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Cropland plays a critical role in maintaining national food security, but its extraction is often hindered by factors 

such as type of cropland, crop category, and surrounding vegetation, resulting in low extraction accuracy. This 

paper proposes a cropland extraction network, called GF-UNet, to address the challenges of accurately extracting 

cropland from very high-resolution (VHR) remote sensing images. GF-UNet builds on the Attention U-Net network 

and introduces Attention Gates (AGs) to improve the ability to discriminate between similar features of cropland 

and non-cropland in complex situations. This helps to improve the accuracy of cropland extraction. In addition, an 

Adaptive Feature Fusion Module (AFFM) is incorporated to integrate multi-scale cropland features, further 

enhancing the network's ability to identify cropland. The Spatial Feature Extraction Module (SFEM) is also 

introduced into the skip connection to improve the extraction of detailed features in the results. The research data 

used in the study consists of GF-2 satellite images of Xuan 'en County, Hubei Province, from June to September 

2019. Comparative experiments were conducted with SOTA models, the results demonstrate that GF-UNet 

outperforms the other models in terms of accuracy, F1-score, and IoU. The accuracy, F1-score, and IoU of GF-

UNet were reported as 91.25%, 92.41%, and 84.56%, respectively. The study also explores the impact of SFEM and 

AFFM on the experimental results. Compared to existing SOTA methods, GF-UNet proves to be more suitable for 

cropland extraction in complex scenes, providing a practical approach to addressing the challenges of cropland 

extraction in such scenarios. 

Povzetek: Članek predstavlja omrežje GF-UNet za natančno izločanje kmetijskih površin iz slik visoke ločljivosti s 

pomočjo daljinskega zaznavanja. GF-UNet uporablja modul za adaptivno združevanje značilnosti in prostorski 

modul za izboljšanje delovanja. 

 

1  Introduction  

Cropland plays a crucial role in modern agricultural 

development and is vital to the survival of human society [1]. 

Timely and accurate access to agricultural information is of 

great importance for ensuring national food security and 

promoting sustainable development of the national economy 

[2]. Remote sensing technology, with its wide coverage and 

timely imaging capabilities, enables rapid updates of 

agricultural information [3,4].  

As the spatial resolution of remote sensing imagery continues 

to improve, ground objects can be represented with greater 

accuracy. In particular, very high resolution (VHR) remote 

sensing imagery, with a resolution of less than 5.0 meters [5], 

can effectively capture the shape and type of land objects, 

providing accurate data for precise crop monitoring [2,6]. 

Traditional cropland extraction methods, including K-Means 

[7], Support Vector Machine (SVM) [8], Decision Tree (DT) 

[1], and Random Forest (RF) [9], mainly rely on the intrinsic 

characteristics of the image spectrum, texture, and geometric 

information to derive cropland information [10]. However, the 

results of these extraction methods are susceptible to the pepper  

 

and salt phenomenon, resulting in reduced accuracy [11]. In 

addition, these techniques underutilize high-level image   

features such as image morphology and context information, 

resulting in cropland extraction results that may not meet 

practical requirements [1,10]. 

Convolutional Neural Networks (CNNs) have emerged as a 

highly effective deep learning architecture for semantic 

segmentation tasks, including the extraction of ground object 

information from remote sensing images [12]. Many 

researchers have used CNNs to extract various features such as 

buildings, roads, and cropland due to their ability to 

independently learn abstract features and capture contextual 

associations in images without relying on hand-crafted features 

[13,14,15]. For example, Liu et al. [16] used U-Net to identify 

cropland, effectively mitigating the salt and pepper noise 

phenomenon associated with traditional methods. Similarly, Du 

et al. [17] applied DeepLabV3+ to segment irregular small 

cropland plots. 

However, encoder-decoder networks such as U-Net [18], 

PSPNet [19], and DeepLab_V3+ [17] have a potential 

disadvantage in that they may introduce irrelevant information 

that has been filtered out in deep networks. This problem arises  
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from the optimization of the decoder's upsampling results using 

low-level features from the encoder via skip connections, which 

may affect the model's segmentation performance [20].  To 

solve this problem, Oktay et al. [21] proposed the Attention U-

Net, which incorporates attention gates (AGs) into the U-Net 

architecture. The Attention U-Net assigns different weights to 

the connection features, allowing the suppression of irrelevant 

areas and the highlighting of significant features that are 

particularly useful for the specific segmentation task. This 

method helps to improve segmentation accuracy by focusing on 

relevant information. However, the Attention U-Net does not 

fully take into account the local spatial details in the shallow 

features and the relationship between the overall and local 

contextual features. It also overlooks the importance of spatial 

detail and location information [22]. 

