BLED WORKSHOPS A Proceedings to the 16th Workshop

IN PHYSICS What Comes Beyond . .. (p.52)
VoOL. 14, NoO. 2 Jﬁ'\\. Bled, Slovenia, July 14-21, 2013

5 On Emergent SUSY Gauge Theories

J.L. Chkareuli

Center for Elementary Particle Physics, Ilia State University
0162 Thbilisi, Georgia*

Abstract. We present the basic features of emergent SUSY gauge theories where an emer-
gence of gauge bosons as massless vector Nambu-Goldstone modes is triggered by the
spontaneously broken supersymmetry rather than the physically manifested Lorentz vi-
olation. We start considering the supersymmetric QED model extended by an arbitrary
polynomial potential of massive vector superfield that induces the spontaneous SUSY
violation in the visible sector. As a consequence, a massless photon appears as a companion
of a massless photino emerging as a goldstino in the tree approximation, and remains
massless due to the simultaneously generated special gauge invariance. This invariance
is only restricted by the supplemented vector field constraint invariant under supergauge
transformations. Meanwhile, photino being mixed with another goldstino appearing from
a spontaneous SUSY violation in the hidden sector largely turns into the light pseudo-
goldstino. Such pseudo-goldstonic photinos considered in an extended supersymmetric
Standard Model framework are of a special observational interest that, apart from some in-
dication of the QED emergence nature, may appreciably extend the scope of SUSY breaking
physics being actively studied in recent years.

Povzetek. Predstavim osnovne lastnosti umeritvenih teorij, “emergent supersymmetry”,
pri katerih postanejo brezmasni vektorski Nambu-Goldstonovi bozoni umeritvena polja,
sproZi pa njihov nastanek spontano zlomljena supersimetrija in ne krsitev Lorentzove
invariance. Najprej predstavim supersimetri¢ni model kvantne elektrodinamike, ki ga
posplosim s tem, da dopustim za masivni vektorski superpotencial polinom poljubne
stopnje. To polje sproZi spontani zlom supersimetrije v opazljivem sektorju. Pojavita se
brezmasni foton in njegov spremljevalec, prav tako brezmasni fotino. Fotino, na drevesnem
nivoju je to brezmasni goldstino, ostane brezmasen tudi po kvantnih popravkih zaradi
posebne spontano nastale umeritvene invariance. To invarianco omejuje samo dopolnjen
pogoj na vektorsko polje, ki pa je invarianten na superumeritvene transformacije. Fotino
postane lahki psevdo-goldstino, ko tvori superpozicijo s e enim goldstinom, ki se pojavi
ob spontani zlomitvi supersimetrije v skritem sektorju. Ti psevdo-goldstonski fotini iz
raz$irjenih supersimetri¢nih modelov Standardnega modela, so posebej zanimivi za meritve.
Te lahko, poleg potrditve, da se kvantna elektrodinamika v teh teorijah pojavi spontano,
podprejo supersimetri¢ne teorije, ki so v zadnjih letih zelo popularne.

5.1 Introduction

It is long believed that spontaneous Lorentz invariance violation (SLIV) may lead
to an emergence of massless Nambu-Goldstone modes [1] which are identified
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with photons and other gauge fields appearing in the Standard Model. This idea
[2] supported by a close analogy with the dynamical origin of massless particle
excitations for spontaneously broken internal symmetries has gained new impetus
[3-7] in recent years.

In this connection, one important thing to notice is that, in contrast to the
spontaneous violation of internal symmetries, SLIV seems not to necessarily imply
a physical breakdown of Lorentz invariance. Rather, when appearing in a gauge
theory framework, this may ultimately result in a noncovariant gauge choice in an
otherwise gauge invariant and Lorentz invariant theory. In substance, the SLIV
ansatz, due to which the vector field develops a vacuum expectation value (vev)

<Aux)> =n M (5.1)

(where n,, is a properly-oriented unit Lorentz vector, n? = n,n"* = +1, while M
is the proposed SLIV scale), may itself be treated as a pure gauge transformation
with a gauge function linear in coordinates, w(x) = n,x*M. From this viewpoint
gauge invariance in QED leads to the conversion of SLIV into gauge degrees of
freedom of the massless Goldstonic photon emerged.

