
Informatica 34 (2010) 93–101 93

Finding Maximal Sequential Patterns in Text Document Collections
and Single Documents

René Arnulfo García-Hernández
Autonomous University of the State of Mexico
Tianguistenco Professional Academic Unit
Paraje el Tejocote, San Pedro Tlaltizapan, Estado de México
E-mail: renearnulfo@hotmail.com, http://scfi.uaemex.mx/~ragarcia/

J. Fco. Martínez-Trinidad and J. Ariel Carrasco-Ochoa
National Institute of Astrophysics, Optics and Electronics
E-mail: fmartine@inaoep.mx, ariel@inaoep.mx

Keywords: text mining, maximal sequential patterns

Received: April 1, 2009

In this paper, two algorithms for discovering all the Maximal Sequential Patterns (MSP) in a document
collection and in a single document are presented. The proposed algorithms follow the “pattern-growth
strategy” where small frequent sequences are found first with the goal of growing them to obtain MSP.
Our algorithms process the documents in an incremental way avoiding re-computing all the MSP when
new documents are added. Experiments showing the performance of our algorithms and comparing
against GSP, DELISP, GenPrefixSpan and cSPADE algorithms over public standard databases are also
presented.

Povzetek: Predstavljena sta dva algoritma za iskanje najdaljših zaporedij v besedilu.

1 Introduction
Frequent pattern mining is a task into the datamining area
that has been intensively studied in the last years [Jiawei
Han et al. 2007]. Frequent patterns are itemsets,
subsequences, or substructures that appear in a data set
with frequency no less than a user-specified threshold.
Frequent pattern mining plays an important role in
mining associations, correlations, finding interesting
relationships among data, data indexing, classification,
clustering, and other data mining tasks as well. Besides,
frequent patterns are useful for solving more complex
problems of data analysis. Therefore, frequent pattern
mining has become an important area in data mining
research.

Frequent pattern mining was first proposed by
[Agrawal et al. 1993] for market basket analysis finding
associations between the different items that customers
place in their “shopping baskets”. Since this first
proposal there have been many research publications
proposing efficient mining algorithms, most of them, for
mining frequent patterns in transactional databases.

Mining frequent patterns in document databases is a
problem which has been less studied. Sequential pattern
mining in document databases has the goal of finding all
the subsequences that are contained at least β times in a
collection of documents or in a single document, where β
is a user-specified support threshold. This discovered set
of frequent sequences contains the maximal frequent
sequences which are not a subsequence of any other

frequent sequence (from now on we will use the term
Maximal Sequential Patterns, MSP), that is, the MSPs
are a compact representation of the whole set of frequent
sequences. Therefore, in the same way as occurs in
transactional databases, the sequential pattern mining in
document databases plays an important role, because it
allows identifying valid, novel, potentially useful and
ultimately understandable patterns. In this paper, we will
focus in the extraction of this kind of patterns from
textual or text document databases. Since maximal
sequential patterns can be extracted from documents
independently of the language without losing their
sequential nature they can be used to solve more complex
problems (all of them related to text mining) as question
answering [Denicia-Carral et al. 2006; Juárez-González
et al. 2007; Aceves-Pérez et al. 2007], authorship
attribution [Coyotl-Morales et al. 2006], automatic text
summarization [Ledeneva et al. 2008], document
clustering [Hernandez-Reyes et al. 2006], and extraction
of hyponyms [Ortega-Mendoza et al. 2007], among
others.

In this article, we present two pattern-growth based
algorithms, DIMASP-C and DIMASP-D, to Discover all
the Maximal Sequential Patterns in a document
collection and in a single document respectively. The rest
of this article is organized in four sections: (2) related
work, (3) problem definition, (4) algorithms for mining
frequent patterns in documents (in this section

94 Informatica 34 (2010) 93–101 R.A. García-Hernández et al.

experimental results are also given) and (5) concluding
remarks.

