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Abstract. The spin-charge-family theory [1–14] predicts before the electroweak break four
- rather than the coupled and observed three - massless families of quarks and leptons.
Mass matrices of all the family members demonstrate in this proposal the same symme-
try, determined by the scalar fields: There are two SU(2) triplets, the gauge fields of the
family groups, and the three singlets, the gauge fields of the three charges (Q,Q ′ and Y ′)
distinguishing among family members - all with the quantum numbers of the standard
model scalar Higgs with respect to the weak and the hyper charge [13]: ± 1

2
and ∓ 1

2
, respec-

tively. Respecting by the spin-charge-family theory proposed symmetry of mass matrices
and simplifying the study by assuming that mass matrices are hermitian and real and
mixing matrices real, we fit the six free parameters of each family member mass matrix
to the experimental data of twice three measured masses of quarks and to the measured
quarks mixing matrix elements, within the experimental accuracy. Since any 3 × 3 sub
matrix of the 4× 4matrix (either unitary or orthogonal) determine the whole 4× 4matrix
uniquely, we are able to predict the properties of the fourth family members provided that
the experimental data for the 3×3 sub matrix are enough accurate, which is not yet the case.
However, new experimental data [15] fit better to the required symmetry of mass matrices
than the old data [16]. The obtained mass matrices are very closed to the democratic ones.

Povzetek. Teorija spinov-nabojev-družin [1–14] napoveduje štiri in ne le tri opažene družine
kvarkov in leptonov. Simetrija masnih matrik je v tej teoriji enaka za vse člane družine.
Določajo jo skalarna polja: Dve tripletni upodobitvi grupe SU(2), ki določata družinska
kvantna števila in tri singletne upodobitve grup nabojev (Q,Q ′ in Y ′). Vsa skalarna polja,
to je obe tripletni in vsa tri singletna polja, nosijo tudi šibki in hiper naboj kot ju za Higgsov
skalarni delec privzame standardni model [13]: ali ( 1

2
in − 1

2
), ali pa (− 1

2
in 1

2
). Prva vrednost

v oklepaju velja za šibki in druga za hiper naboj. Avtorja v prispevku upoštevata simetrijo
masnih matrik, ki jo za štiri družine predlaga teorija spinov-nabojev-družin. Parametre mas-
nih matrik določita iz izmerjenih podatkov. Izračun masnih matrik in mešalnih matrik
poenostavita s privzetkom, da so masne metrike hermitske in realne. Mešalne matrike so
tedaj ortogonalne. Vsaka matrika ima v tem primeru šest prostih parametrov. Matrični ele-
menti vsake unitarne matrike nxn so enolično določeni z z matričnimi elementi podmatrike
(n−1)x(n−1), če je n ≥ 4, pri ortogonalnih matrikah pa za vsak n. Ker pa eksperimentalni
podatki nosijo napako, je mešala matrika 4x4 lahko samo približno določena. Tedaj lahko iz
eksperimentalnih podatkov za 2 krat po 3mase in iz mešalne matrike določimo lastnosti
četrte družine v okviru eksperimentalne natančnosti. Izmerjeni matrični elementi mešalne
matrike nosijo preveliko napako, da bi avtorja lahko napovedala mase četrte družine bolj
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natančno kot da so blizu 1 TeV. Vzpodbudno pa je, da se novi eksperimentalni podatki
za mešalno matriko kvarkov bolje ujemajo z zahtevano simetrijo masnih matrik kot stari.
Avtorja ugotavljata, da so masne matrike zelo blizu edinkam (demokratičnim matrikam).

3.1 Introduction

There are several attempts in the literature to reconstruct mass matrices of quarks
and leptons out of the observed masses and mixing matrices and correspondingly
to learn more about properties of the fermion families [17–28]. The most popular is
the n×nmatrix, close to the democratic one, predicting that (n− 1) families must
be very light in comparison with the nth one. Most of attempts treat neutrinos
differently than the other family members, relying on the Majorana part, the Dirac
part and the ”sea-saw” mechanism. Most often are the number of families taken to
be equal to the number of the so far observed families, while symmetries of mass
matrices are chosen in several different ways [29–31]. Also possibilities with four
families are discussed [32–34].

In this paper we follow the spin-charge-family theory [1–14], which predicts
four families of quarks and leptons and the symmetries of their mass matrices, the
same for all the family members.

The mass matrix of each family member is in the spin-charge-family theory
determined by the scalar fields, which carry besides by the standard model required
weak and hyper charges [13] (±1

2
and∓1

2
, respectively) also the additional charges:

There are two SU(2) triplets, the gauge fields of the family groups, and three
singlets, the gauge fields of the three charges (Q,Q ′ and Y ′), which distinguish
among family members. These scalar fields cause, after getting nonzero vacuum
expectation values [13], the electroweak break. Assuming that the contributions
of all the scalar (and in loop corrections also of other) fields to mass matrices of
fermions are real and symmetric, we are left with the following symmetry of mass
matrices

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

, (3.1)

the same for all the family members α ∈ {u, d, ν, e}. In appendix 3.5.1 the evalua-
tion of this mass matrix is presented and the symmetry commented. The symmetry
of the mass matrix Eq.(3.1) is kept in all loop corrections.

A change of phases of the left handed and the right handed basis - there are
(2n− 1) free choices - manifests in a change of phases of mass matrices.

The differences in the properties of the family members originate in the
different charges of the family members and correspondingly in the different
couplings to the corresponding scalar and gauge fields.

We fit (sect. 3.3.1) the mass matrix (Eq. (3.1)) with 6 free parameters of any
family member to the so far observed properties of quarks and leptons within the
experimental accuracy. That is: For a pair of either quarks or leptons, we fit twice 6
free parameters of the two mass matrices to twice three so far measured masses and to the
corresponding mixing matrix.
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Since we have the same number of free parameters (6 parameters determine
in the spin-charge-family theory the mass matrix of any family member after the
mass matrices are assumed to be real) as there are measured quantities for either
quarks or leptons (two times 3 masses and 6 angles of the orthogonal mixing
matrix under the simplification that the mixing matrix is real and hermitian), we
should predict the fourth family masses and the missing mixing matrix elements
(Vuid4 , Vu4di , i ∈ (1, 2, 3)) uniquely, provided that the measured quantities are
accurate. The n−1 sub matrix of any unitary matrix determines the unitary matrix
uniquely for n ≥ 4. The experimental inaccuracy, in particular for leptons and also
for some of the matrix elements of the mixing matrix of quarks, is too large to be
able to estimate the fourth family masses better than very roughly even for quarks.
Yet we found out that our fitting to the experimental data for quarks are better
when using the new experimental data for the quarks mixing matrix [15] than the
old ones [16], which mainly differ in the second and the third diagonal values.
This might be a signal that the spin-charge-family theory is the right step beyond the
standard model (if taking into account also other predictions of this theory [1–14]),
although we assume in this calculations the real mass matrices (Eq. (3.1)) and the
orthogonal mixing matrices.

We treat all the family members, the quarks and the leptons, equivalently, as
required by the spin-charge-family theory. We take into account the estimations of
the influence of the fourth family masses to the mesons decays of the refs. [43],
making also our own estimations (pretty roughly so far, this work is not presented
in this paper) 1.

We can say that the so far obtained data do not contradict the prediction of
the spin-charge-family theory that there are four coupled families of quarks and
leptons, the mass matrices of which manifest the symmetry determined by the
family groups – the same for all the family members, quarks and leptons. The
mass matrices are quite close to the ”democratic” ones, in particular for leptons.

Since the mass matrices offer an insight into the properties of the scalar fields,
which determine mass matrices (together with other fields), manifesting effectively
as the observed Higgs and the Yukawa couplings, we hope to learn about the
properties of these scalar fields also from the mass matrices of quarks and leptons.

In sect. 3.2 the procedure to fit free parameters of mass matrices (Eq. (3.1) to
the experimental data is discussed.

