Informatica 18 (1994) 71-79 71

SCHEDULING STRATEGIES IN HIGH-LEVEL SYNTHESIS

Jurij Silc

Jozefl Stefan Institute, Laboratory for Computer Architectures

Jamova 39, Ljubljana, Slovenia
E-mail: jurij.silc@ijs.si

Keywords: high-level synthesis, scheduling, allocation

Edited by: Matjaz Gams
Received: May 3, 1993

Revised: March 11, 1994

Aceepted: March 13, 1994

The paper describes objectives of high-level synthesis. It concentrates on operation
scheduling strategies and the interaction with the resource allocation. Some transforma-
tional and iterative/constructive scheduling algorithms are described. Moreover, a new
scheduling/allocation approach is presented and compared with other known algorithms.
Finally, some open problems of the high-level synthesis are given.

1 Introduction

The high-level synthesis task is to take a specifi-
cation of the behavior required of a system and
a set of constraints and goals to be satisfied, and
to find a structure that implements the behav-
ior while satisfying the goals and constraints. In
recent years there has been a trend toward au-
tomating synthesis at higher and higher levels of
the design hierarchy. There are a number reasons
for this: shorter design cycle, fewer errors, the
ability to search the design space, documenting
the design process, and availability of IC technol-
ogy to more people [28].

The roots of high-level synthesis can be traced
back to the 1960s [15]. During the 1970s most of
the effort went into automating tasks at lower lev-
els of the design hicrarchy, such as layout. Great
progress was made in the development of algo-
rithms and techniques (4, 51]. In the 1980s work
on high-level synthesis started to spread from the
academic community to industry. High-level syn-
thesis systems are now producing manufacturable
chip designs for applications such as signal pro-
cessing [10], pipelined processors [32], and inter-
faces [7]. However, there are still many unan-
swered questions related to such issues as specifi-
cation, input/output, designer intervention, com-
plex timing constraints, and the relation of syn-
thesis to the overall design and fabrication pro-
cess.

The paper starts with the description of high-
level synthesis structure and then concentrates on
scheduling which seems 1o be the most important
step during the synthesis. In particular, some of
the basic scheduling techniques are discussed.

2 High-Level Synthesis

Given a system, its siruclural description is a
specification of a set of components and their in-
terconnections. More recently, however, behav-
toral descriptions of systems are used. Such a de-
scription specifies what the system needs to do,
i.e. the way that each of the systems components
interacts with its environment.

High-level synthesis transforms behavioral de-
scription to the structural one. A typical way of
describing behavior is to write a program in an
ordinary computer language or in a special hard-
ware description language.

The first step in high-level synthesis is usu-
ally the compilation of the hardware description
language into an internal representation. Most
approaches use graph-based representations that-
contain both the data flow and the controlflow im-
plied by the specification. Control dependencies
are derived directly from the explicit order given
in the program and from the compiler’s choice
of parsing the arithmetic expressions. Data de-
pendencies show the essential ordering of opera-

72 Informatica 18 {1994) 71-79

tions. Some important tasks that should be per-
formed by the compiler at this stage include vari-
able disambiguation, taking care of the scope of
variables, converting complex data structures into
simple types, and type checking. Moreover, some
optimizing transformations may be done at this
stage, such as expression simplification. These
graphs are given different names in different syn-
thesis systems (e.g. value trace [47], data depen-
dency graph [2], directed acyclic graph [14], con-
trol and data flow graph [17]) but are simply dif-
ferent adaptations of similar basic concept. In
many systems, the control and data flow graphs
are integrated into one structure. In this paper we
will use the term flow graph. Before proceeding
to the second step it is desirable to do some ini-
tial optimization of the flow graph, such as dead
code elimination, constant propagation, common
subexpresion elimination, and loop unrolling.

