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In this paper, two algorithms for discovering all the Maximal Sequential Patterns (MSP) in a document 
collection and in a single document are presented. The proposed algorithms follow the “pattern-growth 
strategy” where small frequent sequences are found first with the goal of growing them to obtain MSP. 
Our algorithms process the documents in an incremental way avoiding re-computing all the MSP when 
new documents are added. Experiments showing the performance of our algorithms and comparing 
against GSP, DELISP, GenPrefixSpan and cSPADE algorithms over public standard databases are also 
presented.

Povzetek: Predstavljena sta dva algoritma za iskanje najdaljših zaporedij v besedilu.

1 Introduction
Frequent pattern mining is a task into the datamining area 
that has been intensively studied in the last years [Jiawei 
Han et al. 2007]. Frequent patterns are itemsets, 
subsequences, or substructures that appear in a data set 
with frequency no less than a user-specified threshold.
Frequent pattern mining plays an important role in
mining associations, correlations, finding interesting 
relationships among data, data indexing, classification, 
clustering, and other data mining tasks as well. Besides, 
frequent patterns are useful for solving more complex 
problems of data analysis. Therefore, frequent pattern 
mining has become an important area in data mining 
research.

Frequent pattern mining was first proposed by 
[Agrawal et al. 1993] for market basket analysis finding
associations between the different items that customers 
place in their “shopping baskets”. Since this first 
proposal there have been many research publications
proposing efficient mining algorithms, most of them, for 
mining frequent patterns in transactional databases. 

Mining frequent patterns in document databases is a 
problem which has been less studied. Sequential pattern 
mining in document databases has the goal of finding all 
the subsequences that are contained at least β times in a 
collection of documents or in a single document, where β
is a user-specified support threshold. This discovered set 
of frequent sequences contains the maximal frequent 
sequences which are not a subsequence of any other 

frequent sequence (from now on we will use the term 
Maximal Sequential Patterns, MSP), that is, the MSPs
are a compact representation of the whole set of frequent 
sequences. Therefore, in the same way as occurs in 
transactional databases, the sequential pattern mining in 
document databases plays an important role, because it 
allows identifying valid, novel, potentially useful and 
ultimately understandable patterns. In this paper, we will 
focus in the extraction of this kind of patterns from 
textual or text document databases. Since maximal 
sequential patterns can be extracted from documents 
independently of the language without losing their 
sequential nature they can be used to solve more complex 
problems (all of them related to text mining) as question 
answering [Denicia-Carral et al. 2006; Juárez-González 
et al. 2007; Aceves-Pérez et al. 2007], authorship 
attribution [Coyotl-Morales et al. 2006], automatic text 
summarization [Ledeneva et al. 2008], document 
clustering [Hernandez-Reyes et al. 2006], and extraction 
of hyponyms [Ortega-Mendoza et al. 2007], among 
others.

In this article, we present two pattern-growth based 
algorithms, DIMASP-C and DIMASP-D, to Discover all 
the Maximal Sequential Patterns in a document 
collection and in a single document respectively. The rest 
of this article is organized in four sections: (2) related 
work, (3) problem definition, (4) algorithms for mining 
frequent patterns in documents (in this section 
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experimental results are also given) and (5) concluding 
remarks.

2 Related work
Most of the algorithms for sequential pattern mining 
have been developed for vertical databases, this is, 
databases with short sequences but with a large amount 
of sequences. A document database can be considered as 
horizontal because it could have long sequences. 
Therefore, most of the algorithms for sequential pattern 
mining are not efficient for mining a document database.
Furthermore, most of the sequential pattern mining 
approaches assume a short alphabet; that is, the set of 
different items in the database. Thus, the characteristics 
of textual patterns make the problem intractable for most 
of the a priori-like candidate-generation-and-test 
approaches. For example, if the longest MSP has a length 
of 100 items then GSP [Srikant et al., 1996] will generate 

  30100100
1 10  ii   candidate sequences where each one 

must be tested over the DB in order to verify its 
frequency. This is the cost of candidate generation, no 
matter what implementation technique would be applied. 
For the candidate generation step, GSP generates 
candidate sequences of size k+1 by joining two frequent 
sequences of size k when the prefix k-1 of one sequence 
is equal to the suffix k-1 of another one. Then a candidate 
sequence is pruned if it is non-frequent. Even though, 
GSP reduces the number of candidate sequences, it still 
is inefficient for mining long sequences.