2 Related work
Most of the algorithms for sequential pattern mining
have been developed for vertical databases, this is,
databases with short sequences but with a large amount
of sequences. A document database can be considered as
horizontal because it could have long sequences.
Therefore, most of the algorithms for sequential pattern
mining are not efficient for mining a document database.
Furthermore, most of the sequential pattern mining
approaches assume a short alphabet; that is, the set of
different items in the database. Thus, the characteristics
of textual patterns make the problem intractable for most
of the a priori-like candidate-generation-and-test
approaches. For example, if the longest MSP has a length
of 100 items then GSP [Srikant et al., 1996] will generate

  30100100
1 10  ii candidate sequences where each one

must be tested over the DB in order to verify its
frequency. This is the cost of candidate generation, no
matter what implementation technique would be applied.
For the candidate generation step, GSP generates
candidate sequences of size k+1 by joining two frequent
sequences of size k when the prefix k-1 of one sequence
is equal to the suffix k-1 of another one. Then a candidate
sequence is pruned if it is non-frequent. Even though,
GSP reduces the number of candidate sequences, it still
is inefficient for mining long sequences.

As related work, we can mention those pattern-
growth algorithms that speed up the sequential pattern
mining [Jiawei Han et al. 2000; Antunes et al. 2003; Jian
Pei et al. 2004; Lin et al. 2005] when there are long
sequences. According to the empirical performance
evaluations of pattern-growth algorithms like PrefixSpan
[Jian Pei et al. 2004], GenPrefixSpan [Antunes et al.
2003], cSPADE [Zaki 2000], and DELISP[Lin et al.
2005], they outperform GSP specially when the database
contains long sequences, therefore in this paper we will
use them in our experiments. The basic idea in these
algorithms is to avoid the cost of the candidate
generation step and to focus the search on sub-databases
generating projected databases. An α-projected database
is the set of subsequences in the database that are
suffixes of the sequences with prefix α. In each step, the
algorithm looks for frequent sequences with prefix α in
the corresponding projected database. In this sense,
pattern-growth methods try to find the sequential patterns
more directly, growing frequent sequences, beginning
with sequences of size one. Even though, these methods
are faster than apriori-like methods, some of them were
designed to find all the frequent sequences, instead of
only finding the MSP. Furthermore, none of them is
incremental.

In this paper, we present two pattern-growth based
algorithms, DIMASP-C and DIMASP-D, to Discover all
the Maximal Sequential Patterns in a document
collection and in a single document respectively. First,
DIMASP algorithms build a novel data structure from

the document database which is relatively easy to extract.
Once DIMASP algorithms have built the data structure,
they can discover all the MSP according to a threshold
specified by the user.

In contrast with PrefixSpan, GenPrefixSpan and
DELISP; if the user specify a new threshold our
algorithms avoid rebuilding the data structure for mining
with the new threshold. In addition, when the document
database is increased, DIMASP algorithms update the
last discovered MSP by processing only the new added
documents.

3 Problem definition
The problem of finding patterns in documents can be
formulated following the same idea as in transactional
databases, i.e., assuming that each document of the
collection is a transaction in the database, in this way, a
sequence of items in a document will be a pattern in the
collection if it appears in a certain number of documents.
We have denominated to this formulation as the problem
of finding all the maximal sequential patterns in a
document collection.

3.1 Finding all the MSP in a document
collection

A sequence S, denoted by <s1,s2,...,sk>, is an ordered list
of k elements called items. The number of elements in a
sequence S is called the length of the sequence denoted
by |S|. A k-sequence denotes a sequence of length k. Let
P=<p1p2…pn> and S=<s1s2…sm> be sequences, P is a
subsequence of S, denoted PS, if there exists an integer
i1, such that p1=si, p2=si+1, p3=si+2,…,pn=si+(n-1). The
frequency of a sequence S, denoted by Sf or <s1,s2,...,sn>f ,
is the number of documents in the collection where S is a
subsequence. A sequence S is β-frequent in the collection
if Sf ≥ β, a β-frequent sequence is also called a sequential
pattern in the document collection. A sequential pattern S
is maximal if S is not a subsequence of any other
sequential pattern in the collection.

Given a document collection, the problem consists
in finding all the maximal sequential patterns in the
document collection.

Another formulation of the problem is finding
patterns in a single document. At first glance, this
problem could be solved by dividing the document into
sections or paragraphs, and by applying algorithms for
finding all the MSP in a document collection. However,
the result would depend on the way the document was
divided.

In addition, a sequence of items will be a pattern in
the document if it appears in many sections or paragraphs
without taking account the number of times the sequence
appears inside each section or paragraph. This situation
makes the problem different, therefore we will consider
that a sequence of items in a document will be a pattern
if it is frequent or appears many times inside the whole
document. We have denominated to this formulation as
the problem of finding all the maximal sequential
patterns in a single document.

