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When deploying a new mobile technology such as LTE, it is crucial to identify the factors that affect the
radio network in terms of capacity and quality of service. In this context, network coverage is arguably
the single most influential factor. This work presents a metaheuristic-optimization approach that automat-
ically adapts the parameters of a signal-propagation model. The optimization procedure is performed per
cell, enabling the calculation of accurate network-coverage predictions. The evaluation of the proposed
approach is carried out on two different regions in Slovenia, where Telekom Slovenije, d.d., provides LTE
coverage. The results show radio-propagation predictions of improved quality when compared to manual
and analytical methods.

Povzetek: Avtorji predstavljajo metahevristično metodo za samodejno optimizacijo parametrov semi-
empiričnih modelov razširjanja radijskega valovanja. Rezultati številnih poskusov v omrežjih LTE kažejo
izboljšano natančnost izračunanih napovedi razširjanja radijskega valovanja.

1 Introduction

One of the primary objectives of radio-coverage planning is
to efficiently use the allocated frequency band. To this end,
radio-coverage prediction tools are of great importance, as
they allow network engineers to test different configura-
tions before physically implementing the changes. How-
ever, predicting the radio coverage of a mobile network
is a complex task, hence the importance of fast and accu-
rate prediction tools. The precision achieved by the soft-
ware tool of choice is directly related to the accuracy of
the signal-propagation model used. For this reason, signal-
propagation models that support configurable parameters
are preferred, since they allow the model to adapt to differ-
ent environments and thus to improve the accuracy of the
calculated coverage predictions.

The effectiveness of the decision-making process dur-
ing radio-network planning is tightly coupled with the pre-
cision achieved by the propagation model used. In or-
der to obtain a radio-propagation model that accurately re-
flects the characteristics of the area covered by the mobile
network, the parameters of the signal-propagation model
are adjusted using data from field-measurement campaigns.
Signal-loss adjustment using this method depends on exist-
ing field-measurement data, which are collected in advance

for the area covered by the target network cells.
In order to adapt the parameters of a signal-propagation

model, mainly analytical approaches were proposed in the
related literature [1, 8, 27]. These works confirm the suit-
ability of methods based on least-squares theory for the pa-
rameter tuning of signal-propagation models.

In this work, we propose the automatic optimization of
the parameters of a signal-propagation model using a meta-
heuristic approach. The objective of such optimization is
four-fold. First, using a stochastic optimization approach,
the parameters are optimized in order to reflect the local
characteristics of the terrain, thus adapting the model to the
local environment of a given network cell. Second, based
on a set of field measurements, the automatic optimization
of model parameters improves the accuracy of the calcu-
lated radio-propagation predictions of each network cell,
as well as the radio network as a whole. Third, the pro-
posed metaheuristic method improves, under certain geo-
graphical conditions, the results achieved by a traditional
linear-least-squares approach [1, 8, 27], the application of
which only adapts the linear part of the propagation model,
i.e., y = c + mx. Fourth, tuning the complete parameter
set per network cell shows improved results especially in
rugged-terrain areas.

As the working schema for tackling the presented prob-
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lem, we use PRATO, a parallel framework for coverage
planning of cellular networks [5]. The framework flexi-
bility allows for coverage planning and optimization of ra-
dio networks in general, and LTE in particular. The opti-
mization component featured by PRATO enables the paral-
lel optimization of several parameters, e.g., the parameters
of the signal-propagation model.

The remaining of this paper is organized as follows.
Section 2 introduces some principles of radio-propagation
prediction and the signal-propagation model used. Sec-
tion 3 describes the optimization problem involving the
parameter-tuning of the signal-propagation model, fol-
lowed by the performed simulations and the achieved re-
sults in Section 4. Finally, in Section 5 we draw some con-
clusions and give guidelines for further work.

2 Radio-propagation prediction
To calculate the radio-propagation predictions, we use a
mathematical model based on the well-known Okumura-
Hata formula [14, 22]. Other more accurate methods exist,
like the ones based on ray tracing [7, 25]. However, these
methods are still inefficient in terms of the computational
effort required to achieve satisfying results.