A good example for such a kind of the “inactive” SLIV is provided by the
nonlinearly realized Lorentz symmetry for underlying vector field A, (x) through
the length-fixing constraint

A AF =ntM2. (5.2)

This constraint in the gauge invariant QED framework was first studied by Nambu
a long ago [8], and in more detail in recent years [9-13]. The constraint (5.2) is in
fact very similar to the constraint appearing in the nonlinear o-model for pions
[14], 0? + m® = 2, where f, is the pion decay constant. Rather than impose
by postulate, the constraint (5.2) may be implemented into the standard QED
Lagrangian Lgoep through the invariant Lagrange multiplier term

A
Lot =Lqep — 5 (A LAY —n?M?) (5.3)

provided that initial values for all fields (and their momenta) involved are chosen
so as to restrict the phase space to values with a vanishing multiplier function
Ax),A=0"%

One way or another, the constraint (5.2) means in essence that the vector
field A, develops the vev (5.1) and Lorentz symmetry SO(1,3) breaks down to
SO(3) or SO(1,2) depending on whether the unit vector n,, is time-like (n? > 0) or
space-like (n? < 0). The point, however, is that, in sharp contrast to the nonlinear
o model for pions, the nonlinear QED theory, due to gauge invariance in the
starting Lagrangian Lqgp, ensures that all the physical Lorentz violating effects
turn out to be non-observable. Actually, as was shown in the tree [8] and one-loop
approximations [9], the nonlinear constraint (5.2) implemented as a supplementary
condition appears in essence as a possible gauge choice for the vector field A,,,
while the S-matrix remains unaltered under such a gauge convention. So, as

! Otherwise, as was shown in [15] (see also [12]), it might be problematic to have the
ghost-free QED model with a positive Hamiltonian.
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generally expected, the inactive SLIV inspired by the length-fixing constraint (5.2),
while producing an ordinary photon as a true Goldstonic vector boson (a,,)

Ay = a, +ny(M? —n?a?)?, nua, =0 (a? = aua"), (5.4)
leaves physical Lorentz invariance intact?. Later similar result was also confirmed
for spontaneously broken massive QED [10], non-Abelian theories [11] and tensor
field gravity [13].

From this point of view, emergent gauge theories induced by the inactive
SLIV mechanism are in fact indistinguishable from conventional gauge theories.
Their Goldstonic nature could only be seen when taking the gauge condition
of the length-fixing constraint type (5.2). Any other gauge, e.g. Coulomb gauge,
is not in line with Goldstonic picture, since it breaks Lorentz invariance in an
explicit rather than spontaneous way. As to an observational evidence in favor
of emergent theories the only way for inactive SLIV to cause physical Lorentz
violation would be if gauge invariance in these theories appeared slightly broken
in an explicit, rather than spontaneous, way. Actually, such a gauge symmetry
breaking, induced by some high-order operators, leads in the presence of SLIV to
deformed dispersion relations for matter and gauge fields involved. This effect
typically appears proportional to powers of the ratio M/Mp, so that for some
high value of the SLIV scale M it may become physically observable even at
low energies. Though one could speculate about some generically broken or
partial gauge symmetry [16], this seems to be too high price for an actual Lorentz
violation which may stem from SLIV®. And, what is more, is there really any
strong theoretical reason left for the Lorentz invariance to be physically broken,
if the Goldstonic gauge fields are anyway generated through the “safe” inactive
SLIV models which recover conventional Lorentz invariance?