FINDING MAXIMAL SEQUENTIAL PATTERNS IN... Informatica 34 (2010) 93–101 95

3.2 Finding all the MSP in a single
document

Following the notation used in the section 3.1. Let XS
and YS then X and Y are mutually excluded sequences
if X and Y do not share items i.e., if (xn=si and y1=sj) or
(yn=si and x1=sj) then i<j. A sequence S is β-frequent in a
document T, if it is contained at least β times in T in a
mutually excluded way. A β-frequent sequence is also
called a sequential pattern in a document. A sequential
pattern S is maximal if S is not a subsequence of any
other sequential pattern in the document.

Given a document, the problem consists in finding
all the maximal sequential patterns in the document.

4 Algorithms for mining sequential
patterns in documents

In this section, two algorithms one for mining maximal
sequential patterns in a document collection (DIMASP-
C) and another for mining maximal sequential patterns
in a single document (DIMASP-D), are introduced. Both
of them build a data structure containing all the different
pairs of contiguous words in the document or in the
collection and the relations among them. Then the
maximal sequential patterns are searched into this
structure, following the pattern-growth strategy.

4.1 DIMASP-C
The basic idea of DIMASP-C consists in finding all the
sequential patterns in a data structure, which is built from
the document database (DDB). The data structure stores
all the different pairs of contiguous words that appear in
the documents, without losing their sequential order.
Given a threshold β specified by the user, DIMASP-C
reviews if a pair is β-frequent. In this case, DIMASP-C
grows the sequence in order to determine all the possible
maximal sequential patterns containing such pair as a
prefix. A possible maximal sequential pattern (PMSP)
will be a maximal sequential pattern (MSP) if it is not a
subsequence of any previous MSP. This implies that all
the stored MSP which are subsequence of the new PMSP
must be deleted. The proposed algorithm is composed of
three steps described as follows:

In the first step, for each different word (item) in
the DDB, DIMASP-C assigns an integer number as
identifier. Also, for each identifier, the frequency is
stored, i.e., the number of documents where it appears.
These identifiers are used in the algorithm instead of the
words. Table 1 shows an example for a DDB containing
4 documents.

In the second step (Fig. 1), DIMASP-C builds a
data structure from the DDB storing all the pairs of
contiguous words <wi,wi+1> that appear in a document
and some additional information to preserve the
sequential order. The data structure is an array which
contains in each cell a pair of words C=<wi,wi+1>, the
frequency of the pair (Cf), a Boolean mark and a list  of
nodes  where a node  stores a document identifier
(.Id), an index (.Index) of the cell where the pair appears

in the array, a link (.NextDoc) to maintain the list  and a
link (.NextNode) to preserve the sequential order of the
pairs with respect to the document, where they appear.
Therefore, the number of different documents presented
in the list  is Cf. This step works as follows: for each
pair of words <wi,wi+1> in the document DJ, if <wi,wi+1>
does not appear in the array, it is added, and its index is
gotten. In the position index of the array, add a node  at
the beginning of the list . The added node  has J as
.Id, index as .index, .NextDoc is linked to the first node
of the list  and .NextNode is linked to the next node 
corresponding to <wi+1,wi+2> of the document DJ. If the
document identifier (.Id) is new in the list , then the
frequency of the cell (Cf) is increased. In Fig. 2 the data
structure built for the document database of table 1 is
shown.

Table 1: Example of a document database and its
identifier representation

Step 2: Algorithm to construct the data structure from the
DDB
Input: A document database (DDB) Output: The Array
For all the documents DDBD J  do

 Array Add a document (
JD) to the array

end-for
Step 2.1: Algorithm to add a document
Input: A document

JD Output: The Array

For all the pairs
Jii Dww 1, do

 i Create a new Pair 
 Id.i  J //Assign the document identifier to the node 
 indexArray[

1, ii ww] //Get the index of the cell

 index.i  index //Assign the index to the node 
  Get the first node of the list 
 If Id.i ≠ Id. then the document identifier is new to the list 

Increment Cf //increment the frequency

 NextDoc.i   //link the node α at the beginning of list 
List  Add i as the first node //link it at the beginning

 NextNode.1i  i //do not lose the sequential order
 end-if
end-for

Figure 1: Steps 2 and 2.1 of DIMASP-C.

