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The proposed clustering methods are based on the recoding ofthe original mixed units and their clusters 
into a unifonn representation. The description ofa cluster consists for each variable ofthe freguencies of 
the variable values over its range partition. The proposed representation can be used also for clustering 
symbolic data. On the basis ofthis representation the adapted version ofthe leaders method and adding 
clustering method were implemented. We describe both approaches, which were successfully applied on 
several large datasets. 

1 Introduction 
Abstraction is the main tool to deal with large amounts of 
data. The first step is to identify groups of similar units -
clusters. In data analysis this is a task of clustering meth­
ods. The most popular are hierarchical clustering methods. 
Because they usually use a similarity/dissimilarity matrix 
they are appropriate only for clustering datasets of a mod-
erate size (some hundreds of units). On the other hand well 
known nonhierarchical methods are mostly implemented 
for datasets of variables measured in the same scale type 
(such as for example 'k-means method'). Because of these 
limits we are searching for new clustering methods or at 
least trying to adapt known methods to be appropriate for 
clustering large datasets of mixed units, where variables 
(properties) ofthe units are measured in different scales. 

Let £? be a finite set of units. A nonempty subset C C E 
is called a cluster. A set of clusters C = {d} forms a clus­
tering. In this paper we shall require that every clustering 
C is a partition ofE. 

The clustering problem can be formulated as an opti-
mization problem: 

Determine the clustering C* 6 $, for which 

P(C*) = minP(C) 

$ IR;!" where $ is a set offeasible clusterings and P 
is a criterionfunction. 

In many clustering methods the criterion fiinction mea-
sures the deviation of units from representatives {leaders) 
of corresponding clusters. In our method we select the cri­
terion fiinction in one ofthe most frequent form 

c e c x € C 

where Rc is a representative of cluster C and d is a dissim-
ilarity. 

The cluster representatives usually consist of variable-
wise summaries of variable values over the cluster. For ho-
mogeneous units with only numerical variables their means 
are usually selected as representatives of clusters. For 
mixed (nonhomogeneous) units a new description has to 
be selected. 

In this paper we investigate a description satisfying two 
additional requirements: 

1. it should require a fixed space per variable; 

2. it should be compatible with merging of clusters -
knowing the description of two disjoint clusters we 
can, without additional information, produce the de­
scription of their union. 

Note that only some ofthe cluster descriptions are compat­
ible with merging. For example mean (as sum and number 
of units) for numerical variables and (min, max) intervals 
for ordinal variables. 

2 A description of a cluster 
For our adaptation of clustering methods to be appropri­
ate for clustering large datasets of mixed units, we choose 
a cluster description based on frequencies. For this pur-
pose, the ranges of the variables are partitioned into se­
lected number of classes. Let {Vi,i = 1 , . . . ,k{V)} be 
a partition ofthe range of values of variable V (the number 
of classes k{V) depends on variable). Then we can define 
for a cluster C the sets 

Q{i,C;V) = {XeC: ViX) eVi}, i = 1,... ,k{V) 
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where V{X) denotes the value of variable V on unit X. 
In the čase of an ordinal variable V (numerical scales 

are a special čase of ordinal scales) the partition {Vi, i = 
1 , . . . , k{V)} usually consists of intervals detennined by 
selected threshold values to < ^i < *2 < 3̂ < • • • < 
tk(v)-i < hiv), to - inf V, tk(v) = sup V. 

For nominal variables we can obtain the partition, for ex-
ample, by selecting k{V) — 1 values i i , i2, iS) • • • : tk{V)-x 
from the range of variable V (usually the most frequent val­
ues on J5) and setting Vj — {U), i = 1 , . . . ,k{V) — l\ and 
putting ali the remaining values in class Vk{v) • 

Units are not necessarily represented with single value 
for each variable, but they can also be represented with fre-
quencies overthe classes of variables ranges. 

