
https://doi.org/10.31449/inf.v44i4.3152 Informatica 44 (2020) 469–475 469

Formal Verification Issues For Component-Based Development

Mehdi Hariati

Computer Science Department, LISCO Laboratory Badji Mokhtar-Annaba University, Annaba, Algeria

E-mail: mehdi.hariati@gmail.com

Keywords: component-based development, formal verification, classification.

Received: May 6, 2020.

Component-based development has made a breakthrough in software industry, it offers safer systems

and easier to maintain, furthermore, costs and time to market are reduced. However, several issues,

such as the correctness of component-based systems, their adaptation or the interactions between their

components, require rigorous verification through the use of formal methods and tools. In this paper, we

first present an introduction to component-based development; afterward we propose a classification of

formal verification issues for component-based systems.

Povzetek: V tem članku je predstavljena klasifikacija formalnih metod preverjanja za sisteme, ki

temeljijo na komponentah.

1 Introduction
In component-based development [1] the construction of a

software system is reduced to an assembly of separately

developed software components. This offers as advantages

to reduce development costs as well as time to market.

Moreover, the quality of the software systems is better,

since the latter are built from tested and certified

components. In addition, the maintenance and evolution

stages of the system are simply a replacement of software

components; furthermore, in response to changes in users’

requirements or in the environment, component-based

systems can also be reconfigured by modifying the links of

their architecture.

Nevertheless, the component-based development

process should be controlled by the use of formal methods,

which allow, at any stage of the lifecycle, verifying

important issues; such as the correctness of component-

based systems, their adaptation or the interactions between

their software components.

This paper is structured as follows. Section 2 presents

the basic concepts of component-based development. In

Section 3 we show the need for the use of formal methods

through a classification of the various verification issues

for component-based systems. Section 4 is devoted for

related work . Section 5 presents a typical application

domain, namely, Web Services. Finally, section 6

concludes this paper.

2 Related work
As to the best of our knowledge, this paper is the first

presenting a classification of the main issues of formal

verifications for the component-based systems,

nevertheless, other works deal with the need for the

formalization in this domain. In [30], the authors present

the need for an abstract approach, the need for

formalization for architecture description languages and

interface description languages, and the formal languages

used for formalization. Compared to our work, the authors

invest much more in the study and comparison of the

formal languages used in the field of software components,

while our work rather focuses on the identification and

classification of the problems that may arise during the

component based development.

The authors of [31] present briefly an introduction to

the component-based development; afterwards the need

for formalization in this context is illustrated through a

non-trivial example. However, the authors do not offer a

detailed classification of potential problems of component-

based development.

In [29], a classification of component models is

proposed through a comparative study in five dimensions:

life cycle, interface specification, interactions, extra-

functional properties, and domains. Indeed, this work

constitutes a more general classification of component

models; the authors introduce the use of formal languages

for software components, however, they do not provide a

detailed study of formal verification issues for component-

based development.

Further, unlike [30] and [31], in order to be more self-

contained, basic concepts related to component-based

development are provided, this is essential for

understanding the formal verification issues.

3 Basic concepts of component-based

development
In this section we present the basic principles and concepts

of component-based development.

3.1 Software component

In the literature, there are many definitions of the notion of

software component; according to [1], “A software

470 Informatica 44 (2020) 469–475 M. Hariati

component is a unit of composition with contractually

specified interfaces and explicit context dependencies only.

A software component can be deployed independently and

is subject to third-party composition”. Indeed, a software

component interacts with its environment only through its

interfaces, since it is designed without any knowledge of

its environment; this offers an independence allowing its

use in different contexts.

3.2 Interfaces and assembly

A software component can have two types of interfaces:

on the one hand, the provided interfaces; they represent the

services that the component offers, on the other hand, the

required interfaces; which are the services that the

component needs to accomplish its functions. The

assembly of a component-based system is done by linking

the provided interfaces with the required interfaces of a

selection of software components; however, in order to

guarantee a correct assembly of these components, the

compatibility of their interfaces should be verified

beforehand.

The semantics of an interface is usually specified by

its signature. However, the description of an interface only

by its signature is insufficient for modeling and verifying

the notion of compatibility, indeed, the specification of an

interface must also include the definition of the behavior,

such as the sequence of service calls between components

of the system, or the time constraints, such as the

execution time of a service. As we will see in the next

sections, the application of formal methods is inescapable

for the verification of these issues.

