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Abstract Euler in the 18th century, when he noticed that the number

) ~_ ofvertices, edges, and faces of evelydimensional) convex
The theory of persistent homology opens up the possibility polytope satisfies

to reason about topological features of a space or a function
guantitatively and in combinatorial terms. We refer to this
new angle at a classical subject within algebraic topology as #vertices— #tedgest #faces = 2; (1)
apoint calculuswhich we present for the family of interlevel

sets of a real—val_ued function. Our qccount of the subject_ IS gee [13]. Today,
expository, devoid of proofs, and written for non-experts in
algebraic topology.

this is considered the first invariant in al-
gebraic topology. More than a century later, Enrico Betti
introduced what are now known &etti numbersone per
dimension, which quantify the connectivity of a space in
each dimension [4]. These numbers are still of central im-
portance in modern topology today. The big breakthrough
toward the establishment of topology as a field within math-
1 Introduction and Background ematics came with the work of Henri Poincaré around the

year 1900; see [20]. In a series of papers, he laid the foun-
We write this paper to describe a recent development within dations by realizing, among other things, that the alternating
algebraic topology that makes is possible to reason combi-sum of Betti numbers is an algebraic invariant of a space;
natorially about algebraic concepts. The intention is not to thatis: the alternating sum does not change when we deform
divorce the topology from the algebra, but rather to find a the space, provided we refrain from cutting and gluing. To-
more direct, combinatorial route at understanding the alge- day, the alternating sum of Betti numbers is known as the
bra. In principle, this opens a road to topology in terms of Euler characteristiof the space, and together with the easy
homology without going through the demanding rigor these realization that it equals the alternating sum of faces, we get
subjects usually require. Such a short-cut has of course itsa generalization of (1) known as tE&ler-Poincag formula
dangers, but we feel the risk is worth taking.

Keywords. Continuous functions, interlevel sets, homology, vector
spaces, persistence diagrams, exact sequences.

In topology, two spaces are considered to be the same

. when there is daomeomorphisnbetween them, that is, a
From geometry totopology toalgebra. Geometry studies  ¢qntinyous bijective mapping whose inverse is also contin-

properti_es of a space that are invariant under trans_formation%ous_ This is where topology takes its departure from geom-
preserving a measure, such as volume, area, or distance. Itigy, . 5 small circle is the same as a big circle or indeed as

an ancient subject which underlies much of mathematics and(the boundary of) a square. To establish sameness, it suffices
is also widely used in non-mathematical disciplines. Indeed, to exhibit a homeomorphism, while to establish the oppo-
geor’_‘et”c thir_lking is an important pillar of human compre- site requires a proof that no homeomorphism exists. Com-
hen5|on_ of this world. A first step toward a more abstract, monly, this is done by constructing an algebraic invariant,
topological understanding of space was taken by Leonhardg,,qy a5 the alternating sum of Betti numbers, that differen-
“Research by the second author is partially supported by the Slovenian tiates between the two spaces and thus implies the impossi-

Research Agency, program P1-0297. Research by the third author is par-bility of a homeomorphism. Under the influence of Emmy
tially supported by the National Science Foundation (NSF) under grant DBI- Noether, the initial emphasis on numbers was Changed in

0820624 : - :
TIST Austria (Institute of Science and Technology Austria), Klosterneu- favor_ of a more complete, algebraic characterization with

burg, Austria. Abe!|an groups, theh(_)mology groupsvhose rr?\nks are the
fIMFM and FMF, University of Ljubljana, Ljubljana, Slovenia. Re-  Betti numbers. Crucially, her group formulation allows the

search was partially done while visiting IST Austria. systematic transfer of algebraic information from one space

IST Austna_ (Institute of Science and Techr_10|ogy Austria), Kloster' to another via continuous maps, a concept knowfuasto-
neuburg, Austria, Departments of Computer Science and of Mathematics,

Duke University, Durham, North Carolina, and Geomagic, Research Trian- Nality, W_hiCh |ie§ at the heart of our approach to homology,
gle Park, North Carolina. as we will explain shortly.



From homology to persistence to applications. For the scribe how we can read the homology of interlevel sets di-
next step, we take broad inspiration from a mathematical rectly from the persistence diagram of a function. In Section
theory named after Marston Morse, see eg. the classic book4, we explain how the diagram can be used to reason about
on the subject by John Milnor [17]. Using tools from dif- the interaction between different interlevel sets using func-
ferential geometry, this theory gives a vast generalization of toriality. We conclude in Section 5 with a discussion of this
the early observation by Arthur Cayley [8] and James Clerk paper’s contributions.

Maxwell [16] that for a smooth surface generically placed in

3-dimensional space, the number of peaks minus the num- .

ber of passes plus the number of pits equals the alternating? ~Drawing

sum of Betti numbers. In other words, we can recover the
topological information of the surface by considering the se-
guence of contour lines or, alternatively, tréical pointsat
which all partial derivatives of the height function vanish.