As related work, we can mention those pattern-
growth algorithms that speed up the sequential pattern 
mining [Jiawei Han et al. 2000; Antunes et al. 2003; Jian 
Pei et al. 2004; Lin et al. 2005] when there are long 
sequences. According to the empirical performance 
evaluations of pattern-growth algorithms like PrefixSpan 
[Jian Pei et al. 2004], GenPrefixSpan [Antunes et al. 
2003], cSPADE [Zaki 2000], and DELISP[Lin et al. 
2005], they outperform GSP specially when the database 
contains long sequences, therefore in this paper we will 
use them in our experiments. The basic idea in these 
algorithms is to avoid the cost of the candidate 
generation step and to focus the search on sub-databases 
generating projected databases. An α-projected database 
is the set of subsequences in the database that are 
suffixes of the sequences with prefix α. In each step, the 
algorithm looks for frequent sequences with prefix α in 
the corresponding projected database. In this sense, 
pattern-growth methods try to find the sequential patterns 
more directly, growing frequent sequences, beginning 
with sequences of size one. Even though, these methods 
are faster than apriori-like methods, some of them were 
designed to find all the frequent sequences, instead of 
only finding the MSP. Furthermore, none of them is 
incremental.

In this paper, we present two pattern-growth based 
algorithms, DIMASP-C and DIMASP-D, to Discover all 
the Maximal Sequential Patterns in a document 
collection and in a single document respectively. First, 
DIMASP algorithms build a novel data structure from 

the document database which is relatively easy to extract. 
Once DIMASP algorithms have built the data structure, 
they can discover all the MSP according to a threshold 
specified by the user. 

In contrast with PrefixSpan, GenPrefixSpan and 
DELISP; if the user specify a new threshold our 
algorithms avoid rebuilding the data structure for mining 
with the new threshold. In addition, when the document 
database is increased, DIMASP algorithms update the 
last discovered MSP by processing only the new added 
documents.

3 Problem definition
The problem of finding patterns in documents can be 
formulated following the same idea as in transactional 
databases, i.e., assuming that each document of the 
collection is a transaction in the database, in this way, a 
sequence of items in a document will be a pattern in the 
collection if it appears in a certain number of documents. 
We have denominated to this formulation as the problem 
of finding all the maximal sequential patterns in a 
document collection.

3.1 Finding all the MSP in a document 
collection

A sequence S, denoted by <s1,s2,...,sk>, is an ordered list 
of k elements called items. The number of elements in a 
sequence S is called the length of the sequence denoted 
by |S|. A k-sequence denotes a sequence of length k. Let 
P=<p1p2…pn> and S=<s1s2…sm> be sequences, P is a 
subsequence of S, denoted PS, if there exists an integer 
i1, such that p1=si, p2=si+1, p3=si+2,…,pn=si+(n-1). The 
frequency of a sequence S, denoted by Sf or <s1,s2,...,sn>f , 
is the number of documents in the collection where S is a 
subsequence. A sequence S is β-frequent in the collection 
if Sf ≥ β, a β-frequent sequence is also called a sequential 
pattern in the document collection. A sequential pattern S
is maximal if S is not a subsequence of any other 
sequential pattern in the collection.

Given a document collection, the problem consists 
in finding all the maximal sequential patterns in the 
document collection.

Another formulation of the problem is finding 
patterns in a single document. At first glance, this 
problem could be solved by dividing the document into
sections or paragraphs, and by applying algorithms for 
finding all the MSP in a document collection. However, 
the result would depend on the way the document was 
divided. 

In addition, a sequence of items will be a pattern in 
the document if it appears in many sections or paragraphs 
without taking account the number of times the sequence 
appears inside each section or paragraph. This situation 
makes the problem different, therefore we will consider 
that a sequence of items in a document will be a pattern 
if it is frequent or appears many times inside the whole 
document. We have denominated to this formulation as 
the problem of finding all the maximal sequential 
patterns in a single document.
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3.2 Finding all the MSP in a single 
document

Following the notation used in the section 3.1. Let XS 
and YS then X and Y are mutually excluded sequences
if X and Y do not share items i.e., if (xn=si and y1=sj) or 
(yn=si and x1=sj) then i<j. A sequence S is β-frequent in a 
document T, if it is contained at least β times in T in a 
mutually excluded way. A β-frequent sequence is also 
called a sequential pattern in a document. A sequential 
pattern S is maximal if S is not a subsequence of any 
other sequential pattern in the document.

Given a document, the problem consists in finding 
all the maximal sequential patterns in the document.