Nevertheless, it may turn out that SLIV is not the only reason why massless
photons could dynamically appear, if spacetime symmetry is further enlarged. In
this connection, special interest may be related to supersymmetry. Actually, as
we try to show below, the situation is changed remarkably in the SUSY inspired
emergent models which, in contrast to non-SUSY analogues, could naturally have
some clear observational evidence. We argue that a generic source for massless
photons may be spontaneously broken supersymmetry rather than physically

% Indeed, the nonlinear QED contains a plethora of Lorentz and CPT violating couplings
when it is expressed in terms of the pure Goldstonic photon modes a,.. However, the
contributions of all these couplings to physical processes completely cancel out among
themselves.

® In this connection, the simplest possibility could be a conventional QED Lagrangian
extended by the vector field potential energy terms, L = Loep — 2 (A A" —n*M?) 2,
where A is a coupling constant. This Lagrangian being sometimes referred to as the
“bumblebee” model (see [7] and references therein) is in a sense a linear version of the
nonlinear QED appearing in the limit A — co. Actually, both of models are physically
equivalent in the infrared energy domain, where the Higgs mode is considered infinitely
massive. However, as we see shortly, whereas the nonlinear QED model successfully
matches supersymmetry, the “bumblebee” model cannot be conceptually realized in the
SUSY context.
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manifested spontaneous Lorentz violation [17]. Towards this end, we consider
supersymmetric QED model extended by an arbitrary polynomial potential of
massive vector superfield that induces the spontaneous SUSY violation*. As a
consequence, a massless photon emerges as a companion of a massless photino
being Goldstone fermion in the broken SUSY phase in the visible sector (section
2). Remarkably, this masslessness appearing at the tree level is further protected
against radiative corrections by the simultaneously generated special gauge invari-
ance. This invariance is only restricted by the supplemented vector field constraint
invariant under supergauge transformations (section 3). Meanwhile, photino be-
ing mixed with another goldstino appearing from a spontaneous SUSY violation
in the hidden sector largely turns into the light pseudo-goldstino whose physics
seems to be of special interest (section 4). And finally, we conclude (section 5).

5.2 Extended supersymmetric QED

We now consider the supersymmetric QED extended by an arbitrary polyno-
mial potential of a general vector superfield V(x, 8,6) which in the standard
parametrization [18] has a form

V(x,0,8) = C(x) +i0x — 10% + %ees - %@s*

_ _ 1
~00"0A, +1000N — 000X’ + 70000D', (5.5)

where its vector field component A, is usually associated with a photon. Note
that, apart from the conventional photino field A and the auxiliary D field , the
superfield (5.5) contains in general the additional degrees of freedom in terms of
the dynamical C and ¥ fields and nondynamical complex scalar field S (we have
used the brief notations, A’ = A + %G”ap)*( and D' =D + %azC with o* = (1, )
and 6" = (1,—70)). The corresponding SUSY invariant Lagrangian may be written
as

L =Lsgep + Z b V™D (5.6)

n=1

where terms in this sum (b,, are some constants) for the vector superfield (5.5)
are given through the V™*|p expansions into the component fields . It can read-
ily be checked that the first term in this expansion appears to be the known
Fayet-Iliopoulos D-term, while other terms only contain bilinear, trilinear and
quadrilinear combination of the superfield components A, S, A and x, respec-
tively®. Actually, there appear higher-degree terms for the scalar field component

* It is worth noting that all the basic arguments related to the present QED example can be
then straightforwardly extended to the Standard Model.

> Note that all terms in the sum in (5.6) except Fayet-Iliopoulos D-term explicitly break
gauge invariance which is then recovered for Goldstonic gauge modes. Without loss of
generality, we may restrict ourselves to the third degree superfield polynomial in the
Lagrangian L (5.6) to eventually have a theory with dimesionless coupling constants
for component fields. However, for completeness sake, it seems better to proceed with a
general case.
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C(x) only. Expressing them all in terms of the C field polynomial

PO = %an“” (x) G.7)
n=1

and its first three derivatives

P G o3P
P.=— "= - m— )
€7 ac’ T acz’ ¢ ac (5:8)
one has for the whole Lagrangian £
1 v . BN 1 2
L=— ZF” Fuv +1AcH0uA + ED

