark 4.3. We can obtain the same result using other pairs of graphs instead of the
graphs from Fig. 9. This pair is the first which we found.

Now, we explain how transform Rb(G),Rw(G) to simple graphs if at least one of the
possibilities (A)–(D) occurs. Without loss of generality we can consider Rb(G). Further-
more, we restrict ourselves to the cases (A) and (B) (since (C) and (D) correspond to (A)
and (B), respectively, in the dual graph). The case (A) will be decomposed in two subcases.

(A1). Suppose that Rb(G) contains a face whose boundary is a loop. The correspond-
ing parts of mutually reversed central circuits from G are also loops. The loops can be
removed from these graphs without changing the central circuits in a significant way (see
Fig. 10).
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Figure 10: Removing a loop

(A2). If e is a loop in Rb(G) which is not a boundary of a face, then we use the
expansion to e.

(B). If two distinct vertices are connected by m ≥ 2 edges, then we expand any m− 1
of them.

Example 4.4. Since Rw(G) from Example 4.2 contains two edges connecting the same
pair of vertices (the case (C)), we expand one of these edges, see Fig. 11.

Figure 11: The expansion of an edge in Rw(G)

This simultaneously modify Rb(G) and we obtain a graph without the possibility (A), see
Fig. 12.

Figure 12: The corresponding modification of Rb(G)

So, we can simultaneously transform Rb(G) and Rw(G) to simple graphs such that
the relation ∼ on elements of O is not changed. In particular, we come to a new (4-
regular plane) graph G and assert that Rb(G) contains a face for which σ occurs as the
z-monodromy of one of faces.
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Recall that C is a cycle in G with the vertices p1, . . . , pk and it is the boundary of the
outer face of G. This face has a common edge only with faces whose boundaries contain
the vertices pi, pj , aij . By the definition of Rb(G), we have the following:

• every face with the boundary containing pi, pj , aij in G is a vertex in Rb(G) which
we denote by vij ;

• the face bounded by C in G is a face in Rb(G) which will be denoted by F ;
• every pi corresponds to an edge of F .

Consider the oriented edges ej = vijvjl and −ej = vjlvij in Rb(G), where i, j, l are
three consecutive elements in the cyclic sequence 1, . . . , k. The pair of mutually reversed
oriented edges ej ,−ej corresponds to the vertex pj in G. Thus,

Ω(F ) = {e1, . . . , ek,−ek, . . . ,−e1}.

Let e0, e ∈ Ω(F ) be such that DF (e0) = e. There is a unique zigzag Z in Rb(G) contain-
ing the pair e0, e. The element e′ which occurs in Z directly after this pair does not belong
to Ω(F ). The edges e0, e, e′ are three consecutive vertices in the central circuit in G corre-
sponding to Z such that e0, e are two consecutive vertices from the cycle C and e′ is one
of elements aij . Let x be the first element from O such that the central circuit containing
e0, e, e

′ passes through x (as a curve on the plane) directly after this triple (x is a point on
the plane, but not a vertex of the graph). There is a unique x′ ∈ O such that x ∼ x′ and
the central circuit passes through x′. Since there is no elements of Ω(F ) between x and x′

in the central circuit, the first element of Ω(F ) that occurs after x′ corresponds to MF (e).
Therefore, σ occurs as MF .

Example 4.5. Let F be the outer face of Rb(G) from Example 4.4 and let ei be the oriented
edge of F corresponding to pi whose direction is defined by the clockwise orientation on
the boundary of F (see Fig. 13).

e1

e2

e3e4

e5

e6

Figure 13: The new graph Rb(G)

A direct verification shows that

MF = (e1,−e6,−e4, e2)(e3,−e5)(e5,−e3)(−e2, e4, e6,−e1),

i.e. the permutation

σ = (1,−6,−4, 2)(3,−5)(5,−3)(−2, 4, 6,−1)

from Example 4.1 occurs as MF in Rb(G).
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5 The non-plane case
In this section, we consider an arbitrary connected closed 2-dimensional (not necessarily
orientable) surface S different from a sphere. We show that any permutation σ on [k]±
satisfying (M1) and (M2) occurs as the z-monodromy of k-gonal face in a graph embedded
in S. Let Γ be a graph embedded in a sphere (a plane graph) such that σ occurs as the
z-monodromy of a face F of Γ. We assume that Γ = Rb(G), where G is the 4-regular
graph from Section 4.

Let e be an edge in G. It is contained in the boundaries of precisely two faces F1, F2

in G. We assume that F1 and F2 correspond to a face distinct from F and a vertex of Γ,
respectively. Let us take three circles B1, B2, B3 that intersect like the Borromean rings.
Consider the graph G′ obtained from G by adding B1, B2, B3 as in Fig. 14.

B2

B1 B3

e

F1

F2

Figure 14: Constructing of G′

It must be pointed out that the circles B1, B2, B3 do not intersect the remaining edges of G.
The graph G′ is 4-regular and Rb(G

′) is obtained from Γ = Rb(G) by adding the graph G̃
marked in red in Fig. 15 to the vertex v corresponding to the face F2.

B2

B1 B3

e

v

T

F1

F2

Figure 15: The graph G̃

It is clear that Rb(G
′) and Rw(G

′) are simple. Denote by T the face of G̃ which is con-
tained in F2 and does not contain v. Note that B1, B2, B3 induce central circuits of G′.
Each zigzag of Rb(G

′) passing through T corresponds to one of Bi. Observe that F is the
face of Rb(G

′) and the zigzags corresponding to B1, B2, B3 do not contain edges of this
face. This means that the z-monodromy of F in Rb(G

′) is also σ.
Consider any graph Γ′ embedded in S that contains a triangle face T ′. We take the

connected sum of the sphere containing Rb(G
′) and S by removing the interiors of faces
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T and T ′ and identifying theirs boundaries by a homeomorphism that sends vertices to
vertices. We come to a new graph embedded in S containing F as a face. Since every
zigzag of Rb(G

′) containing an edge of F does not pass through any edge of T , the z-
monodromy of F in the new graph is the same as in Rb(G

′) and, consequently, as in
Rb(G).
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Abstract

Let G be a simple graph with associated diagonal matrix of vertex degrees D(G), ad-
jacency matrix A(G), Laplacian matrix L(G) and signless Laplacian matrix Q(G). Re-
cently, Nikiforov proposed the family of matrices Aα(G) defined for any real α ∈ [0, 1]
as Aα(G) := αD(G) + (1 − α)A(G), and also mentioned that the matrices Aα(G) can
underpin a unified theory of A(G) and Q(G). Inspired from the above definition, we in-
troduce the Bα-matrix of G, Bα(G) := αA(G) + (1 − α)L(G) for α ∈ [0, 1]. Note
that L(G) = B0(G), D(G) = 2B 1

2
(G), Q(G) = 3B 2

3
(G), A(G) = B1(G). In this arti-

cle, we study several spectral properties of Bα-matrices to unify the theories of adjacency,
Laplacian, and signless Laplacian matrices of graphs. In particular, we prove that each
eigenvalue of Bα(G) is continuous on α. Using this, we characterize positive semidef-
inite Bα-matrices in terms of α. As a consequence, we provide an upper bound of the
independence number of G. Besides, we establish some bounds for the largest and the
smallest eigenvalues of Bα(G). As a result, we obtain a bound for the chromatic number
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of G and deduce several known results. In addition, we present a Sachs-type result for the
characteristic polynomial of a Bα-matrix.

Keywords: Adjacency matrix, Laplacian matrix, signless Laplacian matrix, convex combination, Bα-
matrix, Aα-matrix, chromatic number, independence number.

Math. Subj. Class. (2020): Primary: 05C50, 05C22; Secondary: 05C35.

1 Introduction
Throughout this article, we consider G to be a simple undirected graph with vertex set
V (G) = {v1, v2, . . . , vn} and edge set E(G). The adjacency matrix of G is a symmetric
n × n matrix A(G) whose (i, j)-th entry is 1 if vi and vj are adjacent, 0 otherwise. The
degree matrix of G is a diagonal matrix D(G) whose ith diagonal entry is the degree
of the vertex vi. The Laplacian and the signless Laplacian matrix of G are the matrices,
L(G) := D(G)−A(G) and Q(G) := D(G)+A(G), respectively. If graph G is clear from
the context, we simply write A,L, and D instead of A(G), L(G), and D(G), respectively.
Adjacency, Laplacian, and signless Laplacian matrices are some of the matrices associated
with a graph which are widely studied in the literature [8, 14, 28, 18, 13, 27, 7, 9, 10]. It can
be seen that many of the spectral properties of such matrices are quite different from each
other. We will thus analyze the spectral properties of the convex combinations of A(G)
and L(G) in order to understand how uniformly the spectral behavior transforms from one
matrix to another.