In the last step (Fig. 3), given a threshold β, DIMASP-C
uses the constructed structure for mining all the maximal
sequential patterns in the collection. For each pair of
words stored in the structure, DIMASP-C verifies if this

DJ Document database
1
2
3

From George Washington to George W. Bush are 43 Presidents
Washington is the capital of the United States
George Washington was the first President of the United States

 4 the President of the United States is George W. Bush

Document database (words by integer identifiers)

1
2
3
4

<1,2,3,4,2,5,6,7,8,9>
<3,10,11,12,13,11,14,15>
<2,3,16,11,17,18,13,11,14,15>
<11,18,13,11,14,15,10,2,5,6>

96 Informatica 34 (2010) 93–101 R.A. García-Hernández et al.

index <wi,wi+1> Cf List Δ

1 <From,George> 1 1 1 


2 <George,Washington> 2 3 2 1 2 


3 <Washington,to> 1 1 3 


4 <to,George> 1 1 4 

5 <Washington,is> 1 2 5 


6 <is,the> 1 2 6


7 <the,capital> 1 2 7


8 <capital,of> 1 2 8

9 <Washington,was> 1 3 9 


10 <was,the> 1 3 10 


11 <the,first> 1 3 11 


12 <first,President> 1 3 12

13 <the,President> 1 4 13 


14 <President,of> 2 4 14  3 14
 

15 <of,the> 2 4 15  3 15  2 15
  

16 <the,United> 2 4 16  3 16  2 16
  

17 <United,States> 2 4 17  3 17  2 17
  

18 <States,is> 1 4 18 


19 <is,George> 1 4 19 


20 <George,W.> 1 4 20 1 20 
 

21 <W.,Bush> 1 4 21 1 21 
 

22 <Bush,are> 1 1 22 


23 <are,43> 1 1 23 


24 <43,Presidents> 1 1 24 


Figure 2: Data structure built by DIMASP-C for the database of the table 1.

pair is β-frequent, in such case DIMASP-C, based on the
structure, grows the pattern while its frequency (the
number of documents where the pattern can grow)
remains greater or equal than β. When a pattern cannot
grow, it is a possible maximal sequential pattern (PMSP),
and it is used to update the final maximal sequential
pattern set. Since DIMASP-C starts finding 3-MSP or
longer, then at the end, all the β-frequent pairs that were
not used for any PMSP and all the β-frequent words that
were not used for any β-frequent pair are added as
maximal sequential patterns.

In order to be efficient, it is needed to reduce the
number of comparisons when a PMSP is added to the
MSP set (Fig. 4). For such reason, a k-MSP is stored
according to its length k, it means, there is a k-MSP set
for each k. In this way, before adding a k-PMSP as a k-
MSP, the k-PMSP must not be in the k-MSP set and must
not be subsequence of any longer k-MSP. When a PMSP
is added, all its subsequences are eliminated.

For avoiding repeating all the work for discovering
all the MSP when new documents are added to the
database, DIMASP-C only preprocesses the part

corresponding to these new documents. First the
identifiers of these new documents are defined in step 1,
then DIMASP-C would only use the step 2.1 (Fig. 1) to
add them to the data structure. Finally, the step 3.1 (Fig.
3) is applied on the new documents using the old MSP
set, to discover the new MSP set, for example, Fig. 2
shows with dotted lines the new part of the data structure
when D4 of table 1 is added as a new document. This
strategy works only if the same β is used, however for a
different β only the discovery step (step 3, Fig. 3) must
be applied, without rebuilding the data structure.

The experiments were done using the well-known
reuters-215781 document collection. After pruning 400
stop-words, this collection has 21578 documents with
around 38,565 different words from 1.36 million words
used in the whole collection. The average length of the
documents was 63 words. In all the experiments the first
5000, 10000, 15000 and 20000 documents were used.
DIMASP-C was compared against GSP [Srikant et al.,

1 http://kdd.ics.uci.edu/databases/reuters21578/
reuters21578.html

FINDING MAXIMAL SEQUENTIAL PATTERNS IN... Informatica 34 (2010) 93–101 97

1996], an apriori-like candidate-generation-and-test
algorithm, and cSPADE [Zaki 2000], GenPrefixSpan
[Antunes et al. 2003] and DELISP [Lin et al. 2005], three
pattern-growth algorithms. Excepting for GSP, the
original programs provided by the authors were used. All
the experiments with DIMASP-C were done in a
computer with an Intel Pentium 4 running at 3 GHz with
1GB RAM.