+P (D - ;azc) + P¢ (;ss* —xN —XN — ;AuA“>

1 " i__ i * no 1 " —
+5PC | 5XKS = 5XxS" — X0 XAL | + gPe (i) - (5.9)

where, for more clarity, we still omitted matter superfields in the model reserving

them for section 4. As one can see, extra degrees of freedom related to the C and

x component fields in a general vector superfield V(x, 0, 0) appear through the

potential terms in (5.9) rather than from the properly constructed supersymmetric

field strengths, as is appeared for the vector field A, and its gaugino companion A.
Varying the Lagrangian £ with respect to the D field we come to

D =—P(C) (5.10)
that finally gives the following potential energy for the field system considered

1

u(c) = E[P(c)]2 ) (5.11)

The potential (5.11) may lead to the spontaneous SUSY breaking in the visible sec-

tor provided that the polynomial P (5.7) has no real roots, while its first derivative
has,

P#0, Pe=0. (5.12)

This requires P(C) to be an even degree polynomial with properly chosen co-
efficients by, in (5.7) that will force its derivative P to have at least one root,
C = Cy, in which the potential (5.11) is minimized and supersymmetry is sponta-
neously broken. As an immediate consequence, that one can readily see from the
Lagrangian £ (5.9), a massless photino A being Goldstone fermion in the broken
SUSY phase make all the other component fields in the superfield V(x, 8, 8), in-
cluding the photon, to also become massless. However, the question then arises
whether this masslessness of photon will be stable against radiative corrections
since gauge invariance is explicitly broken in the Lagrangian (5.9). We show below
that it may the case if the vector superfield V(x, 0, 8) would appear to be properly
constrained.
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5.3 Constrained vector superfield

We have seen above that the vector field A, may only appear with bilinear mass
terms in the polynomially extended Lagrangian (5.9). Hence it follows that the
“pumblebee” model mentioned above® with nontrivial vector field potential con-
taining both a bilinear mass term and a quadrilinear stabilizing term can in no
way be realized in the SUSY context. Meanwhile, the nonlinear QED model, as
will become clear below, successfully matches supersymmetry.

Let us constrain our vector superfield V(x, 6, 0) by analogy with constrained
vector field in the nonlinear QED model (see (5.3)). This can be done again through
the invariant Lagrange multiplier term simply adding it to the above Lagrangian

(5.6)

1
Liot =L+ E/\(V —Co)?lp (5.13)

where A(x,0,0) is some auxiliary vector superfield, while Cy is the constant
background value of the C field for which potential U (5.11) has the SUSY breaking
minimum (5.12) in the visible sector.
We further find for the Lagrange multiplier term in (5.13) that (denoting
C=C—Co)
2 o1/ 1 * v 1
AV —=Co)lp =Ca [CD + (ZSS — XA = XN — ZAMA”)}

T xa [26)\’ (xS + ic“iAu)} +XARCN — (XS — ixo"A,)]
1 (om0 1 [ i

~ ~ o~ 1 ~
+ 2A% (CA, —x0uX) + 2NA(CX) + 234 (CX) + ED/Ac2 (5.14)

where
i

1
ZG”E)HYA, D/, = DA + 50%Ca (5.15)

C/\) XA S/\) A;l\) }\//\ = }\/\ + 2

are the component fields of the Lagrange multiplier superfield A(x, 6, 0) in the
standard parametrization (5.5). Varying the Lagrangian (5.13) with respect to these
fields and properly combining their equations of motion

alctot
9 (CAyXAySAy AR AN, DA)

=0 (5.16)

we find the constraints which put on the V superfield components
C=Co, x=0, A A" =SS7, (5.17)

being solely determined by the spontaneous SUSY breaking in the visible sector
(5.12)
Pele—c, =0. (5.18)



58 J.L. Chkareuli

Again, as before in non-SUSY case (5.3), we only take a solution with initial values
for all fields (and their momenta) chosen so as to restrict the phase space to
vanishing values of the multiplier component fields (5.15) that will provide a
ghost-free theory with a positive Hamiltonian.