Combining the Morse theoretic outlook with the algebraic
theory of homology, we are now only two small steps away
from the notion of persistent homology. One step is the focus
on the algebraic expression of the change that happens to 4Absolute) homology. We now give an intuitive descrip-
contour line when it sweeps over a critical point, the other is tion of the theory of homology. A formal definition requires
the realization that critical points generically come in pairs, @ good deal of algebra, and for that we refer the reader to a
and that there is valuable information to be gained from these standard textbook, such as [18]. Here, we will confine our-
pairs. Indeed, the measurement of the difference betweerselves to homology groups for coefficients from the binary
the values of the paired critical points forms a bridge from field, which consists of elemenfsand1 and addition mod-
top0|ogy back to geometry’ an ingredient that brought about ulo 2. Our results generalize to other fields, such as the real
a watershed when topo|ogica| theories Suddemy became acOr the rational numbers, but not to non-fields, such as the in-
cessible to applications in the sciences and engineering.  tegers. Given a spacg we have a homology grou, (X)

To apply persistent homology, we need both a space andf_or each integer dimensign but we will restrict our atten-
a real-valued function. In contrast to Morse Theory, the tion t_Op =0, 1’_2' i ) )
function is no longer subordinate to the space and moves Briefly, ap-dimensional homology class is an equivalence
into the center of the investigation. Different application ar- ¢1ass of-cyclesas we now discuss. A-cycle s a collection
eas distinguish themselves in the spaces of interest and th@f points fromX, al-cycle is a collection of closed curves in
functions they employ. Imlata analysisthe data is often X (poss_|bly with |n_tersect|0ns and self-mterse_ctlons),_ and a
put inside a finite-dimensional Euclidean space, and a com-2-Cycle is a collection of closed surfacesir(again possibly
mon function is the Euclidean distance to the nearest dataWith intersections and self-intersections). Given any pwo
point. The analysis then proceeds through the sequence ofYclesa andy, we can formally add them to form tipecycle
spaces formed by progressively thickening the data set; seg¥+7, Which we can think of as the closure of their symmetric
eg. [7, 14]. Invisualization the space is typically our ordi-  difference. We say that twp-cycles arehomologousvithin
nary 2- or 3-dimensional Euclidean space, and the function X if their sum forms the boundary of(@ + 1)-dimensional
is a measurement of interest, such as the heat distribution in 8Subspace ok; for example, two points are homologous if
combustion chamber or the proportionality factor inside mix- We can draw a path between them entirely witliin A
ing fluids [19]. Inshape analysighe space can be the shape P-Cycle « is said toboundif it is itself the boundary of a
itself, while the function is chosen to emphasize interesting (» + 1)-dimensional subspace &, in this case, we think
features; see eg. [15]. Istructural molecular biology, the ~ Of @ as being homologous to zero and refer to it asia
space may be the surface of a protein and the function mayi@! p-cycle. Ap-dimensionahomology classs a collection
be a measurement of local protrusions and cavities [1, 9]. °f mutually homologoug-cycles. For intuition, one might
Our running example is an instance of perhaps the simplestMagine a-dimensional class as a connected component of
setup, that of deight function Here, we embed a surface . @ 1-dimensional class as a loop going around a tunnel,

in Euclidean space and map each point to its last Cartesian@nNd2-dimensional class as a closed surface enclosing a void
coordinate. inside X. We can add-dimensional homology classes to

produce other ones, and thus the sepafimensional ho-

mology classes forms a vector spatgX), called thep-th
Outline. In Section 2, we explain how to draw a diagram homology groupf the spacéX. We denote the rank of this
of dots that captures persistent homology. We also providegroup byg,(X) and call it thep-th Betti numbenf X. Often
the necessary background in topology. In Section 3, we de-we wish to refer to homology without sticking to a particular

In this section, we describe how we make a record of the
topological properties of a real-valued function. The details
will be important, and we will use a running example to il-
lustrate all steps. As we will see in the subsequent sections,
careful book-keeping will give handsome returns.



dimensionp. For this reason, we sometimes use the direct-
sum notatiorH(X) = €, H,(X), although we stress this is

only used to think of all homology groups at once, and we
never add two cycles of different dimension to one another.

X

Yy
Y

Figure 1: A (hollow) torusX, aclosed subspac¥ of X, and the

boundaryY, of Y. The way we have drawn iy, is a level set

of the height function on the torus, aidis a sublevel set of that
function.

For example, suppose th&tis the torus andy C X is

it bounds iff there is a path withily that connectg to some
pointinY,. A p-dimensionatelative homology clasis a set

of mutually homologous relative-cycles. The collection of
such classes, along with the obvious additive structure, forms
the vector spackl, (Y, Y,), which we call thep-th relative
homology groumf the pair(Y, Yy), and its rank, (Y, Yo)

is thep-th relative Betti numbeof the pair.

For example, suppose again thatis the shaded region
drawn in Figure 1 and thaf, consists of the three circles
that make up its upper boundary. Every poinfiircan be
connected withinY to some point inY,. Hence all rela-
tive 0-cycles are trivial angby(Y,Y,) = 0. We can also
computes; (Y, Yy) = 1; as representative for the only non-
trivial 1-dimensional relative homology class, we could take
a path connecting the two leftmost circlesYyp. As for di-
mension2, we find B2(Y, Yy) = 2, with two independent
relative 2-cycles formed by the two connected components
of Y. The symmetry3,(Y) = 82—,(Y, Yy) is not acciden-
tal but rather an example of Lefschetz Duality, which implies
thats,(Y) = B4—, (Y, 9Y) whenevelY is ad-manifold with
boundarydY; see eg. [18, Chapter 8]. As a special case, we

the shaded region as drawn in Figure 1. We will compute naye Poincaré Duality, which states ta{(X) = 84_,(X)
the Betti numbers of both spaces. The torus is connected, x js a4-manifold without boundary; we see an example of

while Y has two connected components; thigX) = 1
and 3 (Y) = 2. Within the torus, we can find at least two
non-bounding -cycles: the horizontal loop formed by the
leftmost circle at the top of the shaded region, and the verti-
cal loop~ which goes entirely around the hole. With some
thought, one can see that every other non-bountliogcle
must be homologous to exactly one@f v, or & + ~. In
other words,3;(X) = 2. On the other hand? (Y) = 1,
sinceq still forms a non-bounding-cycle inY, but~ does
not. Note that thé-cycle at the top of the rightmost compo-
nent ofY is trivial, since it is the boundary of the component
itself. Finally, the torus is hollow and therefore surrounds a
void, s0f2(X) = 1, while 55(Y) = 0.

