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Abstract 
The study evaluates relative heat stress in the Natura 2000 site 
Kras under various climate change scenarios using Multiscale 
Geographically Weighted Regression (MGWR). Optical and 
thermal satellite imagery and five future air temperature 
scenarios were utilized to downscale thermal conditions and 
evaluate relative heat stress. Results indicate significant spatio-
temporal variability in LST, with the southeastern region being 
particularly susceptible to elevated heat stress. Projections show 
an overall increase in heat stress due to climate change. The study 
emphasizes the need for spatially explicit analyses and adaptive 
strategies to mitigate heat stress impacts on ecosystems and 
human populations. 
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Izvleček 
Ocena relativne toplotne obremenitve Natura 2000 
območja Kras pod različnimi scenariji podnebnih 
sprememb: Primer uporabe geografsko obtežene regresije 
V raziskavi ocenjujemo relativno toplotno obremenitev Natura 
2000 območja Kras v različnih scenarijih podnebnih sprememb z 
uporabo geografsko obtežene regresije (MGWR). Oceno smo 
oblikovali na podlagi optičnih in termičnih satelitskih podob ter 
petih napovedi potencialne povprečne temperature zraka, pri 
čemer smo prostorsko ločljivost slednjih izboljšali z metodo 
MGWR. Rezultati kažejo značilno prostorsko-časovno variabilnost 
v LST z večjo toplotno obremenitvijo na jugovzhodu. V splošnem 
projekcije kažejo povečanje toplotne obremenitve zaradi 
podnebnih sprememb. Raziskava izpostavlja pomen prostorsko 
eksplicitnih analiz in prilagodljivih strategij za blaženje vplivov 
toplotnih obremenitev ekosistemov in prebivalstva. 
Ključne besede 
Daljinsko zaznavanje, MGWR, NDVI, prostorsko modeliranje, 
temperatura površja 
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1 Introduction 
 
Land surface temperature (LST) represents the radiative temperature of the Earth’s 
surface, measured as infrared radiation (Liang & Wang, 2020; Pouyan idr., 2022). It 
is the thermal energy of a thin layer between the atmosphere, soil, vegetation, build-
up areas and other land cover types (ESA, 2024). Primarily, LST dynamics are 
influenced by weather conditions, climatic regimes, vegetation characteristics, land 
cover/land use patterns, albedo and soil moisture content (Liang, 2018; Khan idr., 
2021; Li idr., 2021; GCOS, 2024). It represents an essential parameter within the 
Earth's climate and biological systems and serves as a fundamental metric for 
assessing various processes of energy and water exchange between the land and the 
atmosphere (Z.-L. Li & Duan, 2018; Pouyan idr., 2022). Because of its extensive 
applicable value, LST is recognized as one of the 10 essential climate variables in the 
biosphere (Hollmann idr., 2013). 
 
Even though the relationship is locally specific, LST influences and is influenced by air 
temperature and climate change (Gallo idr., 2011). The global air temperature has 
risen by 1.1°C compared to pre-industrial era, and 2023 was the planet's warmest 
year on record (NOAA, 2024). Moreover, projections indicate more than 50% 
likelihood of surpassing 1.5°C by 2040. Alarmingly, in a high-emission scenario, global 
temperatures may increase in average by 3.3 to 5.7°C by 2100 (IPCC, 2023). The 
risk is particularly pronounced in Europe, where temperatures have risen at double 
the rate compared to the global average. Presently, Europe registers a temperature 
increase of approximately 2.3°C (compared to the preindustrial reference period), 
becoming thus the fastest warming continent on Earth (WMO, 2023).  
 
Although air temperature cannot be equated to LST directly, it can influence LST 
spatial and temporal variability (Adão idr., 2023). Global warming is generally higher 
over land compared to oceans, resulting in a significant increase in LST across 80% 
of all land surfaces (Farr, 2022; IPCC, 2023). The global average LST has been 
steadily rising since the 1980s, with higher rates of change observed over the regions 
north of 45° N (J. Liu idr., 2021). Besides climate change, human activity influence 
LST by changing natural land cover types and increasing built-up areas resulting in 
urban heat islands characterized by higher surface and air temperatures (Ivajnšič idr., 
2014).  
 