Now substituting the constraints (5.17, 5.18) into the total Lagrangian Ly
(5.13, 5.9) we eventually come to the basic Lagrangian in the broken SUSY phase

br

1 _
Ll == P Fuy +IACH DN + %DZ +P(Co)D, A AN =SS* (5.19)

being supplemented by by the vector field constraint, as indicated. So, for the
constrained vector superfield,

~

- . - - L
V(x,0,8) = Co + %ees - %ees* —00"BA,, + 1060A — i00OA + 70000D, (5.20)

we have the almost standard SUSY QED Lagrangian with the same states - photon,
photino and an auxiliary scalar D field - in its gauge supermultiplet, while another
auxiliary complex scalar field S gets only involved in the vector field constraint.
The linear (Fayet-Iliopoulos) D-term with the effective coupling constant P(Cy) in
(5.19) shows that the supersymmetry in the theory is spontaneosly broken due to
which the D field acquires the vev, D = —P(Cy). Taking the nondynamical S field
in the constraint (5.17) to be some constant background field (for a more formal
discussion, see below) we come to the SLIV constraint (5.2) which we discussed
above regarding an ordinary non-supersymmetric QED theory (sec.1). As is seen
from this constraint in (5.19), one may only have a time-like SLIV in the SUSY
framework but never a space-like one. There also may be a light-like SLIV, if the S
field vanishes®. So, any possible choice for the S field corresponds to the particular
gauge choice for the vector field A,, in an otherwise gauge invariant theory. Thus,
a massless photon emerging first as a companion of a massless photino (being
Goldstone fermion in the broken SUSY phase) remains massless due to this gauge
invariance.

We conclude by showing that our extended Lagrangian Lo+ (5.13, 5.9), un-
derlying the emergent QED model, is SUSY invariant, and also the constraints
(5.17) on the field space appearing due to the Lagrange multiplier term in (5.13)
are consistent with the supersymmetry. The first part of this assertion is somewhat
immediate since the Lagrangian L+, aside from the standard supersymmetric
QED part Lsqep (5.6), only contains D-terms of various vector superfield prod-
ucts. They are, by definition, invariant under conventional SUSY transformations
[18] which for the component fields (5.5) of a general superfield V(x, 0, 8) (5.5) are

% Indeed, this case, first mentioned in [8], may also mean spontaneous Lorentz violation
with a nonzero vev < A, > = (M, 0, O,M) and Goldstone modes Aj > and (Ao + A3)/2
—M. The "effective” Higgs mode (Ao — A3)/2 can be then expressed through Goldstone
modes so that the light-like condition Aﬁ = 0 is satisfied.
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witten as
_ _ 1 _
8:C =1Ex —iEX, dex = ES+ 0ME(QLC+1iA,), Ezsas =EN+0,0MX,

_ _ _ 1
SeAu = Edux + E0uX + 180, A — Aoy E, Bed = SE0"T Fuy +ED,
5:D = —EG"D A + EGHD A . (5.21)

However, there may still be left a question whether the supersymmetry remains
in force when the constraints (5.17) on the field space are ”"switched on” thus
leading to the final Lagrangian E:;t (5.19) in the broken SUSY phase with the
both dynamical fields C and x eliminated. This Lagrangian appears similar to
the standard supersymmetric QED taken in the Wess-Zumino gauge, except that
the supersymmetry is spontaneously broken in our case. In the both cases the
photon stress tensor F,,, photino A and nondynamical scalar D field form an
irreducible representation of the supersymmetry algebra (the last two line in
(56.21)). Nevertheless, any reduction of component fields in the vector superfield
is not consistent in general with the linear superspace version of supersymmetry
transformations, whether it be the Wess-Zumino gauge case or our constrained
superfield (5.20). Indeed, a general SUSY transformation does not preserve the
Wess-Zumino gauge: a vector superfield in this gauge acquires some extra terms
when being SUSY transformed. The same occurs with our constrained superfield as
well. The point, however, is that in the both cases a total supergauge transformation