Relative homology. We also give an intuitive description
of the relative homology groupd, (Y, Y,), associated to
any nested pair of spac€¥, Y,) such thatY, is a closed
subspace of’. In brief, one adjusts the above definitions of
cycle, boundary, and homology, making them relativ¥ o
More precisely, we define the boundaglative toY, of any
subspace to be the portion of the boundary gfoutsideY.

A relativep-cycleis ap-dimensional subspaceof Y whose
boundary relative t& is empty; of course, this includes the
possibility that the boundary aef is actually empty. Adding
relative p-cycles exactly as above, we say that two relative
p-cyclesa and~ arehomologousf there exists ap + 1)-
dimensional subspace &f whose boundary relative tt,

is a + ~. Furthermore, a relative-cycle o boundsf there
exists such a subspace whose boundary relatig tis ex-
actly «. For example, a poinf € Y is a relatived-cycle, and

this whenX is the torus above.

Finally, suppose that we have another pair of spaces
(X, Xo) such thatfy C X, Yy C X, andX — Xo =Y — Y.
For exampleX could be the torus in Figure 1 ang, could
be everything at the level of y and above. Then the Prin-
ciple of Excision tells us that replacing the pdiY, Y)
with (X,X,) has no effect on relative homology, that is,
H,(X,X,) andH, (Y, Y,) are isomorphic for alp; see eg.
[18, Chapter 3].

Ordinary persistence. The reader may have noticed that
homology classes do not come with a notion of size; for ex-
ample, if we were to make the hole in the torus from Figure
1 smaller, the Betti numbers would be unchanged. To pro-
vide a richer picture, we employ persistent homology which,
briefly, takes a compact (closed and bounded) topological
spaceX along with a real-valued functiofi and returns the
size, as measured by of each homology class i¥, as well

as the size of transient homological features created by the
function itself. For a precise algebraic definition, see for ex-
ample [10, Chapter VII]. We imagine persistent homology
as a two-stage filtering process. In the first stage, we Rter
via thesublevel setX, = f~1(—oo, r] of f, wherer can be

any real number. As runs from negative to positive infin-
ity, the sublevel sets include into one another and get bigger,
eventually forming the spack itself. During this process,
homology classes appear and disappear; persistent homol-
ogy tracks and quantifies this evolution, as we now explain
via an example.



the changes in relative homology that occur-adecreases

x from positive to negative infinity. At the end of this process,
the superlevel set equalsitself, so there can be no remain-
ing live homology classes; in particular, all of the essential
classes will obtain a death value. For example, the essen-
/ tial component of our torus dies at the maximum, since this
is the first point where it becomes a relative boundary. We
thus pair the global minimum with the global maximum, and
represent the essential component as a directed curve which
starts at the birth value, moves up to infinity, and then ends
at the death value; see Figure 3, which also displays the birth

and death values for the other three essential classes.
Figure 2: Height function on the nosy torus. We observe five ho-

mology classes during the filtration, drawn as vertical bars on the
right. The four that go to infinity correspond to the essential homol- t H [ 4,

ogy classes of the torus.

We consider the functiorf : X — R depicted in Fig-
ure 2, whereX is the same torus from before ajfigneasures i
height in the vertical direction. A valueis critical if f=1(r)
contains a point where the tangent plane is horizontal, and :
regular otherwise. It should be intuitively clear that the only
homological changes happen when we pass the six critical
values off; indeed, this is one of the fundamental principles
of Morse Theory; see eg. [17]. Passing the minimum such Figure 3: From left to right: the height function of the nosyusr
value change¥.,. from the empty set to something homeo- the ‘curvy’ barcode in which thg.extended .classes go to infipity and
morphic to a disk; we say that a componenbisn at this then come ba_ck, and the trad!tlonal persistence diagram in which
critical value. Another component is born upon passing the every interval is drawn as a point.
second minimum, and this component remains distinct un-
til it merges with the main component at the fourth critical Every class which is born at some point of the two-stage
value. At this time, the component that was born latiess process will eventually die, and is thus associated with a pair
and we pair the second and fourth critical values. We repre-of critical values. These pairs fall into three typ&sdinary
sent the component as a directed line between the two relepairs have birth and death during the first stagetended
vant critical values, as shown in Figure 2. Tivalimensional ~ pairs have birth during the first stage and death during the
classes are born at the third and fifth critical values, add a  second, whilaelative pairs come entirely within the second
dimensional class is born at the maximum. We call these lat- stage. For example, tizdimensional relative class repre-
ter three classes, along with the original componessen- sented by the downward-directed line segment in Figure 3
tial classesas they represent the actual homolog¥ofThe gives rise to a pair of this latter type. Note that death values
other component is ainessential classaused by the func-  can be lower than birth values; this is always true for relative
tion itself. Despite their name, inessential classes may actu-pairs, and sometimes true for extended pairs. Whatever the
ally represent very interesting features of the space; here thecase, we define theersistencef a class to be the absolute
inessential component picks up the protrusion on the right difference between its birth and death values.
side of the torus.