3.3 Component models and component

frameworks

Others aspects, relating in particular to the definition of the

components and their composition are specified by the

component model to which the component is assigned.

Indeed, the component models define a specific

representation, composition modes, interaction styles and

others standards dedicated to software components [2]. In

addition, component models form the basis for creating

component frameworks.

Component frameworks establish the physical

environmental conditions for the execution and

cooperation of components in the system, and they help

also to regulate the interactions between components in

execution [1].

Component frameworks can only concern physical

components, unlike component models, these can be

defined for the different levels of abstraction for a

component [3], indeed, some component models define a

software component as an execution entity, this is the case

for Fractal [4] for example, while others component

models define a software component as a design entity, as

is the case for SOFA [5].

3.4 Instance of a software component

Some component models distinguish component types

from their instances, allowing the creation and the

destruction of component instances at runtime, as is the

case for EJB [6] or CCM [7]. Others component models

like Wright [8] do not take instantiation into account.

3.5 Synchronous communication vs

asynchronous communication

Usually, the communication between the software

components is done in a synchronous manner, as is the

case for Darwin [9] and SOFA. However, in some models

such as EJB or CCM, communication can be done by

asynchronously sending and receiving messages.

3.6 Flat models vs hierarchical models

A set of basic software components can be assembled to

give a composite component. In flat component models,

this composite component represents the final component-

based system, as is the case for EJB or CCM. However, in

hierarchical component models, such as SOFA or Fractal,

the composite component may in turn be subject to

composition with others components, allowing the

construction of a component-based system with several

hierarchical levels of components. Furthermore, in

hierarchical models, we must specify the interfaces to be

delegated outside a composite component to be linked to

compatible interfaces in the higher hierarchical levels of

composition.

3.7 Single binding vs multiple binding

Some component models suppose one-to-one linking of

interfaces, i.e. single bindings, as in SOFA, others

component models allow an interface to be linked to

several others interfaces, i.e. multiple bindings, as is the

case of EJB and Fractal.

3.8 Life cycle of a component-based system

Component-based software systems are developed by

selecting and assembling off-the-shelf components, instead

of being programmed, this makes the lifecycle of a

component-based software system different from

traditional software system; it mainly comprises the

following steps:

1- Requirements specification: It concerns collecting,

analyzing and specifying the needs of the future

users of the system.

2- Architecture specification: The architecture of the

software specifies the system in terms of abstract

components of design and interactions between

these components.

3- Selection and customization of components: First,

the concrete components taken on the shelf are

selected according to the software architecture; in

a second step, each component must be

Formal Verification Issues For Component-Based Development Informatica 44 (2020) 469–475 471

personalized before being integrated into the new

system.

4- Integration of the system: Integration is achieved

by establishing mechanisms for communication

and coordination of the various components of

the final software system.

5- Test of the system: Various methods and tools are

used to test the component-based system; in fact,

it is a question of checking the properties

concerning functional aspects as well as those

related to the quality of the software.

6- Deployment: This is the installation of the

software components of the system on one or

more computers.

7- Maintenance and evolution of the system: After

deployment, parts of the component-based system

can be modified, due to changes in users’

requirements or in the environment.

The concept of software construction by reuse is not

new, indeed, the idea was already present in object-

oriented programming, it was implemented by the

inheritance mechanism; the relatively recent emergence of

new technologies has significantly increased the

possibilities of building systems and applications from

reusable components.

Furthermore, building systems based on components or

building components for systems in different application

areas requires methodologies and processes, including not

only development and maintenance aspects, but also those

relating to organizational, marketing, legal and other

aspects.

3.9 Development for reuse and development

through reuse

The component-based software engineering process

includes two separate but linked processes via a

component market. In the following we present each of the

two processes:

- Development for Reuse: This process consists of

an analysis of the application domains in order to

develop commercial-off-the-shelf (COTS)

components related to these domains. To

complete a successful reuse of the software,

standards for similar systems must be identified

and represented in a form that can be easily

exploited to build other systems in the domain.

Once created, reusable components will be

available in organizations or at the market level

as commercial components.