Definition 1.1. For α ∈ [0, 1] the Bα-matrix of G is the convex linear combination
Bα(G) := αA(G)+ (1−α)L(G) (or simply Bα = αA+(1−α)L, if G is clear from the
context).

Remark 1.2. Note that L(G) = B0(G), D(G) = 2B 1
2
(G), Q(G) = 3B 2

3
(G), A(G) =

B1(G).

It is clear that the spectral properties of B1/2(G) and B2/3(G) are equivalent to the
spectral properties of D(G) and Q(G), respectively. In fact, A(G), L(G), Q(G), and D(G)
can be considered as the Bα-matrix of G up to proportionality. Therefore, on the one hand,
the spectral properties of Bα(G) may reveal the common connection among the spectral
properties of all such well-known matrices. On the other hand, Bα(G) may analyze the
structural and combinatorial properties of the graph G in a better way.

Recently, Nikiforov [23] introduced a family of matrices, known as Aα-matrix, which is
a convex combination of A(G) and D(G). The theory of Aα-matrices merges the theories
of the adjacency matrix and signless Laplacian matrix of graphs. Later on, much work has
been done on these matrices. We have results on the spectral radius ([1, 5, 15, 20]), the sec-
ond largest eigenvalue [4], the k-th largest eigenvalue [20], the least eigenvalue ([21, 11]),
the multiplicity of the eigenvalues ([3, 25]), positive semidefiniteness [24], the characteris-
tic polynomial [22], spectral determination of graphs [19], etc. Motivated by Nikiforov’s
work, we consider Bα-matrices and study their spectral properties. However, unlike Aα-
matrices, Bα-matrices are not always non-negative, but they obey Perron-Frobenius type

E-mail addresses: aniruddha.sam@gmail.com (Aniruddha Samanta), dpmmehra@gmail.com (Deepshikha),
kinkardas2003@gmail.com (Kinkar Chandra Das)
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results. In this article, we develop the theory of Bα-matrices to unify the theory of adja-
cency matrix, Laplacian matrix, and signless Laplacian matrix.

The paper is organized as follows. In Section 2, we list some previously known results.
Section 3 discusses the positive semidefiniteness of Bα-matrices. As a consequence, we
obtain an upper bound for the independence number. Then we present some bounds of
eigenvalues of Bα(G) in terms of maximum degree and minimum degree, chromatic num-
ber, etc., in Section 4. Besides, we obtain a lower bound for chromatic number and derive
several known results as consequences. Finally, we study the determinant and a Sachs-type
result for the characteristic polynomial of Bα(G) in Section 5.

2 Preliminaries
Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). If
two vertices vi and vj are adjacent, we write vi ∼ vj , and vivj denotes the edge between
them. The degree of a vertex vi is the number of edges adjacent to vi and is denoted by
dG(vi) or simply d(vi) or di. The minimum degree and the maximum degree of graph G
are denoted by δ(G) (or simply δ) and ∆(G) (or simply ∆), respectively. The complement
of a graph G is the graph G with vertex set V (G) and two vertices in G are adjacent if and
only if they are non-adjacent in G. The 0−1 incidence matrix of a graph G with n vertices
{v1, v2, . . . , vn} and m edges {e1, e2, . . . , em} is an n×m matrix M whose (i, j)-th entry
is 1 if the vertex vi is incident on the edge ej and 0 otherwise.

The line graph of a graph G is the graph Gℓ with vertex set E(G) and two vertices ei
and ej in Gℓ are adjacent if the edges ei and ej have a common vertex in the graph G. The
identity matrix of order n is denoted by In (or simply I). An a × b matrix whose entries
are all ones is denoted by Ja,b (or simply J when the order is clearly understood). The
transpose of a matrix M is denoted by M t.

Lemma 2.1 ([2, Lemma 6.16]). Let G be a graph with line graph Gℓ. If M is the 0 − 1
incidence matrix of G, then M tM = A(Gℓ) + 2I . Moreover, if G is k-regular, then
MM t = A(G) + kI .

Since the eigenvalues of any n×n symmetric matrix S are real, we denote and ordered
the eigenvalues of S as follows:

λmax(S) = λ1(S) ≥ λ2(S) ≥ · · · ≥ λn(S) = λmin(S). (2.1)

For a graph G, sometimes we denote and arrange the eigenvalues of A(G), L(G) and
Q(G) as ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G), µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) and q1(G) ≥
q2(G) ≥ · · · ≥ qn(G), respectively. Next, we present the well known Weyl Theorem.

Theorem 2.2 ([17, Theorem 4.3.1]). If S1 and S2 are two Hermitian matrices of order n
and their eigenvalues are ordered as in (2.1). Then

λn+1−i(S1 + S2) ≤ λn+1−i−j(S1) + λj+1(S2), i = 1, 2, . . . , n; j = 0, 1, . . . , n− i.

Corollary 2.3. If S1 and S2 are two Hermitian matrices of order n and their eigenvalues
are ordered as in (2.1). Then

λn(S1) + λ1(S2) ≤ λ1(S1 + S2) ≤ λ1(S1) + λ1(S2).
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Let us recall the following upper bound of the largest eigenvalue of a Laplacian matrix.

Theorem 2.4 ([6]). Let G be a graph with the largest Laplacian eigenvalue µ1(G). Then

µ1(G) ≤ max
vivj∈E(G)

(di + dj).

Let S =

(
S11 S12

S21 S22

)
be a 2 × 2 block matrix, where S11 and S22 are square

matrices. If S11 is nonsingular, then the Schur complement of S11 in S is defined to be the
following matrix

S22 − S21S
−1
11 S12. (2.2)

Similarly, if S22 is nonsingular, then the Schur complement of S22 in S is S11 −
S12S

−1
22 S21. Let us recall the Schur complement formula for the determinant.

Theorem 2.5 ([2]). Let S =

(
S11 S12

S21 S22

)
be a 2× 2 block matrix, where S11 and S22

are square matrices and S11 is nonsingular. Then

detS = (detS11) det(S22 − S21S
−1
11 S12).

A matrix is irreducible if it is not similar via a permutation to a block upper triangular
matrix (that has more than one block of positive size). Note that the adjacency matrix of
a connected graph is always irreducible. Let S = (sij)n×m be a matrix, then we denote
|S| := (|sij |)n×m.

Theorem 2.6 ([17, Theorem 6.2.24]). A square matrix S of order n is irreducible if and
only if (I + |S|)n−1 > 0, entry-wise.

Theorem 2.7 ([17, Corollary 6.2.27]). Let S be an irreducibly diagonally dominant matrix
of order n. If S is Hermitian and every main diagonal entry is positive, then S is positive
definite.

3 Positive semidefiniteness of Bα(G)

Let G be a graph with Bα-matrix Bα(G) := αA(G) + (1 − α)L(G). In this section
we determine the values of α for which the matrix Bα(G) is positive semidefinite. As a
consequence, we give an upper bound of the independence number. Results obtained in
this section will be useful in the later sections.

For simplicity, we use the notation Bα, A, L, and D instead of Bα(G), A(G), L(G),
and D(G), respectively, when G is clear from the context. Some equivalent forms of Bα

in terms of A, L, and D are as follows:

Bα = αA+ (1− α)L

= (2α− 1)A+ (1− α)D

= (1− 2α)L+ αD.

Given two real matrices S = (sij)m×n and M = (mij)m×n, we use the notation
S ≥ M if and only if sij ≥ mij for all i, j. For any connected graph G with n vertices and
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α (̸= 1
2 ) ∈ [0, 1], we have

(I + |Bα|)n−1 = (I + |(2α− 1)A+ (1− α)D|)n−1

= (I + |2α− 1|A+ (1− α)D)n−1

≥ I + |2α− 1|A+ · · ·+ |2α− 1|n−1An−1. (3.1)

Since G is connected, any two vertices vi and vj are joined by a path with length k ≤ n−1.
Therefore (i, j)-th entry of Ak, which counts the number of walks of length k connecting
vi and vj , is positive. Hence, from (3.1), (I + |Bα|)n−1 ≥ I + |2α − 1|A + · · · + |2α −
1|n−1An−1 > 0. Thus, by Theorem 2.6, Bα is irreducible for α (̸= 1

2 ) ∈ [0, 1].
We begin the section with the following basic property of Bα(G).