4 Algorithms for mining sequential 
patterns in documents

In this section, two algorithms one for mining maximal 
sequential patterns in a document collection (DIMASP-
C) and another for mining maximal sequential patterns 
in a single document (DIMASP-D), are introduced. Both 
of them build a data structure containing all the different 
pairs of contiguous words in the document or in the 
collection and the relations among them. Then the 
maximal sequential patterns are searched into this 
structure, following the pattern-growth strategy.

4.1 DIMASP-C
The basic idea of DIMASP-C consists in finding all the 
sequential patterns in a data structure, which is built from 
the document database (DDB). The data structure stores 
all the different pairs of contiguous words that appear in 
the documents, without losing their sequential order. 
Given a threshold β specified by the user, DIMASP-C
reviews if a pair is β-frequent. In this case, DIMASP-C
grows the sequence in order to determine all the possible 
maximal sequential patterns containing such pair as a 
prefix. A possible maximal sequential pattern (PMSP) 
will be a maximal sequential pattern (MSP) if it is not a 
subsequence of any previous MSP. This implies that all 
the stored MSP which are subsequence of the new PMSP 
must be deleted. The proposed algorithm is composed of 
three steps described as follows:

In the first step, for each different word (item) in 
the DDB, DIMASP-C assigns an integer number as 
identifier. Also, for each identifier, the frequency is 
stored, i.e., the number of documents where it appears. 
These identifiers are used in the algorithm instead of the 
words. Table 1 shows an example for a DDB containing 
4 documents.

In the second step (Fig. 1), DIMASP-C builds a 
data structure from the DDB storing all the pairs of 
contiguous words <wi,wi+1> that appear in a document 
and some additional information to preserve the 
sequential order. The data structure is an array which 
contains in each cell a pair of words C=<wi,wi+1>, the 
frequency of the pair (Cf), a Boolean mark and a list  of 
nodes  where a node  stores a document identifier 
(.Id), an index (.Index) of the cell where the pair appears 

in the array, a link (.NextDoc) to maintain the list  and a 
link (.NextNode) to preserve the sequential order of the 
pairs with respect to the document, where they appear. 
Therefore, the number of different documents presented 
in the list  is Cf. This step works as follows: for each 
pair of words <wi,wi+1> in the document DJ, if <wi,wi+1>
does not appear in the array, it is added, and its index is 
gotten. In the position index of the array, add a node  at 
the beginning of the list . The added node  has J as 
.Id, index as .index, .NextDoc is linked to the first node 
of the list  and .NextNode is linked to the next node 
corresponding to <wi+1,wi+2> of the document DJ. If the 
document identifier (.Id) is new in the list , then the 
frequency of the cell (Cf) is increased. In Fig. 2 the data 
structure built for the document database of table 1 is 
shown.

Table 1: Example of a document database and its 
identifier representation

Step 2: Algorithm to construct the data structure from the 
DDB
Input: A document database (DDB)     Output: The Array
For all the documents DDBD J  do

   Array Add a document (
JD ) to the array 

end-for
Step 2.1: Algorithm to add a document
Input: A document 

JD Output: The Array

For all the pairs 
Jii Dww 1, do

   i Create a new Pair 
   Id.i  J //Assign the document identifier to the node 
    indexArray[

1, ii ww ] //Get the index of the cell 

   index.i  index    //Assign the index to the node 
     Get the first node of the list 
  If Id.i ≠ Id. then the document identifier is new to the list 

Increment Cf       //increment the frequency

     NextDoc.i   //link the node α at the beginning of list 
List  Add i as the first node  //link it at the beginning

     NextNode.1i  i //do not lose the sequential order
  end-if   
end-for

Figure 1: Steps 2 and 2.1 of DIMASP-C.

In the last step (Fig. 3), given a threshold β, DIMASP-C
uses the constructed structure for mining all the maximal 
sequential patterns in the collection. For each pair of 
words stored in the structure, DIMASP-C verifies if this

DJ Document database
1
2
3

From George Washington to George W. Bush are 43 Presidents
Washington is the capital of the United States
George Washington was the first President of the United States

  4 the President of the United States is George W. Bush

Document database (words by integer identifiers)

1
2
3
4

<1,2,3,4,2,5,6,7,8,9>
<3,10,11,12,13,11,14,15>
<2,3,16,11,17,18,13,11,14,15>
<11,18,13,11,14,15,10,2,5,6>
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index <wi,wi+1> Cf List Δ