Diagram. We represent this homological information in

Extended persistence. It should now be clear what we compact form via a multi-set of dots in tteedimensional
mean by the size of an inessential class, as measured by thplane, containing one ddt;,r;) for each pair of critical
function f, namely the difference between the critical val- valuesr;,r;, such that a class is born at and dies at-;.

ues that gave birth and death. The essential classes, on th#/e denote this multi-set bpgm (f), and call it thepersis-
other hand, have yet to be measured effectively, since theytence diagranof the functionf. By Dgm,(f) we mean
have a birth but no death value. To correct this, we con- the sub-diagram dbgm (f) corresponding tp-dimensional
sider, in the second filtering stage, pairs of spacesX”), homology classes. Within eadbgm,(f) are contained
whereX” = f~![r,00) is asuperlevel setand we watch  theordinary, extendedandrelative subdiagramsOrd,,(f),



Ext,(f), andRel,(f), defined in the obvious way. For tech- and we find the length of the longest edge in the matching.
nical reasons apparent below, it is convenient to include in We then minimize this length over all possible matchings,
Ord,(f) andRel,(f) infinitely many copies of every dot  and call this minimum théottleneck distancbetween the
along the major diagonal. Note that dots in the ordinary dia- two diagrams, denoted 8%, (Dgm(f), Dgm(g)). Since
grams are above the major diagonal, dots in the extended dithe distance between dots in different subdiagrams is infin-
agrams can be on either side, and dots in the relative digramity, it suffices to consider matchings within each subdiagram.
are below. For each type of dot, its vertical distance from the One can then show, under mild conditions pand g, that
diagonal equals the persistence of the associated class. Th&/ ., (Dgm(f), Dgm(g)) is bounded from above by the,.-
persistence diagram for our height functipis displayed in distance between the two functions; see [10, Chapter XIlI].
Figure 3. The reader will notice an obvious symmetry across There is also a result which bounds the Wasserstein distance
the major diagonal; this is a consequence of the dualities between the diagrams, although this requires stronger as-
mentioned above, and it will happen whenever the domain sumptions on both the space and the two functions.

X is a manifold without boundary.

Figure 5: On the right, we see the distorted nosy torus that csimi
the effect of a slight perturbation on the height function. In the
middle, we see the persistence diagrams of the two height functions
Figure 4: The three overlaid subdiagrams in Figure 3 are defbl ~ superimposed. The best bijection matches each of the six old dots
by flipping pages: keepin@rd (f) fixed, Ext (f) flips up, followed with a nearby new dot, and it matches the remaining eight new dots
by Rel(f) which flips up and then to the right. Finally, we clip the  with points on the diagonal.

ordinary and relative subdiagrams along the diagonal and rotate the

entire d_esign by 45 degrees S0 it rests_c_)n it_s I_ong side. The arrows For example, suppose we embed the tdumito R3 as

of the diagram go from negative to positive infinity. shown in Figure 5 on the right. Letting: X — R mea-
sure height in the vertical direction, we note thas indeed

a noisy version of our original height functioh The per-
sistence diagramBgm (g) andDgm (f) are overlaid in the
middle of the same figure. Note that the ordinary and rela-
tive subdiagrams af contain more dots than those pfbut
these extra dots are all close to the major diagonal. The two
extended subdiagrams will of course have the same number
of dots, since the actual homology Xfis unaffected by our
hoice of real-valued function.

We will see in Section 3 that in some contexts the three
subdiagrams play very different roles. To avoid confusion,
we often redranDgm (f) as two triangles and a diamond,
with coordinate systems as shown in Figure 4. Note that the
horizontal line along the bottom of the new drawing corre-
sponds to the major diagonal in both the ordinary and relative
subdiagrams, while the vertical dashed line across the middle
diamond is the major diagonal for the extended subdiagram.
The middle diamond contains one dot per essential class, and
thus in our example there are four dots. In cases in which the
spaceX is contractible, for example when we have an image 3 Readi ng
considered as a real-valued function on the unit-cube, this

diamond will contain exactly one dot. In this section, we discuss how one can mine a great deal of
homological information from the persistence diagram of a
Stability. The persistence diagrabpgm( f) is a stable rep-  real-valued functiorf on a topological space. By its def-
resentation of the homological information carried by the inition, the diagram reflects a filtration by sublevel sets, so
function f, in the sense that replacingby a noisy version it is not surprising that one can read their homology groups
g will result in a diagram which is not too different. There from Dgm(f). But the diagram also displays the homology
are a variety of ways to make this statement more precise.of everylevel setf~!(a), as well as the absolute and rela-
Most simply, we consider a bijection betweBam (f) and tive homology of everyinterlevel setf ~![a,b]. Level sets
Dgm(g), recalling that the ordinary and relative subdiagrams and sublevel sets are of course just special cases of interlevel
contain infinitely many copies of each major diagonal dot, sets, but we explain the results separately for greater clarity.



For simplicity, we will assume that the extremes$ of the
intervals are regular values ¢f

Abstract vector space. A slight algebraic digression is
needed in order to even make the statements in this sec-
tion. First, we recall that every absolute or relative homology
group is a vector space, and as such has a basis, or a set of _
vectors that uniquely generate all other vectors in the vector F19ure 6: Left: the rectangular region of the closed sublegetisat
space. In [11], the authors show that the notions of birth and cuts the ho]e in the middle. Right: the rectangular region of the
) corresponding open sublevel set.

death allow one to choose bases for the gradi§,) in a
compatible way. This means that for< s, we obtain the
basis oH(X,) from a subset of the basis H{X,.) by adding For this result and several others to follow, it is illustrative
new basis vectors, but without any need for recombining al- to consider how the sefg/, change as the extreme values
ready chosen basis vectors. In a nutshell, birth correspondsf the intervals change continuously. For example, if we let
to adding a basis vector and death corresponds to deleting go to oo, or indeed just set it higher than the maximum
one. Furthermore, these basis vectors are in one-to-one corvalue of f, then theOrd, (f) portion of W, (—oo, b] disap-
respondence with the dotsgm (f). pears and we are left with/,, (—oco, +00) = Ext,(f). That