The second step of the high-level synthesis,
which is the core of transforming behavior into
structure, includes operation scheduling and hard-
ware allocation. Since these two tasks are essen-
tial in high-level synthesis they have been studied
extensively and a variety of algorithms have been
published. An excellent overwiev of the different
schools of thought has been given in {28]. The
scheduling and allocation are closely interrelated.
In order to have an optimal design, both tasks
should be performed simultaneously [19]. How-
ever, due to the time complexity, many systems
perform them separately [10, 23, 27, 30, 48, 50]
or introduce iteration loops between the two sub-
tasks [17, 33, 35, 45). Scheduling involves assign-
ing the operation to so-called control steps. A
control step is the fundamental sequencing unit
in synchronous systems; it corresponds to a clock
cycle. (Different methods for scheduling will be
examined in detail in the following sections.) Al-
location involves assigning the operations and val-
ues to hardware, i.e., providing storage, function
units, and communication paths, and specilying
their usage. To minimize them together is usually
too complex, so in many high-level synthesis sys-
tems they are minimized separately. Therefore,
allocation is usually further divided inte three
subtasks — varieble binding, operalion assignmend,
and data transfer binding. Variable binding refers
to the allocation of registers to data, i.e., valucs
that are generated in one control step and used in

1. Sile

another must be assigned to registers. Some sys-
tems have a one-to-one correspondence between
variables and registers [42], while others allow
register sharing for those variables which have
disjoint lifetimes [34, 50]. Operation assignment
binds operations (e.g., addition) to function units
(e.g., an adder or an ALU). Of course, operations
can share functional units only if they are mutu-
ally exclusive, that is, they are assigned to differ-
ent control steps. The problem is then to form the
minimum number of groups consisting of mutu-
ally exclusive operations since this will minimize
the number of function units. Data transfer bind-
ings represent the allocation of connections (e.g.,
busses, multiplexers) between hardware compo-
nents (i.c., registers and function units) to create
the necessary information paths as required by
the specification and the schedule. Connections
consist of busses and/or multiplexers. Busses of-
fer the advantage of requiring less wiring, but they
may be slower than multiplexers. A combination
of both is often the best solution.

Once the schedule and allocation have been ac-
complished, it is necessary to synthesize a con-
troller (hardwired or microcoded) that will drive
allocated resources as required by the schedule.
Finally, the design has to be converted into real
hardware. Lower level tools such as logic synthesis
and leyout synthesis complete the design.

3 Scheduling Strategies

As noted earlier, a good scheduler is very im-
portant to a high-level synthesis system. There
are three dimensions along which scheduling al-
gorithms may differ:

1. the objective function and constraints that
algorithms use;

2. the interaction between scheduling and allo-
cation;
3. the type of scheduling algorithm used.

3.1 Constraints

Roughly spcaking, operation scheduling deter-
mines the cost-speed tradeoffs of the design. A
time-consirained scheduling problem can be de-
fined as follows: given the mazimwm number of
conlrol steps, find a minimal cost schedule that
satisfies the given set of constraints. Here the

SCHEDULING STRATEGIES IN HIGH-LEVEL SYNTHESIS

cost may consist of the costs of function units,
connections, and registers. Some systems that
perform time-constrained scheduling are HAL
[34, 35], MAHA [33], and Sehwa [32]. A resource-
constrained scheduling problem is stated as fol-
lows: given the mazimum number of resources,
find the fastest schedule that satisfies the given
set of constraints. Until recently, the resources
included only function units. Lately, connections
and registers are also taken into consideration.
Some systems that perform resource-constrained
scheduling are CMUDA [12, 18, 50], MIMOLA
[27, 51], MAHA (33], and Sehwa [32]. The previ-
ous two formulations can be combined into a feasi-
ble scheduling problem [22]: given a fized amount
of resources and a specified number of lime steps,
decide if there is a schedule which satisfies all
the constraints, and output the solution if it ez-
ists. A system that performs feasible-constarined
scheduling is BUD [29].

If the design is subject to a lime-constraint,
the scheduling algorithm will attempt to par-
allelize the operations to meet the timing con-
straint. Conversely, if there is a limit on the cost
of resources, the scheduler will serialize operations
to meet the resource-constraint.

3.2 Interaction with Allocation

In order to know whether two operations can
be scheduled in the same control step, one must
know whether they use common hardware re-
sources, Moreover, finding the most efficient
possible schedule for the real hardware requires
knowing the delays for the different operations,
an those can only be found after the details of
the function units and their interconnections are
known., On the other hand, in order to make a
good allocation, one must know what operations
will be done in parallel, which comes form the
schedule. Therefore, scheduling and allocation
are strongly interdependent tasks.