Proposition 3.1. For any α ∈ [0, 1], eigenvalues of Bα(G) are real numbers.

Proof. Since A(G) and L(G) are symmetric matrices, so Bα(G) = αA(G)+(1−α)L(G)
is also a symmetric matrix. Hence, all the eigenvalues of Bα are real numbers for any
α ∈ [0, 1].

For a graph G, let λ1(Bα) ≥ · · · ≥ λn(Bα) be the eigenvalues of Bα(G). In the
following theorem, we prove that λk(Bα) is uniformly continuous for α ∈ [0, 1].

Theorem 3.2. Let Bα be the Bα-matrix of a graph G with n vertices. Then, for k ∈
{1, 2, . . . , n}, the mapping fG : [0, 1] → R defined as fG(α) = λk(Bα) is a uniformly
continuous function.

Proof. Let L and D be the Laplacian and the degree matrix of G, respectively. Then,
for any α, β ∈ [0, 1], we have Bα − Bβ = 2(β − α)L + (α − β)D. Then, for any
i ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , n− i}, using Theorem 2.2, we obtain

λn+1−i(Bα) = λn+1−i(Bα +Bβ −Bβ)

≤ λn+1−i−j(Bα +Bβ) + λj+1(−Bβ)

= λn+1−i−j(Bα +Bβ)− λn−j(Bβ).

Thus, for any i ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , n− i},

λn+1−i(Bα) + λn−j(Bβ) ≤ λn+1−i−j(Bα +Bβ) for all α, β ∈ [0, 1]. (3.2)

Assume that α ≤ β. By using (3.2) and Corollary 2.3, we compute

λk(Bα)− λk(Bβ) = λn+1−k(−Bβ) + λn−(n−k)(Bα)

≤ λn+1−k−(n−k)(−Bβ +Bα)

= λ1(Bα −Bβ)

≤ λ1(2(β − α)L) + λ1((α− β)D)

= 2(β − α)λ1(L) + (α− β)λn(D)

≤ |α− β|(2λ1(L) + λ1(D)).
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Also, by using (3.2) and Corollary 2.3, we obtain

λk(Bβ)− λk(Bα) ≤ λ1(Bβ −Bα)

≤ λ1(2(α− β)L) + λ1((β − α)D)

= 2(α− β)λn(L) + (β − α)λ1(D)

≤ |α− β|(2λ1(L) + λ1(D)).

Thus, |λk(Bβ)−λk(Bα)| ≤ |α−β|(2λ1(L)+λ1(D)). Hence, the mapping fG is uniformly
continuous.

Note that for a graph G (with at least an edge) on n vertices, λn(B 1
2
) = 1

2λn(D) ≥ 0

and λn(B1) = λn(A) ≤ 0. By Theorem 3.2, λn(Bα) is continuous, so there exists a
β ∈ (0, 1) such that λn(Bβ) = 0. Therefore, for a graph G (with at least an edge) on n
vertices, we define βo(G) := max{β ∈ (0, 1) : λn(Bβ) = 0}. It is simply denoted by βo

if the graph G is understood from the context.

Theorem 3.3. If G is a connected graph with n (> 1) vertices, then Bα is positive definite
for α ∈ (0, 2

3 ).

Proof. First we assume that 0 < α ≤ 1
2 . Since G is connected and λn(Bα) = −λ1(−Bα),

by Corollary 2.3, we obtain

λn(Bα) = λn((1− 2α)L+ αD)

≥ (1− 2α)λn(L) + αλn(D)

= αλn(D) > 0.

Thus, Bα is positive definite for α ∈ (0, 1
2 ].

Next we assume that 1
2 < α < 2

3 . Then 0 < 2α − 1 < 1 − α. Now Bα = (2α − 1)A +
(1− α)D. Let (Bα)ij be the (i, j)-th entry of Bα. Then, for i ∈ {1, 2, . . . , n}, we have

|(Bα)ii| = |(1− α) di| = (1− α) di > (2α− 1) di = |2α− 1| di =
n∑

j=1, j ̸=i

|(Bα)ij |.

Thus, Bα is strictly diagonally dominant with positive diagonal entries. Also, Bα is irre-
ducible. Therefore, by Theorem 2.7, Bα is positive definite for α ∈ ( 12 ,

2
3 ).

Corollary 3.4. If G is a graph with no isolated vertices, then Bα is positive definite for
α ∈ (0, 2

3 ).

Next corollary gives a lower bound of βo(G). For simplicity, we use βo instead of
βo(G).

Corollary 3.5. If G is a graph with no isolated vertices, then βo ≥ 2
3 .

Proof. By Theorem 3.2, fG(α) := λn(Bα) is continuous. By Corollary 3.4, λn(Bα) > 0
for α ∈ (0, 2

3 ). Also, λn(B1) < 0. Therefore, βo ≥ 2
3 .

Theorem 3.6. Let G be a graph with no isolated vertices. Then Bα is positive semidefinite
if and only if α ∈ [0, βo].
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Proof. Let G be a graph with n vertices {v1, v2, . . . , vn}. Set βo := βo(G). Suppose
α ∈ [0, βo]. For α ∈ (0, 2

3 ), by Corollary 3.4, Bα is positive definite. Assume that
2
3 ≤ α ≤ βo. Then −α ≥ −βo, that is, α (2βo − 1) ≥ βo (2α − 1) which implies

α
2α−1 ≥ βo

2βo−1 . Note that for any x = (x1, x2, . . . , xn)
t ∈ Rn, we obtain

xt Bα x = xt αD x+ xt (1− 2α)Lx

= α

n∑
i=1

di x
2
i + (1− 2α)

∑
vjvi∈E(G)

(xi − xj)
2. (3.3)

Then, for any x = (x1, x2, . . . , xn)
t ∈ Rn and using (3.3), we obtain

0 ≤ xtBβo
x = βo

n∑
i=1

di x
2
i + (1− 2βo)

∑
vjvi∈E(G)

(xi − xj)
2

which implies ∑
vjvi∈E(G)

(xi − xj)
2 ≤ βo

2βo − 1

n∑
i=1

di x
2
i ≤ α

2α− 1

n∑
i=1

di x
2
i .

Thus,

xtBαx = α

n∑
i=1

di x
2
i + (1− 2α)

∑
vjvi∈E(G)

(xi − xj)
2 ≥ 0 for any x ∈ Rn.

Hence,
λn(Bα) = min{xtBαx : x ∈ Rn, ∥x∥ = 1} ≥ 0.

Therefore, Bα is positive semidefinite for all α ∈ [0, βo].

To prove the converse, it is enough to prove that if α ∈ (βo, 1], then Bα is not positive
semidefinite. Suppose there exists an α ∈ (βo, 1] such that λn(Bα) ≥ 0. By Theorem 3.2,
the function fG(α) := λn(Bα) is continuous and λn(B1) < 0, so there exist a β ∈ [α, 1)
such that λn(Bβ) = 0. This contradicts that βo is the largest number in (0, 1) for which
λn(Bβo) = 0. Hence, λn(Bα) < 0 for all α ∈ (βo, 1].

A symmetric matrix M is called indefinite if there exist two nonzero vectors x and y
such that yTMy > 0 > xTMx, where xT denotes the transpose of x.

Corollary 3.7. For a graph G with no isolated vertices, Bα is indefinite if and only if
α ∈ (βo, 1].

Proof. First we assume that Bα is indefinite. Set βo := βo(G). Then λ1(Bα) > 0 and
λn(Bα) < 0. Thus, α ∈ (βo, 1].

Conversely, suppose α ∈ (βo, 1]. Then λn(Bα) < 0. Also, α > βo > 1
2 . Hence, by

Corollary 2.3, we have

λ1(Bα) = λ1((2α− 1)A+ (1− α)D)

≥ λ1((2α− 1)A) + λn((1− α)D)

= (2α− 1)λ1(A) + (1− α)λn(D)

> 0.

Hence, Bα is indefinite.
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In the next theorem, we find βo for regular graphs.

Theorem 3.8. If G is an r-regular graph with smallest adjacency eigenvalue ρn(G). Then

βo(G) =
r − ρn(G)

r − 2ρn(G)
.