More precisely, one can think of the dots themselves asis, the essential classes make up the actual homology of
defining a basi#3 for an abstract vector spate One then The second stage of the filtration concerns pairs of spaces
defines a special séf of linear subspaces of, namely (X, Xb). We now explain how to read the relative homology
those spanned by all subsets of vectors fi®nand one then  of such pairs from the diagram. For each regular valard
proves that eacH(X.) is isomorphic to a particular element  each dimensiop, we define:
of V; this isomorphism, which we discuss below, defines the
chosen basis. This result was significantly extended in [3], Wy(—o0,0) = {(w,y) € Exty(f) [y < b}
following work in [5] and [6]: it turns out that the dots in U {(z,y) € Relp(f) |y <b <z}
Dgm(f) also correspond, with some dimensional modifica-
tion, to bases for a much wider class of absolute and rel-
ative homology groups. We explain this in several stages,
although we omit proofs.

Here we have also introduced the notatienxc, b) to stand
for the pair of space§(—oc,b], {b}), whose preimage un-
der f has, by excision, the same relative homology as the
pair (X, X"). Again, W, (—oo, b) is the sub-multi-set of dots
_ within a particular rectangular region Bfgm,, (f), this time
Sublevel sets.  Given a real number, we stress thatthe ho-  the shaded one on the right side of Figure 6.
mology of the sublevel séf;, can be quite different from that
of X: there can be essential classeXithat are born aftef, OPEN SUBLEVEL SET LEMMA. For each regular value
and there can be inessential classes whiéthave yetto die. ~ and each dimensiop, there exists a natural isomorphism
Nonetheless, a basis for the homology grél(X,) can be that takesH, (X, X?) to the vector space iw whose basis
read offDgm (f). For each regular valueand each dimen-  corresponds tdV,(—oc, b).
sionp, we define the following sub-multi-set &fgm,, (f):
Level sets. The diagram also encodes the homology of all
Wp(=o0,b] = {(,y) € Ordyp(f) [x <D <y} level setsf~'(a). The situation is almost identical to that of
U {(z,y) € Exty(f) | z < b}. sublevel sets, in that a basis fdf f ~!(a)) is in one-to-one
) o correspondence with the dots in certain rectangular regions;
In other words )V, (—oo, b] contains dots that lie within the  {he only difference is that we now have two rectangles and
rectangular shaded region on the left side of Figure 6. Noteye have to shift the dimension inside one. We state the for-
that dots in theOrd,(f) portion of this region correspond  yja first, and then give some intuition behind the dimension
to p-dimensional classes that are inessential but still alive ghift: for a rigorous explanation, see [3]. For eacind each

at b, while dots in theExt,(f) portion give essentiap- dimensiorp, we distinguish the dots iPgm ( f) within two
dimensional classes that have formed befordHence the rectangular regions,

following result should not be too surprising.

Mp(a) = {(z,y) € Ordy(f) |z <a <y}

CLOSED SUBLEVEL SETLEMMA. For each regular U {(zy) € Bxty(f) |2 < a <y}
valueb and each dimensigpn, there exists a natural isomor- Y X =A<y
phism that taked, (X,) to the vector space i whose op(a) = {(z,y) € Extp(f) |y <a<ua}
basis corresponds ¥/, (—o0, b]. U {(z,y) € Rel,(f) |y < a <z},



and we definéV,(a) = A,(a) U gp+1(a). Motivated by
their graphical appearance, we call the two rectangfesa
of wings Finally, we have:

LEVEL SET LEMMA. For each regular value and each
dimensionp, there exists a natural isomorphism that takes
H,(f~!(a)) to the vector space i¥ whose basis corre-
sponds toV,(a).

Figure 7: The pair of wings defined hycontains six dots corre-
sponding to the three components and the thregcles of the level
set. If we allow a perturbation of the height function of strength up
to r, then we capture only two dots.

This result is illustrated in Figure 7. On the left side, we see
a level setf~!(a) which consists of three disjoint circles,
and on the right we focus on the pair of wings. From the
lemma, we know that a basis fbi,(f~!(a)) can be derived

in some way from the-dimensional dots in the left wing
and the(p + 1)-dimensional dots in the right wing.

To see this explicitly, note thady(f~1(a)) is rank three.
The most obvious choice of basis would be the thoee
dimensional homology classes~, , representing, respec-
tively, the three connected components of the level set as
read from left to right in the picture. Note that the left wing,
Ao(a), contains two dots: the ordinary one gives us the right-
most componend, while the extended dot corresponds either
to « or v, depending on an arbitrary choice made during the
persistence computation. On the other hand, the right wing,
o1(a), contains one dot: an extended one, and this corre-
sponds to the essentiakycle represented by the vertical cir-
cle around the hole in the torus. To transform this cycle into
a basis element fdd(f~'(a)), we take its cross-section at
a, which results in a pair of points, one from each of the
two left components. In other words, this dot corresponds to
the basis element + ~ in Ho(f~'(a)). For the expert, we

note that this cross-section is a substitute for the connecting

homomorphism in the Mayer-Vietoris sequence. A similar

H(f~(a)), how strong a perturbatioh of f is required

so that the level set~!(a) no longer supports this class?
This required strength, measured in thg -distance, is a
real number-, and we call the collection of all such num-
bers, over all homology classes it *(a), the robustness

of the level set; we refer the reader to [12] for a fully rig-
orous definition. To read the robustness from the diagram,
we shrink\,(a) and g,(a) as indicated in Figure 7. If a
dot leaves the wings after a shrinking by distancthen we
know that there exists a perturbation of strengttihat de-
stroys this class. In the example drawn, we note that four
dots have already left the pair of wings, two representing
components and the other two givimecycles. This reflects
the fact that we can move the lower saddle aboand the
end of the nose below, while perturbingf by at mostr.
Equivalently, we can deform the three circles of the current
level set until they merge through addition into a single cir-
cle, and we can do this without leaving the interlevel set de-
fined by[a — r,a + 7).