We comment our studies in sect. 3.4.
1 M.I.Vysotsky and A.Lenz comment in their papers [43] that the fourth family is excluded

provided that one assumes the standard model with one scalar field (the scalar Higgs)
while extending the number of families from three to four when, in loop corrections,
evaluating the decay properties of the scalar Higgs. We have, however, several scalars:
Two times three triplets with respect to the family quantum numbers and three singlets,
which distinguish among the family members [13], all with the quantum numbers of the
scalar Higgs with respect to the weak and hyper charge. These scalar fields determine all
the masses and the mixing matrices of quarks and leptons and of the weak gauge fields,
what in the standard model is achieved by the choice of the scalar Higgs properties and
the Yukawa couplings. Our rough estimations of the decay properties of mesons show
that he fourth family quarks might have masses close to 1 TeV.
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In appendix 3.5 we offer a very brief introduction into the spin-charge-family
theory, which the reader, accepting the proposed symmetry of mass matrices
without knowing the origin of this symmetry, can skip. In Appendix neutrino the
old results [11] for leptons are presented *What follows must be carefully checked
and corrected. It must go to the discussion section.

In appendix 3.5 we offer a very brief introduction into the spin-charge-family
theory, which the reader, accepting the proposed symmetry of mass matrices
without knowing the origin of this symmetry, can skip.

3.2 Procedure used to fit free parameters of mass matrices to
experimental data

This part repeats in many points the ref. [11]
Matrices, following from the spin-charge-family theory, might not be hermitian

(appendix 3.7). We, however, simplify our study, presented in this paper, by assum-
ing that the mass matrix for any family member, that is for quarks and 0leptons, is
real and symmetric. We take the simplest phases up to signs, which depend on the
choice of phases of the basic states, as discussed in appendices 3.5.1 2.

The matrix elements of mass matrices, with the loop corrections in all orders
taken into account, manifesting the symmetry of Eq. (3.1), are in this paper taken as
free parameters. Due to this symmetry, required by the family quantum numbers
of the scalar fields [13], there 6 parameters having (n − 1) · (2 − 2)/2) complex
phases. Assuming, to simplify the calculations, that mass matrices are real, there
are correspondingly 6 free real parameter for the mass matrix for u and d quarks
and for ν and e leptons.

Let us first briefly overview properties of mixing matrices, a more detailed
explanation of which can be found in subsection 3.2.1 of this section.

LetMα, α denotes the family member (α = u, d, ν, e), be the mass matrix in
the massless basis (with all loop corrections taken into account). Let Vαβ = SαSβ†,
where α represents either the u-quark and β the d-quark, or α represents the
ν-lepton and β the e-lepton, denotes a (in general unitary) mixing matrix of a
particular pair: the quarks one or the leptons one.

For n× nmatrix (n = 4 in our case) it follows:
i. If a known sub matrix (n− 1)× (n− 1) of an unitary matrix n× nwith n ≥ 4 is
extended to the whole unitary matrix n×n, the n2 unitarity conditions determine
(2(2(n− 1) + 1)) real unknowns completely. If the sub matrix (n− 1)× (n− 1) of
an unitary matrix is made unitary by itself, then we loose the information of the
last row and last column.
ii. If the mixing matrix is assumed to be orthogonal, then the (n− 1)× (n− 1) sub
matrix contains all the information about the n× n orthogonal matrix to which it
belongs and the n(n+ 1)/2 conditions determine the 2(n− 1) + 1 real unknowns

2 In the ref. [9] we made a similar assumption, except that we allow that the symmetry on
the tree level of mass matrices might be changed in loop corrections. We got in that study
dependence of mass matrices and correspondingly mixing matrices for quarks on masses
of the fourth family.



i
i

“proc14” — 2014/12/8 — 18:22 — page 24 — #38 i
i

i
i

i
i

24 G. Bregar and N.S. Mankoč Borštnik

completely for any n.
If the sub matrix of the orthogonal matrix is made orthogonal by itself, then we
loose all the information of the last row and last column.

We make in this paper, to simplify the present study, several assumptions [39],
as it has been already written in the introduction. In what follows we present the
procedure used in our study and repeat the assumptions.

1. If the mass matrix Mα is hermitian, then the unitary matrices Sα and Tα,
introduced in appendix 3.7 to diagonalize a non hermitian mass matrix, differ
only in phase factors depending on phases of basic vectors and manifesting
in two diagonal matrices, FαS and FαT , corresponding to the left handed and
the right handed basis, respectively. For hermitian mass matrices we therefore
have: Tα = Sα FαSFαT †. By changing phases of basic vectors we can change
phases of (2n− 1) matrix elements.

2. We take the diagonal matrices Mα
d and the mixing matrices Vαβ from the

available experimental data. The mass matricesMα in Eq. (3.1) have, if they
are hermitian and real, 6 free real parameters (aα, aα1 , a

α
2 , b

α, eα, dα), α =

(u, d, ν, e).
3. We limit the number of free parameters of the mass matrix of each family

member α by taking into account n relations among free parameters, in our
case n = 4, determined by the invariants

Iα1 = −
∑
i=1,4

mαi , Iα2 =
∑

i>j=1,4

mαi m
α
j ,

Iα3 = −
∑

i>j>k=1,4

mαi m
α
j m

α
k , Iα4 = mα1 m

α
2 m

α
3 m

α
4 ,

α = u, d, ν, e , (3.2)

which are expressions appearing at powers of λα, λ4α+ λ3αI1+ λ2αI2+ λ1αI3+
λ0αI4 = 0, in the eigenvalue equation. The invariants are fixed, within the
experimental accuracy of the data, by the observed masses of quarks and
leptons and by the fourth family mass, if we make a choice of it. for a chosen
mα4 . Correspondingly there are (6− 4) free real parameters left for each mass
matrix, after a choice is made for the mass of the fourth family member.

4. The diagonalizing matrices Sα and Sβ, each depending on the reduced number
of free parameters, are for real and symmetric mass matrices orthogonal. They
follow from the procedure

Mα = SαMα
d T

α † , Tα = Sα FαSFαT † ,

Mα
d = (mα1 ,m

α
2 ,m

α
3 ,m

α
4 ) , (3.3)

provided that Sα and Sβ fit the experimentally observed mixing matrices V†αβ
within the experimental accuracy and thatMα andMβ manifest the symmetry
presented in Eq. (3.1). We keep the symmetry of the mass matrices accurate.
One can proceed in two ways.

A. : Sβ = V†αβS
α , B. : Sα = VαβS

β ,

A. : V†αβ S
αMβ

d S
α†Vαβ =Mβ , B. : Vαβ S

βMα
d S

β†V†αβ =Mα .(3.4)
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In the case A. one obtains from Eq. (3.3), after requiring that the mass matrix
Mα has the desired symmetry, the matrix Sα and the mass matrix Mα (=
SαMα

d S
α†), from where we get the mass matrix Mβ = V†αβ S

αMβ
d S

α†Vαβ.
In case B. one obtains equivalently the matrix Sβ, from where we get Mα

(= Vαβ SβMα
d S

β†V†αβ). We use both ways iteratively taking into account the
experimental accuracy of masses and mixing matrices.

5. Under the assumption of the present study that the mass matrices are real
and symmetric, the orthogonal diagonalizing matrices Sα and Sβ form the
orthogonal mixing matrix Vαβ, which depends on at most 6 (= n(n−1)

2
) free

real parameters (appendix 3.7). Since, due to what we have explained at the
beginning of this section, the experimentally measured matrix elements of the
3× 3 sub matrix of the 4× 4mixing matrix (if not made orthogonal by itself)
determine (within the experimental accuracy) the 4× 4mixing matrix, also the
fourth family masses are determined, again within the experimental accuracy.
We must not forget, however, that the assumption of the real and symmetric
mass matrices, leading to orthogonal mixing matrices, might not be an accept-
able simplification, since we do know that the 3× 3 sub matrix of the mixing
matrix has one complex phase, while the unitary 4 × 4 has three complex
phases. (In the next step of study, with hopefully more accurate experimental
data, we shall relax conditions on hermiticity of mass matrices and corre-
spondingly on orthogonality of mixing matrices.) We expect that too large
experimental inaccuracy leave the fourth family masses in the present study
quite undetermined, in particular for leptons.

6. We study quarks and leptons equivalently. The difference among family mem-
bers originate on the tree level in the eigenvalues of the operators (Qα, Q ′α,
Y ′α), which in loop corrections together with other contributors in all orders
contribute to all mass matrix elements and cause the difference among family
members 3.

