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Abstract
Tripping is a major cause of fall related injuries, espe-
cialy among the elderly population. Some reaserch has
been done on the mechanics of tripping and strategies to
gain balance afterwards. But what if you could detect a
potential trip in advance and possibly prevent it? We pro-
pose a system that involves detecting obstacles infront of
the user and a method to predict whether they will hit it.

1 Introduction
Falls and fall related injuries are very common among
people, especially in the elderly population [1]. This is
becoming an ever increasing problem, because the amount
of elderly people is getting larger with every year [2]. The
mechanism of tripping have been explored in the past
[3, 4], but here we are interested in preventing tripping
from even occuring. For this we would need a way to
predict the future placement of the subjects feet and a
prediction system of obstacles.

Some research has already been done on predicting
foot placement. In [5] they predicted foot placement in
the mediolater direction based on the position and veloc-
ity of the subjects center of mass. Similarly, [6] predicted
recovery foot placement when pertubating a subject in
the sagital plane. A method, where the next contact lo-
cation of the subjects foot gets predicted needed to be
made. The prediction method we implemented takes ad-
vantage of the properties of probabilistic motion primi-
tives (ProMPs) [7], that allow operations from probability
theory. ProMPs have been used in many different robotic
applications [8, 9] and also postural studies [10] to en-
code and predict movements. We combined this method
with an obstacle detection system mounted on the sub-
ject. In this article we present a system that can both
detect potential obstacles infront of the wearer and also
predict if there is a chance of tripping.

2 Equipment and setup
The entire system consist of two major parts, the foot
placement prediction and the obstacle detection. The lat-
ter was achieved with the combination of a depth cam-
era (RealSense Depth Camera D435, Intel, Santa Clara,
USA) and 3D motion capture system (3D Investigator,

NDI, Waterloo, Canada). For the foot placement pre-
diction, an Xsens motion capture suite (MTw Awinda,
Xsens, Enschede, Netherlands) was used to capture sub-
jects walking gait. Using this data we could then online
predict where the subject is going to step using methods
described in Section 3. A block diagram of the whole
setup is depicted in Figure 1). The main computer re-
ceives the foot placement predictions from the Xsens com-
puter, the data from the RealSense camera and the 3D
motion capture system. It then combines this data to cal-
culate if the subject is in danger of tripping.
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Figure 1: Block diagram of the setup used in the experiment.

2.1 Motion Capture
In the setup we used two diffent motion capture (MC)
systems. The first one is the Awinda human motion cap-
ture system (MTw Awinda, Xsens, Enschede, Netherlands)
that uses IMUs placed on certain parts of the body. Using
a complex kinematic model it then returns the whole body
kinematics of the wearer. Using the proprietary software
we could stream the data at 60Hz to a local Simulink
(Mathworks, Nat- ick, MA, United States) scheme. For
this specific experiment, we were only interested in the
position and velocity of the left and right ankle. The
Simulink scheme then calculated the most probable foot
placement of the subject and sent it foward to the main
computer.

The other MC system used was the 3D Investigator
Motion Capture system (3D Investigator, NDI, Waterloo,
Canada) that can track special markers in 3D space with
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an accuracy of 0.4 mm. We used the RealSense depth
camera to detect obstacles infront of the subject. Point
cloud data captured by the camera is relative to its own
coordinate frame, so we needed a way to know the cam-
eras position and orientation in the global coordinate frame.
The camera was attached to the subjects front and on it we
placed 3 markers. Using the position of these markers we
could then transform the depth camera data to the global
frame. Both the depth camera and the motion tracking
system streamed their data to the main computer, where
all of the calculation necesarry was done.

2.2 Depth Camera for Obstacle Detection
The RealSense depth camera was used for object detec-
tion. We used both the RGB video and the point cloud
output of the camera to help represent the results on the
main computer. The camera was slanted at an angle (ap-
prox. 40 ◦), so that the floor infront of the subject was
visible.

3 Methods
In this section we will describe the general theory of how
the foot placement was predicted using probabilistic mo-
tion primivitives (ProMP) and the approach we used to
detect obstacles.

3.1 Probabilstic Model of Trajectories
Before any predictions could be made, we first needed a
model of how the subjects gait looks like. Several rep-
etitions of the subjects gait had to be recorded in order
to obtain this model. We had the subject wear the Xsens
MC suite and walk on a treadmill at a constant velocity
(0.8 m/s). After 20 steps we could than process the data
and learn the model.