Interlevel sets. By making a slight adjustmentin the place-
ment of our pair of wings in the diagram, we can also cap-
ture the absolute homology of all interlevel séts![a, b],

as well as the relative homology of the pairs of spaces
(fYa,b], f~*(a) U f~1(b)); we use the notatiofi—*(a, b)

as shorthand for the latter pair. To do this, we set

Apla,b] = {(z,y) € Ordy(f) [z <b <y}
U A{(z,y) € BExtp(f) [ # <b,a <y},
opla,b] = {(z,y) € Extp(f) | b <,y <a}
U {(z,y) € Rel,(f) |y < a <z},
Mp(a,b) = {(z,y) € Ordp(f) | v < a <y}
U A{(z,y) € BExtp(f) [z <a,b <y},
0,(a;0) = {(x,y) € Extp(f) | a < x,y < b},
U {(z,y) € Rel,(f) |y < b <z},
and we define
a,b| U 1la,b] if I =a,b)],
Wpll) = { :\\z[,l’(i,b)QLlergp[(a,l])) if 1 — Ea,b]).

INTERLEVEL SET LEMMA. For each open or closed in-
tervalI and each dimensiogn there exists a natural isomor-
phism that takes!,(f (1)) to the vector space il whose
basis corresponds 10/, (1).

explanation gives the transformation between the three dotsip the closed case, the two wings meet to the right of the

in Wi (a) and a basis for the rank three gradp(f~!(a)).

vertical axis, so that the left wing ends up larger than the
right wing; in the open case, the situation is reversed. For

Robustness. Note that the diagram in Figure 7 also con- each pair, the dots in the smaller wing must undergo a di-
tains a pair of smaller wings, which do not meet and an- mension shift in order to give the required homology basis.
swer the following question: for each homology class in For example, if we takéa,b) as shown on the right side



Figure 8: The wings in the left diagram represent the absoloite h
mology of the closed interlevel set, while the wings in the right
diagram represent the relative homology of the open interlevel set.

of Figure 8, we have a rank-three relative homology group
Hi(f~*(a,b)), and there are three dots W, (a,b). The
rightmost one of these corresponds to the vertieaycle in

the torus, which becomes a relatiecycle in the open in-
terlevel set. The connection between the twdimensional
dots in the left wing and the other twiocycles in the open
interlevel set is a bit more complicated. Each dot corre-
sponds to a component within the sublevel set defined, by

and these components then get suspended to the top and bo

tom boundaries of the interlevel set to form relativeycles.
Again for the expert, a rigorous explanation of the dimension
shift comes via the Mayer-Vietoris sequence.

4 Reasoning

ip(cv) consisting of all cycles irX that are homologous to
A. For example, the homology class given by the sum of the
two components in ou¥ gets mapped to zero, since it is a
boundary withinX. On the other hand, nothing k(Y) gets
mapped to the-dimensional homology class &f.

For any pair of space¥ C X, there is also a series of
linear transformationg, : H,(X) — H,(X,Y) between the
absolute homology of the larger space and the relative ho-
mology of the pair. Briefly, takes each homology class
a € H,(X) with cycle representativel and maps it to the
relative homology clas§, () € H,(X,Y) consisting of all
relative cycles that, relative ti, are homologous tal. If
(X,Y) is as in Figure 1, thefy sends the component &f
to zero, whilej; maps thel-dimensional homology class in
X represented by the vertical circle to the relative homol-
ogy class represented by an arc connecting the two leftmost
boundary circles of/.

kinear transformations and exact sequences. To state

our results formally, we need to first recall some terminol-
ogy from linear algebra, remembering that our homology
groups are just vector spaces. LetU — W be a linear
transformation between vector spaces kiémelconsists of

all elements in the domain that map to zero in the range:
kerj = {u € U | j(u) = 0}. Theimageof j consists of all
elements in the range that have a preimage in the domain:

In this section, we discuss the long exact sequence of a pairimj = {j(u) | v € U}. We note that the kernel is a linear

which is an algebraic relationship between the relative ho-

mology of a pair of spaceg C X, and the absolute homol-
ogy of the individual space¥ andX. Second, we describe

the Mayer-Vietoris exact sequence, which is an algebraic ex-

subspace ot), while the image is a linear subspaceWwf

We also have theokernelof j which we obtain by taking the
quotient of the range and the imagek j = W/im j. Going
back to our example illustrated in Figure 1, the sum of com-

pression of a divide-and-conquer technique that connects theponents inY is in the kernel ofy, while the2-cycle inX is

homology of a perhaps complicated spate= A U C to
the homology of the hopefully simpler subspage<’, and

in the cokernel of;. Consider now a sequence of three vec-
tor spaces connected by linear transformationst) — V

A N C. We begin with a detailed discussion of maps between andj : V — W. This sequence is said to exactat V

homology groups.

Functoriality. As we have seen, homology assigns a dis-

crete set of algebraic invariants, namely the homology

groups along with their Betti numbers, to a topological
space. Crucially, this algebraic information can be trans-

if imi = kerj. A long exact sequends a doubly infinite
sequence of vector spaces and linear maps that is exact at ev-
ery node. In the examples considered in this paper, all but
finitely many vectors spaces in the sequence will be zero.