Step 3: Algorithm to find all MSP
Input: Structure from step 2 and β threshold
Output: MSP set
For all the documents

)1(JD  DDB do

MSP set  Find all MSP w.r.t. the document (
JD)

Step 3.1: Algorithm to find all MSP with respect to the
document DJ

Input: A DJ from the data structure and a β threshold
Output: The MSP set w.r.t. to DJ

For all the nodes
Jni D 1 i.e.

Jii Dww 1, do

If Array [index.i].frequency ≥ β then

PMSPArray[index.i].
1, ii ww //the initial pair

Copy the rest of the list of Δ beginning from
 NextDoc.i

f  Number of different documents in 

i   i

While  f do the growth the PMSP

   Array[index.1i].list

&  i.e.       NextNode.index.| ii 1

f Number of different documents in 

If  f then to grow the PMSP

Array [index.1i].mark “used”

PMSP  PMSP + Array [index.1i].   1iw

i   1i i.e. NextNode.i 
end-while
If |PMSP| ≥ 3 then add the PMSP to the MSP set

MSP set  add a k-PMSP to the MSP set //step 3.1.1
end-for
For all the cells C  Array do the addition of the 2-MSP
 If Cf ≥ β and C.mark = “not used” then add it as 2-MSP

2-MSP set  add   1,. ii wwC

Figure 2: Step 3 of DIMASP-C.

Step 3.1.1: Algorithm to add a PMSP to the MSP set
Input: A k-PMSP, MSP set Output: MSP set
If (k-PMSP  k-MSP set) or (k-PMSP is subsequence of some
longer k-MSP) then // do not add anything

return MSP set
else //add as a MSP

k-MSP set  add k-PMSP
{delete S  MSP set | S  k-PMSP }
return MSP set

Figure 3: Algorithm to add a PMSP to the MSP set.

4.1.1 Experiments with DIMASP-C
In Fig. 5a the performance comparison of DIMASP-C
(with all the steps), cSPADE, GenPrefixSpan, DELISP
and GSP algorithms with =15 is shown. Fig. 5b shows
the same comparison of Fig. 5a but the worst algorithm
(GSP) was eliminated, here it is possible to see that
DELISP is not as good as it seems to be in Fig. 5a. In this
experiment GenPrefixSpan had memory problems;
therefore it was only tested with the first 5000 and 10000
documents. Fig. 5c compares only DIMASP-C against
the fastest algorithm cSPADE with respect to =15. Fig.
5d draws a linear scalability of DIMASP-C with respect
to =15. An additional experiment with the lowest =2
was performed, in this experiment DIMASP-C found a
MSP of length 398 because there is a duplicated
document in the collection, Fig. 5e shows these results.

In order to evaluate the incremental scalability of
DIMASP-C, 4000, 9000 14000 and 19000 documents
were processed, and 1000 documents were added in each
experiment. Fig. 5f shows the results and compares them
against cSPADE which needs to recompute all the MSP.
Fig. 5g shows the distribution of the MSP for =15
according to their length. Finally, Fig. 5h shows the
number of MSP when =1% of the documents in the
collection was used.

a) Performance comparison with β =15

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000
documents in DDB

T
im

e
(s

ec
.)

GSP
cSPADE
GenPrefixSpan
DELISP
DIMASP-DC

c) Performance comparison with β =15

0
10
20
30
40
50
60
70
80
90

100

0 5000 10000 15000 20000
documents in DDB

T
im

e
(s

ec
.)

cSPADE

DIMASP-DC

b) Performance comparison with β =15

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000
documents in DDB

T
im

e
(s

ec
.)

cSPADE
GenPrefixSpan
DELISP
DIMASP-DC

98 Informatica 34 (2010) 93–101 R.A. García-Hernández et al.

d) Linear Scalability of DIMASP-C varing β

0

5

10

15

20

25

30

0 5000 10000 15000 20000

documents in DDB

T
im

e
(s

ec
.)

Step 2 + 3 with
β=5
Step 2 + 3 with
β=15

e) DIMASP-DC with β =2

0

50

100

150

200

250

0 5000 10000 15000 20000
documents in DDB

T
im

e
(s

ec
.)