On the other hand, (semi-)empirical methods for radio-
propagation predictions give acceptable results within a
feasible amount of time. For this reason, they became the
industry standard for non-deterministic, signal-propagation
calculations [3, 6, 14, 21, 22, 23].

2.1 Signal-propagation model
The Okumura-Hata model has been largely studied and
shown to be suitable for predicting the signal propagation
of LTE networks [2]. In its primary form, the model dis-
tinguishes the distance from the receiver to the transmitter,
the frequency used and the effective antenna height, i.e., the
antenna height above the receiver’s level. These variables
are taken into account in order to calculate the path loss in
open areas (OA), as described in Equation (1).

LOA(x, y, ~β) = β1 + β2 log(d(x,y)) + β3 log(HA)

+ β4 log(d(x,y)) log(HA)− 3.2 (log(11.75 ·HR))2

+ 44.49 log(F )− 4.78 (log(F ))2 , (1)

where ~β = (β1, β2, β3, β4) are the adaptable parameters
of the model, d(x,y) is the distance from the transmitter to
the topography point with coordinates (x, y) (expressed in
kilometers),HA is the effective antenna height of the trans-
mitter (expressed in meters), HR is the antenna height of
the receiver (expressed in meters), and F is the frequency
(expressed in MHz).
In this work, as well as in [11], the terrain profile is used for
non-line-of-sight (NLOS) determination, i.e., the loss due
to an obstacle obstruction in the first Fresnel zone of the
transmitter [26]. In such case, additional path-loss factors

due to the terrain profile and the Earth shape are added to
the original formula, the values of which are calculated as
in Equation (2).

LNLOS(x, y) =

√(
αK(d(x,y))

)2
+ E(d(x,y))

2, (2)

where α is the knife-edge diffraction control parameter,
the value of which is calculated based on the level of ob-
struction of the Fresnel zone, K(d(x,y)) is the knife-edge
diffraction loss (in dB), and E(d(x,y)) is the correction due
to the Earth sphere, the value of which improves the cal-
culated prediction especially for higher base-station towers
and distances over 10 kilometers. All three values depend
on the characteristics of the topography point with coordi-
nates (x, y). The euclidean distance between the transmit-
ter and the receiver is intentionally calculated using two-
dimensional coordinates due to simplicity and the negli-
gible difference when compared to its three-dimensional
counterpart.

In order to adequately predict signal-loss effects due to
foliage, buildings and other fabricated structures, a supple-
mentary factor based on the land usage (clutter) is included.
This technique is adopted by several propagation models
for radio networks, e.g., [1, 3, 19, 22]. Consequently, we
introduce an extra term for signal loss due to clutter, thus
defining the total model-predicted path loss, which is ex-
pressed in dB, as in Equation (3).

L(x, y, ~β) = LOA(x, y, ~β) +LNLOS(x, y) +LCLUT(x, y), (3)

where LCLUT(x, y) represents the clutter loss at the topog-
raphy point with coordinates (x, y).

2.2 Field measurements
In mobile networks, a moving mobile device (or
user equipment, UE) constantly performs cell selec-
tion/reselection and handover in order to keep the best pos-
sible connection to the network. In this context, the best
connection is selected by measuring the signal strength
or quality of the neighboring cells. In LTE networks,
the UE measures two parameters from the reference sig-
nal of the network, namely the Reference Signal Received
Power (RSRP) and the Reference Signal Received Quality
(RSRQ) [23].

For a certain frequency bandwidth, RSRP measures the
average received power over the resource elements that
carry cell-specific reference signals. RSRP is applicable
in both idle (e.g., waiting for a call) and connected (e.g.,
during a call) modes. During the procedure of cell selec-
tion/reselection in idle mode, RSRP is used. On the other
hand, RSRQ is only applicable when the UE is in con-
nected mode.