Let us conclude. If the mass matrix of a family member obeys the symme-
try required by the spin-charge-family theory, which in a simplified version (as
it is taken in this study) is real and symmetric, the matrix elements of the mix-
ing matrices of quarks and leptons are correspondingly real, each of them with
n(n−1)
2

free parameters. These six parameters of each mixing matrix are, within
the experimental inaccuracy, determined by the three times three experimentally
determined sub matrix. After taking into account three so far measured masses
of each family member, the six parameters of each mass matrix reduce to three.
Twice three free parameters are within the experimental accuracy correspondingly
determined by the 3×3 sub matrix of the mixing matrix. The fourth family masses
are correspondingly determined - within the experimental accuracy.

Since neither the measured masses nor the measured mixing matrices are
determined accurately enough to reproduce the 4 × 4 mixing matrices, we can
in the best case expect that the masses and mixing matrix elements of the fourth
family will be determined only within some quite large intervals.

3 There are also Majorana like terms contributing in higher order loop corrections [7] which
might strongly influence in particular the neutrino mass matrix.



i
i

“proc14” — 2014/12/8 — 18:22 — page 26 — #40 i
i

i
i

i
i

26 G. Bregar and N.S. Mankoč Borštnik

3.2.1 Submatrices and their extensions to unitary and orthogonal matrices

In this part well known properties of n×nmatrices, extended from (n−1)×(n−1)
submatrices are discussed. We make a short overview of the properties, needed
in this paper, although all which will be presented here, is the knowledge on the
level of text books.

Any n × n complex matrix has 2n2 free parameters. The n + 2n(n − 1)/2

unitarity requirements reduce the number of free parameters to n2 (= 2n2 − (n+

2n(n− 1)/2)). Let us assume a (n− 1)× (n− 1) known sub matrix of the unitary
matrix. The sub matrix can be extended to the unitary matrix by (2× [2(n− 1)+ 1])
real parameters of the last column and last row. The n2 unitarity conditions on
the whole matrix reduce the number of unknowns to (2(2n− 1) − n2). For n = 4

and higher the (n− 1)× (n− 1) sub matrix contains all the information about the
unitary n× nmatrix.
The ref. [37] proposes a possible extension of an (n− 1)× (n− 1) unitary matrix
V(n−1)(n−1) into n× n unitary matrices Vnn.

The choice of phases of the left and the right basic states which determine the
unitary matrix (like this is the case with the mixing matrices of quarks and leptons)
reduces the number of free parameters for (2n−1). Correspondingly is the number
of free parameters of such an unitary matrix equal to n2−(2n−1), which manifests
in 1
2
n(n− 1) real parameters and 1

2
(n− 1)(n− 2) (= n2 − 1

2
n(n− 1) − (2n− 1))

phases (which determine the number of complex parameters).
Any real n×nmatrix has n2 free parameters which the 1

2
n(n+1) orthogonal-

ity conditions reduce to 1
2
n(n−1). The (n−1)×(n−1) sub matrix of this orthogonal

matrix can be extended to this n × n orthogonal matrix with [2(n − 1) + 1] real
parameters. The 1

2
n(n + 1) orthogonality conditions reduce these [2(n − 1) + 1]

free parameters to (2n−1− 1
2
n(n+1)), which means that the (n−1)× (n−1) sub

matrix of an n×n orthogonal matrix determine properties of its n×n orthogonal
matrix completely. Any (n − 1) × (n − 1) sub matrix of an orthogonal matrix
contains all the information about the whole matrix for any n. Making the sub
matrix of the orthogonal matrix orthogonal by itself one looses the information
about the n× n orthogonal matrix.

3.2.2 Free parameters of mass matrices after taken into account invariants

It is useful for numerical evaluation purposes to take into account for each family
member its mass matrix invariants (sect. 3.2), expressible with three within the
experimental accuracy known masses, while we keep the fourth one as a free
parameter. We shall make a choice of aα = 1

4
Iα1 (Eqs. (3.1, 3.6)) instead of the

fourth family mass.
We shall skip in this section the family member index α and introduce new

parameters as follows

a, b , f = d+ e , g = d− e , q =
a1 + a2√

2
, r =

a1 − a2√
2

. (3.5)

After choosing as a free parameter a = I1
4

(Eq. (3.6)), which is indeed the fourth
family mass - summed together with the three known (from the experiment)
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masses in I1 - the four invariants of Eq. (3.2) reduce the number of free parameters
to 2. The four invariants therefore relate six parameters leaving three of them
undetermined. There are for each pair of family members the measured mixing
matrix elements, assumed in this paper to be orthogonal and correspondingly
determined by six parameters, which then fixes these two times 3 parameters. The
(accurately enough) measured 3× 3 sub matrix of the (assumed to be orthogonal)
4×4mixing matrix namely determines these 6 parameters within the experimental
accuracy.

Using the starting relation among the invariants Ii , i ∈ (1, 2, 3, 4) and replac-
ing new parameters (a, b, f, g, q, r) from Eq. (3.5) we obtain

a =
I1

4
,

I ′2 = −I2 + 6a
2 − q2 − r2 − 2b2 = f2 + g2 ,

I ′3 = −
1

2b
(I3 − 2aI2 + 4a

2) = f2 − g2 ,

I ′4 = I4 − aI3 + a
2I2 − 3a

4

=
1

4
(q2 − r2)2 + (q2 + r2)b2 +

1

2
(q2 − r2) · (±) · [±] 2gf

+ b2(f2 + g2) +
1

4
(2gf)2 . (3.6)

We eliminate, using the first two equations, the parameters f and g, expressing
them as functions of I ′2 and I ′3, which depend, for a particular family member,
on the three known masses, the parameter a and the three parameters r, q and b.
We are left with the four free parameters (a, b, q, r) and the below relation among
these parameters

{−
1

2
(q4 + r4) + (−2b2 +

1

2
(−I2 + 6a

2 − 2b2))(q2 + r2)

+ (I ′4 −
1

4
((−I2 + 6a

2 − 2b2)2 + I ′23 ) + b2(−I2 + 6a
2 − 2b2))}2

= −
1

4
(q2 − r2)2((−I2 + 6a

2 − 2b2 − (q2 + r2))2 − I ′23 ) , (3.7)

which reduces the number of free parameters to 3. These 3 free parameters must
be determined, together with the corresponding three parameters of the partner,
from the measured mixing matrix.

We eliminate one of the 4 free parameters in Eq. (3.7) by solving the cubic
equation for, let us make a choice, q2

αq6 + βq4 + γq2 + δ = 0 . (3.8)

Parameter (α,β, γ, δ) depend on the 3 free remaining parameters (a, b, r) and the
three, within experimental accuracy, known masses.

To reduce the number of free parameters from the starting 6 in Eq. (3.1) to
the 3 left after taking into account invariants of each mass matrix, we look for the
solution of Eq (3.8) for all allowed values for (a, b, r). We make a choice for a in
the interval of (amin, amax), determined by the requirement that a, which solves
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the equations, is a real number. Allowing only real values for parameters f and g
we end up with the equation

−I2 + 6a
2 − 2b2 − (q2 + r2) > |

I3 + 8a
3 − 2aI2
2b

| , (3.9)

which determines the maximal positive b for q = 0 = r and also the minimal
positive value for b. For each value of the parameter a the interval (bmin, bmax),
as well as the interval (rmin = 0, rmax), follow when taking into account experi-
mental values for the three lower masses.

Trying to fit the free parameters to the experimental values of the 3× 3 sub
matrix to the mixing matrix we minimize the uncertainty defined in Eq. (3.10)

σ =

√√√√ 3∑
(i,j)=1

( Vuidj exp − Vuidj cal
σVuidj exp

)2
,

δVuidj = |
Vuidj exp − Vuidj cal

σVuidj exp
| , (3.10)

where expressions σVuidj exp stay for the experimental uncertainties, presented in
Eqs. (3.11, 3.12).