1 <From,George> 1 1 1 


2 <George,Washington> 2 3 2 1 2 


3 <Washington,to> 1 1 3 


4 <to,George> 1 1 4 

5 <Washington,is> 1 2 5 


6 <is,the> 1 2 6


7 <the,capital> 1 2 7


8 <capital,of> 1 2 8

9 <Washington,was> 1 3 9 


10 <was,the> 1 3 10 


11 <the,first> 1 3 11 


12 <first,President> 1 3 12

13 <the,President> 1 4 13 


14 <President,of> 2 4 14  3 14
 

15 <of,the> 2 4 15  3 15  2 15
  

16 <the,United> 2 4 16  3 16  2 16
  

17 <United,States> 2 4 17  3 17  2 17
  

18 <States,is> 1 4 18 


19 <is,George> 1 4 19 


20 <George,W.> 1 4 20 1 20 
 

21 <W.,Bush> 1 4 21 1 21 
 

22 <Bush,are> 1 1 22 


23 <are,43> 1 1 23 


24 <43,Presidents> 1 1 24 


Figure 2: Data structure built by DIMASP-C for the database of the table 1.

pair is β-frequent, in such case DIMASP-C, based on the 
structure, grows the pattern while its frequency (the 
number of documents where the pattern can grow) 
remains greater or equal than β. When a pattern cannot
grow, it is a possible maximal sequential pattern (PMSP), 
and it is used to update the final maximal sequential 
pattern set. Since DIMASP-C starts finding 3-MSP or 
longer, then at the end, all the β-frequent pairs that were 
not used for any PMSP and all the β-frequent words that 
were not used for any β-frequent pair are added as 
maximal sequential patterns.

In order to be efficient, it is needed to reduce the 
number of comparisons when a PMSP is added to the 
MSP set (Fig. 4). For such reason, a k-MSP is stored 
according to its length k, it means, there is a k-MSP set 
for each k. In this way, before adding a k-PMSP as a k-
MSP, the k-PMSP must not be in the k-MSP set and must 
not be subsequence of any longer k-MSP. When a PMSP 
is added, all its subsequences are eliminated.

For avoiding repeating all the work for discovering 
all the MSP when new documents are added to the 
database, DIMASP-C only preprocesses the part 

corresponding to these new documents. First the 
identifiers of these new documents are defined in step 1, 
then DIMASP-C would only use the step 2.1 (Fig. 1) to 
add them to the data structure. Finally, the step 3.1 (Fig. 
3) is applied on the new documents using the old MSP 
set, to discover the new MSP set, for example, Fig. 2 
shows with dotted lines the new part of the data structure 
when D4 of table 1 is added as a new document. This 
strategy works only if the same β is used, however for a 
different β only the discovery step (step 3, Fig. 3) must 
be applied, without rebuilding the data structure.

The experiments were done using the well-known 
reuters-215781 document collection. After pruning 400 
stop-words, this collection has 21578 documents with 
around 38,565 different words from 1.36 million words 
used in the whole collection. The average length of the 
documents was 63 words. In all the experiments the first 
5000, 10000, 15000 and 20000 documents were used. 
DIMASP-C was compared against GSP [Srikant et al., 

                                                          
1 http://kdd.ics.uci.edu/databases/reuters21578/
reuters21578.html
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1996], an apriori-like candidate-generation-and-test 
algorithm, and cSPADE [Zaki 2000], GenPrefixSpan 
[Antunes et al. 2003] and DELISP [Lin et al. 2005], three 
pattern-growth algorithms. Excepting for GSP, the 
original programs provided by the authors were used. All 
the experiments with DIMASP-C were done in a 
computer with an Intel Pentium 4 running at 3 GHz with 
1GB RAM.

Step 3: Algorithm to find all MSP
Input: Structure from step 2 and β threshold
Output: MSP set
For all the documents 

)1( JD  DDB do 

MSP set  Find all MSP w.r.t. the document (
JD )

Step 3.1: Algorithm to find all MSP with respect to the 
document DJ

Input: A DJ from the data structure and a β threshold  
Output: The MSP set w.r.t. to DJ

For all the nodes 
Jni D 1 i.e. 