These limitations highlight the need for further 

improvements in the modeling of spatial detail and the 

integration of local and global contextual features. By 

addressing these challenges, it is possible to improve the 

accuracy and performance of cropland extraction models, 

enabling more accurate identification and delineation of 

cropland areas in remotely sensed imagery. 

Furthermore, the inclusion of multi-scale features is crucial 

for improving the accuracy of semantic segmentation. 

Researchers have explored different approaches to incorporate 

multi-scale information into the models. 

Yang et al. [23] used parallel and cascaded architectures of 

dilated convolutions to design the DenseASPP module, allowing 

the model to learn more global features. Liu et al. [24] 

constructed a new residual ASPP to obtain essential multiscale 

semantic information while avoiding the problem of gradient 

disappearance. 

However, a common challenge with these methods is the use 

of all channel information from the input features for the feature 

scale transformation. While this method enables multi-scale 

feature fusion, it can increase the computational burden of the 

model and introduce redundant information. To address this 

issue, researchers have explored techniques to optimize multi-

scale feature fusion. These include methods such as channel 

attention and feature recalibration mechanisms that selectively 

emphasize relevant information and suppress redundant or less 

informative features. In this way, models can achieve a more 

efficient and effective fusion of multi-scale features, leading to 

improved segmentation accuracy. 

Based on the research mentioned above, we have developed 

a novel deep-learning approach for the precise extraction of 

cropland from very high-resolution (VHR) images. Our 

approach employs a CNN model that integrates attention gates 

and multi-scale feature fusion. The following are the main 

innovative aspects and contributions of our approach: 

(1) A proposed method for extracting cultivated land from VHR 

images involves using the GF-UNet model. The GF-UNet 

model includes an adaptive feature fusion module (AFFM) and 

a spatial feature extraction module (SFEM) to improve feature 

recognition and detail extraction capabilities.  

 

 

(2) The purpose of this study was to collect and process GF-2 

satellite data. Data enhancement techniques were used to   

expand the number of samples to ensure an adequate dataset for 

the experiment. 

(3) To evaluate the effectiveness of our proposed model, we 

conducted a comparative analysis with several popular 

semantic segmentation models. The aim was to quantitatively 

and qualitatively analyze the experimental results, in order to 

verify the superiority of our method. 

The remainder of this paper is organized as follows: Section 

I gives the introduction, Section II describes the related work, 

Section III describes the data processing process and the 

proposed methods, Section IV analyzes the experimental 

results, Section V discusses the reasons for the performance 

differences of the models. Finally, Section VI summarizes the 

thesis. 

2  Related work 
Land cover information plays a crucial role in the advancement 

of agricultural remote sensing. Many scientists have made 

significant contributions to the research of land cover 

information extraction and land cover mapping. 

Hong et al. [25] introduced a farmland boundary extraction 

technique that systematically incorporates several 

computational and mathematical methods, including the 

Suzuki85 algorithm, Canny edge detection, and the Hough 

transform, to extract farmland distribution information in six 

South Korean regions. This algorithm extracts boundaries with 

80.7% accuracy, 79.7% completeness, and 67.0% quality, 

allowing for the automatic creation of farm maps.  

Graesser et al. [26] developed a method for cropland area 

extraction that combines multispectral picture edge extraction, 

multi-scale contrast-limited adaptive histogram equalization, 

and adaptive threshold segmentation. The study focused on 

extracting farmland distribution information from portions of 

South America, and the extracted results had an F1 score of 

91%. The approach is very useful for extracting cropland 

distribution data over huge areas. It allows for accurate 

monitoring of agricultural developments.  

Zhang et al. [27] proposed a general method for high-

resolution cropland mapping using deep convolutional neural 

networks. Their method utilized the Pyramid Scene Resolution 

Network (PSPNet), which was slightly modified to combine 

deep remote features with local shadow features. This 

combination enabled more detailed predictions and improved 

accuracy in cropland mapping. The MPSPNet, a modified 

version of PSPNet, was evaluated using high-resolution 

satellite imagery in four different research areas in China. The 

method achieved an overall accuracy of 89.99% in the 

validation process. 

In the study [28], the authors introduced a multi-scale fusion 

network for cropland extraction that incorporates an attention 

mechanism. This method utilizes an image gradient attention 

guide module to improve the accuracy of the extracted cropland  
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information. To ensure comprehensive and complete cropland 

information extraction, the authors also incorporated a multi-

scale spatial feature consensus fusion model into the network. 