The consequences of rising LST are significant and have wide-ranging impacts on 
ecosystems and societies. General risks encompass threats concerning both the 
quality and quantity of water as well as food safety (Zhou idr., 2022). Additionally, 
higher LST (and the corresponding correlated boundary layer air temperature) can 
negatively impact human thermal comfort leading to various health risks (Ünsal idr., 
2023). Heat stress arises when the body fails to adequately regulate its temperature, 
particularly in high humidity. Additionally, higher air temperatures contribute to the 
accumulation of harmful air pollutants, exacerbating respiratory problems and further 
intensifying the health impacts of heat stress (Vargas Zeppetello idr., 2022; NASA, 
2023). The negative consequences on human health encompass dehydration, reduced 
physical performance and productivity, impaired cognitive functions, cardiovascular 
complications, potential disability, increased mortality rates and adverse effects on 
mental health (Ebi idr., 2021). 
 
To preserve fundamental ecosystem services, prevent health risks and enhance 
general climate change resilience, research of current and potential future LST and 
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air temperature spatial pattern is essential. Remote sensing, utilizing thermal infrared 
(TIR, 8–14 µm) instruments aboard various satellites, serves as a useful method for 
LST data acquisition. These data can be used for detailed LST and air temperature 
spatio-temporal analysis, monitoring and modeling (K. Li idr., 2021; Gkolemi idr., 
2023; Ullah idr., 2023), especially in cloudless, calm weather conditions. However, 
challenges persist in retrieving and utilizing remotely sensed LST, due to atmospheric 
interference, limited pixel resolution and the need for specialized knowledge and 
algorithms for accurate data processing and interpretation (Shiff idr., 2021; Bird idr., 
2022; Ahmed idr., 2023). Despite this limitations diverse applications emerged 
encompassing agriculture (Awais idr., 2022; Garcia-Santos idr., 2022), urban 
planning (Almeida idr., 2021; Kim & Brown, 2021; Ismaila idr., 2022), climate studies 
(Tomlinson idr., 2011; Žiberna idr., 2021; Reiners idr., 2023) and environmental 
research (Blum idr., 2015; Davidovič & Ivajnšič, 2020; Kamal idr., 2022). 
 
To process and extrude useful spatial information from remotely sensed LST data, 
multiscale geographically weighted regression (MGWR) can be used. The method can 
be defined as an advanced spatial regression analysis technique that explores 
geographically varying relationships between dependent variables and predictors 
resulting in multiple local linear models (Fotheringham idr., 2024). Unlike 
geographically weighted regression (GWR), MGWR allows for more accurate modeling 
because of the varying neighborhood (scale) for each predictor (T. Oshan idr., 2019; 
Comber idr., 2023). The method is relatively new (Fotheringham idr., 2017) but it 
was already applied in diverse environmental and social research areas including 
climate studies (Ünsal idr., 2023), habitat quality (Y. Liu idr., 2023), ecosystem 
services (Sun idr., 2020), house pricing (Zhang idr., 2021), obesity determinants (T. 
M. Oshan idr., 2020), Lyme disease (Donša idr., 2021) and COVID-19 incidence (Maiti 
idr., 2021). 
 
Because of its vulnerability to climate change (Ivajnšič & Donša, 2018), we decided 
to apply and test the MGWR methodology for evaluating relative heat stress in the 
Natura 2000 site Kras. The region Kras is a limestone plateau in southwestern 
Slovenia (Figure 1), covering approximately 440 km2, spanning from northwest to 
southeast in the Dinaric direction. Because of its porous rock composition, Kras lacks 
surface water but owing to relatively high precipitation historically enabled deciduous 
forest formation. However, significant landscape transformation occurred during the 
Roman era, marked by extensive deforestation resulting in the formation of a dry 
rocky landscape. Over the past two centuries, Kras has undergone notable 
transformations again, initially with planned afforestation by black pine, followed by 
spontaneous afforestation and overgrowth, a trend expected to persist and, in some 
parts, even increase in the future (Kaligarič & Ivajnšič, 2014; Davidovič idr., 2022). 
 
However, Kras is located in the region where a transition from a continental to a sub-
mediterranean climate is evident, thus making it the sunniest area in Slovenia 
(Zakšek idr., 2007). Due to its permeable rocks and high irradiance, water deficits 
occur during summer months, when these adverse effects manifest in droughts and 
wildfires (Veble & Brečko Grubar, 2016). The effect is exacerbated by proliferation of 
typical vegetation of the intermediate grassland succession stage, dominated by 
grassland, tall herbs and shrub speciaes, making it more susceptible to fire (Dolgan-
Petrič, 1989). Consequently, in 2022, Kras experienced the largest wildfire in 
Slovenian history, consuming 3,700 hectares over 17 days and causing €26.88 million 
in damages. In addition to natural factors, the fire's impact was compounded by 
difficult terrain, hindering firefighter access, and over 10 tons of unexploded 
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explosives from World War I (STA, 2023). To recover, ongoing reforestation efforts 
include drought-resistant native deciduous species such as downy oak (Quercus 
pubescens), evergreen oak (Quercus ilex) and sessile oak (Quercus petraea) 
(RTVSLO, 2022). 
 
