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The aim ofthe paper is to compare the predictive abiUties ofthe novel method for tirne series prediction 
that is based on equation discovery with neural networks. Both niethods are used for short-term (one-step 
ahead) prediction and have the ability to leam from examples. With purpose to vahdate the predictive 
models, they are applied to several data sets. The successfiil predictive models could be used for voltage 
monitoring in a high precision solid-state DC voltage reference source (DCVRS) without presence ofa 
high level standard, and fiirther for voltage correction as a segment in the softv/are controlled voltage 
reference elements (VRE). 

1 IntroductlOn some important characteristics: universal approximation 
(input-output mapping), ability to leam from and adapt to 

Measured tirne series could be described as mixtures of dy- their environment and the ability to evoke weak assump-
namic, deterministic part which drives the process and ob- tion about the underlying physical system which gener-
servational noise which is added in the measurement pro- ates the input data (Haykin 1998). In the paper we use 
cess, but does not influence the future behavior of the sys- three types of neural networks. The first one is a su-
tem. Many up-to-date scientific researches on predicting pervised multilayer feedforward network, which is trained 
the future behavior ofsystem are based on modelling ofthe with back-propagation leaming algorithm (Haykin 1998, 
deterministic part. Examples ranges from the irregularity iii Nielsen 1990, Pham 1995). The second type emphasizes 
the annual number of sunspots to the changes of currency the role of tirne as an essential dimension of leaming. It 
exchange rates. To makeaforecastif theunderlyingdeter- is a natural extension ofthe first type, replacing the or-
ministic equations of the observed system are not known, dinary synaptic weights with finite-duration impulse re-
one must find out both the rules goveming system dynam- sponse (FIR) filters (Haykin 1998, Gershenfeld & Weigend 
ics and the present state of the system (Gershenfeld & 1992). The third type of network a recurrent stmcture 
Weigend 1992). Mainstream statistical techniques for pre- with a hidden neurons which introduce time in the network 
dicting include variations of the auto-regressive technique processing by virtue of the built-in feedback loop (Alippi 
that Yule invented in 1927. The technique ušes vveighted 1996, Haykin 1998). 
sum of previous observations of the series to predict the Equation discovery systems explore the hypothesis 
next value. However, there are a number of cases for which space of ali equations that can be constmcted given a set of 
this paradigm is inadequate because ofthe non-linearity of arithmetical operators, functions and variables, searching 
the underlying model (Gershenfeld & Weigend 1992). In for an equation that fits the input data best. In the paper, 
the paper we present two different paradigms for forecast- we present an equation discovery system LAGRAMGE that 
ing: neural networks and equation discovery. Neural net- ušes context free grammars for restrictmg the hypothesis 
works used for prediction are characterized as black-box space of equations. The hypothesis space of LAGRAMGE 
models whereas models obtained with equation discovery is a set of equations, such that the expressions on their 
systems are transparent (white-box). right hand sides can be derived from a given context free 

Neural netvvorks represent an emerging technology with grammar. For the purpose of time series prediction, we use 

mailto:Ljupco.Todorovski@ijs.si


514 Informatica 23 (1999) 513-520 I. Nančovska et al. 

diflference equations, that predicts the present value of the 
tirne series. Three different grammars for linear, quadratic 
and piecewise linear equations are used. 

In order to compare the predictive abilities of two de-
scribed paradigms we performed experiments in two syn-
thetic and three real world tirne series prediction problems. 
The domains used in the experiments present models with 
different amounts of non-linear dynamics (determinism) 
and noise (randomness). The predictive models obtained in 
the experiment with reference voltage domain can be used 
in to improve the metrological characteristics of a DCVRS 
in two different manners: voltage monitoring and voltage 
correction. For the purpose of voltage monitoring, predic­
tive models could be used during the inter-calibration pe­
riod without presence of a high level standard vvhile the 
predictors are obtained during the calibration period by us-
ing a high precision instrument. Further, the models could 
be used for voltage correction, as a segment in a software 
controUed VRE. By implementation of a control loop for 
voltage correction, based on the obtained predictors, the 
sensitivity of the reference source could be reduced, which 
contributes to enhancement of the robustness of the system 
and thereby the stability of the reference voltage (Nančov­
ska 1997). 

The paper is organized as follows. First two sections de-
scribe the techniques used for tirne series predicting. In 
Section 2 a brief description of used neural networks is 
given and Section 3 gives overview of the equation dis-
covery system LAGRAMGE. The results of applying both 
techniques on five tirne series data sets are presented in Sec­
tion 4, Finally, Section 5 concludes with a summary of the 
results and directions for further work. 