The experimental results demonstrate that this method 

efficiently extracts information on cropland boundaries and 

enables the extraction of semantic information related to 

cropland. The attention mechanism and multi-scale fusion 

contribute to improved accuracy and a more comprehensive 

understanding of cropland areas. 

In the study [29], Xu et al. introduced a multi-task cascade 

network model called SGENet for the extraction of farmland 

plot information. This model was designed to automatically 

learn multi-scale and multi-level features, enabling it to handle 

complex planting scenarios and different scales of farmland 

plots.  

In the study [30], Huan et al. proposed a multi-attention 

encoder-decoder network (MAENet) for the segmentation of 

agricultural scenes. The authors aimed to improve the 

segmentation performance of the network by incorporating 

several modules, including the dual-pooling efficient channel 

attention (DPECA) module, the dual-feature attention (DFA) 

module, and the global-guidance information upsampling (GIU) 

module. The authors evaluated the performance of MAENet on  

 

 

 

three self-generated farmland image datasets representing UAV 

data. The results showed that MAENet achieved an impressive 

MIoU of 93.74% and Kappa score of 96.74%, outperforming 

other existing methods. The research discussed in this section 

is summarized in Table 1. 

The GF_UNet model is a cropland extraction network that 

improves the performance of the standard U-Net network 

architecture by incorporating AGs to distinguish between 

different categories with similar features [31]. The GF_UNet 

model is a cropland extraction network that improves the 

performance of the standard U-Net network architecture by 

incorporating AGs to distinguish between different categories 

with similar features. This study proposes modifications to the 

Attention U-Net architecture to create the GF_UNet model. The 

purpose of these modifications is to enhance the accuracy and 

efficiency of extracting croplands. The GF_UNet model 

underwent evaluation using a self-generated dataset that 

included a variety of complex cultivated land scenarios. The 

results of the evaluation demonstrated the model's strong 

performance, achieving an accuracy rate of 91.25% and an F1-

score value of 92.41%. These metrics indicate the model's 

ability to accurately extract cropland regions from input 

imagery. 

Table 1: Summary of related works 

Research works Summary of methods  Limitation 

Development of a Parcel-Level 

Land Boundary Extraction 

Algorithm for Aerial Imagery of 

Regularly Arranged Agricultural 

Areas [25] 

An algorithm for extracting farmland 

boundaries is presented that uses a 

combination of computational and 

mathematical techniques, including the 

Suzuki85 algorithm, Canny edge detection, 

and Hough transform. 

This algorithm may not be suitable 

for the case where the cropland 

deviates significantly from the 

shape rule. 

Detection of cropland field parcels 

from Landsat imagery [26]  

A cropland area extraction method that 

involves the combination of multispectral 

image edge extraction, multiscale contrast-

limited adaptive histogram equalization, 

and adaptive threshold segmentation. 

It is important to note that this 

method relies on prior knowledge of 

the scene, which may limit its 

applicability for extracting cropland 

information over large areas. 

A generalized approach based on 

convolutional neural networks for 

large area cropland mapping at 

very high resolution [27]  

A method for high-resolution cropland 

mapping using deep convolutional neural 

networks 

Applying the method to scenes with 

complex land cover patterns or a 

mix of different surface types may 

pose challenges. 

Study of Multiscale Fused 

Extraction of Cropland Plots in 

Remote Sensing Images Based on 

Attention Mechanism [28] 

A multiscale fusion cropland extraction 

network that incorporates an attention 

mechanism. 

This method may result in cropland 

boundaries with some degree of 

fuzziness, and there may be 

instances where parcels are 

connected. 

Extraction of cropland field 

parcels with high resolution 

remote sensing using multi-task 

learning [29] 

A multi-task cascade network model called 

SGENet 

It is important to note that this 

approach may face challenges when 

dealing with regions that have 

similar characteristics of different 

species. 

MAENet: Multiple Attention 

Encoder–Decoder Network for 

Farmland Segmentation of 

Remote Sensing Images [30] 

A multi-attention encoder-decoder network 

(MAENet) for agricultural scene 

segmentation. 

The dataset scenario is 

straightforward, and the MAENet 

model's generalization ability is 

inadequate. 
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3  Materials and proposed method  

3.1  Data preprocessing 

Experimental data from high-resolution Earth observation 

system data and application center of Hubei Province 

(http://datasearch.hbeos.org.cn), including 16 of micro-cloud 

cover (<5%), the high quality of GF-2 scene satellite images, it 

covers Xuen County, Hubei Province in central China (29°01'-

33°06'N, 108°21'-116°07'E). First, we used ENVI 5.3 to pre-

process the collected GF-2 remote sensing data with 

orthometric correction, atmospheric correction, radiometric 

correction, and multispectral and panchromatic band fusion 

[32]. The atmospheric correction was performed using the 

FLAASH atmospheric correction [33]. The full-color image 

was sharpened using a sharpening filter before image fusion. 