Based on the above mentioned facts, the study addresses the following research 
questions: (1) can the spatial LST pattern in the study area be modelled with MGWR 
fitted with normalized vegetation index (NDVI) and average daily air temperature 
(TAS) values as predictor variables, (2) can the relative change in LST values be 
predicted for future climate change scenarios, and finally (3) what is the extent of 
human exposure to increased heat stress in the Natura 2000 site Kras? 
 
2 Methodology 
 
2.1 Data and preprocessing 
 
To model relative heat stress, we employed land surface temperature (LST) as the 
dependent variable, with mean daily air temperature at 2 meters (TAS) and 
normalized difference vegetation index (NDVI) as independent variables (predictors). 
LST values (°C) were derived using the TerrSet module Landsat (TerrSet, 2020) from 
Landsat 4-5 TM data (thermal band B6) for the summer months (June, July, August) 
of 1990, 2000, and 2010. Thermal band preprocessing involved conversion from 
spectral radiance to temperature (Convert to at-satellite brightness temperature). 
Recent LST values were obtained by averaging summer values across the selected 
years. Data with a 30-meter pixel resolution for LST calculations were sourced from 
the EarthExplorer portal (USGS, 2024) managed by the US Geological Survey (USGS). 
 
In the following methodological step, we compiled TAS data for both recent and future 
periods. Recent values (TAS_rec) were derived by calculating the annual average from 
monthly values spanning from 1981 to 2010. Future values encompassed the near-
term period 2011-2040 (TAS25), mid-term period 2041-2070 (TAS55) and long-term 
period 2071-2100 (TAS85). Five climate models (GFDL-ESM4, IPSL-CM6A-LR, MPI-
ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL) were employed. For each model two Shared 
Socioeconomic Pathways (SSP) were considered, an optimistic (ssp126) and a 
pessimistic (ssp585). The average TAS value across scenarios and time windows was 
calculated. All climatic data, obtained at approximately 1 km² resolution (30 arc 
seconds horizontal resolution), were sourced from the CHELSA portal (CHELSA, 
2024), managed by the Swiss Federal Institute for Forest, Snow and Landscape 
Research (WSL). 
 
We used the NDVI as the second predictor. Recent NDVI values (NDVI_rec) were 
determined using the QGIS Semi-Automatic Classification Plugin (Congedo, 2021) for 
downloading data as well as atmospheric and radiometric corrections (Convert to 
reflectance, Dark object subtraction). Landsat 8 data, comprising the red band (B4) 
and near-infrared band (B5), was utilized for the summer months (June, July, August) 
of 2010. Subsequent NDVI projections for the near-term period 2011-2040 (NDVI25), 
mid-term period 2041-2070 (NDVI55) and long-term period 2071-2100 (NDVI85) 
were derived through a pixel level regression approach, integrating time-NDVI and 
TAS-NDVI datasets (Davidovič idr., 2022). Data with a 30-meter pixel resolution for 
NDVI calculations were also sourced from the EarthExplorer portal (USGS, 2024). 
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Next, 1000 random points were generated across the study area in the QGIS 
environment. For each point, the following attributes were assigned: x and y 
coordinates, LST, TAS_rec, TAS25_126, TAS25_585, TAS55_126, TAS55_585, 
TAS85_126, TAS85_585, NDVI_rec, NDVI25, NDVI55 and NDVI85.  
 
To assess the effect of potential increase or decrease of heat stress on demographics, 
we employed a 100 x 100 m grid dataset encompassing population data, including 
age distribution. Data were sourced in vector format from the STAGE portal (STAGE, 
2024), which is managed by the Statistical Office of the Republic of Slovenia (SURS). 
 

 
Figure 1: Location of the Natura 2000 site Kras.  
Source: Authors. 
 