The radio-coverage calculation involves predicting the
network coverage over a certain region, and thus over the
UEs within it. Hence, in the first place, we are interested
on accurately predicting the best connection the UE would
select in idle mode and the RSRP field measurements it
uses.
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In our case, the field measurements representing the
RSRP at a given location were collected using a small truck
equipped with the spectrum analyzer Rohde & Schwarz,
the functionality of which supports LTE signal analysis.
The spectrum analyzer was connected to an external omni-
directional antenna mounted on the roof of the truck, at
roughly 2 m above the ground, taking measurements at a
rate of 2 Hz. The measurement locations were established
using a GPS unit. These GPS-informed locations were
tested to be compliant with the 60-meter limit mentioned
in [1]. The measurements covered a considerable propor-
tion of the target area, with over 100,000 individual points,
collected from more than 30 network cells.

To minimize the deviation in the measured RSRP values,
and the impact that small-scale fading has in larger-scale
path loss [10], all field measurements were post-processed
so that a single value, the median, was calculated for each
of the measured locations. The resulting RSRP was then
used as the field measurement representing the given loca-
tion, the resolution of which matches the digital elevation
model (DEM) and clutter maps used as input data of the
optimization process. Note that the DEM data represents
the terrain profile of the geographical area of interest.

3 Parameter tuning of the
radio-prediction model

The procedure to adapt the parameters of the mathematical
model for each of the cells in the target network involves
minimizing the deviation of the radio-propagation predic-
tion compared to a given set of field measurements.

In the context of our work, this means that we have
to fine tune the parameters of LOA(x, y, ~β), as defined in
Equation (3). The adjustable parameters are the elements
of vector ~β = (β1, β2, β3, β4) ∈ R

4, namely

β1 the reference loss or offset;

β2 the loss slope due to distance of the receiver from the
transmitter;

β3 the loss slope due to height of the transmitter antenna;

β4 the loss slope due to the combined effect of the distance
and height of the antenna.

The parameter tuning is performed per cell to improve local
fitting of the radio predictions, being its resulting solution
a vector ~β∗ of the target cell.

The analytical approach for tuning of the radio-
prediction model consists of correlating the field measure-
ments with the predicted received-signal values. The new
parameter set originates from the minimization of an error
criterion. As defined in [15, 27], the minimization criterion
is the squared-sum difference between the predicted and
the observed RSRP levels, the definition of which is shown
later in Equation (6).

As a general rule when applying this approach, only the
first two components of the vector ~β are adapted, i.e., β1
and β2, whereas the values of β3 and β4 are kept constant.
Therefore, the analytical method consists in fitting only the
linear part of the path-loss definition previously presented
in Equation (3), i.e.:

∆L(x, y, ~β) = β1 + β2 log(d(x,y)). (4)

The expression in Equation (4) does not take the terrain
height into account, which is feasible when the field mea-
surements are taken at a roughly constant height relative
to the base station [8, 27]. However, when these heights
fluctuate within the coverage area of a cell, the other two
parameters, β3 and β4, have a considerable effect on the
adaptation of the signal-propagation model, as it will be
shown in the following sections.

3.1 Differential ant-stigmergy algorithm

In order to adapt the vector ~β, including its four compo-
nents, we turn our attention to metaheuristic algorithms
in general [24] and swarm intelligence in particular [16].
From this last family of metaheuristics, we have chosen the
differential ant-stigmergy algorithm (DASA) [17].

A standalone metaheuristic, the DASA is based on the
well-known Ant-Colony Optimization (ACO) [9]. It pro-
vides a specialized extension for solving high-dimensional,
numerical-optimization problems, whereas the ACO oper-
ates on the discrete domain. The DASA represents the
search space in a fine-grained discrete form, producing a
graph. This graph is then used as the walking paths for the
ants, which iteratively improve the temporary best solution.

There are several reasons for choosing the DASA as
the optimization algorithm in the context of this prob-
lem. First, the benefits of metaheuristic algorithms for
solving optimization problems, particularly in the context
of radio networks, was demonstrated by numerous au-
thors [4, 12, 15, 18]. Second, in [17], the authors shown the
suitability of the algorithm for solving numerical problems,
also exhibiting better performance than other swarm-based
metaheuristics. Moreover, it has already been successfully
applied for tackling an optimization problem in the area of
radio networks [4], obtaining competitive results.

The mapping between the parameter-optimization prob-
lem and the DASA is as defined in Equation (5).