Vo V+i(Q-—QF), (5.22)

where () is a chiral superfield gauge transformation parameter, can always restore
the superfield initial form. Actually, the only difference between these two cases
is that whereas the Wess-Zumino supergauge leaves an ordinary gauge freedom
untouched, in our case this gauge is unambiguously fixed in terms of the above
vector field constraint (5.17). However, this constraint is valid under SUSY trans-
formations provided that the scalar field components ¢ and F in the Q) are properly
chosen. Actually, the non-trivial part of the \% superfield transformation which can
not be gauged away from the emergent theory (5.19) has the form

V — V + 100F — i00F* — 20000, ¢ . (5.23)
according to which its vector and scalar field components transform as

Ay — Al =A,—0,(20), S—S =S+2F. (5.24)

It can be immediately seen that our basic Lagrangian L, (5.19) being gauge
invariant and containing no the scalar S field is automatically invariant under
either of these two transformations individually. In contrast, the supplementary
vector field constraint (5.17), though it is also turned out to be invariant under
supergauge transformations (5.24), but only if they are made jointly. Indeed, for
any choice of the scalar ¢ in (5.24) there can always be found such a scalar F (and
vice versa) that the constraint remains invariant

AuAR = 88* 5 ALA' = §'S" (5.25)
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In other words, the vector field constraint is invariant under supergauge transfor-
mations (5.24) but not invariant under an ordinary gauge transformation. As a
result, in contrast to the Wess-Zumino case, the supergauge fixing in our case will
also lead to the ordinary gauge fixing. We will use this supergauge freedom to
reduce the S field to some constant background value and find the final equation
for the gauge function @(x). So, for the parameter field F chosen in such a way to
have

S =S+ 2F = Met*¥) | (5.26)

where M is some constant mass parameter (and o«(x) is an arbitrary phase), we
come in (5.25) to
(Ay —20,0) (A" —23%¢) = M? . (5.27)

that is precisely our old SLIV constraint (5.2) being varied by the gauge transforma-
tion (5.24). Recall that this constraint, as was thoroughly discussed in Introduction
(sec.1), only fixes gauge (to which such a gauge function ¢(x) has to satisty), rather
than physically breaks gauge invariance.

To summarize, it was shown that the spontaneous SUSY breaking constraints
on the allowed configurations of the physical fields (5.17) in a general polynomi-
ally extended Lagrangian (5.13) are entirely consistent with the supersymmetry.
In the broken SUSY phase one eventually comes to the standard SUSY QED type
Lagrangian (5.19) being supplemented by the vector field constraint invariant un-
der supergauge transformations. One might think that, unlike the gauge invariant
linear (Fayet-Iliopoulos) superfield term, the quadratic and higher order superfield
terms in the starting Lagrangian (5.13) would seem to break gauge invariance.
However, this fear proved groundless. Actually, as was shown above in the section,
this breaking amounts to the gauge fixing determined by the nonlinear vector
field constraint mentioned above. It is worth noting that this constraint formally
follows from the SUSY invariant Lagrange multiplier term in (5.13) for which is
required the phase space to be restricted to vanishing values of all the multiplier
component fields (5.15). The total vanishing of the multiplier superfield provides
the SUSY invariance of such restrictions. Any non-zero multiplier component
field left in the Lagrangian would immediately break supersymmetry and, even
worse, would eventually lead to ghost modes in the theory and a Hamiltonian
unbounded from below.

5.4 Spontaneous SUSY breaking in visible and hidden sectors:
photino as pseudo-goldstino

Let us now turn to matter superfields which have not yet been included in the
model. In their presence the spontaneous SUSY breaking in the visible sector,
which fundamentally underlies our approach, might be phenomenologically ruled
out by the well-known supertrace sum rule [18] for actual masses of quarks and
leptons and their superpartners’. However, this sum rule is acceptably relaxed

7 Note that an inclusion of direct soft mass terms for scalar superpartners in the model
would mean in general that the visible SUSY sector is explicitly, rather than spontaneosly,
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when taking into account large radiative corrections to masses of supersymmetric
particles that proposedly stem from the hidden sector. This is just what one may
expect in conventional supersymmetric theories with the standard two-sector
paradigm, according to which a hidden sector is largely responsible for SUSY
breaking, and the visible sector feels this SUSY breaking indirectly via messenger
fields [18]. In this way SUSY can indeed be spontaneously broken at the tree level
as well that ultimately leads to a double spontaneous SUSY breaking pattern in
the model considered.