Using classes of ranges we getfreguencies 

qii,C;V)=caTdQ{i,C;V) 

and relativefreguencies 

q{i,C-,V) 
pii,C;V) = 

cardC 

Note that 

kiV) 
Y^p{i,C;V) = l 
i=l 

When only a single unit is in the cluster C we get 

Pii,C;V) = [l:^ : ifX eQ{i,C;V) 
othenvise 

We can add, for each variable, a new class for a miss-
ing value and treat it as a special value, or we can also 
consider a missing value on V for a unit X by setting 
p{i, {X}; V) = jAr\, i = 1 , . . . , k{V) (or by some other 
distribution). 

It is easy to see that such a description is compatible with 
merging, because for two disjoint clusters Ci and C2 we 
have 

Qii,C,UC2;V) = Q{i,Ci;V)uQii,C2;V), 

q{i,CiUC2;V) = q{i,Ci;V) + q{i,C2;V). 

The threshold values are usually detennined in such a 
way that, for the given set of units E (or the space of units 
S), itholds iha.tp{i, E;V) « j ^ , i = 1 , . . . ,k{V). 

As a compatible description or nominal variable over a 
cluster C also its range V{C) can be used, since we have 
V{CiUC2) = ViCi)UViC2). 

Example: Recoding of flags dataset 

Original data are taken from the address 
ftp://ftp.ics.uci.edu/pub/ 

m a c h i n e - l e a r n i n g - d a t a b a s e s / f l a g s 
(Flags from Collins Gem Guide to Flags, donated by 

Richard S. Forsyth.) 

Let us consider the following three variables; 
- population (in round millions), 
- mainhue (predominant color in the flag (tie-breaks de-
cided by taking the topmost hue, if that fails then the most 
central hue, and if that fails the leftmost hue)), 
- text (1 if any letters or writing on the flag (e.g., a motto or 
slogan), O othenvise). 
The range of the variable population is divided into 5 
classes with approximately the same number of units in 
each of them. The ranges of the others variables are so 
small that we put for discretization of them each possible 
value in a separate class: 

var= population var= mainhue var= text 
map 
1 = {0} 
2 = (0,4] 
3 = (4,18] 
4 = (18,158] 

map 
1 = {red} 
2 - {green} 
3 = {blue} 
4 = {gold} 

map 
1 = {0} 
2 = {1} 

5 = (158,1100] 5 = {white} 
6 = {black} 
7 = {orange} 

unit ID 
ORIGINAL DATA 

population mainhue text 
Austria 8 
New-Zealand 2 
Saudi-Arabia 9 
Svvitzerland 6 
USA 231 

RECODED DATA 
Austria 3 
New-Zealand 2 
Saudi-Arabia 3 
Switzerland 3 
USA 5 

1 
3 
2 
1 
5 

red 
blue 
green 
red 

vvhite 

1 
1 
2 
1 
1 

0 
0 
1 
0 
0 

In our čase for each variable a unit is represented with index 
of the appropriate class. 

The description of a cluster Ce (only for considered vari­
ables) obtained with the leaders method is 

q{C, 
giCe 
q{C6 

•population) 
mainhue) 
text) 

8 
1 
6 

1 
0 
4 

1 
9 

0 
0 

0 
0 0 0 

>From this description we can see that in eight countries 
the population is less than a million, in one country is be-
tween 1 and 4 millions and in one country population is 
between 4 and 18 millions. This cluster is one of the seven 
clusters obtained with the adapted version of the leaders 
method with maximal allowed dissimilarity between a unit 
and its nearest leader 0.5. In one of the countries flags red 
is a dominant color and ali of the remaining units have blue 
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mainhue. In six units some text is presented and four units 
inside cluster Ce have no text in their description. For bet-
ter understanding, cluster Ce consists of: Bermuda, Brit. 
Virg. Isles, Cayman Islands, Falklands Malvi, Pij i, Hong-
Kong, Montserrat, St. Helena, Turks Cocos Islands and 
Tuvalu. 