2 Neuairal Neihvorks 
The tirne series a;(l),a;(2),a;(3)..., which describes the 
system is given. From the series we generale vectors 
x(n) = [x(n - 1), x{n - 2 ) , . . . , x{n - p)]^, which de-
scribe the last p values of the phenomenon until tirne n - 1 . 
We are trying to find a map F(x(n)) = x{n) such that the 
predicted value x{n) in time n is the most similar to the 
original signal value x{n) in time n. For accomplishment 
of F we use three different types of neural networks (Ger-
shenfeld & Weigend 1992, Narendra 1990, Pham 1995). 

2.1 M«iltilayer perceptrom (MP) 
We use a general multilayer feed-forward network (Lipp-
marm 1987) whose leaming algorithm is generalized S-
mle or back-propagation (BP). The user interface provides 
regulation of the following parameters: number of layers, 
number of neurons in each layer, leaming rate T) and mo-
mentum term a. 

Parameters rj and a could be changed during the training. 
Neurons in input layer act as buffers for distributing the in-
put signals x(n) to neurons in the hidden layer (Haykin 
1998, Lippmann 1987, Nielsen 1990, Pham 1995). MP is 

usually used as pattem recognition tool, but from a systems 
theoretic point of view it can be also used for approxima-
tion of non-linear maps (Narendra 1990). 

2.2 FIR miiilitillayer percepttron (FKE-

In order to allow time to be represented by the effect it has 
on signal processing or to make the netvvork to be dynamic, 
time delays are introduced into the synaptic stmcture of the 
network and their values are adjusted during the leaming 
phase (Haykin 1998). In fact each synapse is represented 
by a finite-duration impulse response (FIR) filter (Figure 
1). 

FIR-MP network is a vector generalization of the MP 
and its leaming algorithm is a vector generalization of the 
standard BP algorithm, called temporal BP (TBP). The ba-
sic form of TBP is non-causal because the computation of 
weights requires knowledge of future values of vveights' 
changes 6-s and weights w-s. It could be made causal by 
adding a finite number of delay operators on the feedback 
connections so that only present and past values of t̂ -s and 
w-s are used. We hypothesize that by introducing tapped 
delay feedbacks the NN performance on problems involv-
ing time dependencies could be improved. In (Lin 1996) 
FIR-MP is compared to the NARX recurrent netvvork by its 
computational power. NARX is computationalIy as strong 
as fully connected recurrent network thus is Turing ma-
chine equivalent (Siegelmann 1995, Siegelmann & Sontag 
1995). 

2.3 RecmrreEt meihvork im real time (EN) 

The net (Haykin 1998, Pham 1995) consists of connected 
input-output layers and processing layer. RN has ability to 
connect the extemal time-varying input with its previous 
output by using delay operator. 

The leaming algorithm used is real time recurrent leam­
ing (RTLL) (Haykin 1998), which is gradient-descent 
leaming algorithm and minimizes the error function by 
changing the weights of ali visible neurons. This archi-
tecture is capable of representation of arbitrary non-linear 
dynamical system and it is Turing equivalent (Alippi 1996, 
Siegelmann 1995, Siegelmann & Sontag 1995). However, 
leaming simple behavior can be quite difficult by using gra­
dient descent'. RTRL is not guaranteed to follow the neg­
ative gradient of the error function. This is a consequence 
of the feedback connection and it can be improved by slow 
changing of weights. Although RN has difficulty captur-
ing the global behavior (Lin 1996) it is useful for leaming 
short-term dependencies and thus can be used for short-
term predictions. 

' For example, even it is Turing equivalent, it lias been difficult to get it 
successfuMy leam finite-state machines from example strings encoded as 
sequences. 
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x,(n) x(n-l) x(n-l) x(n-2) x(n-p+l) x(n-p) 

Figure 1: Signal-flow graph of a synaptic FIR filter *,/«> 

3 Equation Discovery 

The problem of equation discovery, as addressed by LA-
GRAMGE, can be defined as follows. 
Given are 

- a context free grammar G = (N, T, P, S) (see next 
section) and 

- input data D = (V, va, M), where 

- V = {vi, «2 , . . . fm} is a set of domain vari-
ables, 

- Vd G ̂  is the dependent variable and 

- M is a set of one or more measurements. Each 
measurement is a table of measured values of the 
domain variables at successive tirne points: 

tirne 
to 
h 
t2 

tN 

Vi 

Vlfi 

f l , l 

f l , 2 

Vl,N 

V2 

l ' 2 , 0 • 

•"2,1 . 