Jii Dww 1, do

If Array [ index.i ].frequency ≥ β then

PMSPArray[ index.i ].
1, ii ww //the initial pair

Copy the rest of the list of Δ beginning from
     NextDoc.i

f  Number of different documents in 

i   i

While  f do the growth the PMSP

      Array[ index.1i ].list

&  i.e.       NextNode.index.| ii 1

   
f Number of different documents in 

If  f then to grow the PMSP

Array [ index.1i ].mark “used”

PMSP  PMSP + Array [ index.1i ].   1iw

i   1i i.e. NextNode.i 
end-while
If |PMSP| ≥ 3 then add the PMSP to the MSP set

MSP set  add a k-PMSP to the MSP set //step 3.1.1
end-for
For all the cells C  Array do the addition of the 2-MSP
   If Cf ≥ β and C.mark = “not used” then add it as 2-MSP

2-MSP set  add   1,. ii wwC

Figure 2: Step 3 of DIMASP-C.

Step 3.1.1: Algorithm to add a PMSP to the MSP set
Input: A k-PMSP, MSP set Output: MSP set
If (k-PMSP   k-MSP set) or (k-PMSP is subsequence of some 
longer k-MSP) then  // do not add anything

return MSP set
else  //add as a MSP

k-MSP set  add k-PMSP
{delete S  MSP set | S  k-PMSP }
return MSP set

Figure 3: Algorithm to add a PMSP to the MSP set.

4.1.1 Experiments with DIMASP-C
In Fig. 5a the performance comparison of DIMASP-C 
(with all the steps), cSPADE, GenPrefixSpan, DELISP 
and GSP algorithms with =15 is shown. Fig. 5b shows 
the same comparison of Fig. 5a but the worst algorithm 
(GSP) was eliminated, here it is possible to see that 
DELISP is not as good as it seems to be in Fig. 5a. In this 
experiment GenPrefixSpan had memory problems; 
therefore it was only tested with the first 5000 and 10000 
documents. Fig. 5c compares only DIMASP-C against 
the fastest algorithm cSPADE with respect to =15. Fig. 
5d draws a linear scalability of DIMASP-C with respect
to =15. An additional experiment with the lowest =2 
was performed, in this experiment DIMASP-C found a 
MSP of length 398 because there is a duplicated 
document in the collection, Fig. 5e shows these results. 

In order to evaluate the incremental scalability of 
DIMASP-C, 4000, 9000 14000 and 19000 documents 
were processed, and 1000 documents were added in each 
experiment. Fig. 5f shows the results and compares them 
against cSPADE which needs to recompute all the MSP. 
Fig. 5g shows the distribution of the MSP for =15
according to their length. Finally, Fig. 5h shows the 
number of MSP when =1% of the documents in the 
collection was used.

a) Performance comparison with β =15
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d) Linear Scalability of DIMASP-C varing β 
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Figure 4: Performance results using Reuters-2157 
collection.

4.2 DIMASP-D
Similar to DIMASP-C, the idea of DIMASP-D consists 
in finding all the sequential patterns in a data structure, 
which is built, in this case, from the single document to 
be analyzed. This structure stores all the different pairs of 
contiguous words that appear in the document, without 
losing their sequential order. Given a threshold β
specified by the user, DIMASP-D reviews if a pair is β-
frequent. In this case, DIMASP-D grows the pattern in 
order to determine all the possible maximal sequential 
patterns containing such pair as a prefix. The proposed 
algorithm has three steps described as follows:

In the first step, the algorithm assigns an id for each 
different word in the document.

The second step (fig. 6) consists in building the data 
structure. DIMASP-D will construct a data structure 
similar to the structure used for the document collection, 
but in this case containing only a single document. Since 
only one document is stored in the structure, the 
document index is not needed, instead of it, the position 
of the pair inside the document is stored, as it is shown in 
Fig. 7, this position is used to avoid overlapping among 
the instances of a maximal sequential pattern that appear 
into the document.

Input: A document T       Output: The data structure
For all the pairs [ti,ti+1]  T do
// if [ti,ti+1] it is not in Array, add it

PositionNode.Posindex  array [ti,ti+1];  
Array[index].Positions New PositionNode
Array[index].Freq  array[index].Freq+ 1
Array[LastIndex].Positions.NextIndexindex;

   Array[LastIndex].Positions.NextPosPositionNode;
LastIndex index;

End-for

Figure 5: Step 2 of DIMASP-D.

In the last step (Fig. 8), DIMASP-D finds all the 
maximal sequential patterns in similar way as DIMASP-
C, but now the β-frequency is verified inside the 
document, counting how many times a pattern appears 
without overlapping.

4.2.1 Experiments with DIMASP-D
For the experiments, we chose from the collection Alex2

the document “Autobiography” by Thomas Jefferson 
with around 243,115 chars corresponding to: 31,517 
words (approx. 100 pages); and the document
“LETTERS” by Thomas Jefferson with around 
1,812,428 chars and 241,735 words (approx. 800 pages). 
In both documents the stop words were not removed and 
only the numbers and punctuation symbols were omitted. 
In order to show the behavior of the processing time 
against the number of words in the document, we 
computed the MSP using DIMASP-D with the minimum 
threshold value, β=2.