The acquired multispectral and panchromatic images were then 

fused at a 4:1 ratio, and the fused GF-2 image had a spatial 

resolution of 1 meter. 

Cropland samples of GF-2 images were mapped based on the 

pre-processed GF-2 images and the actual collected cropland 

images. The GF-2 images and mapped cropland samples were 

cropped to 256×256 size and divided into training data, 

validation data, and test data. Data enhancement operations 

such as rotation and noise addition were performed on the 

training and validation data to increase the number of samples, 

which could avoid overfitting the training model due to 

insufficient training data during the training process. The 

dataset for this study consisted of 9863 training sets, 1932 

validation sets, and 1860 test sets, with an approximate ratio of 

8:1:1. It included four types of croplands, and their 

characteristics are summarized in Table 2. 

Table 2: Cropland type characteristics in dataset 

Type Image Feature description 

Type 1 

 

The grain within the cropland 

appears uniform, and the boundary of 

the cropland is clearly defined. 

Type 2 

 

The boundary between large 

croplands is easily distinguishable, 

but the features of small croplands 

vary. 

Type 3 

 

The characteristics of cropland 

closely resemble those of the 

surrounding background. 

Type 4 

 

The cropland has an irregular shape, 

and its boundaries are 

interconnected. 

3.2  Network structure 

To accurately extract the cropland distribution information, this 

paper proposes the GF-UNet network model, and its structure is 

shown in Figure 4.  

 

GF-UNet adds the AFFM and SFEM based on Attention U-

Net, which mainly consists of four parts: the encoder, the 

decoder, the SFEM, and the AGs. Similar to Attention U-Net, 

the first three layers of the GF-UNet encoder consist of two 

convolutional layers (Conv) with a batch normalization layer 

(BN) and a linear rectification function (ReLU) in series. The 

fourth layer consists of AFFM. AFFM extracts the global 

semantic information of the farmland by fusing the multi-scale 

farmland features and combines the squeeze and excitation (SE) 

channel attention mechanism [34] to obtain the channel weight 

distribution values of the fused farmland features, which 

enhances the ability of the network to recognize the farmland 

attributes. To effectively extract the spatial detail information of 

the low-level features and preserve the location information of 

the spatial details, GF-UNet adds SFEM to the skip connection. 

Then, the result of SFEM is used as the input of AGs to increase 

the responsiveness of the network to the cropland features. 

Finally, the final cropland distribution information is output 

through the convolution module in the decoder. 

3.3  Adaptive feature fusion module 

In the task of semantic segmentation, it is crucial to integrate 

multiscale information due to variations in segmented objects. 

Relying solely on a single scale of features often leads to 

inadequate extraction outcomes [35]. This paper proposes an 

Adaptive Feature Fusion Module (AFFM), which comprises a 

parallel multi-branch network consisting of a multi-scale 

feature fusion module and an attention enhancement module.  

AFFM effectively captures both the global contextual 

features of the field and the primary semantic information of the 

cropland. It accomplishes this through its multiscale feature 

fusion module that comprehensively learns field features, along 

with an attention enhancement module that learns channel 

weight distribution for cropland features while reducing 

redundant information during network training. Figure 2 

illustrates the structure of AFFM. 

AFFM divides the input feature X into four sub-features: X1, 

X2, X3 and X4, in channel order. These sub-features capture 

different aspects of the input data. To capture feature 

information at different scales, X1, X2, and X3 are sequentially 

pooled. Specifically, X1 is subsampled 8 times, X2 is 

subsampled 4 times, and X3 is subsampled 2 times. The process 

of pooling reduces the spatial resolution of the features while 

preserving their essential information. However, X4 does not 

undergo any pooling operation. Therefore, X4 retains its 

original spatial resolution and is not downsampled like X1, X2, 

and X3. By keeping the spatial details intact in X4, the network 

can capture fine-grained information and maintain the location 

information of the features. To capture global contextual 

information and achieve a broader receptive field, we utilized 

depth-separable convolution with a 3×3 kernel size to extract 

four sub-features. After extracting the features, X1, X2, and X3 

are upsampled to match the spatial resolution of the input 

feature X, resulting in four different scales of feature maps: Y1, 

Y2, Y3, and Y4. To combine information from the four scales,  
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concatenate the feature maps Y1, Y2, Y3, and Y4 sequentially. 

This creates a new feature map that encapsulates information  

 

 

 

from different scales. Apply a 1×1 convolution operation to the 

concatenated feature map to allow for the interaction of channel 

information across the different scales. 