2.2 Multiscale Geographically Weighted Regression 
 
In conducting regression analysis, we employed MGWR 2.2 (T. Oshan idr., 2019), 
obtained from the School of Geographical Sciences & Urban Planning website (Arizona 
State University, 2024). The software processed tabular input of dependent variables 
and predictors, in our case derived from an attribute table containing 1000 random 
points. Key settings were: GWR mode (MGWR), spatial kernel (Adaptive, Bisquare), 
bandwidth searching (Golden selection), variable standardization (Off), initialization 
(GWR estimates), Monte Carlo test (On), bandwidths confidence (On), SOC (SOC-f), 
convergence threshold (1e-5), local collinearity (On), model type (Gaussian) and 
optimization criterion (AICc). Output includes a table presenting local linear equation 
values and statistical parameters for each point, alongside a text file containing 
summary statistics for the global and local regression model. 
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The MGWR analysis provided local coefficients, enabling the calculation of future LST 
values for each random point. These values were derived for future periods by utilizing 
the following multiple linear regression equation: 
 

LSTx = ß0 + (NDVIx * ßNDVI) + (TASx_y * ßTAS) 
 
where LSTx is the recent or future land surface temperature at a given location, ß0 is 
the intercept (value of LSTx when NDVI and TAS are 0), NDVIx is the recent or future 
vegetation index value, ßNDVI is the regression coefficient for NDVI, TASx_y is the 
recent or future air temperature value in particular scenario and ßTAS is the regression 
coefficient for TAS. In addition, the standardized residuals (LSTx - LST) were tested 
for spatial autocorrelation with Moran’s I statistics in the R statistical environment (R, 
2024) by using the spdep package (Bivand, 2022). Model performance was evaluated 
by comparing global and MGWR regression R2 and adjusted R2 values, as well as AIC, 
AICc and BIC vales. Finally, we calculated relative differences by dividing predicted 
LST values by recent/actual LST values. 
 
The LSTx values and their relative differences were imported into QGIS (QGIS, 2024) 
and subjected to interpolation using the Triangulated Irregular Network (TIN) method, 
employing cubic interpolation (Clough-Toucher) across the research area. These 
processes provided raster layers for each considered time window with pixel 
resolution of 30 m. Final values were classified based on quartiles. 
 
Subsequently, based on the areas exhibiting varying degrees of increasing potential 
heat stress, we quantified the population potentially exposed to elevated risks of heat 
stress in future periods. 
 
3 Results 
 
3.1 The recent LST, TAS and NDVI status  
 
Recent LST values in the study area range from a minimum of 19.27°C to a maximum 
of 29.72°C, with an average of 24°C (Figure 2). Elevated LST values are 
predominantly observed in the central part around Komno, as well as in the 
northwestern and southern parts of the research area. These areas are characterized 
by built-up surfaces (settlements), which absorb and retain more electromagnetic 
radiation. Higher LST values are also noted in grasslands, vineyards, and overgrown 
areas. Conversely, lower LST values are observed at the edge of the plateau, 
particularly in the southern areas near Lokev and Divača. These areas, including hills 
Veliki Ognjivec and Veliko Gradišče to the south and Stol and Mali Ovčjak to the north, 
are characterized by higher altitudes, steeper slopes and forest land cover. 
 
Recent TAS values range from a minimum of 10.05°C to a maximum of 13.93°C, with 
an average of 11.83°C (Figure 2). Elevated TAS values are predominantly observed 
in the northwestern parts around Kostanjevica na Krasu and in the west and 
southwest of town Komen. These areas, especially dry valley Brestoviški dol, are 
characterized by the lowest altitudes in the research area. Similarly to LST values, 
lower TAS values are observed at the edge of the plateau, particularly in the southern 
and northern areas with higher altitudes. In general, there is a distinct air temperature 
gradient, with warmer air temperatures in the northwest gradually transitioning to 
cooler air temperatures in the southeastern part. Some localized warm patches are 
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interspersed within the predominantly cooler areas, suggesting microclimatic 
variations due to differences in elevation and land cover. 
 
Recent NDVI values range from a minimum of 0.05 to a maximum of 0.84, with an 
average of 0.64. Elevated NDVI values are observed across the majority of the region 
suggesting extensive and dense vegetation cover, a characteristic of forested areas. 
However, some scattered patches exhibit lower NDVI values, primarily corresponding 
to build-up surfaces, bare soil, rocky outcrops or agricultural areas with sparse crops. 
 
In general, higher LST are found in areas with lower NDVI values. This inverse 
relationship suggests that areas with sparse vegetation tend to have higher LST due 
to reduced shading and less evapotranspiration. Conversely, areas with dense 
vegetation tend to have lower LST values due to the forest cooling effect. TAS shows 
a less noticeable relationship with NDVI. Areas with high vegetation cover tend to 
have slightly lower TAS, suggesting that dense vegetation can moderate local climate. 
However, TAS is more influenced by broader climatic patterns and elevation changes 
than by vegetation alone, explaining why the relationship is not as evident as with 
LST. In addition, there is a general relationship where areas with higher LST also show 
higher TAS, especially in the northwestern area. However, due to the more localized 
nature of LST, which is impacted by relief and vegetation, and the broader climatic 
influences on TAS, the relationship can vary. Areas with low LST and low TAS often 
overlap, suggesting cooler microclimates both at the surface and in the air, likely due 
to higher altitudes and denser vegetation cover. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Recent a) land surface temperature, b) air temperature and c) NDVI values 
across the Natura 2000 site Kras.  
Source: Authors. 
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3.2 Potential future TAS and NDVI development  
 