3.1.1 Data aqusition
The human gait is a periodic movement that consist of
two main phases, the stance and the swing phase [11].
We focused on the latter, because only in this one the leg
moves in space. This means that we had to seperate the
recorded gait cycle into this two phases. Because the foot
only moves during the swing phase we observed when
the velocity of the foot in the sagital plane became pos-
itive. This moment indicated the end of the stance and
the begining of the swing phase. The exact threshold was
set empiricaly so that the small variations in velocity and
the noise did not have an effect. During the learning of
the model all three dimension and the time were recorded
while the subject walked on a treadmill. After we pro-
cessed the recorded data to extract the trajectories of the
swing phases of all the gait cycles. Using these trajecto-
ries we could then train the probabilistic model.

3.1.2 Encoding recorded trajectories
To keep the amount of parameters needed to represent
trajectories as low as possible, ProMPs uses a basis func-
tion representation approach. To better understand the
formulation, let us take a look at a simple example where
we describe a point in time at using this method. Let

φt ∈ R1×J denote a basis function vector containing val-
ues of J basis functions at time t. Variable w ∈ RJ×1

represents a J-dimensional feature vector that encodes
weights for each of the J basis functions. With w and
φt defined, a point at time t can be approximated as

at = φt w =
[
φ1,t · · · φJ,t

] [
w1 · · · wJ

]T
.

This concept can be applied to multi-dimensional states
by using block diagonal matrices. Let‘s assume that our
variable at now has D dimensions at =

[
a1,t · · · aD,t

]T
.

In this case the basis function vector becomes a block di-
agonal matrix Φt ∈ RD×JD and the weight vector w
becomes a concatenation of the weight vectors of each di-
mension w ∈ RJD×1. Variable at is now approximated
as

at = Φt w =

φt · · · 0
...

. . .
...

0 · · · φt

 [w1 · · · wi · · · wD
]T
,

where
φt =

[
φ1,t φ2,t · · · φJ,t

]
and

wi =
[
w1,i w2,i · · · wJ,i

]T
.

Using the same idea we can approximate a sequence of T
states denoted by τ = y1:T where

τ = Φ1:Tw (1)

with

Φ1:T =
[
Φ1 · · · Φt · · · ΦT

]T ∈ RTD×JD,

where the vector w and the matrix Φt are the same as be-
fore. In Figure 2), you can see 1 dimension of a trajectory
and its approximation using the described method. In our
application we used Gaussian basis functions which are
often used for point to point movements.

To approximate the trajectories in the previously de-
scribed manner, the weights for each trajectory need to
be calculated. For the i-th trajectory τi the corresponding
weight vector wi can be estimated using a simple least
squares estimate. In our application the ordinary least
square (OLS) method was used

wi =
(

ΦT1:TΦ1:T + λI
)−1

ΦT1:tτi, (2)

where λ represents a regularization parameter used to avoid
numerical singularities. Its value should be small, in our
case we used λ = 10−6.

3.1.3 Creating the probabilistic model
When the weight vectors of all trajectories are calculated,
we assume their values to be normally distributed, i.e.,
p(w) = N (w|µw,Σw). The mean µw and the covari-
ance matrix Σw can be estimated with sample mean and
sample covariance of the wi vectors.
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Figure 2: Approximating a sequence of states using 5 basis
functions and their coresponding weights.

With the function approximation (1) and the weight
vectors wi defined, we can define a probabilistic model
for trajectories as

p(τ |w) =

T∏
t=1

N (yt|Φtw,Σy) = N (y1:t|Φ1:Tw,Σy).

This model describes the probability of observing trajec-
tory τ , given the weight vector w that is given as a linear
basis function y1:t = Φ1:Tw + εy,1:T . The parameter Σy
represents independent and identically distributed (i.i.d.)
Gaussian noise in the trajectories yt = Φtw+ εy , where
εy ∼ N (εy|0,Σy).

On the top pane of Figure 3) you can see 1 dimension
of several recordings of the leg swing trajectory. The bot-
tom pane shows the model that we calculated from these
recordings. The thick line represents the mean of the
model and the shaded area the 1-σ standard deviation.
The movement phase denotes the normalized time.