Xa = {x1, x2, x3, x4} , (5)

where Xa is the solution vector of ant a during the mini-
mization process, and xj represents the j-th component of
vector ~β for the signal-propagation model of a given cell.
At the end of every iteration, and after all the ants have cre-
ated solutions, they are evaluated to establish if any of them
is better than the best solution found so far.

For a more in-depth explanation about this procedure
and the DASA itself, we refer the reader to [17].
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Figure 1: The parameter-optimization system as executed per network cell by a parallel process of PRATO.

3.2 Optimization objective
The optimization objective consists in adjusting the values
of components of vector ~β according to a set of field mea-
surements of a given cell. Each network cell is indepen-
dently optimized, so that its radio-propagation prediction
minimizes the mean-squared error against the field mea-
surements, as defined in Equation (6).

f∗(c) = min
∑

m∈Mc

(pc − Lc(coord(m), ~β)−m)2

|Mc|
∀c ∈ N, (6)

where f∗(c) is the optimization objective to be minimized
for cell c, N is one of the test networks, pc is the trans-
mit power of cell c, m is a field measurement of cell
c, Mc is the set of all field measurements of cell c, and
Lc(coord(m), ~β) represents the path loss of cell c at the
same geographical point of the field measurement m, as
defined in Equation (3). Note that f∗(c) is independently
calculated for each c ∈ N .

4 Simulations
In the parameter-optimization problem, the process starts
with a mobile network. Each network cell is optimized by
an independent parallel process as shown in Figure 1. The
set of field measurements corresponding to the cell under
optimization has to be gathered through drive tests before
hand. Together with the cell configuration, they provide the
input data for the optimization process itself. An iteration
begins when the DASA generates a solution vector for each
of the ants in the colony. The following step involves the
evaluation of the solution vector carried by an ant, i.e., one
radio-propagation prediction per iteration of the optimiza-
tion process. The objective-function value is calculated as
defined in Equation (6), and sent back to the DASA for it to
generate the next set of solutions. The optimization process
involves multiple iterations, which are repeated until some
stopping criteria are met. Then, the best solution found
represents the optimized values of the tuning parameters
for the radio-propagation model of the target network cell.

The optimization process is performed by PRATO in
parallel over the worker processes, each of which runs in-
dependently of the others while optimizing the parameters
of one network cell.

Compared with the analytical approach, the solution of
which requires solving a linear system of equations, a large
number of evaluations is needed for the metaheuristic opti-
mization to converge to a solution. Therefore, it is essential

Number
of cells

Calculation
radius [km]

Area
[km2]

Field-
measurement

proportion [%]

Net1 9 16.00 82.90 4.40
Net2 25 16.00 133.47 6.74

Table 1: Some characteristics of the test networks used for
the experimental simulations.

to exploit the parallel nature of PRATO in order to concur-
rently optimize the parameter sets of multiple cells within
the network. Otherwise, such approach would not be feasi-
ble, since the time required to reach a reasonable solution
would be excessive.

4.1 Test networks

The test networks, Net1 and Net2, are subsets of a real
LTE network deployed in Slovenia by Telekom Slovenije,
d.d. For the path-loss predictions, we were provided DEM
and clutter maps of 25 m2 resolution. A calculation ra-
dius around each network cell limited the path-loss predic-
tion to a distance where it is feasible for an UE to con-
nect to a cell, i.e., when the RSRP is greater or equal to
-124 dBm [20]. At the same time, this calculation radius
provides enough overlap among neighboring cells to calcu-
late the network coverage over the whole region, for which
the receiver height was set to 2 m above ground level. Ta-
ble 1 provides more information about the test networks
used, such as the number of network cells, the area surface,
and the covering proportion of the collected field measure-
ments in terms of the total area of each test network.

Net1 represents a network deployed over a dominant
agricultural area with almost flat terrain, some forests and
waters streams. The other network, Net2, is deployed over
a hilly terrain mostly covered by forests.

As the stopping criteria for the optimization runs, we
fixed the maximum number of iterations to 250, since the
algorithm showed an acceptable convergence profile in all
runs. Overall, the framework completed 20,000 objective-
function evaluations, i.e., 180,000 radio-coverage predic-
tions for Net1 and 500,000 for Net2.