3 Dissimilarity between clusters 
Let us retum to our approach to clustering problem as an 
optimization problem. After deciding to use the uniform 
representation of units and clusters, we have to define a 
measure of dissimilarity between clusters (a unit is a spe-
cial čase of a cluster with only one element). First the dis-
similarity betvveen clusters for individual variable V is de-
finedas 

, kiV) 
diCi,C2;V) = ^•Y^\p{i,Cv,V) -pii,Cr,V)\. 

^ i=\ 

We shall use the abbreviation 

d{X,C;V) = d{{X},C;V). 

In both cases it can be shown that 

1. d{C\, C2; F) is a semidistance on clusters; i.e. 

(a) d ( C i , C 2 ; y ) > 0 
(b) d(C,C;l^) = 0 
(c) d(Ci, C2; T/) + d(C2, C3; y ) > d{Cx, C3; F) 

2. d ( C i , C 2 ; F ) e [ 0 , l ] 

and for the representation of a single unit also 

X e Q{i, E- V) ^ d{X, C;V) = 1- p{i, C; V) 

The semidistances on clusters for individual variable can 
be combined into a semidistance on clusters for complete 
descriptions by 

m 
d(Ci,C2) = 5 ]a ,d (Ci ,C2 ;V}) , 

j = i 

where m is the number of variables and a j are vveights 
{a j > O and J^JLi ^3 — 1); often a j = i . We can 
use vveights to consider dependencies among variables or 
to tune the dissimilarity to a given leaming set in Al appli-
cations. 

4 Clustering procedures 
In the proposed approach the original nonhomogeneous 
data are first recoded to a uniform representation. For the 
recoded data efificient clustering procedures can be built by 
adapting leaders method (Hartigati, 1975) or adding clus­
tering method (Zupan 1982, Jambu and Lebeaux 1983, 
Batagelj andMandelj 1993). 

4.1 The adapted version of the leaders 
method 

The adapted version of the leaders method is a variant of 
a dynamic clustering method (Diday 1979, Batagelj 1985). 
To describe the dynamic clustering method for solving the 
clustering problem let us denote: A a set of representatives; 
L C A a representation; $ a set offeasible representations; 
P : # —> IRĝ  criterion function; G : ^ -^ ^ a represen­
tation function; F -.^ ^ i a clustering function and sup-
pose that the fiinctions G and F tend to improve (diminish) 
the value of the criterion function P. Then a simple version 
of the dynamic clustering method can be described by the 
scheme: 

L := Lo; 
repeat 

C := F(L) 
L := G(C) 

untU the leaders stabilize 

We begin with the initial representation and then repeat to 
assign each unit to the nearest leader and after that select 
leaders for each (new) cluster until we reach the minimum 
of the criterion function or until the leaders don't change 
any more (local minimum). 

Let us assume the following model C = {Ciji^j, 
L = {I/i}ie/, L(X) = Li : X € d (the nearest 
leader to the unit X), L = [L{Vi),... , L{V,n)], L{V) = 
[s{l,L;Vl...,s{k{V),L;V)], EjZ''sU,L;V) ' = 1 
(the description of a leader has the same form as the de­
scription of a cluster) and 

. k{V) 
d{C, L;V) = -Y^ \pij, C; V) - siJ, L;V)\. 

j=i 

For selected criterion function 

P(C) = J2 d{XMX)) = ;^P(C,,L,) 

where 
xeE iei 

p{C,L)= Y,d{X,L) 
X€C 

we define F(L) = { q } with 

X e C- : z = minArgmin{d(X,Lj) : L j G L}. 
3 

This means that each unit is assigned to the (first) nearest 
leader. 
We define G(C) = {LJ} with 

L\ = argminp(C, L). 

The unique symmetric optimal solution of this optimization 
problem is 

s{i,L';V) {1: ifj e M 
otherwise 
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1 
0 
4 

0 
0 
0 

1 
9 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 0 

0 0 

where M — {j : q{j, C; V) = maxi q(i, C; V)} and t = 
cardM. 

The representative (leader) of a cluster is obtained from 
the most frequent range(s) of values of variables on this 
cluster. 