                                                          
2 Public domain documents from American and English 
literature as well as Western philosophy. 
http://www.infomotions.com/alex/
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Figure 6: a) Data structure built by DIMASP-D for the text: “esadeladesad”
b) Node for positions list

Input: Data structure from phase 2 Output: MSP list
Actual1 //First element of NextPos List

while Actual ≠ 0 do
if Array[Actual].Frequency ≥ β, then

temporal Copy ( Array[Actual].Positions)
PMS  Array[Actual].Id1 + Array [Actual].Id2

aux  Array [Actual].NextIndex
       while aux ≠ 0 do  //expand the 2-sequence

temporal  Match((temporal.Pos + 1) AND
(Array[aux].Positions.Pos)

If | temporal | ≥ β, then
if aux = Array, then there is a cycle, 

PMSP Cycle( β, temporal, Array, Actual, aux )
If the PMSP cannot grow then exit from the while

else  PMSP  PMSP + Array[aux].Id2

aux Array[Actual].NextIndex
end-while
delete all the MSP  PMSP
if  (PMSP  MSP) then   MSPAdd(PMSP) 
Actual Array[Actual].NextIndex

End-while

Figure 7: Step 3 of DIMASP-D.

Each graph in Fig. 9 corresponds to one document, 
processing different quantities of words. In the fig. 9a, 
we started with 5,000 words and used an increment of 
5,000, in order to see how the processing time grows 
when the number of processed words is increased in the 
same document. In the fig. 9b, an increment of 40,000 
words was used in order to see how the processing time 
grows for a big document. By the way, in both graphs the 
time for steps (1 and 2) is shown. 
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Figure 8: Processing time for: a) “Autobiography” and, 
b) “LETTERS”.

For the same documents, the whole document was 
processed to find all the MSP, in order to appreciate (Fig. 
10) how the performance of our algorithm is affected for 
different values of the threshold β. Fig. 10a shows the 
time in seconds for “Autobiography” and Fig. 10b for 
“LETTERS”.
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Figure 10: Time performance for different values of β 
for: a) “Autobiography” and b) “LETTERS”.
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Furthermore, we have included in Fig. 11 an 
analysis of the number of MSP obtained from the same 
documents for different values for β.

Additionally to these experiments, we processed the 
biggest document from the collection Alex, “An Inquiry 
into the nature …” by Adam Smith with 2,266,784 chars 
corresponding to 306,156 words (approx. 1000 pages) 
with β=2, all MSP were obtained in 1,223 seconds 
(approx. 20 min). All the experiments with DIMASP-D 
were done in a computer with an Intel Centrino Duo
processor running at 1.6 GHz with 1GB RAM.
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Figure 11: Amount of MSP generated for different values 
of β for a) “Autobiography” and b) “LETTERS”.

5 Concluding remarks
In this work, we have introduced two new algorithms for 
mining maximal sequential patterns into a document 
collection (DIMASP-C) and into a single document 
(DIMASP-D).

According to our experiments, DIMASP-C is faster 
that all the previous algorithms. In addition, our 
algorithm allows processing the document collection in 
an incremental way; therefore if some documents are 
added to the collection, DIMASP-C only needs to 
process the new documents, which allows updating the 
maximal sequential patterns much faster than mining 
them over the whole modified collection by applying any 
of the previous algorithms.

DIMASP-D is a first approach for mining maximal 
sequential patterns into a single document, which allows 
processing large documents in a short time.

Since our proposed algorithms were designed for 
processing textual databases, they are faster than those 
proposed for transactional databases, therefore our 
algorithms are more suitable to apply maximal sequential 
patterns for solving more complex problems and 
applications in text mining, for example: question 
answering [Denicia-Carral et al. 2006; Juárez-González 
et al. 2007; Aceves-Pérez et al. 2007], authorship 

attribution [Coyotl-Morales et al. 2006], automatic text 
summarization [Ledeneva et al. 2008], document 
clustering [Hernandez-Reyes et al. 2006], and extraction 
of hyponyms [Ortega-Mendoza et al. 2007], among 
others.

As future work, we are going to adapt DIMASP-C 
and DIMASP-D for mining Maximal Sequential Patterns, 
allowing a bounded gap between words.
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