Step 2 + 3 with β=2

f) Incremental Scalability of
DIMASP-DC and cSPADE with β =15

0

20

40

60

80

100

0 5000 10000 15000 20000
documents in DDB

T
im

e
(s

ec
.)

cSPADE

DIMASP-DC Step 2 + Step 3

g) Distribution of the k -MSPs for 2000
document with β =15

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MSPs by length

Q
ua

nt
ity

 o
f M

SP
s

h) Number of MSPs with β =1% w.r.t.
documents in DDB

7000

7200

7400

7600

7800

8000

8200

8400

8600

5000 10000 15000 20000

MSPs by length

Q
ua

nt
it

y
of

 M
SP

s

Figure 4: Performance results using Reuters-2157
collection.

4.2 DIMASP-D
Similar to DIMASP-C, the idea of DIMASP-D consists
in finding all the sequential patterns in a data structure,
which is built, in this case, from the single document to
be analyzed. This structure stores all the different pairs of
contiguous words that appear in the document, without
losing their sequential order. Given a threshold β
specified by the user, DIMASP-D reviews if a pair is β-
frequent. In this case, DIMASP-D grows the pattern in
order to determine all the possible maximal sequential
patterns containing such pair as a prefix. The proposed
algorithm has three steps described as follows:

In the first step, the algorithm assigns an id for each
different word in the document.

The second step (fig. 6) consists in building the data
structure. DIMASP-D will construct a data structure
similar to the structure used for the document collection,
but in this case containing only a single document. Since
only one document is stored in the structure, the
document index is not needed, instead of it, the position
of the pair inside the document is stored, as it is shown in
Fig. 7, this position is used to avoid overlapping among
the instances of a maximal sequential pattern that appear
into the document.

Input: A document T Output: The data structure
For all the pairs [ti,ti+1]  T do
// if [ti,ti+1] it is not in Array, add it

PositionNode.Posindex  array [ti,ti+1];
Array[index].Positions New PositionNode
Array[index].Freq  array[index].Freq+ 1
Array[LastIndex].Positions.NextIndexindex;

 Array[LastIndex].Positions.NextPosPositionNode;
LastIndex index;

End-for

Figure 5: Step 2 of DIMASP-D.

In the last step (Fig. 8), DIMASP-D finds all the
maximal sequential patterns in similar way as DIMASP-
C, but now the β-frequency is verified inside the
document, counting how many times a pattern appears
without overlapping.

4.2.1 Experiments with DIMASP-D
For the experiments, we chose from the collection Alex2

the document “Autobiography” by Thomas Jefferson
with around 243,115 chars corresponding to: 31,517
words (approx. 100 pages); and the document
“LETTERS” by Thomas Jefferson with around
1,812,428 chars and 241,735 words (approx. 800 pages).
In both documents the stop words were not removed and
only the numbers and punctuation symbols were omitted.
In order to show the behavior of the processing time
against the number of words in the document, we
computed the MSP using DIMASP-D with the minimum
threshold value, β=2.

2 Public domain documents from American and English
literature as well as Western philosophy.
http://www.infomotions.com/alex/

FINDING MAXIMAL SEQUENTIAL PATTERNS IN... Informatica 34 (2010) 93–101 99

ind Id‘s Freq Positions

1 e s 2

2 s a 2

3 a d 3

4 d e 2

5 e l 1

6 l a 1

(a)

NextPos

Pos Next
 Index

N
ex

tN
od

e

Position Node

(b

1 2

2 3

3 4

4 5

5 6

6 3

7 4

8 1

10 3

11 0

9 2

 NextPos List

Pos: 1 2 3 4 5 6 7 8 9 10 11 12
Item: e s a d e l a d e s a d

Position of
the pair

Index of the
next pair (s,a)

(b)

Figure 6: a) Data structure built by DIMASP-D for the text: “esadeladesad”
b) Node for positions list

Input: Data structure from phase 2 Output: MSP list
Actual1 //First element of NextPos List

while Actual ≠ 0 do
if Array[Actual].Frequency ≥ β, then

temporal Copy (Array[Actual].Positions)
PMS  Array[Actual].Id1 + Array [Actual].Id2

aux  Array [Actual].NextIndex
 while aux ≠ 0 do //expand the 2-sequence

temporal  Match((temporal.Pos + 1) AND
(Array[aux].Positions.Pos)

If | temporal | ≥ β, then
if aux = Array, then there is a cycle,

PMSP Cycle(β, temporal, Array, Actual, aux)
If the PMSP cannot grow then exit from the while

else PMSP  PMSP + Array[aux].Id2

aux Array[Actual].NextIndex
end-while
delete all the MSP  PMSP
if (PMSP  MSP) then MSPAdd(PMSP)
Actual Array[Actual].NextIndex

End-while

Figure 7: Step 3 of DIMASP-D.