3.3 Numerical results

Taking into account the assumptions and the procedure explained in sect. 3.2
and in the ref. [39] we are looking for the 4× 4 in this paper taken to be real and
symmetric mass matrices for quarks and leptons, obeying the symmetry of Eq. (3.1)
and manifesting observed properties - masses and mixing matrices - of the so far
observed three families of quarks in agreement with the experimental limits for
the appearance of the fourth family masses and mixing matrix elements to the
lower three families, as presented in the refs. [16,15,43]. We also take into account
our so far made rough estimations of possible contributions of the fourth family
members to the decay of mesons. More detailed estimations are in progress. The
results for leptons, presented in Appendix 3.6 are the old ones, taking from [11].
They are added only for the comparison.

We hope that we shall be able to learn from the mass matrices of quarks and
leptons also about the properties of the scalar fields, which cause masses of quarks
and leptons, manifesting effectively so far as the measured Higgs and Yukawa
couplings.

We take the 3× 3measured mixing matrices for quarks and leptons and the
measured masses, all with the experimental inaccuracy. We extend the measured
nine mixing matrix elements for each pair to the corresponding 4× 4 mass matrix,
by taking into account the unitarity of the 4 × 4 matrix, in our case indeed the
orthogonality of the 4 × 4 matrices. We then look for twice 4 × 4 mass matrices
with the symmetry of Eq. (3.1), and correspondingly for the fourth family masses,
for quarks and leptons.
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We perform the calculations for quarks with the old [16] and new [15] experi-
mental data for the quarks mixing matrix, to see, whether or not the more accurate
values fit better into by the spin-charge-family theory predicted symmetry of mass
matrices (Eq. (3.1)). We present in appendix 3.6 also one trial for the lepton mass
matrices. Since the experimental data for the mixing matrix and masses are for
leptons known so inaccurate, the results do not tell much.

To test the predicting power of our model in dependence of the experimental
inaccuracy of masses and mixing matrices, we compare the calculated mass ma-
trices for quarks, obtained when choosing different values for the fourth family
masses, among themselves and with the experimental data, the old [16] ones and
the new [15] ones.

3.3.1 Numerical results for the observed quarks with mass matrices obeying
Eq. (3.1)

We take for the quarks masses the experimental values [16], recalculated to the Z
boson mass scale. We take two kinds of the experimental data for the quark mixing
matrices, the older data from [16] and the last data [15], with the experimentally
declared inaccuracies for the so far measured 3× 3mixing matrix. We assume, as
suggested by the spin-charge-family theory, that these nine matrix elements belong
to the 4×4 unitary mixing matrix. We take into account the experimentally allowed
values for the fourth family masses and other limitations, presented in refs. [43,32–
34]. We have made also our own rough estimations for the limitations which
follow from the meson decays to which the fourth family members participate.
Our estimations are still in progress.

A lot of effort was put into the numerical procedure to be sure as much as one
can, that we fit the parameters of mass matrices to the experimental values within
the experimental inaccuracy, in the best way, that is with the smallest errors.

It is expected that the inaccuracy, mainly due to the quarks mixing matrix,
masses do not influence the results so strongly, does not allow to tell much about
the fourth family masses. Yet, what we have learned not only supports the pre-
dicted symmetry of the spin-charge-family theory, but also predicts to what values
will the more accurately measured matrix elements of the 3× 3 sub matrix of the
4× 4mixing matrix move.

Let us admit that from the so far obtained results we are not yet able to predict
the fourth family quarks mass accurately enough, although the results show that
the most trustable might be results pushing the fourth family quarks to 1 TeV or
above.

The results manifest that the mass matrices are very close to the democratic
ones, which is, as expected, more and more the case the higher might be the fourth
family masses, and it is true for quarks and leptons.

The calculated 4 × 4 mixing matrix predicts, in dependence of the fourth
family masses, not only the fourth family matrix elements of the mixing matrix,
but also the direction in which will the matrix elements of the 3 × 3 sub matrix
move in the future more accurate measurements - under the assumption that the
spin-charge-family theory is offering the right next step beyond the standard model.
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In this paper we do not take yet into account the complex phases of the mass
matrix elements and correspondingly of the mixing matrices. Sooner or latter we
ought to do that.

We present below two types of the experimental values for the quarks 3× 3
mixing matrix, taken as the sub matrix of the 4× 4 matrix, the older experimental
data [16] and the newer experimental data [15].

We start with the older experimental data [16]

|Vud| =


0.97425± 0.00022 0.2252± 0.0009 0.00415± 0.00049 |Vu1d4 |
0.230± 0.011 1.006± 0.023 0.0409± 0.0011 |Vu2d4 |

0.0084± 0.0006 0.0429± 0.0026 0.89± 0.07 |Vu3d4 |

|Vu4d1 | |Vu4d2 | |Vu4d3 | |Vu4d4 |

 ,

(3.11)
and then repeat all the calculations also with the new experimental data [15]

|Vud| =


0.97425± 0.00022 0.2253± 0.0008 0.00413± 0.00049 |Vu1d4 |
0.225± 0.008 0.986± 0.016 0.0411± 0.0013 |Vu2d4 |

0.0084± 0.0006 0.0400± 0.0027 1.021± 0.032 |Vu3d4 |

|Vu4d1 | |Vu4d2 | |Vu4d3 | |Vu4d4 |

 .

(3.12)
The matrix elements of the 4 × 4 quark mixing matrix will be determine in the
numerical procedure, which searches for the best fit of the two quarks mass
matrices free parameters presented in Eq. (3.1) to the experimental data, taking
into account the experimental inaccuracy and unitarity of the mixing matrix,
ensuring as much as possible, the best fit.

Let us notice that in the new experimental data differ slightly from the old
ones only in the two diagonal matrix elements, Vcs = Vu2d2 and Vtb = Vu3d3 ,
appearing in new data with smaller inaccuracy. The corresponding fourth family
mixing matrix elements (|Vuid4 | and |Vu4dj |) are accordingly in both cases deter-
mined from the unitarity condition for the 4× 4 mixing matrix through the fitting
procedure, as also all the other matrix elements of the mixing matrix are.

Using first the old experimental data we predict the direction in which new
more accurately measured matrix elements should move and then check if this is
happening with the new experimental data.

Then we use new experimental data, repeat the procedure in look at what are
the new results predicting.

For the quark masses at the energy scale ofMZ we take

Mu
d/MeV/c2 = (1.3+ 0.50− 0.42, 619± 84, 172 000.± 760.,

mu4 = 700 000., 1 200 000.) ,

Md
d/MeV/c2 = (2.90+ 1.24− 1.19, 55+ 16− 15, 2 900.± 90.,

md4 = 700 000., 1 200 000.) . (3.13)

We found that the results are not influenced much if changing the masses within
the experimental uncertainties.

Experimental values for leptons as well as the obtained mass matrices are
presented in appendix 3.6.
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Following the procedure explained in sect. 3.2 we look for the mass matrices
for the u-quarks and the d-quarks by requiring that the mass matrices reproduce
experimental data while manifesting symmetry of Eq. (3.1), predicted by the
spin-charge-family theory.

We look for several properties of the obtained mass matrices:
i. We test the influence of the experimentally declared inaccuracy of the 3× 3 sub
matrices of the 4× 4mixing matrices and of the twice 3measured masses on the
prediction of the fourth family masses.
ii. We look for how do the old and the new matrix elements of the measured
mixing matrix influence the accuracy with which the experimental data are repro-
duced in the procedure which takes into account the symmetry of mass matrices.
iii. We look for how different choices for the masses of the fourth family members
limit the inaccuracy of particular matrix elements of the mixing matrices or the
inaccuracy of the three lower masses of family members.
iv. We test how close to the democratic mass matrix are the obtained mass matri-
ces in dependence of the fourth family masses.
v. We look for the predictions of the 4 × 4 mass matrices with the symmetry
presented in Eq. (3.1).

The numerical procedure, used in this contribution, is designed for quarks
and leptons. We present in this paper the results for quarks. The results for leptons,
presented in appendix 3.6 is only to manifest the general properties of leptons,
since the experimental data for leptons are far too non accurate to lead to trustable
predictions.

In the next subsection 3.3.1 the numerical results are presented for the 4× 4
mass matrices of the u-quarks and the d-quarks as they follow from the by the
spin-charge-family theory required symmetry after fitting the experimental data.