3.2 Computing Predictions from Observations
Statistical theory tells us that we can model predictions
as computing the conditional probability. First we need
to define the probability distribution over the trajecto-
ries τ , which can be computed by marginalizing out the
weight vector w. In the case of Gaussian distribution the
marginal can be computed in closed form as

p(τ) =

∫
p(τ |w)p(w)dw

=

∫
N (y1:T |Φ1:Tw,Σy)N (w|µw,Σw)dw

= N (y1:t|Φ1:Tw,Φ1:TΣwΦT1:T + Σy). (3)

What we get is a multivariate Gaussian distribution,
the conditional probability of which we can compute in
closed form.

0 1
movement phase0 1

Figure 3: Trajectory distribution model calculated from several
different trajectories. This model represents only one degree of
freedom.

When we receive a previously unseen point a∗, we
can predict the most likely path of the foot (parametrized
through µ∗ and Σ∗) by conditioning the observed state
over the weight vectors. Say that we observed a sequence
of states yt1 to ytM at m=1, 2,..., M-different time points.
We declare ν as a concatenation of the observed states
ytm and Φν as the concatenation of the basis function
matrices for the observed time points.

With the observed trajectories encoded as previously
described, we can obtain a conditioned distribution p(wν |ν)
over the weight vectors w as

p(wν |ν) ∝ N (ν|Φνwν ,Σ0)p(w)

:= N (wν |µw|ν ,Σw|ν).

We can compute the mean µw|ν and the covariance matrix
Σw|ν as

µw|ν = µw + ΣwΦTν L(ν − Φνµw)

and
Σw|ν = Σw − ΣwΦTν LΦνΣw

where
L =

(
Σ0 + ΦνΣwΦTν

)−1
.

With the feature mean µw|ν and covariance matrix Σw|ν
obtained, we can now use this conditional distribution to
calculate the distribution over the trajectories p(τ) using
(3)

p(τ) = N (ỹ1:T |Φ1:Tµw|ν ,Φ1:TΣw|νΦT1:T + Σy),

where the predicted sequence of states ỹ1:T is represented
by the product Φ1:Tµw|ν . In Figure 4) a prediction is cal-
culated through conditioning with one and two observed
states.

3.3 Obstacle Detection
For detecting obstacles the Intel RealSense D435 depth
camera was used. Alongside RGB video it returns a point
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Figure 4: A demonstration of predicting a path through condi-
tioning on observed states.
On the top pane only one point was observed, so the predicted

path is very similar to the model mean. The dark blue area
represents a 1− σ deviation from the predicted path. On the
bottom pane, two points were observed so the quality of the

prediction increases.

cloud - a matrix of distances from the camera to the ob-
jects infront. To simplify the object detection we splited
the visible 3D space of the camera in small cubes, i.e.
voxels. We then used the point cloud to fill in the cor-
responding voxels. Using the data from the three mark-
ers above the camera, this output gets transformed to the
world coordinate system. This approach also gives us a
simpler and computationaly less demanding visualization
of the world. Because the location of the treadmill was
known, we knew which voxels represent it. This way,
when voxels above the treadmill were observed, we knew
there was an obstacle in the way.

This computation is all done on the main computer
to which also the Xsens computer streams its foot place-
ment prediction alongside the current position of the sub-
jects feet. This data is already in the world coordinate
frame. With each iteration we checked if the predicted
foot placement coincides with any of the obstacle voxels
and if they did, we identified this as a potential collision.

4 Discussion
The presented system was able to predict the foot place-
ment of both left and right foot of a subject walking on
a treadmill. When an obstacle was presented, the system
accurately detected it and sent a warning if the predicted
foot placement was coinciding with it. The main com-
puter returned a visual feedback where the output of the
camera, the current foot positions and the predicted foot
placements were visible. A system like this could eventu-
aly be implemented in a assistive exoskeleton, that would

help the user avoid tripping by extending or shortening
their step. The prediction process does not only return the
final position of the foot, but also the whole path. This
is why it could be used by itself for example in a gait
analysis study, where certain events could be triggered in
advance based on the calculated prediction.

The downside of the system is that because the pre-
diction model is based on the previous recordings of the
subjects gait, the system will only work accurately for
this specific movement. Changing the subject or even the
velocity of the treadmill will result in much worse predic-
tions. Implementing a phase estimation like in [9] could
help with the changes in velocity.
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