Each graph in Fig. 9 corresponds to one document,
processing different quantities of words. In the fig. 9a,
we started with 5,000 words and used an increment of
5,000, in order to see how the processing time grows
when the number of processed words is increased in the
same document. In the fig. 9b, an increment of 40,000
words was used in order to see how the processing time
grows for a big document. By the way, in both graphs the
time for steps (1 and 2) is shown.

a) Autobiography

0

2

4

6

8

5 10 15 20 25 30

Autobiography

Steps 1 and 2

b) Letters

0

200

400

600

800

40 80 120 160 200 240

LETTERS

Steps 1 and 2

Figure 8: Processing time for: a) “Autobiography” and,
b) “LETTERS”.

For the same documents, the whole document was
processed to find all the MSP, in order to appreciate (Fig.
10) how the performance of our algorithm is affected for
different values of the threshold β. Fig. 10a shows the
time in seconds for “Autobiography” and Fig. 10b for
“LETTERS”.

0

2

4

6

8

2 5 10 15 20 25

Autobiography

0

100

200

300

400

500

600

700

2 5 10 15 20 25

LETTERS

Figure 10: Time performance for different values of β
for: a) “Autobiography” and b) “LETTERS”.

T
im

e
(s

ec
)


Words in thousand

T
im

e
(s

ec
)


β =

(
a)

(
a)

T
im

e
(s

ec
)


T
im

e
(s

ec
)


β =

100 Informatica 34 (2010) 93–101 R.A. García-Hernández et al.

Furthermore, we have included in Fig. 11 an
analysis of the number of MSP obtained from the same
documents for different values for β.

Additionally to these experiments, we processed the
biggest document from the collection Alex, “An Inquiry
into the nature …” by Adam Smith with 2,266,784 chars
corresponding to 306,156 words (approx. 1000 pages)
with β=2, all MSP were obtained in 1,223 seconds
(approx. 20 min). All the experiments with DIMASP-D
were done in a computer with an Intel Centrino Duo
processor running at 1.6 GHz with 1GB RAM.

0
5

10
15
20
25
30
35

5 10 15 20 25 30

β=2
β=5
β=10

0
5

10
15
20
25
30
35

5 10 15 20 25 30

β=2
β=5
β=10

Figure 11: Amount of MSP generated for different values
of β for a) “Autobiography” and b) “LETTERS”.

5 Concluding remarks
In this work, we have introduced two new algorithms for
mining maximal sequential patterns into a document
collection (DIMASP-C) and into a single document
(DIMASP-D).

According to our experiments, DIMASP-C is faster
that all the previous algorithms. In addition, our
algorithm allows processing the document collection in
an incremental way; therefore if some documents are
added to the collection, DIMASP-C only needs to
process the new documents, which allows updating the
maximal sequential patterns much faster than mining
them over the whole modified collection by applying any
of the previous algorithms.

DIMASP-D is a first approach for mining maximal
sequential patterns into a single document, which allows
processing large documents in a short time.

Since our proposed algorithms were designed for
processing textual databases, they are faster than those
proposed for transactional databases, therefore our
algorithms are more suitable to apply maximal sequential
patterns for solving more complex problems and
applications in text mining, for example: question
answering [Denicia-Carral et al. 2006; Juárez-González
et al. 2007; Aceves-Pérez et al. 2007], authorship

attribution [Coyotl-Morales et al. 2006], automatic text
summarization [Ledeneva et al. 2008], document
clustering [Hernandez-Reyes et al. 2006], and extraction
of hyponyms [Ortega-Mendoza et al. 2007], among
others.

As future work, we are going to adapt DIMASP-C
and DIMASP-D for mining Maximal Sequential Patterns,
allowing a bounded gap between words.