The simulations were carried out on several computing
nodes of the DEGIMA cluster [13] at the Nagasaki Ad-
vanced Computing Center (NACC) of the Nagasaki Uni-
versity in Japan. The reason for using a high-end com-
puter cluster as DEGIMA is to exploit the parallel nature
of PRATO. To this end, groups of 5 and 13 computing
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Manual Analytical DASA
Test network Mean Standard deviation Mean Standard deviation Mean Standard deviation

Net1 5.88496 13.69240 0.00001 12.64708 0.01974 12.13723
Net2 6.52300 14.35561 0.00007 12.30833 0.01372 10.59590

Table 2: Mean and standard-deviation values of the radio-propagation prediction against the field measurements. The
values, expressed in dB, are given when using the manual, analytical and DASA approaches in each test network.

nodes were used for executing the simulations of the dif-
ferent problem instances, i.e., Net1 and Net2, respectively.

The computing nodes were connected by a LAN, over
a Gigabit Ethernet interconnect. The nodes were equipped
with a Linux 64-bit operating system (Fedora distribution).
OpenMPI was used as the message passing implementa-
tion, version 1.6.1, the binaries of which were manually
compiled with the distribution-supplied gcc compiler, ver-
sion 4.4.4.

After some trial-optimization runs, the six parameters
that control the way the DASA explores the search space
were set to the following values:

– m = 80, the number of ants;

– b = 10, the discrete base;

– ρ = 0.2, the pheromone dispersion factor;

– s+ = 0.01, the global scale-increasing factor;

– s− = 0.01, the global scale-decreasing factor; and

– ε = 10−5, the maximum parameter precision.

The trial runs consisted in doubling m from 5 to 640, and
verifying the convergence profile and best solution found.
The values of the other parameters were left unchanged.

4.2 Result analysis
The mean and standard-deviation values after correlating
the field measurements with the radio-propagation predic-
tion of each test network and parameter set are shown in
Table 2.

The parameter set used for the “Manual” column of Ta-
ble 2 was provided by the radio experts of the Radio Net-
work Department at Telekom Slovenije, d.d. These values
were calculated based on manual observations and were ap-
plied to all the cells in the network. The column labeled
as “Analytical” represents the parameter set calculated by
the least-squares approach as presented in the related lit-
erature [1, 8, 27]. The last column, which is labeled as
“DASA”, represents the average parameter set calculated
by the DASA after 30 independent runs.

The manual approach clearly shows the biggest discrep-
ancy of the radio-propagation predictions in both the rural
(Net1) and hilly (Net2) environments. The analytical ap-
proach considerably improves the results achieved by the
manual method, thus showing lower mean and standard-
deviation values in both test networks. As for the DASA,

it further improved the standard deviation of the analyti-
cal approach. Moreover, this correction is significant for
in Net2, thus confirming the influence of the hilly terrain
in the accuracy of signal-propagation predictions. This is
especially important on the border of the cell coverage,
where a 2 dB difference in the received-signal strength
could mean predicting sufficient network coverage where
there would otherwise be none. Regarding the mean values
showed by the DASA solutions, we may observe that they
are several orders of magnitude higher than those of the
analytical solutions. However, the values are, in all cases,
strictly lower than 0.02 dB, which is a negligible difference
in terms of the RSRP levels that outline the coverage of a
network cell.

These results confirm that the use of the DASA to
perform the optimization of parameters of a signal-
propagation model is viable, since it is capable of reflecting
the physical phenomena appearing in real-world conditions
in two geographically-different network instances.

Figures 2 and 3 depict the probability-density distri-
butions of the difference between the signal-propagation
predictions and the field measurements. The mean and
standard-deviation values of these distributions are listed
in Table 2.
Figure 2 (a) depicts the difference distribution of the cov-
erage prediction for test network Net1 using the manually-
calculated parameters, Figure 2 (b) shows the difference
distribution for the same test network, but using the
analytically-calculated parameters, and Figure 2 (c) shows
the difference distribution using the DASA-optimized pa-
rameters. Notice how the difference distributions show an
improvement when the analytically-calculated parameters
are used, lowering the largest (outer) deviations, and rais-
ing the lowest (inner) ones. Additionally, the difference is
negligible when using the optimized parameters, thus con-
firming that it is sufficient to only adapt β0 and β1 in en-
vironments where the height difference between the trans-
mitter and the receiver, i.e., log(HA) in Equation (1)), is
roughly constant.