Proof. Set βo := βo(G). Then

0 = λn(Bβo) = λn

(
(2βo − 1)A+ (1− βo)D

)
= λn

(
(2βo − 1)A+ (1− βo)rI

)
= (2βo − 1)λn(A) + (1− βo)r.

This gives βo =
r − λn(A)

r − 2λn(A)
.

Let us recall the following Hoffman bound of independence number α(G) of an r-
regular graph G with n vertices in terms of ρn(G).

α(G) ≤ − ρn(G)

r − ρn(G)
n.

In light of the above result, we obtain a close relation between the independence number
α(G) of a regular graph G and βo(G).

Proposition 3.9. Let G be an r-regular graph of n vertices with independence number
α(G) and βo := βo(G). Then

α(G) ≤ n

(
1− βo

βo

)
.

4 On eigenvalues
The spectral radius of a matrix is the maximum value among the absolute values of all
eigenvalues of that matrix. For any Bα-matrix, we first show a partial Perron-Frobenius
type result (that is, λ1(Bα) is the spectral radius of Bα). Then we compute the eigenvalues
of Bα(G) for complete graph and complete bipartite graph. Thereafter, we obtain some
lower and upper bounds on the largest eigenvalue of Bα(G) of graph G in terms of ∆ and
δ. As a consequence, we deduce some known results. In addition, we establish an upper
bound on the smallest eigenvalue of Bα(G) in terms of the chromatic number. Finally, we
derive a bound on the chromatic number in terms of βo(G).

It is to be observed that Bα-matrices are not always non-negative. Therefore, Perron-
Frobenius Theorem is not directly applicable. However, we can still conclude that the
spectral radius of a Bα-matrix is the same as its largest eigenvalue.

Theorem 4.1. For any α ∈ [0, 1], the spectral radius of Bα of a connected graph G is
λ1(Bα).

Proof. For α ∈ [0, 1
2 ], Bα is positive semidefinite by Theorem 3.3. Hence, λ1(Bα) is the

spectral radius of Bα. Let α ∈ ( 12 , 1]. Then 2α−1 > 0 and hence Bα = (2α−1)A+(1−
α)D is a non-negative matrix. Also, Bα is irreducible. Therefore, by Perron-Frobenius
Theorem, λ1(Bα) is the spectral radius of Bα.
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4.1 The spectrum of Bα-matrix for complete and complete bipartite graphs

In this subsection, we determine the eigenvalues of Bα-matrices of the complete graph and
the complete bipartite graph.

Proposition 4.2. If G is a complete graph with n vertices, then eigenvalues of Bα(G) are
(1− α)n− α with multiplicity n− 1 and (n− 1)α with multiplicity 1.

A complete bipartite graph with vertex partition size a and b is denoted by Ka,b. Since
the eigenvalues of the adjacency matrix of a complete bipartite graph are known, so we
compute the eigenvalues of Bα(Ka,b) for α ∈ [0, 1).

Proposition 4.3. For α ∈ [0, 1), the eigenvalues of Bα(Ka,b) are (1−α)a with multiplicity
b− 1, (1− α)b with multiplicity a− 1, and
(1− α)(a+ b)±

√
(1− α)2(a− b)2 + 4(2α− 1)2ab

2
.

Proof. Let Ja,b and Jb,a be the square matrices of order a × b and b × a, respectively, of
all ones. Then

Bα(Ka,b) = Bα = (2α− 1)A+ (1− α)D

= (2α− 1)

(
0 Ja,b

Jb,a 0

)
+ (1− α)

(
bIa 0

0 aIb

)

=

(
(1− α)bIa (2α− 1)Ja,b

(2α− 1)Jb,a (1− α)aIb

)
.

For i ∈ {2, 3, . . . , a}, let the vector x(i) = (xi
1, x

i
2, . . . , x

i
a+b)

t of order a+ b be defined as

xi
j =


1 for j = 1,

−1 for j = i,

0 otherwise.

Then {x(2),x(3), . . . ,x(a)} is a linearly independent set of eigenvectors corresponding to
the eigenvalue (1− α)b. Thus, Bα has eigenvalue (1− α)b with multiplicity a− 1.

For i ∈ {a + 2, a + 3, . . . , a + b}, let the vector x(i) = (xi
1, x

i
2, . . . , x

i
a+b)

t of order
a+ b be defined as

xi
j =


1 for j = a+ 1,

−1 for j = i,

0 otherwise.

Then {x(a+2),x(a+3), . . . ,x(a+b)} is a linearly independent set of eigenvectors corre-
sponding to the eigenvalue (1− α)a. Thus, Bα has eigenvalue (1− α)a with multiplicity
b− 1.
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Let α ∈ [0, 1). Then, by using Theorem 2.5, we compute

det(Bα) =

∣∣∣∣∣ (1− α) b Ia (2α− 1) Ja,b

(2α− 1) Jb,a (1− α) a Ib

∣∣∣∣∣
= det

(
(1− α) b Ia

)
det

(
(1− α)a Ib − (2α− 1) Jb,a

(
(1− α) b Ia

)−1

(2α− 1) Ja,b

)

= (1− α)a ba det

(
(1− α)aIb − (2α− 1)2Jb,a

1

(1− α)b
IaJa,b

)

= (1− α)a ba det

(
(1− α)aIb −

a(2α− 1)2

(1− α)b
Jb,b

)

= (1− α)a ba(1− α)b−1 ab−1

(
(1− α) a− a (2α− 1)2

(1− α)

)
.

Let x and y be the remaining eigenvalues of Bα(Ka,b). Then

xy
(
(1− α) a

)b−1(
(1− α) b

)a−1

=

= (1− α)a ba (1− α)b−1 ab−1

(
(1− α) a− a (2α− 1)2

(1− α)

)
.

Thus we obtain

xy = b(1− α)

(
(1− α)a− a(2α− 1)2

(1− α)

)
= (1− α)2ab− (2α− 1)2ab. (4.1)

Since the sum of the eigenvalues is equal to the trace of the matrix, we obtain

x+ y + (b− 1)(1− α)a+ (a− 1)(1− α)b = (1− α)ab+ (1− α)ab,

that is, x = (1− α)(a+ b)− y. Substitute the value of x in (4.1), we obtain

y2 − (1− α)(a+ b)y + (1− α)2ab− (2α− 1)2ab = 0.

This gives

y =
(1− α)(a+ b)±

√
(1− α)2(a− b)2 + 4(2α− 1)2ab

2
.

Hence the eigenvalues of Bα(Ka,b) are (1 − α)a with multiplicity b − 1, (1 − α)b with

multiplicity a− 1 and
(1− α)(a+ b)±

√
(1− α)2(a− b)2 + 4(2α− 1)2ab

2
.
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4.2 Bounds on the largest eigenvalue

For a connected graph G with vertex set V (G) = {v1, v2, . . . , vn}, the distance between
two vertices vi and vj is denoted by d(vi, vj) and is defined to be the length of the short-
est path between them. We now establish some lower and upper bounds on the largest
eigenvalue of Bα(G) of graph G.

Theorem 4.4. Let G be a connected graph with the minimum degree δ. Then, for any
α ∈ [0, 1]

λ1(Bα) ≥ αδ.

Proof. First we assume that α ∈ [0, 1
2 ], that is, 2α − 1 ≤ 0. Let x = (x1, x2, . . . , xn)

t ∈
Rn be an eigenvector of Bα corresponding to λ1(Bα) such that xk = min

1≤i≤n
xi < 0. Then

λ1(Bα)xk = (2α− 1)
∑

vj :vkvj∈E(G)

xj + (1− α)dkxk ≤ (2α− 1) dkxk + (1− α)dk xk

= αdkxk.

Therefore, λ1(Bα) ≥ αdk ≥ αδ.
Next we assume that α ∈ ( 12 , 1], that is, 2α − 1 > 0. Then Bα is irreducible and

non-negative. Therefore, by Perron-Frobenius Theorem, Bα has a Perron eigenvector x =
(x1, x2, . . . , xn)

t > 0 corresponding to the eigenvalue λ1(Bα). Let xk = min
1≤i≤n

xi > 0.

Then we have

λ1(Bα)xk = (2α− 1)
∑

vj :vjvk∈E(G)

xj + (1− α)dkxk ≥ (2α− 1)dkxk + (1− α)dkxk

= αdkxk.

Thus, λ1(Bα) ≥ αdk ≥ αδ, for α ∈ ( 12 , 1]. Hence, λ1(Bα) ≥ αδ for all α ∈ [0, 1].