« 2 , 2 . 

V2,N • 

Vm 

Vm,0 

• Vm,l 

• t>m,2 

• Vm,N 

Find an equation for expressing the dependent variable Vd 
in terms of variables in V. This equation is expected to 
minimize the discrepancy between the measured and cal-
culated values of the dependent variable. The equation can 
be: 

- differential, i.e. of the form dvd/dt = Vd = E, or 

- ordinary, i.e. of the form Vd = E, 

vvhere £ is an expression that can be derived from the con-
text free grammar G. 

3.1 Restricting the space of possible 
equations 

The syntax of the expressions on the right hand side of 
the equation is prescribed with a context free grammar 
(Hopcroft & Ullman 1979). A context free grammar con-
tains a finite set of variables (also called nonterminals or 
syntactic categories) each of which represents expressions 
or phrases in a language (in equation discovery, nontermi­
nals represent sets of expressions that can appear in the 
equations). The expressions represented by the nontermi­
nals are described in terms of nonterminals and primitive 

symbols called terminals. The rules relating the nontermi­
nals among themselves and to terminals are called produc-
tions. 

The original motivation for the development of context 
free grammars was the description of natural languages. 
For example, a simple grammar for deriving sentences con­
sists of the productions sentence —> noun verb, noun —^ 
nettvork, noun —> eguation, and verb -^ predicts. 
Here sentence, noun and verb are nonterminals, while 
words that actually appears in sentences (i.e. network, pre­
dicts) are terminals. The sentences nettvork predicts and 
eguationpredicts can be derived with this grammar. 

We denote a context free grammar as a tuple G = 
{N, T, P, S), where N and T are finite disjoint sets of non­
terminals and terminals, respectively. P is a finite set of 
productions; each production is of the form A -^ a, where 
^ is a nonterminal and a is a string of symbols From NUT. 
We use the notation A —^ ai \ a2 \ . . . | a^ for a set of 
productions for the nonterminal A: A -> ai, A ^ a2,..., 
A ^ ak- Finally, 5 is a special nonterminal called starting 
symbol. 

Grammars used in equation discovery system LA-
GRAMGE haveseveralsymbols with specialmeanings. The 
terminal const 6 T is used to denote a constant parameter 
in an equation that has to be fitted to the input data. The 
terminals Vi are used to denote variables from the input do­
main D. Finally, the nonterminal v e N denotes any vari­
able from the input domain. Productions coimecting this 
nonterminal symbol to the terminals Uj are attached to v 
automatically, i.e., Vvj eV:v-^ViGP. 

The only restriction on the grammar G is that the right 
sides of the productions in P have to be expressions that 
are legal in the C programming language. This means that 
we can use ali C built-in operators and fimctions in the 
grammar. Additional fiinctions, representing background 
knowledge about the domain at hand can be used, as long 
as they are defined in conjunction with the grammar. Note 
that the derived equations may be non-linear in both the 
constant parameters and the system variables. 

Expressions can be derived by grammar G from the non­
terminal symbol S by applying productions from P. We 
start with the string w consisting of 5 only. At each step, 
we replace the leftmost nonterminal symbol A in string w 
with a, according to some production A -> a from P. 
When w consists solely of terminal symbols, the derivation 
process is over. 
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3.2 LAGRAMGE - the algorithm 
Expressions generated by the context free grammar G con-
tain one or more special terminal symbols const. A non-
linear fitting method is applied to determine the values of 
these parameters. The fitting method minimizes the value 
of the error fiinction Error{cj, i.e. if c is the vector of 
constant parameters in expression E, then the result of the 
fitting algorithm is a vector of parameter values c*, such 
that £'rror(c*) = miriceR"<^ {Error(c)}. The error fiinc­
tion Error is a sum of squared errors function, defined in 
the following manner: 

- for a differential equation of the form dvd/dt — E: 
Error{c) = 

E j l o [^d,i - [Vdfi + ftl E{c, vi,...vm)j , and 

- for an ordinary equation of the form v d = E: 
Error (c) — 
T,i=oi'"d,i - E{c, Vi^i, . . . Vd-l,i, Vd+l,i, . . . Vm,i))^, 

where N is the size of the measurement table and Vj^i the 
value of the system variable v j at time ti. Note that in 
the čase of calculating the error function for differential 
equations we use the integral of the expression on the right 
hand side of the equation instead of the derivative of the 
dependent variable. This is done because the error of algo-
rithms for numerical integration is in general smaller than 
the error involved of numerical derivation. We use a sim-
ple trapezoid formula for numerical integration with the 
same step size as the time step between successive mea-
surements in the measurement table. The dovvnhill simplex 
and Levenberg-Marquardt algorithms (Press et al. 1986) 
can be used to minimize the error function. 