The difference distributions of the radio-propagation
predictions for test network Net2 using the manually-
calculated parameters, the analytically-calculated, and the
optimized ones are shown in Figures 3 (a), 3 (b), and
3 (c), respectively. Similar to Net1, the improvement ap-
pears in the largest deviations, since their values are lower
than when using the manually-calculated parameters. In
this case, we may also observe the improvement achieved
by the parameter set calculated with the DASA, which in-
cluded all four components of the vector ~β, thus better re-
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Figure 2: Probability-density distribution of radio predic-
tions against the field measurements of network Net1 over
a rural area using the: (a) manually-calculated parameters,
(b) analytically-calculated parameters, and (c) optimized
parameters.
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Figure 3: Probability-density distribution of radio predic-
tions against the field measurements of network Net2 over
a hilly area using the: (a) manually-calculated parameters,
(b) analytically-calculated parameters, and (c) optimized
parameters.
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flecting the signal propagation over a hilly terrain.
Overall, the parameter optimization of the signal-

propagation model with respect to field measurements does
improve the quality of the calculated radio-propagation
predictions. Considering that the default parameter val-
ues were manually calculated by the radio engineers for
the whole network, the convenience of the automated op-
timization procedure is clear. Indeed, these advantages are
a consequence of a simpler method that automatically de-
livers radio-predictions of superior quality and accurately
represent the physical properties of a given environment.

4.3 Statistical analysis
Because of the stochastic nature of the DASA optimization
algorithm, we have collected the results of 30 independent
runs in order to have enough data for them to be statisti-
cally relevant. In other words, the robustness of the results
presented in the previous section is analyzed here.

To this end, Table 3 shows a statistical analysis of
the mean and standard-deviation values of the solutions
reached by the DASA for each test network. The analy-
sis includes the minimum, maximum and average values
for every quality measure of the radio-propagation predic-
tions, along with their standard deviation.

We may observe that the standard deviation is consis-
tently lower than 0.015 for both quality measures, indicat-
ing a consistent convergence of the optimization algorithm
and confirming the suitability of the DASA for tackling the
parameter-optimization problem.

5 Conclusion
We have presented a metaheuristic-optimization approach
for the parameter optimization of signal-propagation mod-
els. The open-source framework for coverage-planning
and optimization of radio networks (PRATO)1 was used to
concurrently optimize multiple cells of the target network
in parallel, exploiting the resources of a computer clus-
ter. Based on extensive experimental simulations, we have
shown the suitability of the metaheuristic approach for the
automatic adaptation of the parameter values over different
regions of a newly deployed LTE network in Slovenia.

By using different sets of field measurements over the
target regions, the combination of the afore-mentioned
techniques the parameters of the signal-propagation model
were adapted to geographical are around each network cell.
As a result, the accuracy of the radio-propagation predic-
tions of the whole network was improved. Moreover, the
improvement was significant when applying the presented
approach to a network deployed over a hilly area, even out-
performing the results of a least-squares analytical method
commonly used in the related literature. The simulation re-
sults suggest that the presented methodology is applicable

1The source code is available for download from the corresponding
author’s home page, http://cs.ijs.si/benedicic.

for LTE networks in general, since it reached very good
accuracy of the calculated radio predictions over diverse
terrains. Consequently, the applicability of this approach
for arbitrary terrain types can be expected.

Further research will include the performance analysis of
other metaheuristic approaches [15] and their result com-
parison with the DASA. Also, the consideration of urban
environments, where the signal-propagation conditions dif-
fer from those in rural and hilly areas, should also be ex-
plored. Furthermore, in the context of the radio-coverage
planning activities carried out at the Radio Network De-
partment of Telekom Slovenije, d.d., supplementary test-
ing of the presented approach, as a support methodology
for coverage planning, is currently being conducted. So
far, the performed analyses yield robust results compared
to traditional, manual techniques.
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