Mass matrices for quarks In order to test whether or not our results have some
experimental support, we use two kinds of the experimental values for the quark
mixing matrix, presented in Eqs. (3.11, 3.12), respectively, for several values of the
fourth family quark masses.

Searching for mass matrices with the symmetry of Eq. (3.1) to determine
the interval for the fourth family quark masses in dependence of the values of
the mixing matrix elements within the experimental inaccuracy, we repeat the
numerical procedure for data with several values of masses of the fourth family
quarks. Here we present results for two of them: formu4 = 700 GeV = md4 and
formu4 = 1 200 GeV = md4 .

We present below the results for the two experimental matrix elements [16,15]
for the quark mixing matrix, first for the data [16] and then for the data [15], in
both cases first formu4 = 700 GeV = md4 and then formu4 = 1 200 GeV = md4 .

Having results from the fitting procedure when used the old experimental
data for the quark mixing matrix, we look for the predictions, which the calculated
3× 3matrix elements of the 4× 4mixing matrix obeying the symmetry of Eq. (3.1)
offer, and then check to which extend the predictions agree with new experimental
data.

Then we repeat calculations with new experimental data.
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• Results for the mass matrices of the two quarks family members, fitted to the
mixing matrix elements presented in the ref. [16]. The fit offers the smallest
common deviation (Eq. 3.10)) of the sum of all the average values of the nine
matrix elements of the 3× 3 sub matrix. The masses of quarks and the mixing
matrix resulting from diagonalizing the two best fitted mass matrices are also
presented.
1. Heremu4 = 700 GeVmd4 = 700 GeV is chosen.

Mu =


227623. 131877. 132239. 217653.

131877. 222116. 217653. 132239.

132239. 217653. 214195. 131877.

217653. 132239. 131877. 208687.

 ,

Md =


175797. 174263. 174288. 175710.

174263. 175666. 175710. 174288.

174288. 175710. 175813. 174263.

175710. 174288. 174263. 175682.

 ,

(3.14)

Vud =


−0.97423 0.22531 −0.003 0.01021

0.22526 0.97338 −0.042 0.0016

−0.00663 −0.04197 −0.9991 −0.0004

0.00959 −0.00388 −0.0003 0.99995

 . (3.15)

The corresponding absolute values for the deviations from the average
experimental values (Eq.(3.10)) are

δVud =

 0.091 0.117 2.339

0.431 1.418 1.348

2.951 0.358 1.559

 . (3.16)

The corresponding total absolute average deviation Eq. (3.10) is 4.5579.

The two mass matrices correspond to the diagonal masses

Mu
d/MeV/c2 = (1.3, 620.0, 172 000., 700 000.) ,

Md
d/MeV/c2 = (2.88508, 55.024, 2 899.99, 700 000.) . (3.17)

2. In the next casemu4 = 1 200 GeV andmd4 = 1 200 GeV are chosen, again
fitting the old [16] experimental for quark mixing matrix elements.

Mu =


351916. 256894. 257204. 342714.

256894. 344411. 342714. 257204.

257204. 342714. 341900. 256894.

342714. 257204. 256894. 334395.

 ,

Md =


300783. 299263. 299288. 300709.

299263. 300623. 300709. 299288.

299288. 300709. 300856. 299263.

300709. 299288. 299263. 300696.

 ,

(3.18)
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Vud =


−0.97425 0.22536 −0.00301 0.00474

0.22534 0.97336 −0.04239 0.00212

−0.00663 −0.04198 −0.9991 −0.00021

0.00414 −0.00315 −0.00011 0.99999

 . (3.19)

The corresponding values for the deviations from the average experimental
value of the matrix elements of the 3× 3 sub matrix are

δVud =

0.003 0.226 2.3350.424 1.419 1.357

2.949 0.355 1.559

 . (3.20)

The corresponding total average deviation Eq. (3.10) is 4.5595.

The two mass matrices correspond to the diagonal masses

Mu
d/MeV/c2 = (1.3, 620.0, 172 000., 700 000.) ,

Md
d/MeV/c2 = (2.9, 55.0, 2 900.0, 700 000.) . (3.21)

Let us notice, that while the mass matrices of the u and the d quarks change
for a factor of ≈ 1.5, becoming more ”democratic” (that is the matrix elements
become more and more equal), when changing the fourth family masses from
700 GeV to 1 200 GeV, the mixing matrix elements of the 3× 3 sub matrix do
not change a lot (Eqs.(3.15, 3.19)).
Let us now see what does our calculations say. We first make comparison for
the old [16] (expo) mixing matrix with the calculated ones when the fourth
family quark masses are 700 GeV, and 1 200 GeV. Results are presented in
Eq. (3.22)

|V(ud)old | =



expo 0.97425± 0.00022 0.2252± 0.0009 0.00415± 0.00049
old1 0.97423 0.22531 0.003

old2 0.97425 0.22536 0.00301

expo 0.230± 0.011 1.006± 0.023 0.0409± 0.0011
old1 0.22526 0.97338 0.042

old2 0.22534 0.97336 0.04239

expo 0.0084± 0.0006 0.0429± 0.0026 0.89± 0.07
old1 0.00663 0.04197 0.9991

old2 0.00663 0.04198 0.9991


.

(3.22)
The calculated mixing predicts:
i. The matrix element Vu1d1 should almost not change, Vu1d2 may slightly
rise, and (Vu2d3 and Vu3d3 ) will also rise.
ii. The matrix elements (Vu1d3 , Vu2d1 , Vu2d2 , Vu3d1 , Vu3d2) should lower.
Checking the new experimental values one sees that the prediction was in all
the cases in agreement with those new experimental data which were done
with better accuracy.
• let us repeat the calculations with new experimental data [15] to see how will

the new data influence the mass matrices and the mixing matrix elements.
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Results for the mass matrices of the two quarks family members, fitted to
the new mixing matrix elements [15], which lead to the smallest common
deviation for the sum of all the average values of the nine matrix elements of
the 3× 3 sub matrix, are presented, together with the masses of quarks and
the mixing matrix resulting from diagonalizing the two mass matrices. Again
the fourth quark masses are first (mu4 = 700 GeV,md4 = 700 GeV) and then
(mu4 = 1 200 GeV,md4 = 1 200 GeV)
1. Heremu4 = 700 GeV andmd4 = 700 GeV is chosen.

Mu =


226521. 131887. 132192. 217715.

131887. 219347. 217715. 132192.

132192. 217715. 216964. 131887.

217715. 132192. 131887. 209790.

 ,

Md =


175776. 174263. 174288. 175709.

174263. 175622. 175709. 174288.

174288. 175709. 175857. 174263.

175709. 174288. 174263. 175703.

 ,

(3.23)

Vud =


−0.97423 0.22539 −0.00299 0.00776

0.22534 0.97335 −0.04245 0.00349

−0.00667 −0.04203 −0.99909 −0.00038

0.00677 −0.00517 −0.00020 0.99996

 . (3.24)

The corresponding values Eq. (3.10) for the deviations from the average
experimental values are

δVud =

 0.074 0.109 2.339

0.043 0.791 1.032

2.291 0.753 0.685

 . (3.25)

The corresponding total absolute average deviation Eq. (3.10) is 4.07154.

The two mass matrices correspond to the diagonal masses

Mu
d/MeV/c2 = (1.3, 620.0, 172 000., 700 000.) ,

Md
d/MeV/c2 = (2.9, 55.0, 2 900.0, 700 000.) . (3.26)

2. Heremu4 = 1 200 GeVmd4 = 1 200 GeV is chosen.

Mu =


354761. 256877. 257353. 342539.

256877. 350107. 342539. 257353.

257353. 342539. 336204. 256877.

342539. 257353. 256877. 331550.

 ,

Md =


300835. 299263. 299288. 300710.

299263. 300714. 300710. 299288.

299288. 300710. 300765. 299263.

300710. 299288. 299263. 300644.