Let NG(v1) denote the set of vertices of G which are adjacent to v1. Let NG[v1] :=
NG(v1) ∪ {v1}.

Theorem 4.5. Let G be a graph with at least one edge and maximum degree ∆. Then, for
any α ( ̸= 1

2 ) ∈ [0, 1],

λ1(Bα) ≥
Y

Z
,

where Y and Z are given by

Y =
[
α2 (3α− 1)2 (∆ + 1)2

(
2αm2 + (1− α)m3

)
+ (1− α) (2α− 1)2

× (2∆ + 5α− 3α2)2 ∆
]
P 2 + 4 (2α− 1)2 (∆ + 1)

[
(2α− 1)∆ (2∆ + 5α− 3α2)

+ α (3α− 1) (∆ + 1)m3

]
PQ+ 4 (2α− 1)2 (∆ + 1)2

[
2αm1 + (1− α) (∆ +m3)

]
Q2,

(4.2)
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Z =
[
(2α− 1)2 (2∆ + 5α− 3α2)2 + α2 (3α− 1)2 (∆ + 1)2 (n−∆− 1)

]
P 2

+ 4∆(∆ + 1)2 (2α− 1)2 Q2 (4.3)

with

P = (2α− 1)
(
(α− 1) (3α− 2)∆ + 2

)
and Q = 16α2 − 6α3 − 10α+ 2, (4.4)

and m1 = |E(NG(v1))|, is the number of edges in the set NG(v1), m2 = |E(V (G)\NG[v1])|,
is the number of edges in the set V (G)\NG[v1], m3 is the number of edges between NG(v1)
and V (G)\NG[v1], and the vertex v1 has degree ∆.

Proof. Let v1 be the maximum degree vertex of degree ∆ in G. Also let S = {v2, v3, . . . , v∆+1}
be the set of vertices adjacent to v1 in G. Let x = (x1, x2, . . . , xn)

t be any non-zero vector.
Using Rayleigh quotient, we obtain

xtBαx ≤ λ1(Bα)x
tx, that is, λ1(Bα) ≥

2α
∑

vivj∈E(G)

xixj + (1− α)
∑

vivj∈E(G)

(xi − xj)
2

n∑
i=1

x2
i

.

(4.5)

We consider the following two cases:

Case1. (α−1) (3α−2)∆+2 ̸= 0. In this case P = (2α−1)
(
(α−1) (3α−2)∆+2

)
̸= 0

as α ̸= 1
2 . Setting

xi =



1− 2− 5α+ 3α2

2(∆ + 1)
for i = 1,

16α2 − 6α3 − 10α+ 2

(2α− 1)
(
(α− 1) (3α− 2)∆ + 2

) for i = 2, 3, . . . ,∆+ 1,

α(3α− 1)

2(2α− 1)
Otherwise.

(4.6)

Since m1 = |E(NG(v1))|, m2 = |E(V (G)\NG[v1])|, and m3 is the number of edges
between NG(v1) and V (G)\NG[v1], we obtain

∑
vivj∈E(G)

xixj =
(2∆ + 5α− 3α2) (16α2 − 6α3 − 10α+ 2)

2(∆ + 1) (2α− 1)
(
(α− 1) (3α− 2)∆ + 2

) ∆

+
(16α2 − 6α3 − 10α+ 2)2

(2α− 1)2
(
(α− 1) (3α− 2)∆ + 2

)2 m1 +
α2 (3α− 1)2

4 (2α− 1)2
m2

+
α(3α− 1) (16α2 − 6α3 − 10α+ 2)

2(2α− 1)2
(
(α− 1) (3α− 2)∆ + 2

) m3,
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∑
vivj∈E(G)

(xi − xj)
2 =

 (2∆ + 5α− 3α2)

2(∆ + 1)
− 16α2 − 6α3 − 10α+ 2

(2α− 1)
(
(α− 1) (3α− 2)∆ + 2

)
2

∆

+

 16α2 − 6α3 − 10α+ 2

(2α− 1)
(
(α− 1) (3α− 2)∆ + 2

) − α(3α− 1)

2(2α− 1)

2

m3,

and
n∑

i=1

x2
i =

(2∆ + 5α− 3α2)2

4(∆ + 1)2
+

(16α2 − 6α3 − 10α+ 2)2

(2α− 1)2
(
(α− 1) (3α− 2)∆ + 2

)2 ∆

+
α2(3α− 1)2

4(2α− 1)2
(n−∆− 1).

Using the above results in (4.5), we obtain

λ1(Bα) ≥
Y

Z
as

2α
∑

vivj∈E(G)

xixj + (1− α)
∑

vivj∈E(G)

(xi − xj)
2 =

Y

4 (2α− 1)2 (∆ + 1)2 P 2

and
n∑

i=1

x2
i =

Z

4 (2α− 1)2 (∆ + 1)2 P 2
,

where Y , Z and P are given by (4.2), (4.3) and (4.4), respectively. Moreover, the equality
holds if and only if x = (x1, x2, . . . , xn)

t is an eigenvector corresponding to the eigenvalue
λ1(Bα) of Bα, where xi is given in (4.6).

Case2. (α−1) (3α−2)∆+2 = 0. In this case P = (2α−1)
(
(α−1) (3α−2)∆+2

)
= 0.

Thus we obtain

Y = 4 (2α−1)2 (∆+1)2
[
2αm1+(1−α) (∆+m3)

]
Q2 and Z = 4∆(∆+1)2 (2α−1)2 Q2.

Setting

xi =


0 for i = 1,

1 for i = 2, 3, . . . ,∆+ 1,

0 Otherwise.

Since m1 = |E(NG(v1))|, m2 = |E(V (G)\NG[v1])|, and m3 is the number of edges
between NG(v1) and V (G)\NG[v1], we obtain∑

vivj∈E(G)

xixj = m1,
∑

vivj∈E(G)

(xi − xj)
2 = ∆+m3 and

n∑
i=1

x2
i = ∆.
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Using the above results in (4.5), we obtain

λ1(Bα) ≥
2αm1 + (1− α) (∆ +m3)

∆
=

Y

Z
.

Moreover, the equality holds if and only if x = (0, 1, . . . , 1︸ ︷︷ ︸
∆

, 0, . . . , 0︸ ︷︷ ︸
n−∆−1

)t is an eigenvector

corresponding to the eigenvalue λ1(Bα) of Bα.

Corollary 4.6. Let G be a graph of order n with m edges and maximum degree ∆. Then

ρ1(G) ≥ 2m

n

with equality if and only if G is a regular graph.

Proof. For adjacency matrix, α = 1, that is, B1 = B1(G) = A(G). For α = 1, from
Theorem 4.5, we obtain

P = 2 = Q, Y = 32 (∆+1)2 (∆+m1+m2+m3) = 32 (∆+1)2 m and Z = 16 (∆+1)2 n

and hence
ρ1(G) = λ1(B1) ≥

Y

Z
=

2m

n
.

Moreover, the equality holds if and only if x = (1, 1, . . . , 1)
t is an eigenvector corre-

sponding to the eigenvalue λ1(B1) (= ρ1(G)) of B1, that is, if and only if G is a regular
graph.

Corollary 4.7. Let G be a graph of order n with m edges and maximum degree ∆. Then

µ1(G) ≥ ∆+ 1.

If G is connected, then the above equality holds if and only if ∆ = n− 1.

Proof. For Laplacian matrix, α = 0, that is, B0 = B0(G) = L(G). For α = 0, from
Theorem 4.5, we obtain

P = −2 (∆+1), Q = 2, Y = 16∆(∆+1)2
(
(∆+1)2+

m3

∆

)
and Z = 16∆ (∆+1)3.

and hence
µ1(G) = λ1(B0) ≥

Y

Z
= ∆+ 1 +

m3

∆(∆+ 1)
≥ ∆+ 1

as m3 ≥ 0.
Suppose that G is connected. Then the equality holds if and only if

x =

 ∆

∆+ 1
,− 1

∆ + 1
, . . . ,− 1

∆ + 1︸ ︷︷ ︸
∆

, 0, . . . , 0︸ ︷︷ ︸
n−∆−1


t

is an eigenvector corresponding to the

eigenvalue λ1(B0) (= µ1(G)) of B0 and m3 = 0. Since G is connected, then ∆ = n− 1.
If ∆ = n− 1, then one can easily see that µ1(G) = n = ∆+ 1. This completes the proof
of the result.
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Corollary 4.8. Let G be a graph of order n with m edges and maximum degree ∆. Then

q1(G) ≥ 4m

n

with equality if and only if G is a regular graph.