Projected TAS values across three future periods range from 11.39°C to 19.37°C 
depending on different pathways of greenhouse gas emissions and climate change 
mitigation efforts (Figure 3). In near-term optimistic scenario, TAS values remain 
relatively low, predominantly between 11°C and approximately 15°C. In near-term 
pessimistic scenario, TAS values range shows a slight increase compared to the 
optimistic scenario, with values still mainly below 16°C. The region is characterized 
by a general warming trend, especially in the northwestern and some central parts. 
Lower TAS areas persist in higher elevations such as Trstelj and Stol in the north and 
Veliki Ognjivec and Veliko Gradišče in the southeast. However, their extent is reduced 
compared to the optimistic scenario. 
 
In mid-term optimistic scenario, TAS values are higher than in near-term period, 
predominantly ranging from 12°C to about 16°C. The central and southeastern parts 
remain cooler, while the northwest shows increased warming. The warming trend is 
evident but remains moderate. In mid-term pessimistic scenario, there is a notable 
increase in temperature compared to both near-term projections and the mid-term 
optimistic scenario. Cooler areas are further reduced, with significant warming evident 
throughout the region, especially in the northwestern part.  
 
In long-term optimistic scenario, TAS values are higher than in previous time 
sequences, predominantly between 13°C and 17°C. Cooler regions persist in the 
southeast, but the overall warming trend is recognizable. Lower TAS values dominate 
in higher elevations, indicating moderate warming compared to the optimistic 
scenario. In long-term pessimistic scenario, TAS range shifts significantly, with values 
predominantly between 15°C and 19°C. The entire region transitions to substantially 
higher values. There are minimal areas with average temperatures below 15°C, 
highlighting the severe impact of the pessimistic scenario. 
 
In general, there is a clear progressive warming trend from near-term through long-
term period across both scenarios. The optimistic scenario depicts a steady warming 
trend, maintaining lower average air temperatures and preserving cooler areas to 
some extent. The pessimistic scenario shows a more drastic and accelerated warming 
trend, with significantly higher average air temperatures and fewer cooler areas. 
Under the optimistic scenario, the region would experience moderate warming, 
allowing for adaptation strategies in agriculture, urban planning, and biodiversity 
conservation. However, under the pessimistic scenario, the region would face severe 
warming, leading to potential challenges in water availability and increased heat 
stress with impacts on local ecosystems and human health. 
 
Near-term projections of mean NDVI values at 0.68 indicate extensive dense forest 
coverage with fewer patches of sparse vegetation, particularly concentrated around 
built-up areas (Figure 4). Mid-term projections reveal an increase in NDVI mean 
values to 0.75, signifying enhanced vegetation density throughout the region. The 
sparse vegetation patches appear to reduce, suggesting forest expansion into 
previously less vegetated areas. Long-term projections further amplify this trend, with 
NDVI mean values potentially rising up to 0.84, indicating even more pronounced 
forest progression. This suggests significant land cover changes and extensification 
of land use over time. Without management actions, a progressive trend of forest 
encroachment across the entire region is predicted. This trend could be attributed to 
various factors, including climate change and land management practices. 
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Figure 3: Future air temperature across the Natura 2000 site Kras.  
Source: Authors. 
 
 
Figure 4: Future NDVI values across the Natura 2000 site Kras.  
Source: Authors.
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3.4 Predicting relative heat stress with Multiscale geographically weighted 
regression 
 
In the spatial model, LST was employed as the dependent variable, while TAS and 
NDVI served as predictors. Utilizing the MGWR 2.2 software, global regression results 
were generated (Table 1) and subsequently compared with the MGWR output (Table 
2). From the global regression perspective, both predictors exhibited a statistically 
significant impact on the dependent variable (p < α; α = 0.05). TAS demonstrated a 
positive influence on LST, whereas NDVI exhibited a negative influence on LST. 
Additionally, the Monte Carlo spatial variability test indicated that both predictors had 
significant spatially varying estimates, confirming that the effects of these predictors 
vary across the study area. 
 