 ,

(3.27)
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Vud =


0.97423 0.22538 0.00299 0.00793

−0.22531 0.97336 0.04248 −0.00002

0.00667 −0.04206 0.99909 −0.00024

−0.00773 −0.00178 0.00022 0.99997

 . (3.28)

The corresponding values for the deviations from the average experimental
value for each matrix element are

δVud =

 0.07 0.097 2.3290.038 0.79 1.061

2.889 0.762 0.685

 . (3.29)

The corresponding total average deviation Eq. (3.10) is 4.0724.

The two mass matrices correspond to the diagonal masses

Mu
d/MeV/c2 = (1.3, 620.0, 172 000., 1 200 000.) ,

Md
d/MeV/c2 = (2.88508, 55.024, 2 899.99, 1 200 000.) . (3.30)

Again we notice that the mass matrices of the u and the d quarks change for a
factor of ≈ 1.5when the masses of the fourth family members grow from 700

GeV to 1 200 GeV. The mass matrices become more ”democratic”. The mixing
matrix elements of the 3× 3 sub matrix do not change a lot (Eqs.(3.24, 3.28))
with the masses of the fourth family quarks, but they do agree better with the
newer [15] than with the older [16] experimental values.

Let us now compare the old [16] (expo) and the new [15] (expn) mixing matrix
elements of the 3× 3 sub matrix with the calculated ones for either the old [16] or
for the new [15] experimental values, fitting them to the mass matrices of Eq. (3.1),
in both cases for mu4 = md4 = 700 GeV and for mu4 = md4 = 1 200 GeV, to see
whether we can learn something out of this comparison.

We present below the old data (expo), the new data (expn) and both calculated
values, each for mu4 = md4 = 700 GeV (old1, new1) and mu4 = md4 = 1 200
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GeV (old2, new2), putting together all these values in the same matrix.

|V(ud)| =



expo 0.97425± 0.00022 0.2252± 0.0009 0.00415± 0.00049
expn 0.97425± 0.00022 0.2253± 0.0008 0.00413± 0.00049
old1 0.97423 0.22531 0.003

old2 0.97425 0.22536 0.00301

new1 0.97423 0.22531 0.00299

new2 0.97423 0.22538 0.00299

expo 0.230± 0.011 1.006± 0.023 0.0409± 0.0011
expn 0.225± 0.008 0.986± 0.016 0.0411± 0.0013
old1 0.22526 0.97338 0.042

old2 0.22534 0.97336 0.04239

new1 0.22534 0.97335 0.04245

new2 0.22531 0.97336 0.04248

expo 0.0084± 0.0006 0.0429± 0.0026 0.89± 0.07
expn 0.0084± 0.0006 0.0400± 0.0027 1.021± 0.032
old1 0.00663 0.04197 0.9991

old2 0.00663 0.04198 0.9991

new1 0.00667 0.04203 0.99909

new2 0.00667 0.04206 0.99909



.

(3.31)
Comparing the above results and the results for mass matrices and 4 × 4

mixing matrices one finds:
i. The old and new experimental data differ mainly in the diagonal matrix
elements.
ii. The old and new experimental data lead in the fitting procedure to quite
similar 3×3 sub matrix, while their influence on the fourth family matrix elements
are stronger.
iii. The fourth family masses change the mass matrices considerably, while their
influence on the 3× 3 sub matrix of the 4× 4mixing matrix is much weaker.
iv. The prediction (Eq. (3.22)) of the calculated mixing matrix elements, ob-
tained by fitting the symmetry of the mass matrices (Eq. (3.1)) to the experimental
data [16], was confirmed by improved experimental data [15]. In all cases are the
calculated 3× 3matrix elements closer to the new experimental values than to the
old experimental values.
v. Calculations with new experimental data predict: We expect (Eq. (3.31)) that
more accurate experiments will bring a slightly smaller values for (Vu1d1 , Vu1d3 ,
Vu3d3), smaller (Vu2d2 , Vu3d1), (Vu1d2 , Vu2d1) will slightly grow and (Vu2d3)
Vu3d2 will grow.
vi. The matrix elements Vuid4 and Vu4di change considerably with the mass of
the fourth family members, and they differ quite a lot also when using new instead
of the old experimental data for the mixing matrix.
vii. Fitting the free parameters of the mass matrices to the new experimental
data [15] gives smaller parameter σ (Eq. sigma) than when fitting old experimental
data [16]: 4.07154with respect to 4.5579 for the masses 700 GeV and 4.0724with
respect to 4.5595 for the masses 1 200 GeV, while with the mass σ does not really
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change. Only very accurate mixing matrix elements would allow to determine
fourth family quarks masses more accurately. Since the choice of the fourth family
quark masses does not appreciable influence either the fitting procedure or the
obtained 3× 3 mixing matrix, and also not the accuracy of the masses of the three
lower families, it is difficult to predict the interval for the masses of the fourth
family members. For the masses of the fourth family quarks to be close or above 1
TeV speak more other experimental data, like decays of mesons.

An estimation how trustable is the numerical procedure, used to fit free
parameters of the quarks mass matrices to the experimental data, can be made
by comparing the results for the mixing matrix for several choices of the fourth
family masses. The fitting procedure shows up that the 3× 3mixing matrix does
not change appreciable, even not for much lower masses from 300 GeV up.

We can conclude: Requiring that the experimental data respect the symmetry
of the mass matrices (Eq. (3.1)) (suggested by the spin-charge-family theory) the
prediction can be made for the change of the matrix elements of the 3×3 sub matrix
in future experiments. The masses of the fourth family members are more difficult
to predict, since the accuracy of the experimental data for the quark masses and
in particular for the mixing matrix should be extremely high to really limit the
fourth family masses. For a known fourth family masses the fourth family matrix
elements of the mixing matrix are accurate. For masses of the fourth family quarks
to be close or above 1 TeV speak more other experimental data, like decays of
mesons.

3.4 Discussions and conclusions

One of the most important open questions in the elementary particle physics is:
Where do the family originate? Explaining the origin of families would answer
the question about the number of families possibly observable at the low energy
regime, about the origin of the scalar field(s) and Yukawa couplings and would
also explain differences in the fermions properties - the differences in masses and
mixing matrices among family members – quarks and leptons.

Assuming that the prediction of the spin-charge-family theory that there are
four rather than so far observed three coupled families, the mass matrices of
which demonstrate in the massless basis the SU(2)× SU(2) (each of two SU(2) is
a subgroup of its own SO(4)) symmetry of Eq. (3.1), the same for all the family
members - the quarks and the leptons - and simplifying the numerical procedure by
the assumption that the mass matrices are symmetric and real and correspondingly
the mixing matrices orthogonal, we fit the free parameters of the quarks mass
matrices (6 for u-quarks and 6 for d-quarks to twice three masses of quarks and
to the mixing matrix 4× 4, extracted from the 3× 3 sub matrix elements, fitted to
6 parameters of the orthogonal matrix) to the experimental data. Every unitary
n× nmatrix is for n ≥ 4, through the unitary conditions, uniquely determined by
the 3× 3 sub matrix.

The numerical procedure, explained in this paper, to fit free parameters to the
experimental data within the experimental inaccuracy of masses and in particular
of the mixing matrix is very tough. The accurate mixing matrix elements and
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masses would completely determine the fourth family masses. The experimental
inaccuracies are too large to tell the trustable mass interval, within which the
fourth family masses of quarks lie.

In this paper we are not yet able to tell the mass intervals for the fourth family
quarks. But since the matrix elements of the 3× 3 sub matrix depend very weakly
on the fourth family masses, the calculated matrix (from the experimental data
under the assumption that the mass matrices manifest the symmetry of Eq. (3.1))
offer the prediction to what values will more accurate measurements move the
present experimental data. We checked this prediction by performing calculations
with the old matrix elements [16] and then test the prediction on the new ones [15].
The results are presented in Eq. (3.22). Repeating calculations with the new matrix
elements for several masses of the fourth family quarks we predict further change
of the 3× 3 sub matrix elements, presented in Eq. (3.31).

We expect: More accurate experiments will bring a slightly smaller values
for (Vud, Vub, Vtb), smaller (Vcs, Vtd), (Vus, Vcd) will slightly grow and (Vcb) Vts
will grow.