Finally, we define thalirect sumV ¢ V' of two vector
space¥/, V' to be the set of coordinate pairs v’'), with v €

ferred from one space to another via a continuous map. MoreV andv’ € V’. Vector operations are defined component-

precisely, such a map: Y — X induces linear transforma-
tionsi, : H,(Y) — H,(X), one for each homological dimen-

wise. To illustrate this concept in action, we consider again
a linear transformatiop: U — W. Note that the preimage

sionp, in such a way that homeomorphisms between spacesof eachw € W is of the formj™"(w) = u + kerj. The
induce isomorphisms between groups. This entire process isPreimages ofv, w’ € W are therefore either disjoint or the

an example ofunctoriality, one of the key tools in algebra.
The induced maps are easiest to understand wh&sim-
ply the inclusion of a subspacginto a larger spac¥; for
example, lefY andX be as in Figure 1. In these situations,
the linear mag, takes a homology class € H,(Y) with
cycle representativel, and maps it to the homology class

same. It follows that the domain is isomorphic to the direct
sum of the kernel and the image. We state this more formally,
together with a similar decomposition of the range:

U
W

1

kerj @ im j,

1%

imj & cokj.



Indeed, every set in the cokernel is of the forra- im j, and
the sets are again either disjoint or the same.

Inclusions. Using the diagram, we now describe the im-
ages, kernels, and cokernels of the homology maps induced

by the inclusion : f~![c,d] — f~![a,b] wheneven < ¢ <
d < b are regular values of. Fix a homological dimension

p. The Interlevel Set Lemma distinguishes bases for the ho-

mology groupsH,,(f~*[c,d]) andH,(f~*[a, b]) which are

b

in one-to-one correspondence with the dots in the regionsFigure 9: Left: the nosy torus with a shaded closed interlesel s

W,le,d] andW,[a,b]. It turns out that basic set-theoretic

Right: the persistence diagram in which we show the pair of wings

manipulations of these regions suffice to describe the image,for the interlevel set as well as for the level set defined by the upper

kernel, and cokernel of the induced mapswe give intu-

endpoint of the interval. Subregions of the wings correspond to the

itive justifications of each result here, leaving the rigor to kernel, image, and cokernel of the homology map induced by the

[3]. Since a class in the larger interlevel set isimni, iff

it has a cycle representative in the smaller interlevel set, the

following result should not be surprising.

IMAGE LEMMA. For eachp, there exists a natural iso-
morphism that takesm i, to the vector space i¥ whose
basis corresponds ®(imi,) = Wp[a, b] N Wpc, d].

SinceH, (f~![a, b]) is isomorphic to the direct sum of the
image and the cokernel gf, we also obtain:

COKERNEL LEMMA. For eachp, there exists a natural
isomorphism that takesk i,, to the vector space ii whose
basis corresponds ®(coki,) = W[a, b] — W, |c, d].

Finally, the kernel of, consists of all homology classes in
the smaller set that disappear unggrand thus cannot be
homologous to anything in the larger set.

KERNEL LEMMA. For eactp, there exists a natural iso-
morphism that takegeri, to the vector space i whose
basis corresponds ®(keriy,) = Wp[c, d] — Wp[a, b].

These claims are illustrated in Figure 9 for the special case
¢ = d = b; thatis, we include the top level into the interlevel
In this case, we get five rectangles, two each for the
image and cokernel, and one for the kernel. As mentioned

set.

above, the domain af, is isomorphic to the direct sum of

the kernel and the image, and the rangg, & isomorphic to

the direct sum of the image and the cokernel. Accordingly,
Wplb,b] =
Wpla,b] =

R(keriy) U R(imiy),
R(imi,) U R(cokip);

compare with Figure 9.

Long exact sequence of a pair. Suppose thaltl C X is

a pair of topological spaces. Then the absolute homology

groupsH(X) andH(Y) fit together with the relative homol-
ogy groupH(X,Y) into the following long exact sequence:

K5 HL(Y) B H,(X) B (X, Y) S8 H, (Y)Y

inclusion of the level in the interlevel set.

see eg. [18]. Herg is thep-dimensional homology map in-
duced by the inclusion, ang is the map between absolute
and relative homology discussed above. The mafs of-

ten called theconnecting homomorphisand is a bit more
difficult to understand. We will give a partial explanation of

it below, but first we note that it is, at least abstractly, fully
characterized by the following three easy consequences of
exactness:

cokkpy1 = imi, = kerj,, (2)
coki, = imj, = kerky, (3)
cokj, = imk, = keri,_;. (4)

There is a good deal of algebra to unpack here. To illus-
trate, we again lef be the height function defined on our
torusX, and we takda, b] as indicated on the left side of
Figure 9. We explain this exact sequence in terms of the
level setf~1(b), the interlevel setf~'[a,b], and the pair
(fta,b], f~*(b)) = f~a,b), where we have made an
obvious adjustment to previous notation. First, we already
understand the linear transformation

ip « Hp(f71(B) = Hy(f [a, b))

Indeed, the Image, Kernel, and Cokernel Lemmas tell us how
to read bases fam iy, ker i,, andcok i, for each dimension

p, from the diagram: they correspond to the dots in the re-
gions indicated on the right side of Figure 9. We encourage
the reader to verify that the dots in the rectangular regions
give the correct ranks in all cases. Using (2) to (4), we im-

mediately have bases fan j,, ker j,, andcok j,, again for

all dimension®, where

e Hp(fil[avb]) - Hp(fil[aab))

maps absolute to relative homology. In particular, we can
use that,,(f~*[a, b)) is isomorphic to the direct sum of the
image and the cokernel to derive a further diagram-reading
rule:



HALF-OPENINTERLEVEL SET LEMMA. For each half-
open intervalla,b) and each dimensiop, there exists a
natural isomorphism that takes,(f~'[a,b)) to the vec-
tor space inV whose basis corresponds W,[a,b) =
R(imjp) U R(cokjp).