The most straightforward approach to this
problem is to set some limit {or no limit at all)
on the resource cost and then to schedule, as it
is done in systems CMUDA [12, 18, 50}, Flamel
{48}, and V [5]. A more {lexible approach is toiter-
ate the whole process changing the resource limits
until a satisfactory design has been found. This
approach is used in MIMOLA [27, 51] and Sehwa
[32]. Another approach is to develop the sched-

Informatica 18 (1994) 71-79 73

ule and allocation simuitaneously, as in systems
HAL [34, 35] and MAHA [33). Some recent ap-
proaches formulate scheduling and allocation to-
gether as an optimization problem to be solved by
general optimization techniques such as simulated
annealing (3, 11, 41] or integer programming {22].
I'inally, the allocation can be done first, followed
by scheduling, as it is the case in BUD system
[29).

3.3 Scheduling Algorithms

The simplest way to perform scheduling is to rel-
egate the task to the user, which is the approach
favored by the Silc system [6]. There is, however,
a trend toward automated scheduling. Such algo-
rithms can be classified into trensformational or
iteralive feonsiructive algorithms.

A transformational type of algorithm starts
with an initial schedule (e.g., maximally serial
or maximally parallel) and applies transforma-
tions to it to obtain other schedules. These al-
gorithms differ in how they choose transforma-
tions (e.g., using erhaustive search [4], branch-
and-bound [19], or some heuristics [37]).

The other type of algorithms, the itera-
tivefconstructive ones, build up a schedule by
adding operations one at a time till all the.op-
erations have been scheduled. These algorithms
differ in how the next operation to be scheduled is
chosen and into which control step it is put. The
simplest way is to schedule operations as soon as
posstble (ASAP) as is done in the Facet [50), early
CMUDA [18], MIMOLA [27, 51], and Flamel [48]
systems. ASAP assigns each operation to earliest
possible control step such that data and control
dependencies allow it to execute. A similar ap-
proach is to schedule operations as late as possi-
ble {ALAP). The problem with ASAP and ALAP
scheduling is that when there are limils on re-
source usage no priority is given to operations on
critical paths. Hence, less critical operations can
be scheduled first and thus block critical ones [39].
Continuing along the scale of increasing complex-
ity, there are algorithms that use list scheduling.
For each control step, the operations available to
be scheduled into that step are kept in a list,
which ordered by some priority function. Each
operation on the list is scheduled if the resources
it need are still free in that step; otherwise it is
deferred to the next step. In some cases, this form

74 Informatica 18 (1994) 71-79

of scheduling works nearly as well as branch-and-
bound. Schedulers differ in the priority function
they use. A priority function may use the length
of the longest path from the operation to the end
of graph (39, 40, 43]. This is approach taken in
the BUD system [29]. Elf system [17] uses the ur-
gencyof the operation, i.e. the length of the short-
est path from the operation to nearest local time
constraint. In Slicer system [30] the priority func-
tion is based on increasing operation mobililies,
i.e., differences between ASAP and ALAP times
of operations. A composite priority is used in
MAHA system [33] where the operations on crit-
ical paths are scheduled first (and also assigned
to function units). Then the other operations are
scheduled (and assigned) one at a time according
to the least mobility. The HAL system [34, 35]
does list scheduling with force as a priority. The
force between an operation and a particular con-
trol step is proportional to the number of oper-
ations of the same type that could be scheduled
into that step. To conclude, in list scheduling op-
erations that might present more difficult schedul-
ing problems are taken care of first.

In what follows we will briefly describe some
known scheduling algorithms. First we give some
common definitions. Let G(V, A) be a flow graph,
where V is the set of operations and A is the set
of dependencies (arcs), which is to be scheduled
into s control steps. Let n = |V| and a = |A|.
Each of the operations is labeled as 0;, 1 <1 < n,
A precedence relation between operations o; and
o0; is denoted by o; — o;, where o; is immediate
predecessor of 0;. The earliest possible start time
and the latest possible start time of o; are S; and
L;, respectively. There are m types of function
units available. A function unit of type { is de-
noted by F,. A relation between operation o; and
a function unit F; is denoted by o; € F}, if F; can
perform o;.