- Development through reuse: this is related to the

assembly of software systems from the

components taken on the shelf.

3.10 The objectives of component-based

development

The main objectives of component-based development can

be summarized as follows:

- Reuse: This is the main objective of component-

based development. While some software

components of a large system are necessarily

special purpose components, it is imperative to

design and assemble components in order to

reuse them in the development of others systems.

- Independent development of software components:

Large software systems should be able to be

assembled from components developed by

different people, for this purpose, it is essential to

decouple the developers from the components of

their users, this is done mainly through the

specifications of the behavior of components.

- Software quality: A software component or a

component-based system should have the desired

behavior. Quality assurance technologies for

component-based software systems are currently

relatively premature, as the characteristics of

component-based systems differ from those of

conventional systems.

- Maintainability: A component-based system

should be built in a way that is understandable

and easy to evolve.

3.11 The contributions of component-based

development

The contributions of component-based development can

be presented as follows:

- More efficient management of complexity: The

division of large and complex systems into sub-

systems offers greater control over their

complexity.

- Time to market is reduced: Component-based

development consists of assembling existing

components, which reduces development time,

and therefore accelerates the time to market.

- Costs are reduced: While some software

components are completely specific to a given

application, other software components can be

reused and shared with other developers, thereby

reducing their costs by damping through a large

population.

- Quality is improved: Component-based

development greatly improves the quality of the

systems, since the latter are built from

components that are already tested and certified.

- Easier maintenance and evolution: The

maintenance and evolution of component-based

systems is easier, since most of the time they are

472 Informatica 44 (2020) 469–475 M. Hariati

reduced to simple additions, deletions or

replacement of software components.

4 Classification of formal verification

issues for component-based systems
Formal approaches are rigorous methods aimed at

modeling and analyzing complex systems. The idea of

verifying programs is not new; in fact it dates back to the

1960s. Today, formal techniques and tools are widely used

in both the academic and the industrial worlds.

In our context, formal methods are essential for

component-based development because they enable

addressing important verification issues throughout the

lifecycle of a component-based system. In the remainder

of this section, we will detail these verification issues

which we have classified into three levels, namely, at an

individual component, during the composition of the

components, and finally at the evolution level.

4.1 Component level

This level of analysis addresses the verification of an

individual component before its composition with the rest

of the system; we classified this verification into two types:

− Context-independent verification: it consists of

verifying the properties of a component in the

isolation, thereby independently of its

deployment context; indeed, the issues to be

checked can concern the absence of deadlock in

its own specification or the coherence of the

specification of its temporal constraints.

− Context-dependent verification: In component-

based development, components are developed

independently of their deployment context;

therefore, component correctness can be very

difficult to define, as a component may behave

correctly in a context but incorrectly in another.

Existing approaches remedy this situation in two

different ways; some approaches [10, 11] propose

to attribute to each component a description of its

properties, thereby enabling the user of

component to decide if the latter can behave

correctly in a given context. Other approaches [12,

13] deliver software components with a set of

quality properties that are guaranteed in all

contexts satisfying a number of conditions.

4.2 Composition level

This level addresses the verification of the composition of

the system; we classified this verification into tree main

issues:

4.2.1 Compatibility of components

The software components constituting a component-based

system can be delivered by different sellers; therefore

verification of their compatibility is an important issue.

Some approaches define compatibility only in terms of

signatures of services linking components [14, 7, 15].

However, this description is by no means exhaustive,

because it does not include for example, the specification

of the services calls sequence of a component, such an

aspect is more a matter of behavior. On the other hand,

other approaches offer a richer description of compatibility,

including description of the behavior [16]. This makes it

possible to verify that the composition will not lead to an

erroneous interaction between the components of the

system.

Some approaches propose to verify compatibility at

design time, while others perform checks during execution,

thereby detect bad interactions between components

dynamically; using a test environment in which the

concerned components are duplicated [17].

Moreover, even if the components are not completely

incompatible, they can sometimes cooperate correctly by

generating appropriate adapters of their interfaces. Some

approaches generate adapters for connecting components

belonging to different component models [18, 29]; this can

be done in a fully automatic manner. Other approaches

include adapters for integrating an incompatible

functionality of components [19], in which case additional

input is required from the user or the monitoring phase to

provide information concerning the parts corresponding to

the incompatible functionality.