Furthermore, the value of a heuristic function for the ex-
pression is evaluated. It is equal to the sum of squared er­
rors value SSE calculated by the fitting method (SSE{E) = 
Error{c*)). An alternative heuristic fiinction JUDL (mini-
mal description length) can be used, that takes into account 
the length I of expression E: 

MDL{E) = SSE{E) + I 
10-L 

where lmax is the length of the largest expression gener­
ated by the grammar and a^^ is the standard deviation of 
the dependent variable Vd. The length is measured as the 
number of terminals in the expression. The MDL heuristic 
function prefers shorter equations. 

A context free grammar can in principle derive an infi-
nite number of expressions (equations). LAGRAMGE thus 
ušes a bound on the complexity (depth) of the deriva­
tion used to produce the equation (Todorovski & Džeroski 
1997). The LAGRAMGE algorithm exhaustively or heuris-
tically searches for the best equation (according to the se-
lected heuristic function) within the allowed complexity 
(depth) limits. 

3.3 Time series prediction with equation 
discovery 

We reformulate the problem of time series prediction into 
the equation discovery problem in the follovving way. 
Given a time series a;(l),a;(2),a;(3),..., we choose a con­
stant p and build matrix M as follows: 

time 
to 
h 
t2 

Vi 

x{l) 
x{2) 
x(3) 

V2 

x{2) . 
x(3) .. 
x{A) . 

Vp+l 
. x{p + 1) 
. x{p + 2) 
. x(p + 3) 

Now the input domain for equation discovery prob­
lem equivalent to the problem of time series prediction is 
D = {{vi,V2,... ,Vp+i},Vp+i,M). We search for ordi-
nary equation of the form Vp+i = F{vx,V2,.. .Vp). The 
obtained equation can be interpreted as diflference equa-
tion for predicting the next value of the time series x{n) = 
F{x{n — \),x{n — 2 ) , . . . ,x{n —p)). 

The form of function F on the right-hand side of the 
equation is biased with a context free grammar G. We 
used three different context free grammars for restricting 
the space of possible equation in time series prediction do-
mains. First grammar is used to produce linear models: 

E —> const I const *v\E + const * v 

The second grammar generates quadratic multivariate 
polynomials: 

E -^ const I const * F \E + const * F 
F —¥ v \v * v 

Finally, the third grammar used in the experiments gen­
erates piecewise linear models. The breakpoint is set to 0.5, 
which is the middle of the interval of normalized values of 
time series: 

double If(double v, double el, dou-
ble e2) { 

return((v < 0.5) ? el : e2); 
} 

IfE -s- E \ If {v, E,E) 
E —> const I const *v\E+ const * v 

4 Experiments 

4.1 Data sets descriptions 

We applied the techniques described in the previous two 
sections to two synthetic and three real world data sets: 

Lorenz system Model of the Lorenz attractor is one of 
the most frequently used examples of the determin-
istic chaos system. It is described with the following 
differential equations: 
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X = a{y - x) 
y = x{R -z)-y 
ž = xy — bz 

The values of the constant parameters were chosen to 
be: o- = 16.0, iž = 451992,6 = 4.0. For initial state 
a;(0) = 0.06735,2/(0) = 1.8841,2(0) = 15.7734 the 
system is well-conditioned. The equations were simu-
lated for 2000 tirne steps of length h = 0.001. For the 
prediction task we use the tirne series for variable z, 
because it clearly reflects non-linear dynamics of the 
system. 

Reference voltage The observed tirne series are gener-
ated by soHd-state VRE-s, based on 7V zener diodes 
LTZIOOO of a group DCVRS. They are produced by 
measuring the absolute voltage values of VRE, which 
is controlled by PC-computer. The PC communicates 
with DCVRS via serial port RS232. Measuring in­
strument is digital voltmeter HP3458A. The tirne se­
ries present 2000 samples taken in tirne intervals of 15 
minutes during 500 hour measurement. 