We may suppose, just for uniformity, only D-term SUSY breaking both in
visible and hidden sectors®. Properly, our supersymmetric QED model may be
further extended by some extra local U'(1) symmetry which is proposed to be
broken at very high energy scale M’ (for some appropriate anomaly mediated
scenario, see [19] and references therein). It is natural to think that due to the
decoupling theorem all effects of the U’(1) are suppressed at energies E << M’
by powers of 1/M’ and only the D’-term of the corresponding vector superfield
V’(x, 0, 0) remains in essence when going down to low energies. Actually, this term
with a proper choice of messenger fields and their couplings naturally provides
the Msyusy order contributions to masses of scalar superpartners.

As a result, the simplified picture discussed above (in sections 2 and 3) is
properly changed: a strictly massless fermion eigenstate, the true goldstino (g,
should now be some mix of the visible sector photino A and the hidden sector
goldstino N
(D)A+ (D) N

Cg =
(D)? + (D)?

(5.28)

where (D) and (D’) are the corresponding D-component vevs in the visible and
hidden sectors, respectively. Another orthogonal combination of them may be
referred to as the pseudo-goldstino (g,

(D')A— (D) N’
(D)? + (D)?

(pg = (5.29)

In the supergravity context, the true goldstino (g4 is eaten through the super-
Higgs mechanism to form the longitudinal component of the gravitino, while the
pseudo-goldstino (4 gets some mass proportional to the gravitino mass from
supergravity effects. Due to large soft masses required to be mediated, one may
generally expect that SUSY is much stronger broken in the hidden sector than
in the visible one, (D’) >> (D), that means in turn the pseudo-goldstino (4 is
largely the photino A,

(pg @A (5.30)

These pseudo-goldstonic photinos seem to be of special observational interest in
the model that, apart from some indication of the QED emergence nature, may

broken that would immediately invalidate the whole idea of the massless photons as the
zero Lorentzian modes triggered by the spontaneously broken supersymmetry.

¥ In general, both D- and F-type terms can be simultaneously used in the visible and
hidden sectors (usually just F-term SUSY breaking is used in both sectors [18]).
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shed light on SUSY breaking physics. The possibility that the supersymmetric
Standard Model visible sector might also spontaneously break SUSY thus giving
rise to some pseudo-goldstino state was also considered, though in a different
context, in [20,21]. Normally, if the visible sector possesses the R-symmetry which
is preserved in the course of the mediation, then the pseudo-goldstino mass is
protected up to the supergravity effects which violate R-symmetry. As a result, the
pseudo-goldstino mass appears proportional to the gravitino mass, and, eventually,
the same region of parameter space simultaneously solves both gravitino and
pseudo-goldstino overproduction problems in the early universe [21].

Apart from cosmological problems, many other sides of new physics related
to pseudo-goldstinos appearing through the multiple SUSY breaking were also
studied recently (see [20-22] and references therein). The point, however, is that
there have been exclusively used non-vanishing F-terms as the only mechanism of
the visible SUSY breaking in models considered. In this connection, our pseudo-
goldstonic photinos solely caused by non-vanishing D-terms in the visible SUSY
sector may lead to somewhat different observational consequences. One of the
most serious differences belongs to Higgs boson decays provided that our QED
model is further extended to supersymmetric Standard Model. For the cosmologi-
cally safe masses of pseudo-goldstino and gravitino (< TkeV, as typically follows
from R-symmetric gauge mediation) these decays are appreciably modified. Actu-
ally, the dominant channel becomes the conversion of the Higgs boson (say, the
lighter CP-even Higgs boson h°) into a conjugated pair of corresponding pseudo-
sgoldstinos ¢4 and ¢,, 4 (being superpartners of pseudo-goldstinos (g and (g,
respectively), h® — ¢pg + b, 4, Once it is kinematically allowed. This means that
the Higgs boson will dominantly decay invisibly for F-term SUSY breaking in a
visible sector [21]. By contrast, for the D-term SUSY breaking case considered here
the roles of pseudo-goldstino and pseudo-sgoldstino are just played by photino
and photon, respectively, that could make the standard two-photon decay channel
of the Higgs boson to be even somewhat enhanced. In the light of recent discovery
of the Higgs-like state [23] just through its visible decay modes, the F-term SUSY
breaking in the visible sector seems to be disfavored by data, while D-term SUSY
breaking is not in trouble with them.