4.2.2 Assembly of components

The process of assembling components is mainly twofold:

identifying the correct components taken on the shelf, and

their connections together, so that the resulting

component-based system corresponds to the desired

requirements.

Usually, assembly strategies focus on finding the most

cost-effective solution with respect to time [19]. The cost

function can, for example, evaluate the components in

terms of their performance measurements or the

minimization of new requirements generated by the added

components. The assembly can be selected based on an

exhaustive evaluation of all possible alternatives [20], or

via an iterative construction of a relatively optimal

solution [21].

In this context, formal methods make the problem of

assembly of components considerably simpler by simply

providing a design of the component based system

comprising specifications of a set of components and their

connections, the problem being reduced to simply finding

the correct component implementations taken on the shelf

and formally verifying their compliance with the expected

specifications.

4.2.3 The global verification

Formal methods are very useful for verifying the global

properties of a final component-based system. In this case,

formal analysis generally includes:

− Verification of standard coordination errors.

Formal Verification Issues For Component-Based Development Informatica 44 (2020) 469–475 473

− The absence of deadlock in the system.

− Verification of the different time constraints in

the global system.

− The order of execution of a set of services of a

components selection in the final system.

− Verification of the number of components that

can simultaneously access to the same service.

This verification can be carried out on the whole of

the final component-based system or simply on a well-

defined part.

Furthermore, in addition to checking properties,

formal methods can also help in optimizing component-

based systems, namely:

− Detection of inactive components, which can be

removed from the system.

− The search for optimal system deployment by

placing components in compute nodes based on

the density of interaction between them [22].

As with compatibility, some approaches check the

properties of a global system at design time, while other

approaches allow dynamic verification of the system, in

fact, the conformance of the current behavior of the

components in execution is verified in parallel with its

specification [27], thereby any errors are reported in case

of discrepancy.

4.3 Evolution level

After the deployment phase, a component-based system

can evolve or adapt, in response to changes in users' needs

or changes in its environment [23], namely:

interoperability with others systems, optimization of

computational algorithms, or technical changes.

Formal methods and techniques are very useful for

modeling and analyzing the evolution of component-based

systems [24]. We have classified this analysis into two

types:

− The dynamic reconfiguration of the architecture:

this mainly includes the change of the links

between the system components as well as the

creation and destruction of the instances of the

components. At this level, formal analysis seeks

to verify the coherence of the global system after

a dynamic reconfiguration.

− Substitutability: one or more components can be

replaced with new ones. Generally, approaches

addressing this issue define an equivalence

relation between the old and the new component,

in order to verify that the substitution does not

violate the correctness of the global system [25].

However, in some cases, the verification of the

equivalence between the two versions of the

system is not necessarily strong, because it is

only necessary that the new system satisfies a

given explicit property, this is considered much

more by the approaches that do not aim to

guarantee that the behavior remains unchanged,

but rather to identify the behavioral differences

between several versions of the system [26].

Furthermore, the evolution of a component-based

system is usually defined with a set of evolution rules.

5 An application domain: Web

services
Web services are a typical application domain of

component-based development. Indeed, formal methods,

used pragmatically, represent a very powerful way to

verify several issues, such as the description, composition

or evolution of web services.

Regarding the verification of the composition, for

instance, the goal is to find the best way to put the services

together for the accomplishment of a global task. The

composition of web services is called choreography.

Nowadays, several languages are dedicated to the

description of choreography, for example: WS-CDL (Web

Services Choreography Description Language) [32] or

WSCI (Web Service Choreography Interface) [33].

Another example of the formal verification for web

services is orchestration, this describes the business logic

of web services; in fact, it is the description of the control

flow of business processes, such as: sequential or parallel

execution, etc. WS-BPEL (Web Services Business Process

Execution Language) [34] is one of the most widely used

languages to describe orchestration.

In this context, formal verification tools perform

translations from languages such as: WS-CDL or WS-

BPEL, to formalisms, such as: process algebras [8] or

timed automata [35], thus allowing the verification of

requested properties.