References
[1] Aceves-Pérez Rita Marina, Montes-y-Gómez

Manuel, Villaseñor Pineda Luis, “Enhancing Cross-
Language Question Answering by Combining
Multiple Question Translations”, 8th Intelligent
Text Processing and Computational Linguistics
(CICLing’2007), LNCS 4394, Springer-Verlag,
2007, pp. 485–493.

[2] Agrawal R, Imielinski T, Swami A, “Mining
association rules between sets of items in large
databases”, Proceedings of the 1993ACM-SIGMOD
international conference on management of data
(SIGMOD’93), Washington, DC, 1993, pp 207–
216.

[3] Antunes, C., Oliveira A., “Generalization of
Pattern-growth Methods for Sequential Pattern
Mining with Gap Constraints”, Third IAPR
Workshop on Machine Learning and Data Mining
MLDM2003 LNCS 2734, 2003, pp. 239–251.

[4] Coyotl-Morales Rosa Maria, Villaseñor-Pineda
Luis, Montes y Gómez Manuel, Rosso Paolo,
“Authorship Attribution Using Word Sequences”,
11th Iberoamerican Congress on Pattern
Recognition (CIARP’2006), LNCS 4225, Springer
Verlag, 2006, pp. 844–853.

[5] Denicia-Carral Claudia, Montes-y-Gómez Manuel,
Villaseñor-Pineda Luis, García Hernández René,
“A Text Mining Approach for DefinitionQuestion
Answering”, 5th International Conference on NLP
(Fintal 2006), LNAI 4139, Springer-Verlag, 2006,
pp. 76–86.

[6] Hernandez-Reyes E, Garcia-Hernandez RA,
Carrasco-Ochoa JA, J. Fco. Martínez-Trinidad,
“Document clustering based on maximal frequent
sequences”, 5th International Conference on NLP
(Fintal 2006), LNAI 4139, Springer-Verlag, 2006,
pp. 257-267.

[7] Jian Pei, Jiawei Han, et. al. “Mining Sequential
Patterns by Pattern-Growth: The PrefixSpan
Approach”, IEEE Transactions on Knowledge and
Data Engineering, 16(10), 2004, pp. 1424–1440.

[8] Jiawei Han and Micheline Kamber, “Data Mining:
Concepts and Techniques”, Morgan Kaufmann
Publishers, 2000.

[9] Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan,
“Frequent pattern mining: current status and future
directions”, Data Min Knowl Disc 15, 2007, pp.
55–86.

[10] Juárez-González Antonio, Téllez-Valero Alberto,
Delicia-Carral Claudia, Montes-y-Gómez Manuel
and Villaseñor-Pineda Luis, “Using Machine

Words in thousand

Words in thousand

M
S

P
 i

n
hu

nd
re

d
M

S
P

 i
n

hu
nd

re
d

FINDING MAXIMAL SEQUENTIAL PATTERNS IN... Informatica 34 (2010) 93–101 101

Learning and Text Mining in Question Answering”,
7th Workshop of the Cross-Language Evaluation
Forum, CLEF 2006, LNCS 4730, Springer-Verlag,
2007, pp. 415–423.

[11] Ledeneva Yulia, Gelbukh Alexander, and García-
Hernández René Arnulfo, “Terms Derived from
Frequent Sequences for Extractive Text
Summarization”, LNCS 4919, Springer-Verlag,
2008, pp. 593–604.

[12] Lin, M. Y., and S. Y. Lee, “Efficient Mining of
Sequential Patterns with Time Constraints by
Delimited Pattern-Growth”, Knowledge and
Information Systems, 7(4), 2005, pp. 499-514.

[13] Ortega-Mendoza Rosa M., Villaseñor-Pineda Luis
and Montes-y-Gómez Manuel, “Using Lexical

Patterns for Extracting Hyponyms from the Web”,
Mexican International Conference on Artificial
Intelligence MICAI 2007, LNAI 4827, Springer-
Verlag, 2007, pp. 904-911.

[14] Srikant, R., and Agrawal, R., “Mining sequential
patterns: Generalizations and performance
improvements”, 5th Intl. Conf. Extending Database
Discovery and Data Mining, LNCS 1057, Springer-
Verlag, 1996, pp. 3–17.

[15] Zaki, Mohammed, “SPADE: An Efficient
Algorithm for Mining Frequent Sequences”,
Machine Learning, Kluwer Academic Publishers,
42, 2000, pp. 31–60.