The fourth family mixing matrix elements depend, as expected, strongly on
the fourth family masses. For chosen masses of the fourth family members their
matrix elements can be quite accurately predicted (Eqs. (3.24, 3.28)).

Mass matrices are quite close to the ”democratic” ones not only for leptons
but also for quarks. With the growing fourth family masses the ”democracy” in
matrix elements grow (Eqs. (3.23, 3.23)), as expected.

Although we have not study complex mass matrices, we do not expect that
the presented results would change considerably after taking into account the
complex phases of mass matrices and correspondingly also of the mixing matrices.
We estimate the accuracy of our calculations by comparing the results of the
calculated 3× 3 matrix elements for the interval of the fourth family masses, from
300 GeV to 1 200 GeV. It look very trustable, offering for all these masses only
slowly changing matrix elements.

We are concluding: Requiring that the experimental data respect the symmetry
of the mass matrices (Eq. (3.1)) (suggested by the spin-charge-family theory) the
prediction is made for the change of the matrix elements of the 3× 3 sub matrix in
future more accurate experiments. More (much more) accurate measured 3×3 sub
matrix elements in future will determine, following the spin-charge-family theory,
the fourth family masses and the fourth family matrix elements. However, even
with the present experimental data our calculations, respecting the symmetry of
the mass matrices (Eq. (3.1)) offer the prediction for the direction to which will
more accurately measured matrix elements move.

Since the symmetry of the mass matrices are determined in the spin-charge-
family theory by two triplet (with respect to the family charges) and tree singlet
(with respect to the family members charges (Q,Q ′, Y)) scalar fields [13,14], all
with the weak and the hyper charges as assumed in the standard model for the
scalar fields, we hope to learn from the properties of the mass matrices and the
corresponding mixing matrices more about these scalar fields.
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3.5 APPENDIX: A brief presentation of the spin-charge-family
theory

We present in this section a very brief introduction into the spin-charge family
theory [1–14]. The reader can skip this appendix taking by the spin-charge family
theory required symmetry of mass matrices of Eq. (3.1) as an input to the study
of properties of the 4× 4mass matrices - with the parameters which depend on
charges of the family members - and can come to this part of the paper, if and
when would like to learn where do families and scalar fields possibly originate
from.

Let us start by directing attention of the reader to one of the most open
questions in the elementary particle physics and cosmology: Why do we have
families, where do they originate and correspondingly where do scalar fields,
manifesting as Higgs and Yukawa couplings, originate? The spin-charge-family
theory is offering a possible explanation for the origin of families and scalar fields,
and in addition for the so far observed charges and the corresponding gauge fields.

There are, namely, two (only two) kinds of the Clifford algebra objects: One
kind, the Dirac γa, takes care of the spin in d = (3 + 1), while the spin in d ≥ 4
(rather than the total angular momentum) manifests in d = (3 + 1) in the low
energy regime as the charges. In this part the spin-charge family theory is like the
Kaluza-Klein theory, unifying spin (in the low energy regime, otherwise the total
angular momentum) and charges, and offering a possible answer to the question
about the origin of the so far observed charges and correspondingly also about
the so far observed gauge fields. The second kind of the Clifford algebra objects,
forming the equivalent representations with respect to the Dirac kind, recognized
by one of the authors (SNMB), is responsible for the appearance of families of
fermions.

There are correspondingly also two kinds of gauge fields, which appear to
manifest in d = (3+ 1) as the so far observed vector gauge fields (the number of -
obviously non yet observed - gauge fields grows with the dimension) and as the
scalar gauge fields. The scalar fields are responsible, after gaining nonzero vacuum
expectation values, for the appearance of masses of fermions and gauge bosons.
They manifest as the so far observed Higgs [36] and the Yukawa couplings.

All the properties of fermions and bosons in the low energy regime originate
in the spin-charge-family theory in a simple starting action for massless fields in
d = [1 + (d − 1)]. Fermions interact with the vielbeins fαa and correspondingly
with the two kinds of the spin connection fields: with ωabc = fαcωabα which
are the gauge fields of Sab = i

4
(γaγb − γbγa) and with ω̃abc = fαc ω̃abα which

are the gauge fields of S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a). α,β, . . . is the Einstein index and

a, b, . . . is the flat index. The starting action is the simplest one

S =

∫
ddx E Lf +

∫
ddx E (αR+ α̃ R̃) , Lf =

1

2
(ψ̄ γap0aψ) + h.c.

p0a = fαa p0α +
1

2E
{pα, Ef

α
a}−, p0α = pα −

1

2
Sabωabα −

1

2
S̃abω̃abα,(3.32)
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R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) + h.c. . (3.33)

E = det(eaα) and eaαfβa = δβα. Fermions, coupled to the vielbeins and the two
kinds of the spin connection fields, manifest (after several breaks of the starting
symmetries) before the electroweak break four massless families of quarks and leptons,
the left handed fermions are weak charged and the right handed ones are weak
chargeless. The vielbeins and the two kinds of the spin connection fields manifest
effectively as the observed gauge fields and (those with the scalar indices in
d = (1+ 3)) as several scalar fields. The mass matrices of the four family members
(quarks and leptons) are after the electroweak break expressible on a tree level by
the vacuum expectation values of the two kinds of the spin connection fields and
the corresponding vielbeins with the scalar indices ([1,2,6,7,12,13]):
i. One kind originates in the scalar fields ω̃abc , manifesting as the two SU(2)
triplets – ÃÑL is , i = (1, 2, 3) , s = (7, 8); Ã1̃ is , i = (1, 2, 3) , s = (7, 8); – and one
singlet – Ã4̃s , s = (7, 8) – contributing equally to all the family members.
ii. The second kind originates in the scalar fields ωabc, manifesting as three
singlets –AQs , A

Q ′

s , A
Y ′ , s = (7, 8) – contributing the same values to all the families

and distinguishing among family members. Q and Q ′ are the quantum numbers
from the standard model, Y ′ originates in the second SU(2) (a kind of a right handed
”weak”) charge.

All the scalar fields manifest, transforming the right handed quarks and lep-
tons into the corresponding left handed ones 4 and contributing also to the masses
of the weak bosons, as doublets with respect to the weak charge. Loop corrections,
to which all the scalar and also gauge vector fields contribute coherently, change
contributions of the off-diagonal and diagonal elements appearing on the tree
level, keeping the tree level symmetry of mass matrices unchanged 5.

3.5.1 Mass matrices on the tree level and beyond which manifest
SU(2)× SU(2) symmetry

Let us make a choice of a massless basis ψi, i = (1, 2, 3, 4), for a particular family
memeber α. And let us take into account the two kinds of the operators, which
transform the basis vectors into one another

ÑiL , i = (1, 2, 3) , τ̃iL , i = (1, 2, 3) , (3.34)

4 It is the term γ0γs φAis , where φAis , with s = (7, 8) denotes any of the scalar fields,
which transforms the right handed fermions into the corresponding left handed part-
ner [1,7,2,6,12–14]. This mass term originates in ψ̄ γap0aψ of the action Eq.(3.32), with
a = s = (7, 8) and p0s = fσs (pσ − 1

2
S̃abω̃abσ − 1

2
Sstωstσ).

5 It can be seen that all the loop corrections keep the starting symmetry of the mass matrices
unchanged. We have also started [7,42] with the evaluation of the loop corrections to the
tree level values. This estimation has been done so far [42] only up to the first order and
partly to the second order.
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with the properties

Ñ3L (ψ1, ψ2, ψ3, ψ4) =
1

2
(−ψ1, ψ2,−ψ3, ψ4) ,

Ñ+
L (ψ1, ψ2, ψ3, ψ4) = (ψ2, 0, ψ4, 0) ,

Ñ−
L (ψ1, ψ2, ψ3, ψ4) = (0 ,ψ1, 0, ψ3) ,

τ̃3 (ψ1, ψ2, ψ3, ψ4) =
1

2
(−ψ1,−ψ2, ψ3, ψ4) ,

τ̃+ (ψ1, ψ2, ψ3, ψ4) = (ψ3, ψ4, 0, 0) ,

τ̃− (ψ1, ψ2, ψ3, ψ4) = ( 0, 0,ψ1, ψ2) . (3.35)

This is indeed what the two SU(2) operators in the spin-charge-family theory do. The
gauge scalar fields of these operators determine, together with the corresponding
coupling constants, the off diagonal and diagonal matrix elements on the tree
level. In addition to these two kinds of SU(2) scalars there are three U(1) scalars,
which distinguish among the family members, contributing on the tree level the
same diagonal matrix elements for all the families. In loop corrections in all orders
the symmetry of mass matrices remains unchanged, while the three U(1) scalars,
contributing coherently with the two kinds of SU(2) scalars and all the massive
fields to all the matrix elements, manifest in off diagonal elements as well. All the
scalars are doublets with respect to the weak charge, contributing to the weak and
the hypercharge of the fermions so that they transform the right handed members
into the left handed onces.