Table 1: Global regression results and results of the Monte Carlo test for spatial 
variability.  
Source: Authors. 
Residual sum of squares 1358.402 
Log-likelihood -1514.557 
AIC 3035.114 
AICc 3037.157 
R2 0.482 
Adj. R2 0.481 
Variable Est. SE t(Est/SE) p-value Spatial 

variability 
p-value 

Intercept 16.721 0.683 24.497 0.000 0.000 
TAS_rec 1.159 0.055 21.142 0.000 0.000 
NDVI_rec -10.158 0.444 -22.864 0.000 0.000 

 
Table 2: MGWR diagnostic information and summary statistics for MGWR parameter 
estimates.  
Source: Authors. 
Residual sum of squares 683.917 
Effective number of parameters 
(trace(S)) 

95.762 

Degree of freedom (n - trace(S)) 851.238 
Sigma estimate 0.896 
Log-likelihood -1189.628 
Degree of Dependency (DoD) 0.495 
AIC 2572.781 
AICc 2595.059 
BIC 3042.397 
R2 0.739 
Adj. R2 0.710 
Variable Mean STD Min Median Max 
Intercept 23.516 2.005 19.800 23.885 26.146 
TAS_rec 0.598 0.116 0.406 0.585 0.836 
NDVI_rec -10.243 0.686 -11.815 -10.273 -8.644 

 
The global regression model exhibited a moderately weak fit (R2 = 48%). In contrast, 
the MGWR approach significantly enhanced model performance, evidenced by a 2-
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times lower residual sum of squares and a higher percentage of explained variance 
(R2 = 74%). Additionally, the AIC and the AICc values were notably lower in the 
MGWR model, indicating better model performance. 
 
These diagnostics underscore the enhanced explanatory power and fit of the MGWR 
model relative to the global regression model. The parameter estimates of the MGWR 
model varied across the study area, effectively capturing local variations in the 
relationships between the dependent variable and the predictors. This spatial 
adaptability of the MGWR model provides a more detailed understanding of the factors 
influencing heat stress. 
 
Moreover, the statistical insignificance (Moran’s Index value = 0.06; p>α; α = 0.05) 
of standardized residual (under- and over-predictions) spatial autocorrelation 
additionally proved the appropriate MGWR model specification. Thus, MGWR can be 
used to statistically downscale global climate model-based air temperature variables 
like TAS for specific research areas. 
 
3.5 Heat stress areas and population 
 
Both near-term scenarios show a slight increase in LST with isolated areas 
experiencing slight decrease (Figure 6). According to mid-term projection, the 
optimistic scenario is characterized by expanding areas of decreased LST, especially 
in the northwest, while the pessimistic scenario shows more areas with slight increase 
similarly to near-term projections. Long-term optimistic scenario shows a substantial 
area with slight to moderate decreases in LST, while the pessimistic scenario indicates 
widespread increases, particularly in the southern part of the region. In general, the 
whole region is expected to experience a slight increase in LST due to increasing 
temperature owing to climate change. However, according to the long-term optimistic 
projection, the majority of the region is expected to record a decrease in LST. Similarly 
to other research (Hulley idr., 2019; J. Liu idr., 2021) we found that decreased LST 
aligns with high NDVI values due to denser vegetation typical for encroachment 
processes. 
 
Despite identifying areas with decreasing LST in the future, significant risks remain 
for population in areas experiencing slight, moderate or significant increases in LST. 
In general, Slovenia's population is projected to decline by 7% by 2100, despite 
anticipated increases in fertility rates. Additionally, life expectancy at birth is expected 
to rise, leading to an aging population, with individuals aged 65 and older constituting 
over 32% of the population by 2100 (SURS, 2023). Given that the young and elderly 
are most susceptible to heat stress (Kenny idr., 2010; UNICEF, 2023), the projected 
temperature rise is particularly concerning. However, despite practically ignoring the 
demographic temporal dynamics over the next decades, our assessment nevertheless 
highlights the increasing vulnerability of these age groups and emphasizes the need 
for appropriate and timely countermeasures. Some of the areas where the elderly 
population is concentrated are settlements of Dutovlje, Lokev and Komen (Figure 5). 
 
In a near-term optimistic scenario, 70.6% of individuals, including 9.3% of young 
individuals and 17.8% of elderly individuals, reside in areas experiencing an increase 
in LST. Conversely, in the near-term pessimistic scenario, the number of people 
affected by the potential rise in LST slightly decreases to 70%, encompassing 9.2% 
of young individuals and 17.7% of elderly individuals. The differences between the 
two scenarios are subtle. The optimistic scenario predicts a marginally higher total 
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population (+0.5 percentage points), as well as slightly more young and elderly 
populations (+0.1 percentage point each) exposed to increased LST compared to the 
pessimistic scenario. 
 