Example: Leader of a cluster 

For the description of a cluster Ce 

q{Ce;population) 8 
q{Ce; mainhue) 1 
q{C6;text) 6 

the optimal leader Le is 

q{Ce; population) 1 
q(C6;mainhue) O 
q{C6;text) 1 

The characteristics of the cluster are 

population = less than a million 80 % 
mainhue in the flag = blue 90 % 
text in the flag = no 60 % 

For example, 80% of ali countries in the cluster Ce have 
less than a million inhabitants, 90% of ali countries flags 
have blue mainhue and 60% of the flags in the cluster have 
no text in their descriptions. 

Properties of the leaders method 

The main properties of the adapted version of the leaders 
method are: 

1. Selection of the leaders and formation of new clusters 
diminish the value of the criterion flinction. 

2. The program always stops (converges). The number 
of iterations is usually less than 10. 

3. The program is suitable for clustering (very) large 
datasets. 

4. The leaders descriptions provide us with simple inter-
pretations of clustering results. 

4.2 The adapted adding method 
The adding clustering method is a hierarchical cluster­

ing method in which a new unit is added in a clustering tree. 
Each vertex corresponds to a cluster. For large datasets usu-
ally only the upper part of the hierarchy is maintained, the 
lower levels subtrees are replaced by 'bags' containing ali 
units from a subtree. 

We shall use the same description of a cluster (vertex) 
and the same definition of a dissimilarity as in the leaders 
method. Every time we add a unit in a cluster (vertex) the 
frequencies are recalculated. There are two possible ways 
how to add a new unit: 

a) To maximize the dissimilarity betvveen clusters (sons) 
of the current vertex or, 

b) To minimize the dissimilarity from clusters (sons) of 
the current vertex. 

In the first čase (see Figure 1) the dissimilarities be-
tween both sons of a current vertex are calculated. Be-
cause of greedy approach the čase with the biggest dis-
similarity is chosen: max{d(Cp U {X},Cg),d{Cp,Cg U 
{X}),diC,{X})}. 

C 

A •X 

y i \ ^ (optional) 

Cy{x} cu{x} c u { x } 

C I \ x 

o u -(A I UU I^X 

A A 
C p U { X } C , Cp C , U { X } 

Figure 1: Maximize the dissimilarity between clusters 

C A •X 

Gp Cq 

if d{Cp, X) <d{C^,X) then C U { X } 

A 
else 

Cp U {X} Cg 

CU{X} 

A 
Cp C, u { X } 

Figure 2: Minimize the dissimilarity from clusters 

In the second čase (see Figure 2) the dissimilari­
ties from each of the sons of current vertex are cal­
culated and the unit is added to the nearest one: 
mm{d(Cp,{X}),diCg,{Xm. 

The proposed approaches can also be extended on non-
binary trees. 

The adding clustering method has some advantages: 

1. Presentation of the result with a tree. 
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2. It can be used for classification. 

3. Speed up - if the tree has many (hundreds of) leaves 
which represent the leaders, it is more efficient adding 
unit into the tree with this method than to calculate the 
dissimilarities to each of the leaders. 

A drawback of the adding method is that the result 
strongly depends on the ordering of the input sequence of 
units. A possible way to avoid this problem is to select a 
'good' initial tree. We are suggesting to built the initial tree 
with some agglomerative hierarchical clustering method on 
leaders obtained with the leaders method. The other pos-
sibility is to include balancing of the tree in the process of 
adding new unit. Both possibilities are stili under the de-
velopment. 

5 Conclusion 
We successfully applied the proposed approach on the 
dataset of types of cars (1 349 units, 26 variables), on the 
ISSP data (45 784 units, 21 variables) and also on some 
large datasets from Al coUection 
http: / /www.ics .uci .edu/~mlearn/ 

MLRepository.htinl 

The first version of the program ClaMix (based on the 
adapted version of the leaders method) and some of the re-
sults are available at 
http://www.educa.fmf.uni-1j.si/datana/ 
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