Proof. For signless Laplacian matrix, α = 2
3 , that is, B2/3 = B2/3(G) = 1

3 Q(G). For
α = 2

3 , from Theorem 4.5, we obtain

P =
2

3
= Q, Y =

64

243
(∆+1)2 (∆+m1+m2+m3) =

64

243
(∆+1)2 m, Z =

16

81
(∆+1)2 n

and hence
1

3
q1(G) = λ1(B2/3) ≥

Y

Z
=

4m

3n
, that is, q1(G) ≥ 4m

n
.

Moreover, the equality holds if and only if x = (1, 1, . . . , 1)
t is an eigenvector correspond-

ing to the eigenvalue λ1(B2/3) (=
1
3 q1(G)) of B2/3, that is, if and only if G is a regular

graph.

The lower bounds found in Corollaries 4.6-4.8 are classical. One can find all of them
in [26].

Remark 4.9. In the following Table, we give a comparison between the exact value of
λ1(Bα) (Proposition 4.3) and the lower bound on λ1(Bα) obtained in Theorem 4.5 for the
graph G = K1,24.

α Exact value of λ1(Bα)
Y
Z

0 25 25

0.1 22.317 22.317

0.2 19.658 19.654

0.3 17.035 16.997

0.4 14.469 13.675

0.6 9.703 1.978

0.7 7.718 0.936

0.8 6.232 0.250

0.9 5.334 0.361

1 4.899 1.92

Table 1. Comparison of the largest eigenvalue λ1(Bα) and Y
Z .

Next, we observe that the following upper bound is continuous on α.

Theorem 4.10. Let G be a connected graph with maximum degree ∆. Then, for any
α ∈ [0, 1],

λ1 (Bα) ≤

(2− 3α)∆ if α ∈ [0, 1
2 ],

α∆ if α ∈ ( 12 , 1].
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Proof. First we assume that α ∈ [0, 1
2 ]. Then, by using α ≥ 0, (1−2α) ≥ 0, Corollary 2.3,

and Theorem 2.4, we have

λ1(Bα) = λ1

(
αD + (1− 2α)L

)
≤ λ1(αD) + λ1

(
(1− 2α)L

)
≤ α∆+ (1− 2α)(2∆).

That is, λ1(Bα) ≤ (2− 3α)∆ for all α ∈ [0, 1
2 ].

Next we assume that α ∈ ( 12 , 1]. That is, 2α− 1 > 0. Let x = (x1, x2, . . . , xn)
t be an

eigenvector of Bα corresponding to the eigenvalue λ1(Bα) such that xk = max
1≤i≤n

xi > 0.

Then we obtain

λ1(Bα)xk = (2α− 1)
∑

vj :vjvk∈E(G)

xj + (1− α) dk xk

≤ (2α− 1) dk xk + (1− α) dk xk

= αdk xk

≤ α∆xk.

Therefore, λ1(Bα) ≤ α∆ for all α ∈ ( 12 , 1].

For α ∈ [0, 1] and non-negative integers a and b, define

fα(a, b) =
(1− α) (a+ b) +

√
(1− α)2 (a− b)2 + 4(2α− 1)2 ab

2
.

Theorem 4.11. Let G = (U, W, E) be a connected bipartite graph, where |U | = a,
|W | = b. For α ∈ [0, 1],

λ1(Bα) ≤ fα(a, b) (4.7)

with equality if and only if G ∼= Ka,b.

Proof. Without loss of generality, assume that a ≥ b. Now, from Proposition 4.3, we have
fα(a, b) = λ1(Bα(Ka,b)). Since, by definition, B0 = B0(G) = L(G) and G ⊆ Ka,b, by
(edge) interlacing and Proposition 4.3,

λ1(B0) = µ1(G) ≤ a+ b = f0(a, b).

Since B 1
2
= B 1

2
(G) = 1

2 D(G), we have

λ1(B 1
2
) =

1

2
∆(G) ≤ 1

2
∆(Ka,b) =

1

2
a = f 1

2
(a, b).

As B1 = B1(G) = A(G), by (vertex) interlacing and Proposition 4.3, we have

λ1(B1) = ρ1(G) ≤ ρ1(Ka,b) = f1(a, b).

So we have to prove the result in (4.7) for 0 < α < 1
2 and 1

2 < α < 1. Let x =
(x1, x2, . . . , xn)

T be an eigenvector corresponding to the largest eigenvalue λ1(Bα) of
Bα. Then Bαx = λ1(Bα)x. We consider two cases:

Case1. 1
2 < α < 1. Let xi = max

1≤k≤n
xk. Without loss of generality, we can assume that

vi ∈ U . Let xj = max
vk∈W

xk. For vi ∈ U , we obtain

λ1(Bα)xi = (1− α) dixi + (2α− 1)
∑

vk:vivk∈E(G)

xk ≤ (1− α) dixi + (2α− 1) dixj ,
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that is, [
λ1(Bα)− (1− α) di

]
xi ≤ (2α− 1) dixj . (4.8)

Similarly, for vj ∈ W , we obtain[
λ1(Bα)− (1− α) dj

]
xj ≤ (2α− 1) djxi. (4.9)

From the above two results, we obtain[
λ1(Bα)−(1− α) b

] [
λ1(Bα)− (1− α) a

]
≤

≤
[
λ1(Bα)− (1− α) di

] [
λ1(Bα)− (1− α) dj

]
≤(2α− 1)2 di dj ≤ (2α− 1)2 ab. (4.10)

Thus we obtain

λ1(Bα)
2 − (1− α) (a+ b)λ1(Bα) + (1− α)2 ab− (2α− 1)2 ab ≤ 0,

that is,

λ1(Bα) ≤
(1− α) (a+ b) +

√
(1− α)2 (a− b)2 + 4(2α− 1)2 ab

2
= fα(a, b).

The first part of the proof is done.

Suppose that equality holds. Then all inequalities in the above argument must be equal-
ities. From equalities in (4.8) and (4.9), we obtain xk = xi for all vk ∈ NG(vj) ⊆ U and
xℓ = xj for all vℓ ∈ NG(vi) ⊆ W . From equality in (4.10), we obtain di = b and dj = a.
Since G is a connected bipartite graph, one can easily prove that xk = xi for all vk ∈ U
and xℓ = xj for all vℓ ∈ W . For vi, vk ∈ U , we have

λ1(Bα)xi = (1− α) dixi + (2α− 1)
∑

vk:vivk∈E(G)

xk = b
[
(1− α)xi + (2α− 1)xj

]
and

λ1(Bα)xi = dk

[
(1− α)xi + (2α− 1)xj

]
.

Thus we have

b
[
(1− α)xi + (2α− 1)xj

]
= dk

[
(1− α)xi + (2α− 1)xj

]
,

that is, (
b− dk

) [
(1− α)xi + (2α− 1)xj

]
= 0.

Since all the elements in Bα are non-negative, by Perron-Frobenius theorem in matrix
theory, we obtain that all the eigencomponents corresponding to the spectral radius λ1(Bα)
are non-negative. Since G is connected, xi ≥ xj > 0. From the above with 1

2 < α < 1, we
must have dk = b for any vk ∈ U . Similarly, dℓ = a for any vℓ ∈ W . Hence G ∼= Ka,b.

Case2. 0 < α < 1
2 . Let xi = max1≤k≤n xk. Without loss of generality, we can assume

that vi ∈ U . Let xj = minvk:vivk∈E(G) xk. For vi ∈ U , we obtain

λ1(Bα)xi = (1− α) dixi + (2α− 1)
∑

vk:vivk∈E(G)

xk ≤ (1− α) dixi + (2α− 1) dixj ,
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that is, [
λ1(Bα)− (1− α) di

]
xi ≤ (2α− 1) dixj .

Similarly, for vj ∈ W , we obtain[
λ1(Bα)− (1− α) dj

]
xj ≥ (2α− 1) djxi.

Since α < 1
2 , from the above two results, we obtain[

λ1(Bα)− (1− α) di

] [
λ1(Bα)− (1− α) dj

]
xi

≤(2α− 1) di

[
λ1(Bα)− (1− α) dj

]
xj

≤(2α− 1)2 di dj xi,

that is, [
λ1(Bα)− (1− α) di

] [
λ1(Bα)− (1− α) dj

]
≤ (2α− 1)2 di dj ,

that is, [
λ1(Bα)− (1− α) b

] [
λ1(Bα)− (1− α) a

]
≤ (2α− 1)2 ab.