In a long-term optimistic scenario, 44% of individuals, including 5.8% of young 
individuals and 11.3% of elderly individuals, reside in areas experiencing a potential 
increase in LST. In contrast, in a long-term pessimistic scenario, the population 
affected by rising LST increases significantly to 83.8% of individuals, comprising 
11.4% of young individuals and 21.1% of elderly individuals. Thus, in the pessimistic 
scenario, the overall affected population is nearly doubled compared to the optimistic 
scenario. Specifically, the number of young individuals affected increases by 
approximately 97%, while the number of elderly individuals affected shows an 
increase of about 86%. This indicates that under more adverse conditions, a 
significantly larger portion of both young and elderly populations are subjected to 
heightened LST, which could exacerbate the associated health risks and necessitate 
more robust adaptive measures. 
 
 

 
Figure 5: Elderly population across the Natura 2000 site Kras (variable is shown as 
an interpolated grid for visualization purposes only). 
Source: Authors. 
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Figure 6: Future potential relative differences in heat stress across the Natura 2000 
site Kras.  
Source: Authors. 
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4 Conclusion 
 
LST is a crucial variable for monitoring environmental changes and their impacts on 
the climate and biosphere at local, regional, and global scales. We used MGWR to 
model the spatial and temporal variability of LST using NDVI and TAS as predictor 
variables. Thus, the provided global climate model-based TAS variables (recent and 
future scenarios [pixel size = 1 km]) were downscaled for our specific study area 
(Natura 2000 site Kras) and then used to evaluate relative change in heat stress 
under predicated climate change scenarios in much better spatial resolution (pixel 
size = 30 m). The findings demonstrate significant spatial variability in LST (and thus 
potentially TAS), with higher temperatures notably in the southeastern parts of the 
study area. Future climate change scenarios predict an overall increase in relative 
heat stress, though areas with dense vegetation may experience a reduction. Human 
exposure to increased relative heat stress is projected to rise, with vulnerable 
populations being significantly affected.  
 
Our findings confirm that the MGWR model effectively captures the spatial variability 
of LST in the study area. The integration of NDVI and TAS as predictors provides a 
robust framework for understanding the relationship between surface thermal 
conditions, air temperature and vegetation cover. The MGWR model successfully 
captured the spatial heterogeneity in LST, demonstrating a pronounced inverse 
relationship between NDVI and LST. Specifically, areas with higher vegetation cover 
typically exhibit lower LST, attributed to increased shading and evapotranspiration. 
Conversely, TAS exhibits a less pronounced relationship with LST, as it is more 
influenced by broader climatic patterns and elevation changes. However, our study 
proofs that MGWR can be used to statistically downscale mean air temperature data 
(TAS) provided by global climate models for better regional and local scale studies.  
 
The study confirms that relative changes in heat stress can be predicted for future 
climate change scenarios in better spatial resolution. The projections indicate a 
general increase in heat stress across the study area, with specific variations 
contingent on the scenario considered. The study delineates future relative heat stress 
patterns for near-term, mid-term, and long-term periods under both optimistic and 
pessimistic scenarios. These projections reveal that there is a consistent trend 
towards higher heat stress values, reflecting the broader impacts of global climate 
change. The magnitude of heat stress increase varies significantly between the 
scenarios, with the optimistic scenario projecting more moderate increases in heat 
stress and the pessimistic scenario suggesting more severe rises. Additionally, the 
rate of relative heat stress increase is not uniform over time, with near-term 
projections showing more gradual changes and mid-term to long-term projections 
indicating more pronounced increases. Spatial heterogeneity is also evident, as areas 
characterized by dense vegetation may experience smaller increases in heat stress or 
even slight decreases. These predictions emphasize the need for tailored regional 
planning and climate adaptation strategies approaches to address the specific thermal 
stress responses of different areas within the study region. 
 
Human exposure to increased potential heat stress is anticipated to be substantial, 
particularly among vulnerable populations. The research projects that a significant 
portion of the population will inhabit areas experiencing elevated LST and heat stress 
under both optimistic and pessimistic climate scenarios. By the end of the century, 
the elderly, who are especially susceptible to heat stress, will be disproportionately 
affected. Beyond the direct impact on human health, elevated heat conditions can 
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also affect biodiversity, traditional activities such as the production of Karst Prosciutto 
ham, the spread of vector-borne diseases, the incidence of wildfires, drought, water 
availability, tourism activities and pollution levels. The research highlights the 
necessity for developing comprehensive adaptive strategies to mitigate the impacts 
of heat stress on both ecosystems and human health in the face of global warming. 
 