 
Figure 1: Architecture of GF-UNet 

To adaptively weigh the spatial information, the paper uses 

the sigmoid activation function to obtain the spatial attention 

weight. This weight is then multiplied element-wise with the 

input feature X, resulting in a spatially adaptive feature map 

denoted as Ys. The multiplication process ensures that the 

features deemed important by the attention weight receive more 

emphasis, while less important features are downweighted. 

( 3 3( ( )))i iY UP DWConv Pool X=   （1） 

[ 1 1( ( ))]s iY X Conv concat Y=    （2） 

Where UP  is upsampling, DWConv  denotes depth-

separable convolution, Pool  is pooling operation, concat  is 

stacking according to channel,   denotes Sigmoid ,   

denotes pixel multiplication. 

The channel weights for the spatial adaptive feature map Ys 

are determined using global average pooling (GAP), a fully 

connected layer (FC), and a sigmoid activation function. These 

operations generate the channel weight values for Ys. By 

multiplying these channel weights with Ys, we can redistribute 

the weights of Ys and obtain the adaptive feature Y. This 

adaptive feature captures the refined and tuned contributions of 

each channel, ultimately enhancing the discrimination of 

features. 

2 1[ ( ( ( ( ))))]s sY FC FC GAP Y Y =   (3) 

Where FC  represents the fully connected layer, GAP  

represents the global average pooling, 
1  represents the 

ReLU  activation function, and 2  represents the Sigmoid  

activation function. 

 
Figure 2: Architecture of AFFM 

3.4  Spatial feature extraction module 

The attentional mechanism, inspired by human vision, is 

effective in focusing on important detailed features during 

network training, thus improving network performance [36]. 

The CBAM attention mechanism, which includes both channel  

 

 

and spatial attention, enhances the network's learning capability 

[37]. 

To obtain spatial attention, CBAM calculates spatial 

attention weights by performing average pooling and maximum 

pooling operations on the channel dimensions. These 

operations extract the maximum and average values within each  
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channel at the same spatial location. However, it is important to   

note that the pooling operation can result in the loss of channel 

information, which can be detrimental to the effective transfer 

of information during network training. 

Retaining channel information is crucial for preserving the 

discriminative power of features. Without channel information, 

the network may struggle to capture the fine-grained details 

necessary for accurate segmentation. Therefore, it is important 

to address the potential loss of channel information when using 

spatial attention mechanisms like CBAM. 

To tackle the problem of potential loss of channel 

information due to pooling operations in the CBAM attention 

mechanism, SFEM removes the pooling layer of channel 

dimension in CBAM. Instead, it uses two layers of 7×7 depth-

separable convolutions to increase the receptive field and 

capture more global spatial feature information. The use of 

depth-separable convolutions reduces computational 

complexity while maintaining effectiveness in capturing spatial 

features. 

To facilitate the comprehensive understanding of input 

features, a 1×1 convolution is used to enable the interaction of 

channel information, performing upscaling and downscaling of 

feature channels.  

SFEM improves the contextualization of spatial features by 

incorporating these modifications. SFEM contributes to the 

detailed restoration of plowing results by preserving the overall 

structure and details of the image. Figure 3 depicts the structure 

of SFEM, showcasing the arrangement of the components 

involved in capturing global spatial feature information and 

promoting the interaction of channel information. 

 
Figure 3: Architecture of SFEM 

3.5  Attention gates 

Attention Gates (AGs) identify salient feature regions using the 

attention coefficient [0,1]   and suppress the responses of 

irrelevant features, maximizing the retention and activation of 

neurons associated only with salient features [38]. The structure 

of AGs can be seen in Figure 4.  

In AGs, relevant feature representations from the input are 

captured by extracting the input feature lx  and the gate signal 

gx  as two types of feature information using 1×1 convolutions 

lW  and gW , respectively. The two types of feature information 

are then fused together to obtain the feature image tx , which 

combines the salient information from both lx  and 
gx . To 

obtain feature information 
qx , activate the feature of tx  using  

 

 

 

the ReLU function and reduce the feature dimensionality by 1

×1 convolution  . The feature image 
tx  is passed through the  

 

ReLU activation function to enhance its activation. Then, it 

undergoes dimensionality reduction using a 1×1 convolution 

 . This step reduces the number of feature channels while 

preserving important information 
qx . 

Next, the sigmoid activation function is applied to 
qx  to 

obtain the attention coefficients  . These coefficients are then 

resampled and multiplied with the input features 
lx  to obtain 

'

lx . This process enhances the representation of salient features 

while suppressing irrelevant feature regions. 