6 Conclusion
We presented an overview of the principles and basic

concepts of the component-based software development

paradigm. Afterwards, through a classification of

verification issues for software components, we have

shown the need for formal methods and techniques in this

context. More generally, for a real integration of formal

methods into the component-based development process,

frameworks with textual input languages or graphical

notations must be provided, and translation algorithms

must be implemented; including translations between

informal concepts of component-based systems to

formalisms, as well as translations of these formalisms to

proof or verification tools such as model checking tools.

Further, other issues have yet to be solved. In fact, we

have good techniques and tools for formal verifications

dedicated to the design phase, such as the UPPAAL model

checker [28]; however, these tools cannot be used to do

verifications during the execution phase, to control the

474 Informatica 44 (2020) 469–475 M. Hariati

behavior of a running system with respect to an expected

formal model. On the other hand, it would be practical to

design tools that allow direct generation of code from the

formal specification of a component-based system.

7 Acknowledgement
The authors would like to thank the DGRSDT (General

Directorate of Scientific Research and Technological

Development) - MESRS (Ministry of Higher Education

and Scientific Research), ALGERIA, for the financial

support of LISCO Laboratory.

8 References
[1] C. Szyperski. Component Software Beyond Object-

Oriented Programming. Addison-Wesley, USA, 2.

edition, 2002. ISBN 0-201-74572-0.

[2] G. T. Heineman and W. T. Councill. Component

Based Software Engineering - Putting the Pieces

Together. Addison-Wesley, USA, May 2001. ISBN

0-201-70485-4.

[3] A. Rausch, R. Reussner, and al, editors. The

Common Component Modeling Example:

Comparing Software Component Models. To appear

in LNCS, 2008.

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema,

and J.-B. Stefani. The Fractal Component Model and

its Support in Java. Software: Practice and

Experience, 36(11- 12): 1257-1284, August 2006.

[5] F. Plasil and S. Visnovsky. Behavior Protocols for

Software Components. IEEE Transactions on

Software Engineering, 28(11): 1056-1076, November

2002.

[6] Sun Microsystems. Enterprise JavaBeans 3.0

Specification, May 2006.

[7] Object Management Group. CORBA Component

Model 4.0 Specification. Technical Report

formal/06-04-01, Object Management Group, April

2006.

[8] R. J. Allen. A Formal Approach to Software

Architecture. PhD thesis, Carnegie Mellon

University, School of Computer Science, USA, May

1997.

[9] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.

Specifying Distributed Software Architectures. In

Proceedings of the 5th European Software

Engineering Conference (ESEC'95), volume 989 of

LNCS, pages: 137- 153. Springer-Verlag, September

1995.

[10] B. Meyer. The Grand Challenge of Trusted

Components. In Proceedings of the 25th International

Conference on Software Engineering (ICSE'03),

pages: 660-667. IEEE Computer Society, May 2003.

[11] B. Meyer, C. Mingins, and H. Schmidt. Providing

Trusted Components to the Industry. Computer,

31(5): 104-105, May 1998.

[12] G. Xie. Decompositional Verification of Component-

based Systems - A Hybrid Approach. In Proceedings

of the IEEE International Conference on Automated

Software Engineering (ASE'04), pages 414-417.

IEEE Computer Society, September 2004.

[13] J. M. Cobleigh, D. Giannakopoulou, and C. S.

Pasareanu. Learning Assumptions for Compositional

Verification. In Proceedings of the International

Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS'03),

volume 2619 of LNCS, pages: 331-346. Springer-

Verlag, January 2003.

[14] M. Corporation. COM: Component Object Model

Technologies, December 2007. URL

http://www.microsoft.com/com/.

[15] N. A. Lynch and M. R. Tuttle. An Introduction to

Input/Output Automata. CWI Quarterly, 2(3): 219-

246, September 1989.

[16] L. de Alfaro and T. A. Henzinger. Interface-based

Design. In Proceedings of the 2004 Marktoberdorf

Summer School, pages 1-25. Kluwer, The

Netherlands, 2005.

[17] D. Niebuhr and A. Rausch. A concept for dynamic

wiring of components: correctness in dynamic

adaptive systems. In Proceedings of the ESEC/FSE

Conference on Specification and Verification of

Component-Based Systems (SAVCBS'07), pages

101-102. ACM Press, September 2007.