5.5 Concluding remarks

It is well known that spontaneous Lorentz violation in general vector field theories
may lead to an appearance of massless Nambu-Goldstone modes which are iden-
tified with photons and other gauge fields in the Standard Model. Nonetheless, it
may turn out that SLIV is not the only reason for emergent massless photons to
appear, if spacetime symmetry is further enlarged. In this connection, a special link
may be related to supersymmetry that we tried to argue here by the example of
supersymmetric QED that can be then straightforwardly extended to the Standard
Model.

The main conclusion which has appeared in the SUSY context is that spon-
taneous Lorentz violation caused by an arbitrary potential of vector superfield
V(x, 0, 0) never goes any further than some noncovariant gauge constraint put on
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its vector field component A, (x) associated with a photon. This allows to think
that physical Lorentz invariance is somewhat protected by SUSY, thus only ad-
mitting the “condensation” of the gauge degree of freedom in the vector field A,,.
The point, however, is that even in this case when SLIV is “inactive” it inevitably
leads to the generation of massless photons as vector Nambu-Goldstone modes
provided that SUSY itself is spontaneously broken. In this sense, a generic trigger
for massless photons to dynamically emerge happens to be spontaneously broken
supersymmetry rather than physically manifested Lorentz noninvariance.

To see how this idea may work we considered supersymmetric QED model
extended by an arbitrary polynomial potential of a general vector superfield that
induces the spontaneous SUSY violation in the visible sector. In the broken SUSY
phase one eventually comes to the standard SUSY QED type Lagrangian (5.19)
being supplemented by the vector field constraint invariant under supergauge
transformations. As result, a massless photon appears as a companion of a mass-
less photino which emerges in fact as the Goldstone fermion state in the tree
approximation. However, being mixed with another goldstino appearing from
a spontaneous SUSY violation in the hidden sector this state largely turns into
the light pseudo-goldstino. Remarkably, the photon masslessness appearing at
the tree level is further protected against radiative corrections by the simultane-
ously generated special gauge invariance. This invariance is only restricted by
the nonlinear gauge condition put on vector field values, A A" = |S[?, so that
any possible choice for the nondynamical S field corresponds to the particular
gauge choice for the vector field A, in an otherwise gauge invariant theory. The
point, however, is that this nonlinear gauge condition happens at the same time
to be the SLIV type constraint which treats in turn the physical photon as the
Lorentzian NG mode. So, figuratively speaking, the photon passes through three
evolution stages being initially the massive vector field component of a general
vector superfield (5.9), then the three-level massless companion of the Goldstonic
photino in the broken SUSY stage (5.12) and finally the generically massless state
as the emergent Lorentzian mode in the inactive SLIV stage (5.17).

As to pseudo-goldstonic photinos appeared in the model, they seem to be
of special observational interest that, apart from some indication of the QED
emergence nature, may appreciably extend the scope of SUSY breaking physics
being actively discussed in recent years. In contrast to all previous considerations
with non-vanishing F-terms as a mechanism of visible SUSY breaking, our pseudo-
goldstonic photinos caused by non-vanishing D-terms in the visible SUSY sector
will lead to somewhat different observational consequences. These and related
points certainly deserve to be explored in greater detail.
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