( ) ( )t g g l lx W x W x=   (4) 

1( ( ))q tx x =  (5) 

2( ( ))qResampler x =  (6) 

'

l lx x=   (7) 

Where gW , 
lW , and   are 1×1 convolution, 

1  is ReLU , 

2  is Sigmoid , Resampler  is upsampling,   and   are 

pixel addition and pixel multiplication, respectively. 

 
Figure 4: Architecture of ags 

3.6  Loss function 

In remote sensing images, the imbalance between cultivated 

and non-cultivated land is particularly noticeable in 

mountainous areas. When using binary cross entropy loss (BCE 

Loss), equal weight is given to each class, which can cause the 

model to learn in the wrong direction [39]. On the other hand, 

Dice Loss [40] is better at extracting the foreground and is more 

suitable for unbalanced samples. However, the loss function 

presents a gradient instability problem, which can result in 

suboptimal convergence of training results [41]. Therefore, the 

BCE-Dice Loss function, which combines the Dice Loss and 

BCE Loss, is more suitable for measuring the fitness of 

predicted and actual values in cultivated land extraction results. 

The calculation formula is as follows: 
'

'
1

21
1

N
i i

Dice

i i i

y y
L

N y y=

= +
+

  (8) 

' '

1

1
[ log (1 ) log(1 )]

N

BCE i i i i

i

L y y y y
N =

= − + − −  (9) 

_BCE Dice BCE DiceL L L= +  (10) 

Where iy  represents the true value of the i th pixel, iy   

represents the predicted value of the i th pixel, and N  is the 

number of pixels. 
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3.7  Performance assessment 

To evaluate the results of cropland extraction, four evaluation  

metrics based on the confusion matrix were utilized: Precision, 

Recall, F1-score, and Intersection over Union (IoU) are all 

metrics used to evaluate the performance of classification 

models. Precision is the ratio of true positive predictions to all 

positive predictions, Recall is the ratio of true positive 

predictions to all true positive values, F1-score is the harmonic 

mean of Precision and Recall, and IoU is the ratio of the 

intersection to the union of the predicted and true values. The 

formulas for calculating these metrics are as follows: 

TP
Precision

TP FP
=

+  
(11) 

TP
Recall

TP FN
=

+  
(12) 

1 2
Precision Recall

F
Precision Recall


= 

+  
(13) 

TP
IoU

TP FP FN
=

+ +  
(14) 

Where TP is true positive, TN is true negative, FN is false 

negative, and FP is false positive. 

4  Result analysis 
The experiment is based on the TensorFlow 2.6 deep learning 

framework and uses Python 3.6 to execute the code. The 

computer hardware uses an Intel Core i7-11700F CPU, an 

NVIDIA GeForce RTX 3060 graphics card with 12 GB of 

video memory, and CUDA 11.2 accelerated computing. The 

computer's operating system is Windows 10. 

The Adam optimizer was selected for training the model.  

Adam is an abbreviation for Adaptive Moment Estimation and 

is commonly used in deep learning tasks. It combines the 

advantages of adaptive learning rate methods and momentum-

based methods, which help to alleviate the issues caused by 

gradient oscillation during training. 

To examine the effect of batch size and learning rate on 

training and validation accuracy, we conducted various 

experiments with different parameter values. The results were 

analyzed and presented in Figure 5 and Figure 6, which display 

the training and validation accuracy curves, respectively. 

Figure 5 illustrates the training accuracy curve over the 

course of training, while Figure 6 shows the validation accuracy 

curve. By analyzing these curves, one can gain insights into 

how various batch sizes and learning rates impact the model's 

performance. Upon analyzing the change curves of training 

accuracy and validation accuracy, it is evident that an increase 

in the learning rate leads to gradual improvement in training 

accuracy. However, the validation accuracy initially increases 

but then starts to decrease, indicating that a higher learning rate 

may result in faster convergence during training, leading to 

improved training accuracy but also potentially causing 

overfitting and a decrease in validation accuracy. When the  

 

 

learning rate is less than 5e-3, the validation  accuracy exceeds 

the training accuracy. This suggests that the network model is 

overfitting, which means it is overly  optimized for the training 

data and has difficulty generalizing to unseen data. As for the 

batch size, it is noted that setting it to 12 maximizes both the 

training and validation accuracy. It is suggested that a batch size 

of 12 strikes a balance between computational efficiency and 

model performance for the given task. Based on these 

observations, it is determined that the initial learning rate 

should be set to 5e-3 and the batch size should be 12. These 

values are chosen to optimize the training process and achieve 

the best possible accuracy on both the training and validation 

datasets. 