FractionalBrownianmotionsor 1//noises FBM is a 
random function provided by Mandelbrot and Van 
Ness (FBM). The most important feature of FBM 
is that its increments [Bnit + T) - Bnit)] = 
h~"[BH{t + hT) - Bnit)] are stationary, statisti-
cally self-similar and have Gaussian distribution with 
a standard deviation CHT^, where C H is constant. 
This is usually called T^ law ofFBM. The parameter 
H is directly related to the fractal (Hausdorff) dimen-
sion D. For generation of the FBM signals we use the 
method of spectral synthesis (Nancovska 1997). 

Lorenz-like chaos in A'̂ j?3-FIR lasers Far infrared lasers 
have been proposed as examples of a physical realiza-
tion of the Lorenz model, mentioned earlier (Hubner 
et al. 1992). Hovvever, the actual laser systems are 
more complex then simple coherently coupled three-
level systems. The data set was chosen to obtain sev-
eral of the important quantities pertinent in compari-
son to the parameters of numerical data sets obtained 
by the integration of Lorenz equations. We took into 
consideration first 2000 tirne points of the time series. 

Sunspots The data set is standard benchmark test for var-
ious techniques for time series prediction. It contains 
the observation of the number of annual sunspots for 
280 years. 

4.2 Experimental setting 
The following methodology of the experiments with the 
time series prediction data sets was used. Bach data set 
was divided in two parts of equal sizes (1000 time points 

per set, expect for the Sunspot data set which has only 280 
time points). The first part was used as input for the leam-
ing system in the training phase, and the second one was 
used for testing the performance of the obtained predictive 
model. Furthermore, in the traming phase 80% of the train­
ing set was used directly for leaming and the rest is used for 
error evaluation only (the evaluation applies the estimation 
of the performance of the predictor leamed so far). The 
length of the input vector p varied betvveen 1 and 6. The 
criterion for choosing the best predictor was the root mean 
square error (RMSE). 

In the experiments with neural networks, the value of 
parameter r) is gradually decreased from 0.95 to 0.003 to 
avoid local minima of the error surface. When training the 
recurrent network 77 is set to the lower value from the be-
girming to make the time scale of the weight changes small 
enough to allow the leaming algorithm to follow the nega­
tive gradient of error function. 

We used beam search strategy in equation discovery 
system LAGRAMGE with beam width set to 50 and both 
heuristic flinctions (S SE and MDL) with downhill simplex 
method for constant parameters fitting. The depth com-
plexity parameter was set to 10 and three different context 
free grammars (from the previous section) were used. The 
best equation was then chosen that minimizes the RMSE 
on the test training set. 

4.3 Results 
The results of the experiments for neural netvvorks and 
equation discovery system LAGRAMGE are given in Ta­
ble 1 and Table 2, respectively. The architecture of the MP 
neural network is represented with x — y — z, where x, y 
and z denote numbers of neurons in first, second and third 
layer, respectively. 1^2/^1 denotes FIR-MP neural netvvork 
architecture withp and q time operators (taps) betvveen cor-
responding layers and p equals the length of the input vec­
tor. The architecture of the recurrent neural network is rep­
resented with X <r^ y -1, where x denotes the length of 
input vector and y the number of feedback connections. 

Recurrent neural networks has the best performance for 
the Reference voltage and FBM data sets. Both data sets 
represent time series with very fast changing values without 
long-term trend. The recurrent neural network has worst 
performance for the time series with trend. In that čase the 
MP and FIR-MP netvvorks better identify the underlying 
system, as vve can see from the results of the experiments 
for Lorenz and Sunspots data sets. For Lorenz-like chaos 
data set the best performance is surprisingly achieved with 
MP netvvork .̂ For ali data sets, expect the Lorenz-like, 
the prediction performance of diflferent types of neural net­
vvorks are comparable. In the experiments vvith Lorenz-like 
chaos MP is significantly better then other two types. 