The application of MGWR in this study has yielded a new understanding of heat stress 
patterns within the Natura 2000 site Kras under various climate change scenarios. 
Our findings delineate stark contrasts between optimistic and pessimistic scenarios, 
underscoring the potential benefits of implementing effective climate policies. The 
study also highlights the challenges posed by demographic changes in Slovenia, 
particularly the increasing proportion of elderly individuals, which is expected to place 
significant demands on healthcare systems. This demographic trend underscores the 
urgency of developing proactive strategies in healthcare services to ensure optimal 
living conditions amidst the anticipated impacts of climate change. Comprehensive 
and forward-thinking approaches are essential to address the compounded effects of 
climate and demographic changes, ensuring resilience and well-being of ecosystems 
and society. 
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Povzetek 
 
Temperatura površja (ang. Land surface temperature, LST) je ključna spremenljivka 
za monitoring okoljskih sprememb in njihovih vplivov na podnebje in biosfero. V 
raziskavi na Natura 2000 območju Kras smo uporabili satelitske posnetke in podnebne 
projekcije, ki smo jih obdelali z metodo geografsko obtežene regresije (ang. Multiscale 
geographically weighted regression, MGWR). Glavni rezultat je napovedni model, ki 
na podlagi temperature zraka (ang. mean daily air temperature, TAS) in 
vegetacijskega indeksa (ang. normalized difference vegetation index, NDVI) kaže 
prihodnje vrednosti LST v primeru optimističnih in pesimističnih scenarijev skupnega 
družbeno-ekonomskega razvoja (ang. Shared Socioeconomic Pathways, SSP). 
Praktično smo na ta način prostorsko izboljšali spremenljivko TAS in tako ocenili 
potencialen vpliv toplotnega stresa na prebivalstvo na obravnavanem območju. 
 
Rezultati kažejo večjo prostorsko variabilnost sedanjih vrednosti LST, ki segajo od 
19,27 °C do 29,72 °C. Kot pričakovano so višje vrednosti LST značilne za pozidana in 
nižje ležeča območja, medtem ko so nižje vrednosti značilne za gozdnata in višjih 
ležeča območja. Natančneje, višje vrednosti LST so koncentrirane v osrednjem delu 
okoli Komna ter severozahodnem in južnem delu raziskovalnega območja, medtem 
ko so nižje vrednosti značilne za obrobje Krasa. 
 
Predvideno je, da bodo prihodnje podnebne razmere povzročile povišanje 
temperature zraka, tako da so v skoraj vseh napovednih obdobjih pričakovana 
povišanja vrednosti LST (in posledično TAS). Kljub blažilnemu vplivu vegetacije, ki se 
bo po pričakovanjih širila zaradi pogozdovanja in ogozdovanja, splošni trend kaže na 
višje vrednosti LST in povečan toplotni stres. Obsežnejše in močnejše segrevanje je 
predvideno predvsem v južnih in osrednjih delih Krasa, zlasti na pozidanih in manj 
poraslih območjih. 
 
Napovedni model kaže, da se bo izpostavljenost toplotnemu stresu močno povečala, 
kar bo lahko prizadelo predvsem mlado in starejše prebivalstvo. Glede na 
demografsko staranje Slovenije se bo občutljivost na toplotni stres še krepila. Poleg 
toplotnega stresa prebivalstva lahko povišane temperature tal in zraka vplivajo na 
biodiverziteto, tradicionalne dejavnosti, kot je proizvodnja kraškega pršuta, širjenje 
prenosljivih bolezni, požare, sušo, dostopnost vode, turizem in onesnaževanje.  
 
Uporaba MGWR v raziskavi je omogočila novo razumevanje vzorcev toplotnega stresa 
na Natura 2000 območju Kras v različnih scenarijih podnebnih sprememb. Naše 
ugotovitve kažejo velike razlike med optimističnimi in pesimističnimi scenariji, kar 
nakazuje na velike potencialne koristi izvajanja učinkovitih podnebnih politik. 
Sonaravni ukrepi imajo lahko ključno vlogo pri zmanjševanju toplotnega stresa, 
ohranjanju biodiverzitete, izboljšanju zdravja, povečanju prehranske varnosti, 
zagotavljanju delovnih mest in povečanju sekvestracije ogljika. Raziskava poudarja 
tudi izzive, ki jih prinašajo demografske spremembe, predvsem naraščanje deleža 
starejših. Zaradi nevarnih posledic podnebnih sprememb za ranljivo prebivalstvo so 
potrebni ciljno usmerjeni ukrepi javnega zdravja in urbanističnega načrtovanja. Tako 
se lahko s celovitimi in proaktivnimi strategijami zagotovi odpornost ekosistemov in 
kakovost bivalnega okolja družbo. 