 

 
Figure 5: The influence curve of learning rate on training 

accuracy and verification accuracy 

 

 
Figure 6: The influence curve of batch size on training 

accuracy and verification accuracy 

 

We compared the proposed architecture with other state-of-

the-art methods on datasets and verified its superiority through 

quantitative and qualitative results. The quantitative results are 

presented in Table 3. In remote sensing image segmentation, 

the network's performance on precision, recall, F1-score, and 

IoU metrics is of particular interest. 

The evaluation results of the proposed architecture, GF-

UNet, demonstrate its superior performance compared to 

classical semantic segmentation models such as U-Net, 

PSPNet, and DeepLab_v3+. GF-UNet achieved the highest 

Precision, F1-score, and IoU values among all the compared  
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methods, with values of 0.9125, 0.9241, and 0.8456, 

respectively. 

The effectiveness of the proposed architecture for remote 

sensing image segmentation tasks is highlighted by the 

significant improvement of GF-UNet over classical models.  

This improvement can be attributed to the unique design 

choices and architectural modifications made in GF-UNet, 

which have enhanced its ability to accurately segment remote 

sensing images. 

Additionally, GF-UNet outperforms two recent methods, 

MAENet and SGENet. This indicates that the proposed 

architecture outperforms not only traditional models but also 

more contemporary approaches, showcasing its state-of-the-art 

performance in remote sensing image segmentation. 

The high Precision, F1-score, and IoU values achieved by 

GF-UNet demonstrate its ability to accurately identify positive 

samples, achieve a balance between precision and recall, and 

accurately capture the overlap between predicted and true  

 

 

positive areas. These metrics highlight the robustness and 

quality of the segmentation results produced by GF-UNet. 

Figure 7 displays the semantic segmentation outcomes of 

different methods. The first column presents the cropland 

image, the second column shows the cropland label and the 

remaining columns exhibit the segmentation results of various 

methods. 

The performance of different methods is described 

qualitatively by analyzing the results in Figure 7. GF-UNet's 

segmentation results show clear edge features, accurate detail 

features, and the best overall result, making it the best 

performing network. On the other hand, U-Net, PSPNet, and 

DeepLab_v3+ tend to miss small area targets, resulting in poor 

segmentation results. The qualitative analysis of the 

segmentation results proves the superiority and effectiveness of 

GF-UNet. 

 

 

 
Figure 7: Visualization of cropland extraction results by multiple methods.  

 

Table 3: Results of evaluation indicators of multiple methods. 

Models Precision Recall F1-score IoU 

U-Net[18] 0.7802±0.0172 0.8886±0.0187 0.8344±0.0179 0.7454±0.0142 

PSPNet[19] 0.7435±0.0214 0.8737±0.0194 0.8086±0.0201 0.6716±0.0187 

DeepLab_V3+[17] 0.8501±0.0206 0.8929±0.0218 0.8715±0.0197 0.7716±0.0162 

Attention U-Net[21] 0.8826±0.0145 0.9434±0.0173 0.9130±0.0158 0.7946±0.0159 

MAENet[30] 0.8875±0.0148 0.9007±0.0204 0.8941±0.0171 0.8125±0.0137 

SGENet[29] 0.9014±0.0153 0.9442±0.0185 0.9228±0.0164 0.8087±0.0141 

GF-UNet 0.9125±0.0142 0.9357±0.0180 0.9241±0.0165 0.8456±0.0128 
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5  Discussion 
The spectral and textural characteristics of cropland vary due to 

complex cropland types, diverse crop varieties, and different 

phenological characteristics [42]. Additionally, VHR remote  

sensing commonly exhibits homogeneity and heterogeneity,  

further complicating the extraction of cropland characteristics 

[43]. 

This paper validates the proposed model using self-made 

cropland datasets. To increase the dataset's sample capacity, 

data preprocessing and data augmentation methods are used. 

The dataset includes four different scenarios to capture the 

variability present in cropland imagery. The performance of 

each method is analyzed by comparing the proposed model with 

other state-of-the-art (SOTA) models. This analysis compares 

the proposed model to existing approaches to determine its 

effectiveness and superiority. 