With the above (Eq. (3.35) presented choices of phases of the left and the
right handed basic states in the massless basis the mass matrices of all the family
members manifest the symmetry, presented in Eq. (3.1). One easily checks that a
change of the phases of the left and the right handed members, there are (2n− 1)

possibilities, causes changes in phases of matrix elements in Eq. (3.1).

3.6 APPENDIX: Mass matrices for leptons

We evaluate 3× 3matrix elements from the data [16]

7.05 · 10−17 ≤ ∆(m21/MeV/c2)2 ≤ 8.34 · 10−17 ,
2.07 · 10−15 ≤ ∆(m(31),(32)/MeV/c2)2 ≤ 2.75 · 10−15 ,
0.25 ≤ sin2 θ12 ≤ 0.37 , 0.36 ≤ sin2 θ23 ≤ 0.67 ,
sin2 θ13 < 0.035(0.056) , sin2 2θ13 = 0.098± 0.013 , (3.36)

which means that π
4
− π
10
≤ θ23 ≤ π

4
+ π
10

, π
5.4

− π
10
≤ θ12 ≤ π

4
+ π
10

, θ13 < π
13

.
This reflects in the lepton mixing matrix Vνe = Sν Se †

|Vνe| =


0.8224 0.5200 0.1552 |Vν1e4 |

0.3249 0.7239 0.6014 |Vν2e4 |

0.4455 0.4498 0.7704 |Vν3e4 |

|Vν4e1 | |Vν4e2 | |Vν4e3 | |Vν4e4 |

 , (3.37)
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determining for each assumed value for any mixing matrix element within the
experimentally allowed inaccuracy the corresponding fourth family mixing matrix
elements (|Vνie4 | and |Vν4ej |) from the unitarity condition for the 4 × 4 mixing
matrix. The masses of leptons are taken from [15,16] while we take the fourth
family masses as free parameters, checking how much does the experimental
inaccuracy influence a possible prediction for the fourth family leptons masses
and how does this prediction agree with experimentally allowed values [15,16,43]
for the fourth family lepton masses.

Mν
d/MeV/c2 = (1 · 10−9, 9 · 10−9, 5 · 10−8, mν4 > 90 000.) ,

Me
d/MeV/c2 = (0.486 570 161± 0.000 000 042,
102.718 135 9± 0.000 009 2, 1746.24± 0.20,me4 > 102 000 ) . (3.38)

3.6.1 Numerical results for leptons

We present here the old results [11] for leptons, manifesting properties of the
lepton mass matrices. These results are less informative than those for quarks,
since the experimental results are for leptons mixing matrix much less accurate
than in the case of quarks and also masses are known less accurately.

We make a choice of the fourth family masses and take the mixing matrix
elements from the old experimental data [16]

We have

•

Mν =


14 021. 14 968. 14 968. −14 021.

14 968. 15 979. 15 979. −14 968.

14 968. 15 979. 15 979 −14 968.

−14 021. −14 968. −14 968. 14 021.

 ,

Me =


28 933. 30 057. 29 762. −27 207.

30 057. 32 009. 31 958. −29 762.

29 762. 31 958. 32 009. −30 057.

−27 207. −29 762. −30 057. 28 933.

 ,

(3.39)

which leads to the mixing matrix Vνe

Vνe1 =


0.82363 0.54671 −0.15082 0.

−0.50263 0.58049 −0.64062 0.

−0.26268 0.60344 0.75290 0.

0. 0. 0. 1.

 , (3.40)

and the masses

Mν
d/MeV/c2 = (5 · 10−9 , 1 · 10−8 , 4.9 · 10−8 , 60 000.) ,

Me
d/MeV/c2 = (0.510999 , 105.658 , 1 776.82 , 120 000) . (3.41)

We did not adapt lepton masses to Zm mass scale. Zeros (0.) for the matrix
elements concerning the fourth family members means that the values are less
than 10−5 and 1.means that the difference from 1 occurs on the sixth digit at
most.
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We notice:
i. The required symmetry, Eq. (3.1), is kept exactly.
ii. The mass matrices of leptons are very close to the ”democratic” matrix.
iii. The mixing matrix elements among the first three and the fourth family mem-
bers are very small, what is due to our choice, since the matrix elements of the
3 × 3 sub matrix of the 4 × 4 unitary matrix, predicted by the spin-charge-family
theory are very inaccurately known.

3.7 APPENDIX: Properties of non Hermitian mass matrices

This pedagogic presentation of well known properties of non Hermitian matrices
can be found in many textbooks, for example [44]. We repeat this topic here only
to make our discussions transparent.

Let us take a non Hermitian mass matrix Mα as it follows from the spin-
charge-family theory, α denotes a family member (index ± used in the main text is
dropped).

We always can diagonalize a non HermitianMα with two unitary matrices,
Sα (Sα † Sα = I) and Tα (Tα † Tα = I)

Sα †Mα Tα = Mα
d = (mα1 . . .m

α
i . . .m

α
n). (3.42)

The proof is added below.
Changing phases of the basic states, those of the left handed one and those of

the right handed one, the new unitary matrices S ′α = Sα FαS and T ′α = Tα FαT
change the phase of the elements of diagonalized mass matrices Mα

d

S ′α †Mα T ′α = F†αSMα
d FαT =

diag(mα1 e
i(φαS1 −φαT1 ) . . .mαi e

i(φαSi −φαTi ) , . . .mαn e
i(φαSn −φαTn )) ,

FαS = diag(e−iφ
αS
1 , . . . , e−iφ

αS
i , . . . , e−iφ

αS
n ) ,

FαT = diag(e−iφ
αT
1 , . . . , e−iφ

αT
i , . . . , e−iφ

αT
n ) . (3.43)

In the case that the mass matrix is Hermitian Tα can be replaced by Sα, but
only up to phases originating in the phases of the two basis, the left handed one
and the right handed one, since they remain independent.

One can diagonalize the non Hermitian mass matrices in two ways, that is
either one diagonalizesMαMα † orMα†Mα

(Sα†MαTα)(Sα†MαTα)† = Sα†MαMα †Sα = Mα2
dS ,

(Sα†MαTα)†(Sα†MαTα) = Tα†Mα †MαTα = Mα2
dT ,

Mα †
dS = Mα

dS , Mα †
dT = Mα

dT . (3.44)

One can prove that Mα
dS = Mα

dT . The proof proceeds as follows. Let us define two
Hermitian (HαS , HαT ) and two unitary matrices (UαS , HαT )

HαS = SαMα
dSS

α † , HαT = TαMα†
dTT

α † ,

UαS = Hα−1S Mα , UαT = Hα−1T Mα † , (3.45)
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It is easy to show that Hα †S = HαS , Hα †T = HαT , UαS U
α †
S = I and UαT U

α †
T = I. Then

it follows

Sα†HαS S
α = Mα

dS = Mα †
dS = Sα†MαUα−1

S Sα = Sα†Mα Tα ,

Tα†HαT T
α = Mα

dT = Mα †
dT = Tα†Mα †Uα−1

T Tα = Tα†Mα† Sα , (3.46)

where we recognized Uα−1
S Sα = Tα and Uα−1

T Tα = Sα. Taking into account
Eq. (3.43) the starting basis can be chosen so, that all diagonal masses are real and
positive.
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12. N.S. Mankoč Borštnik, ”Do we have the explanation for the Higgs and Yukawa cou-
plings of the standard model”, [arxiv:1212.3184, arxiv:1011.5765].
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