[18] O. Galk and T. Bures. Generating Connectors for

Heterogeneous Deployment. In Proceedings of the

5th International Workshop on Software Engineering

and Middleware (SEM'05), pages 54-61. ACM Press,

September 2005.

[19] L. Gesellensetter and S. Glesner. Only the Best Can

Make It: Optimal Component Selection. Electronic

Notes in Theoretical Computer Science (ENTCS),

176(2): 105-124, May 2007.

[20] N. Barthwal and M. Woodside. E±cient Evaluation

of Alternatives for Assembly of Services. In

Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS'05),

pages 1-8. IEEE Computer Society, April 2005.

[21] N. Desnos, S. Vauttier, C. Urtado, and M. Huchard.

Software Architecture, volume 4344 of LNCS,

chapter Automating the Building of Software

Component Architectures, pages 228-235. Springer-

Verlag, December 2006.

[22] B. Zimmerova. Component Placement in Distributed

Environment w.r.t. Component Interaction. In

Proceedings of the Doctoral Workshop on

Mathematical and Engineering Methods in Computer

Science (MEMICS'06), pages: 260-267. FIT VUT

Brno,Czech Republic, October 2006.

[23] P. Waewsawangwong. A Constraint Architectural

Description Approach to Self-Organising

Component-Based Software Systems. In Proceedings

of the International Conference on Software

Engineering (ICSE'04), pages: 81-83. IEEE

Computer Society,May 2004.

[24] B. Zimmerova and P. Varekova. Reecting Creation

and Destruction of Instances in CBSs Modelling and

Formal Verification Issues For Component-Based Development Informatica 44 (2020) 469–475 475

Verification. In Proceedings of the Doctoral

Workshop on Mathematical and Engineering

Methods in Computer Science (MEMICS'07), pages:

257-264. Novotny, Brno, Czech Republic, October

2007.

[25] P. Parzek, F. Plasil, and J. Kofro·n. Model Checking

of Software Components: Combining Java

PathFinder and Behavior Protocol Model Checker. In

Proceedings of the Software Engineering Workshop

(SEW'06), pages: 133-141. IEEE Computer

Society,April 2006.

[26] L. Mariani and M. Pezzµe. A Technique for

Verifying Component-Based Software. In

Proceedings of the International Workshop on Test

and Analysis of Component Based Systems

(TACoS'04), volume 116 of ENTCS, pages: 17-30.

Elsevier Science Publishers,January 2005.

[27] P. Parzek, F. Plasil, and J. Kofron. Model Checking

of Software Components: Combining Java

PathFinder and Behavior Protocol Model Checker. In

Proceedings of the Software Engineering Workshop

(SEW'06), pages: 133-141. IEEE Computer

Society,April 2006.

[28] LARSEN, Kim G., PETTERSSON, Paul, et YI,

Wang. UPPAAL in a nutshell. International journal

on software tools for technology transfer, 1997, vol.

1, no 1-2, p. 134-152.

[29] CRNKOVIC, Ivica, CHAUDRON, Michel,

SENTILLES, Séverine, et al. A classification

framework for component models. Software

Engineering Research and Practice in Sweden, 2007,

p. 3.

[30] POIZAT, Pascal, ROYER, Jean-Claude, et

SALAÜN, Gwen. Formal methods for component

description, coordination and adaptation. Canal et

al.[4], 2004, p. 89-100.

[31] MAKOWSKI, Piotr et RAVN, Anders P. Component

Based Development-Where is the Place for

Formalization?. 2003.

[32] KAVANTZAS, Nickolas, BURDETT, David,

RITZINGER, Gregory, et al. Web service

choreography description language (wscdl) 1.0.

2004.

[33] ARKIN, Assaf, ASKARY, Sid, FORDIN, Scott, et

al. Web service choreography interface (WSCI) 1.0,

2002. URL http://www. w3. org/TR/wsci, 2002.

[34] ARKIN, Assaf, ASKARY, Sid, BLOCH, Ben, et al.

Web services business process execution language

version 2.0. Working Draft. WS-BPEL TC OASIS,

2005.

[35] ALUR, Rajeev et DILL, David L. A theory of timed

automata. Theoretical computer science, 1994, vol.

126, no 2, p. 183-235.

476 Informatica 44 (2020) 469–475 M. Hariati