Thus we obtain

λ1(Bα)
2 − (1− α) (a+ b)λ1(Bα) + (1− α)2 ab− (2α− 1)2 ab ≤ 0,

that is,

λ1(Bα) ≤
(1− α) (a+ b) +

√
(1− α)2 (a− b)2 + 4(2α− 1)2 ab

2
= fα(a, b).

Suppose that equality holds. Similarly as Case1, one can easily prove that G ∼= Ka,b.

Conversely, let G ∼= Ka,b. By Proposition 4.3, we obtain

λ1(Bα) =
(1− α) (a+ b) +

√
(1− α)2 (a− b)2 + 4(2α− 1)2 ab

2
= fα(a, b).

This completes the proof of the theorem.

4.3 Bounds on the smallest eigenvalue

We establish an upper bound on the smallest eigenvalue of a Bα-matrix in terms of the
chromatic number. Then, we characterize the extremal graphs for some cases. Finally,
some known results are derived as a consequence.

Theorem 4.12. Let G be a graph of n vertices, m (> 0) edges and chromatic number χ.
Then, for any α ∈ [0, 1],

λn (Bα) ≤ 2m

n

(
χ (1− α)− α

χ− 1

)
. (4.11)
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Proof. Set Bα := Bα(G). Partition the vertex set V (G) as χ number of subsets V1, V2,
. . . , Vχ, where each subset contains the vertices having the same colour. For each j ∈
{1, 2, . . . , χ}, define a vector x := (x1, x2, . . . , xn)

t as follows:

xi =

{
χ− 1 for vi ∈ Vj

−1 otherwise.

Then

||x|| 2 =

n∑
i=1

x2
i = (χ− 1)2 |Vj |+ (n− |Vj |) = χ (χ− 2) |Vj |+ n.

For j ∈ {1, 2, . . . , χ}, define mj =
∑

v∈Vj

d(v). Now,

⟨Bαx, x⟩ = ⟨(2α− 1)Ax, x⟩+ ⟨(1− α)Dx, x⟩.

Note that
⟨Ax, x⟩ = 2

∑
vivj∈E(G)

xi xj = 2 (1− χ)mj + 2 (m−mj)

and

⟨Dx, x⟩ =
∑
vi∈V

di x
2
i = (χ− 1)2 mj + (2m−mj) = χ (χ− 2)mj + 2m.

Thus we obtain

⟨Bαx, x⟩ = (2α− 1) ⟨Ax, x⟩+ (1− α) ⟨Dx, x⟩
= 2 (2α− 1) (1− χ)mj + 2 (2α− 1) (m−mj) + (1− α)χ (χ− 2)mj

+ 2 (1− α)m

= 2mα+
(
χ− α (χ+ 2)

)
χmj .

Using Rayleigh quotient, we obtain

λn (Bα) ||x||2 ≤ ⟨Bαx, x⟩.

Therefore, by the above inequalities, we have

λn(Bα)
(
χ (χ− 2) |Vj |+ n

)
≤ 2mα+

(
χ− α (χ+ 2)

)
χmj ,

that is,
χ∑

j=1

λn(Bα)
(
χ (χ− 2) |Vj |+ n

)
≤

χ∑
j=1

(
2mα+

(
χ− α (χ+ 2)

)
χmj

)
,

that is,
λn(Bα)

(
(χ2 − 2χ)n+ nχ

)
≤ 2χ2 m− 2αχ2 m− 2mχα.

Therefore,

λn (Bα) ≤ 2m

n

(
χ (1− α)− α

χ− 1

)
.
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In the next couple of results, we partially characterize the graphs attaining the equality
in (4.11) of Theorem 4.12. The proofs technique is similar to the one used in [21].

Theorem 4.13. Let G be a bipartite graph of n vertices with m edges. Then, for any
α ∈ [0, 1],

λn(Bα) ≤
2m

n
(2− 3α). (4.12)

Equality occurs if and only if either α = 2
3 , or G is regular with α ≥ 1

2 .

Proof. Set λn := λn(Bα). For any x = (x1, x2, . . . , xn)
t ∈ Rn, by Rayleigh quotient, we

obtain

λn x
t x ≤ xt Bα x that is, λn

n∑
i=1

x2
i ≤ α

n∑
i=1

di x
2
i +(1−2α)

∑
vivj∈E(G), i<j

(xi−xj)
2.

Let V (G) = V1 ∪ V2 be the vertex partition of G such that no two vertices of V1 (resp V2)
are adjacent. Take x = (x1, x2, . . . , xn)

t, where the component xi = 1 if vi ∈ V1, and
xi = −1 otherwise. Then

λn(Bα) ≤
2m

n
(2− 3α).

The first part of the proof is done.

If the equality holds in (4.12), then Bα x = λnx. Suppose vi ∈ V1 and vj ∈ V2. From
the i-th and j-th equation of Bαx = λnx, we obtain

λn = di(2− 3α) and λn = dj(2− 3α), that is, ( di − dj )(2− 3α) = 0.

Therefore, for the arbitrariness of vi and vj , either α = 2
3 or G is regular. If G is r-regular

and α < 1
2 , then

λn(Bα) = λn

(
(1−α)D+(2α− 1)A

)
= (1−α) r+(2α− 1) ρ1 = α r <

2m

n
(2− 3α)

as ρ1 = r (G is bipartite). Hence either α = 2
3 , or G is regular with α ≥ 1

2 .

Conversely, let α = 2
3 . Then Q(G) = 3B 2

3
(G) and hence λn(B 2

3
) = 1

3 qn(G) = 0 =
2m
n (2− 3α) as G is bipartite.

Let G be a r-regular bipartite graph with α ≥ 1
2 . Then ρn = −r. Since α ≥ 1

2 , we
obtain

λn(Bα) = λn

(
(1−α)D+(2α−1)A

)
= (1−α) r+(2α−1) ρn = (2−3α) r =

2m

n
(2−3α).

In [21], the authors defined a class of graphs Λ in the following:
Let Λ be the class of graphs H = (V,E) such that H is a regular χ-partite graph

(χ ≥ 3) with n/χ vertices in every part, where χ|n, and every vertex has d
χ−1 adjacent

vertices in every other part (d is the degree of each vertex in H).
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Theorem 4.14. Let G be a graph with chromatic number χ such that

λn (Bα) =
2m

n

(
χ (1− α)− α

χ− 1

)
. (4.13)

where 0 ≤ α ≤ 1. Then

(1) for α = 1
2 , G is regular,

(2) for χ = 2, G is bipartite with α = 2
3 , or G is regular bipartite with α ≥ 1

2 .

(3) for α ∈ [0, 1]
(
α ̸=

{
1
2 ,

χ
χ+1

}
, χ ≥ 3

)
, G ∈ Λ.

Proof. (1) Suppose that α = 1
2 . Then by Remark 1.1 and (4.13), we obtain δ

2 = λn(B 1
2
) =

m
n , that is, 2m = n δ, that is, nδ ≤

n∑
i=1

di = 2m = nδ, that is,
n∑

i=1

di = nδ, that is, G is

regular.

(2) Suppose χ = 2. Then λn(Bα) =
2m
n (2 − 3α). By Theorem 4.13, G is bipartite with

α = 2
3 , or G is regular bipartite with α ≥ 1

2 .

(3) We assume that α ∈ [0, 1] and α ̸=
{

1
2 ,

χ
χ+1

}
with χ ≥ 3.

Set λn := λn(Bα). Let us partition the vertex set V (G) into χ number of color classes
V1, V2, . . . , Vχ. For j ∈ {1, 2 . . . , χ}, define x(j) := (xj

1, x
j
2, . . . , x

j
n) as follows:

xj
i =

{
χ− 1 for vi ∈ Vj ,

−1 otherwise.

Then by Theorem 4.12, λn (Bα) ≤ 2m
n

(
χ (1−α)−α

χ−1

)
. Since equality occurs in the above

inequality, so by Rayleigh quotient and Theorem 4.12, x(1), . . . ,x(χ) are all eigenvectors
of Bα corresponding to the eigenvalue λn.

Claim1 : G is regular.
Let 1 ≤ k ̸= ℓ ≤ χ. Suppose vs ∈ Vk and vt ∈ Vℓ. Comparing the s-th components
of the matrix equation Bαx

(k) = λnx
(k), we obtain λn(χ − 1) = ds (χ − αχ − α).