In Figure 9, we see this union formed By (coki,) and
R(keri,—_1). Counting the dots in these regions and recalling
the dimension shift in the right wing, we note that the Betti
numbers off ~![a,b) in dimensiong), 1, and?2 are indeed
0, 2 and0, as they should be. Incidentally, we could use the

exact sequence of a pair to deduce how to read the homologyPets defined bya, b]

of an open interval set. The resultis of course the formula we
claimed forl = (a, b) in the Interlevel Set Lemma. Another
application of (2) to (4) gives the regions corresponding to
the image, kernel, and cokernel of the connecting homomor-
phism,

kp + Hp(f ' [a,0)) = Hp—1 (F7H(0)).

For example, focusing our attention on dimensioa 1, we
note thatim k; = kerip andR(ker ip) contains a single dot.
In the relative homology of the pajf~![a, b), this dot cor-
responds to the relative-dimensional homology class rep-
resented by an ard connecting the two portions gf1(b).
This class is mapped, vig, to the sum of the two compo-
nents inHo(f~1(b)). In other wordsk; takes the relative
class represented by and maps it to the absolute class rep-
resented by the boundary df. This is indeed the general
rule for the boundary map in the exact sequence of a pair,
although we omit further details.

Mayer-Vietoris exact sequence. As promised, we now
explain the Mayer-Vietoris divide-and-conquer technique via
the diagram. First, supposé = A U C is a decomposi-

Figure 10: Left: the decomposition ¢f [a, c] into the interlevel

and b, ¢]. Right: the wings of the two inter-
level sets as well as the level set at which the interlevel sets intersect.
The wings are decomposed into rectangular regions that correspond
to the kernels, images, and cokernels of the various maps. Two of
the rectangles belong to both the image and the cokernel of the ho-
mology map induced by the inclusion Bfin A andC.

thatA andC intersect in the level sé& = f~!(b). Now the
mapsi* andi® are fully characterized by the lemmas above.
To understand the mapfromH,(f~1(b)) to the direct sum
of H,(f~1[a,b]) andH,,(f~*[b, c]), we exploit the following
formulas:

R(imi,) = R(imi}) U R(@mi5),
Rikeri,) = Rkerit) N R(keril),
R(coki,) = R(cok if}) U R(cok ig)

U [R(imi}) N R(imi5)].

Only the third formula needs an explanation. If the regions of
im if} andim i;‘f sharel dots, then they contribut&¥ dimen-
sions to the direct sum. Only tifedimensional diagonal of
this linear subspace belongs to the imagé,off he remain-
ing ¢ dimensions belong to the cokerneligf Indeed, the

tion of a topological space into two closed subspaces, anddots inR(im i;A;) N R(im ig) do double duty to cover the ex-

setB = A N C. We leti* andi® denote the homology maps
induced by the inclusions d# into A and intoC, and we
denote byj* andj® the homology maps induced by the in-
clusions ofA and ofC into X. Then theMayer-Vietoris se-
quence

5L (B) B HL(A) © H,(C) % H,(X) % H,y (B) 5
is exact, wherg, is defined by, (a) = (i (a),iS («)), while

jp is given by the formuld, (o, v) = ja(e) +jS(7). The
mapk, is again a connecting homomorphism, and we will
illustrate it, as well as the other two maps, via the following
example.

As always, we leff be the height function on our torli§
and we choose < b < ¢ as indicated in Figure 10. We will

discuss the Mayer-Vietoris sequence in terms of the decom-

position f~1[a,c] = f~a,b] U f~1[b, c]. To use the nota-
tion above, we seh = f~![a,b] andC = f~1[b, ], noting

10

tra dimensions of the direct sum construction. As in the case
of the exact sequence of a pair, we can exploit the isomor-
phism formulas (2) to (4) to understand the images, kernels,
and cokernels of, andk,. For instance, from (4) we get

R(imk;) = TRkerig) = R(keris) N R(keris).

This region contains a single dot contributed by the vertical
circle going around the hole of the torus. This class is in the
kernel of bothi4 andi; indeed, both\ andC are connected,
soz + y forms the boundary of an aresin A and another
arcC'in C. On the other hand, notice thatandC' then have

a common boundary, and so they glue together to form-the
dimensional homology classe Hq (A U C) represented by
A+ C. The magk; is defined in such a way thkf (v) = «,

and hencev € im ky, as our formulas require. Intuitively,

is mapped by, into the0-cycle created by taking a cross-
section ab.
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Discussion

The contribution of this paper is the exposition of a new,

combinatorial angle at a classic subject within algebraic

(12]

topology: the characterization of topological features of a [13]

space or a function through homology groups. This new

angle is facilitated by the relatively recent addition of per-
sistence to the theory of homology groups. In particular, [14]

the persistence diagram of a function forms a comprehensive

book-keeping tool on which we build our point calculus. We
believe that topological information is useful also to non-

topologists, even to non-mathematicians, so we have writ-

ten this paper with an eye on minimizing the formalism and

adding intuitive explanations where the formalism seemed

necessary or useful.

In the interest of brevity, we have not described the algo-
rithms needed to compute persistence diagrams. Suffice to
say that they exist and are fast; see [10] for a general intro-

duction and [2] for algorithms appropriate for image data.
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