Table 3 provides a comprehensive comparison of the 

performance metrics of the different models. GF-UNet stands 

out with a precision of 0.9125, outperforming MAENet and 

SGENet by 2.5% and 1.11%, respectively, indicating its 

superior ability to accurately identify positive samples. SGENet 

achieves the highest recall of 0.9442, slightly ahead of GF-

UNet by 0.85%. While SGENet performs slightly better at 

capturing all true positive samples, the margin is relatively 

small. The F1 score, which balances precision and recall, 

highlights the superiority of GF-UNet over Attention U-Net and 

SGENet, with an F1 score of 0.9241. GF-UNet strikes a better 

balance between precision and recall, providing a more holistic 

assessment of its segmentation performance. In addition, GF-

UNet achieves the highest Intersection over Union (IoU) value 

of 0.8456, outperforming MAENet and SGENet by 3.31% and 

3.69%, respectively. The IoU metric indicates the accuracy and 

quality of the segmentation results, with GF-UNet 

demonstrating superior precision in capturing true positive 

areas. Both the F1 score and IoU serve as critical evaluation 

metrics for network models, with GF-UNet emerging as a top 

performer in both categories. These results underscore its 

exceptional overall performance and minimal disparity between 

predicted and actual results. 

To investigate the factors that enhance the performance of 

the proposed model, ablation experiments were conducted 

using Attention U-Net as the base network to analyze the 

impact of AFFM and SFEM on model performance. The 

ablation effect was evaluated using IoU as the index. The results 

of the ablation experimental evaluation indexes are presented in 

Table 4, and the ablation experimental results are shown in 

Figure 8. 

 

 

 

 

Table 4 shows that the addition of the SFEM module to 

Attention U-Net increases the model's IoU by 1.78%, resulting 

in a total of 81.24%. Similarly, the addition of the AFFM 

module to Attention U-Net increases the model's IoU by 3.4%, 

resulting in a total of 82.86%. Both modules were added 

separately to Attention U-Net and have been shown to improve 

the model's performance. 

Table 4: Ablation results 

Models AFFM SFEM IoU 

baseline 

× × 0.7946±0.0159 

√ × 0.8286±0.0173 

× √ 0.8124±0.0147 

Our Model √ √ 0.8456±0.0152 

 

In combination with the results of Figure 8, it is evident that 

the SFEM module enhances the clarity of the cropland edge 

features extracted by the model, particularly the portion 

connected to the farmland and buildings. 

The SFEM module improves the clarity of cropland edge 

features extracted by the model, especially in areas where 

farmland and buildings are connected. It allows for more 

precise delineation of the boundaries between cropland and 

other structures, which is particularly noticeable in regions 

where cropland and buildings are adjacent or overlapping. The 

SFEM module refines the segmentation results by emphasizing 

distinctive features associated with cropland edges, resulting in 

clearer and more accurate boundary delineation. 

The AFFM module improves the model's ability to 

distinguish between farmland and forest land with similar 

features. It integrates multi-scale features, enlarges the model's 

receptive field, and extracts richer semantic information. 

Additionally, the channel attention mechanism SE strengthens 

the model's learning ability and improves its performance. 

Our proposed model utilizes both SFEM and AFFM, 

resulting in an increased IoU of 84.56%.  By combining the 

advantages of SFEM and AFFM, our model not only enhances 

its learning ability but also retains more detailed information.  

Compared to other state-of-the-art models, our model achieves 

higher segmentation accuracy and more precise edge features. 

However, during the experiment, we encountered an issue 

where our model tended to overlook small, isolated areas of 

farmland, resulting in segmentation loss. We need to improve 

the extraction of broken, irregularly shaped farmland with 

connected edges. Despite this, our model effectively enhances 

feature discrimination and preserves details. Our model can be 

applied to semantic segmentation in complex scenarios, which 

includes but is not limited to the extraction of farmland features. 
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Figure 8: Visualization results of ablation experiment.
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6  Conclusion 

Due to the distinct spectral and textural features of 

cropland in high-resolution remote sensing images, the 

classical semantic segmentation network yielded 

inaccurate and incomplete results for cropland extraction. 

To address this issue, the GF-UNet network based on the 

Attention U-Net architecture is proposed. In GF-UNet, 

attention gates (AGs) are employed to enhance 

discriminative ability between partially cropped areas and 

non-cropland features in complex scenes. In order to 

improve the network's ability to extract different 

categories of cropland attributes, we utilize an adaptive 

feature fusion module (AFFM). Additionally, we 

introduce a skip connection layer with a spatial feature 

extraction module (SFEM) to refine detailed features 

extracted from intermediate layers. Our method is 

evaluated using GF-2 images captured in Xuan'en County, 

Hubei Province. The experimental results show that GF-

UNet achieves an F1 score of 92.41% and a crossover ratio 

of 84.56%. Our proposed approach provides more 

accurate and comprehensive extraction of cropland 

information compared to SOTA methods. In the future, we 

will focus on incorporating phenological characteristics 

specific to different crops to improve categorization 

accuracy, considering the significant influence of crop 

types and phenological characteristics on cropland 

dynamics over time. 
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