Similarly, comparing the t-th components of the matrix equation Bαx
(ℓ) = λnx

(ℓ), we
have λn(χ − 1) = dt (χ − αχ − α). Then (ds − dt)(χ − αχ − α) = 0. Since α ̸= χ

χ+1
and vs, vt are arbitrary, so G is regular.

Claim2 : |V1| = · · · = |Vχ| = n
χ , where χ|n.

By Claim 1, G is regular, so 1 := (1, 1, . . . , 1)t is an eigenvector of Bα. Also, Bα is
symmetric, so 1 ⊥ x(k) for k = 1, 2, . . . , χ. Therefore, |Vk|(χ− 1)+ (−1)(n−|Vk|) = 0.
That is, |Vk| = n

χ , for k = 1, 2, . . . , χ.

Claim3 : Every vertex is adjacent to d
χ−1 vertices in every other part, where d is the

regularity of G.
Suppose vs ∈ V1 and it is adjacent with r2, r3, . . . , rχ number of vertices in the partitions
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V2, V3, . . . , Vχ, respectively. For vs ∈ V1, from Bαx
(k) = λn x

(k), we obtain

(−1)λn = (1− α)(−1)ds + (2α− 1)

 χ∑
i=2,i̸=k

(−1)ri + (χ− 1)rk

 ,

where 2 ≤ k ≤ χ. From this we have the following χ− 1 equations:

(−1)λn = (1− α)(−1)ds + (2α− 1)
(
(χ− 1)r2 + (−1)r3 + · · ·+ (−1)rχ

)
(−1)λn = (1− α)(−1)ds + (2α− 1)

(
(−1)r2 + (χ− 1)r3 + · · ·+ (−1)rχ

)
· · · · · · · · ·
· · · · · · · · ·

(−1)λn = (1− α)(−1)ds + (2α− 1)
(
(−1)r2 + (−1)r3 + · · ·+ (χ− 1)rχ

)
.

Since α ̸= 1
2 , so from the above, we have r2 = r3 = · · · = rχ = d

χ−1 as G is regular by
Claim1. Also vs is arbitrary, therefore the Claim3 is done.

Hence G ∈ Λ.

In the next result, we partially obtain the converse of the Theorem 4.14. One can verify
that if α = 1

2 and G is regular, then the equality (4.13) holds. Moreover, the equality
(4.13) holds for any bipartite graph with α = 2

3 , or any regular bipartite graph with α ≥ 1
2 .

Therefore, we consider the remaining converse part of the Theorem 4.14. Since the proof
technique of the following result is similar to [21, Theorem 5.1], we omit the proof.

Theorem 4.15. If G ∈ Λ and α ( ̸= 1
2 ) ∈ [0, 1], then

2m

n

(
χ(1− α)− α

χ− 1

)
is an eigen-

value of Bα(G) with multiplicity χ− 1.

The next result is known (see to [12]); however, it can be deduced from Theorem 4.12
by taking α = 2

3 .

Corollary 4.16 ([12]). Let G be graph of order n with m edges and chromatic number χ.
Then

qn(G) ≤ 2m

n

(
χ− 2

χ− 1

)
.

Corollary 4.17. Let G be graph of order n with m edges and chromatic number χ such
that

qn(G) =
2m

n

(
χ− 2

χ− 1

)
.

Then G is either bipartite or G ∈ Λ.

Proof. Proof follows from Theorem 4.14.

As a consequence of Theorem 4.12, a lower bound of the chromatic number of G is
deduced.

Corollary 4.18. If G is a graph with chromatic number χ and βo := βo(G), then

χ ≥ βo

1− βo
.
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5 On the determinant
In this short section, we present the determinant and the Sachs-type formula for the coeffi-
cients of the characteristic polynomial of Bα(G). Then, we obtain some known results as
a consequence.

A spanning elementary subgraph H of a graph G is a spanning subgraph of G such that
each component of H is either a cycle or an edge. For a spanning elementary subgraph
H , p(H) and c(H) denote the number of components and the number of cycles in H ,
respectively. Now, we present the well known Harary’s formula [16] for the determinant of
the adjacency matrix of a graph.

Proposition 5.1. Let G be a graph with V (G) = {v1, v2, . . . , vn}. Also let A(G) be the
adjacency matrix of G. Then,

det (A(G)) =
∑
H

(−1)n−p(H) 2 c(H),

where summation is over all spanning elementary subgraphs H of G.

Motivated by the notion of spanning elementary subgraphs and for the purpose of the
main result in this section, we define the following.

Definition 5.2. Modified Elementary Subgraph: A subgraph H of a graph G is called a
modified elementary subgraph if each component of H is either a vertex, an edge, or a
cycle.

Let H be a modified elementary subgraph. Denote by c(H), c1(H), and c2(H) the
number of components in a subgraph H which are cycles, edges, and vertices, respectively.
Let p(H) := c(H) + c1(H) + c2(H) be the number of components in H . Also, let
C2(H) be the collection of isolated vertices in H . In the following result, we present
a Harary-type formula [16] for the determinant of Bα-matrices. For a graph G, since
det(L(G)) = det(B0(G)) = 0, so we derive a formula of det(Bα(G)) for α ∈ (0, 1].

Theorem 5.3. Let G be a graph with V (G) = {v1, v2, . . . , vn}. Then, for any α ∈ (0, 1],

det (Bα(G)) =
∑
H

(−1)n−p(H) 2 c(H) (1−α) c2(H) (2α−1)n−c2(H)

 ∏
vi∈C2(H)

dG(vi)

 ,

(5.1)
where summation is over all spanning modified elementary subgraphs H of G.

Proof. Consider Bα(G) = (2α− 1)A(G) + (1− α)D(G) = (bij)n×n. We have

det (Bα(G)) =
∑
π

sgn(π) b1π(1) b2π(2) · · · bnπ(n), (5.2)

where summation is over all permutations of 1, 2, . . . , n. Since every permutation π has
a cycle decomposition, so a cycle of length 1, 2 and more corresponds to a vertex, an
edge, and a cycle, respectively in the graph G. Thus, each term b1π(1)b2π(2) · · · bnπ(n)
corresponds to a spanning modified elementary subgraph of G.

Also, each spanning modified elementary subgraph H corresponds to 2c(H) terms in
the summation (5.2) as each cycle is associated to a cyclic permutation in two ways. If π is
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a permutation corresponding to a spanning modified elementary subgraph H , then

sgn (π) = (−1)n−number of cycles in the cyclic decomposition of π

= (−1)n−c(H)−c1(H)−c2(H) = (−1)n−p(H)

and

b1π(1) b2π(2) · · · bnπ(n)

=(1− α)c2(H)

 ∏
vi∈C2(H)

dG(vi)

 (2α− 1)2c1(H) (2α− 1)n−2c1(H)−c2(H)

=(1− α)c2(H)

 ∏
vi∈C2(H)

dG(vi)

 (2α− 1)n−c2(H).

Therefore,

det (Bα(G)) =
∑
H

(−1)n−p(H) 2 c(H) (1− α)c2(H) (2α− 1)n−c2(H)

 ∏
vi∈C2(H)

dG(vi)

 ,

where summation is over all spanning modified elementary subgraphs H of G .

In the next corollary, we obtain a Sachs-type formula for the coefficients of the charac-
teristic polynomial of Bα(G).

Corollary 5.4. Let ϕ(Bα) = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an be the charac-
teristic polynomial of Bα(G). Then

ak =
∑
H

(−1) p(H) 2 c(H) (1− α)c2(H) (2α− 1)n−c2(H)

 ∏
vi∈C2(H)

dG(vi)

 ,

where summation is over all modified elementary subgraphs H of G with k vertices.

Proof. The proof follows from Theorem 5.3 and recalling that ck is (−1)k times the sum
of k × k principal minors of Bα(G).

One can observe that Proposition 5.1 can also be deduced as a consequence of the
Theorem 5.3.

Corollary 5.5. Let G be a graph with V (G) = {v1, v2, . . . , vn}. Also let Q(G) be the
signless Laplacian matrix of G. Then,

det (Q(G)) =
∑
H

(−1)n−p(H) 2 c(H)

 ∏
vi∈C2(H)

dG(vi)

 ,

where summation is over all spanning modified elementary subgraphs H of G.

Proof. Setting α = 2
3 in the formula (5.1) of Theorem 5.3, we obtain the result.
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