^Finding a simple representation for a complex signal might require 
looking for relationship among input variables. In the čase of Lorenz-like 
chaos input vectors are representative enough to allow the MP to find the 
"simple" regression model which is good enough for local description of 
the model. 
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Data set 

Lorenz 
Ref. voltage 

FBM 
Lorenz-like 

Sunspots 

Winning NN 

Type 
FIR-MP 

Rec. 
Rec. 
MP 

FIR-MP 

Architecture 

mn 
6 - M 4 - 1 
5 ' M 4 - 1 
6 - 3 - 1 

1^4il 

P 
5 
6 
5 
6 
5 

RMSE 

Training 
9.9-10-* 

0.0646 
0.0895 
0.0153 

0.09795 

Testing 
1.7-10-^ 

0.0749 
0.0823 
0.0260 

-

Table 1: Results of the experiments with neural networks 

Data set 

Lorenz 
Ref voltage 

FBM 
Lorenz-like 

Sunspots 

Wtniiing equation 

Type 
piecevvise linear 
piecewise linear 

linear 
quadratic 
quadratic 

P 
6 
6 
6 
3 
4 

RMSE 

Training 
L919-10-« 

0.06375 
0.08846 
0.03889 

0.103 

Testing 
2.465-10-« 

0.07405 
0.0827 

0.05939 
-

Table 2: Results of the experiments with equation discovery 

In the experiments with equation discovery for the 
Lomez, Reference voltage and FBM data sets the discov­
ered equations are linear. Although the Lorenz data set is 
obtained with simulating three non-linear differential equa-
tions, the interval enclosed in the data set do not expose the 
non-linearity of the underlying equations (due to the sta-
bility of the numerical integration a small tirne step was 
chosen). For Lorenz-like and Sunspots data sets quadratic 
equations were discovered, which was expected because of 
their non-linearity. The parameter p (number of previous 
values used for prediction) is significantly smaller in cases 
where quadratic equations were discovered. As in the ex-
periments with neural networks, for aH data sets, expect 
the Lorenz-like, the prediction performances of difFerent 
types of equations are comparable. In the experiments with 
Lorenz-like chaos quadratic equations are significantly bet-
ter then other two types. 

Both methods manifest comparable performance on 
three data sets. Equation discovery outperforms neural 
networks for the Lorenz data set, which was expected be­
cause of the determinism of the underlying model. Neural 
networks have better performance on the Lorenz-like and 
Sunspots data sets where quadratic equations were discov­
ered by LAGRAMGE. 

Figure 2 shows the performance of the obtained predic-
tors for different types of neural networks and equations. 

5 Discussion 
In the paper, we presented the equation discovery system 
LAGRAMGE that ušes context free grammars for restricting 
the hypothesis space of equations. Background knowledge 
from the domain of use in the form of function definitions 
can be used along vvith common arithmetical operators and 

functions built in the C programming language. The hy-
pothesis space of LAGRAMGE is a set of equations, such 
that the expressions on their right hand sides can be derived 
from a given context free grammar. 

In contrast vvith system Identification methods, where 
the structure of the model has to be provided explicitly by 
the human expert, LAGRAMGE can use a more sophisti-
cated form of representing the expert's theoretical knowl-
edge about the domain at hand. A context free grammar 
can be used to specify a whole range of possible equa-
tion structures that make sense from the expert's point of 
view. Therefore, the discovered equations are in compre-
hensible form and can give domain experts better or even 
new insight into the measured data. This also distinguishes 
LAGRAMGE from other system Identification methods like 
neural networks, which can be used for obtaining black-
box models, i.e., models vvith incomprehensible structure. 

On the equation discovery side, the presented vvork is 
related to equation discovery systems, such as BACON 
(Langley et al. 1987), EF (Zembovvitz & Zytkow 1992), 
E* (Schaffer 1993), LAGRANGE (Dzeroski & Todorovski 
1993) and GOLDHORN (Krizman et al. 1995). Hovvever, 
none of them was applied to the task of time series predic­
tion. 

Various architectures of neural netvvorks have already 
been used for system Identification and prediction. Some of 
them are closely related to the architectures used in this pa­
per (Haykin 1998, Lippmann 1987, Narendra 1990, Pham 
1995), and others are different, such as radial basis function 
(RBF) neural netvvork (Haykin 1998) and Group-Method-
of-Data-Handling (Pham 1995). The NARX recurrent neu­
ral netvvorks (Alippi 1996, Lin 1996) architecture is suit-
able for leaming long-term dependencies in time series. 
For the task of short-term prediction, addressed in this pa­
per, leaming the local structure is good enough (Narendra 
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NNtyps 

Lorenz- „ 
nkochao. Sunspot. 
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Figure 2: RMSE of the predictors for different types of neural networks and equations 

1990). Support vector machine (SVM) for non-linear re-
gression (Haykin 1998), which is approximate implemen-
tation of the method of structural risk minimization, could 
be also used. Finally, SVM may be implemented in the 
form of a polynomial leaming machine, RBF network or 
MP. 
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