Integer Linear Programming Algorithm
In [22] integer linear programming ILP is used
to formulate the feasible scheduling problem. Let
the cost of a function unit of type ¢ be ¢; and
M be integer variables denoting the number of
function units of type ¢ needed. Finally, let z;,
be 0 — 1 integer variables where x;; = 1 if o; is
scheduled into control step 7; otherwise, z;, = 0.
Assuming a one-cycle propagation delay for each

1. Silc

operation and a nonpipelined execution, the fea-
sible scheduling problem can finally be stated as
follows:

Y oz <M, 1<r<s,1<1<m;
0;EF}

L
Z$1'1'=1, lélin’
=S5; .

L Ly
ZT*miT— Z T*Tk, < —1, 0; = 0p € A,
=5

T=5;

The first constraint states that no schedule should
have a control step containing more than M, func-
tion units of type ¢. It is clear that o; can only be
scheduled into a step between §; and £;, which is
reflected in the second constraint. The third con-
straint ensures that precedence relations of the
flow graph will be preserved. The objective func-
tion is a combination of time-constraint objective
function min "%, ¢;* M, and resource-constraint
objective function min Cyep, where Cyyep is total
number of control steps required. This approach
allows the user to control the resource-time trade-
off. More explicit resource-time tuning is the ad-
vantage of the next algorithm to be presented.

Simulated Annealing Based Algorithm
Another type of transformational feasible sched-
uler based on the simulated annealing idea is given
in (3. The simulated annealing algorithm can
be used for combinatorial optimization problems
specified by a finite set of configurations and a
cost function defined on all the configurations.
The algorithm randomly generates a new configu-
ration which is then accepted or rejected accord-
ing to a random acceptance rule governed by the
parameter analogous to temperature in the phys-
ical annealing process [26]. Algorithm starts on
an initial configuration which is the schedule ob-
tained by applying ASAP strategy, i.e. the start
time of o; is 5;, for each o; € V. The function
Cost evaluates how good a configuration is. It
is defined as Cost(X) = adArea(X) + ATime(X),
where Area(X) is the cstimated total area of the
resources used and Time(X) is the total execu-
tion time corresponding to the given configura-
tion X. The tuning of the algorithm is performed

SCHEDULING STRATEGIES IN HIGH-LEVEL SYNTHESIS

by taking different values for o and 3. For exam-
ple, if @ < 3 the algorithm is closer to resource-
constrained scheduler (since solutions efficient in
speed become more important) while o » 8
makes the algorithm more time-constrained. Ini-
tially, a high temperature a0 is given in order
to accept most new configurations cven if they
increase the cost. As temperature decreases, less
configurations are accepted unless they have im-
proved cost. Given a configuration X, a new
configuration Y is generated cither by insertion
or removal of a register, scheduling an operation
to next aor previous control step, or by shrink-
ing/expanding a control step. A similar algo-
rithm appears in [11} where it is also reported that
the algorithm achieves excellent results, However,
it performs scheduling and allocation simultane-
ously. This is also the characteristics of the ap-
proach which is to be presented next.

Force Directed Algorithm Let us first de-
scribe a force-directed scheduling algorithm which
is based on list scheduling with a force as a prior-
ity function. The first step consists of determining
the time frames [S;, L;] of cach operation o; € V.
Let p;, denote the probability that o; will be
scheduled into control step 7 € [S;, L;]. A useful
heuristic.is to assume a uniform probability, i.e.
Pir = 'ITI%-—T The next step is to take the sum-
mation of the probabilities of cach type { of opera-
tion for each control step 7: P(£,7) = 32, Pir-
The final step is to calculate the force F asso-
ciated with each operation o; and bounded to a
temporarily reduced time frame [S;, L}}:

]

L
’or - Pit,r
= s

=5

L

>

T=8;

P(t,7)
1+ L; - S5’

where ¢ is the type of the operation o;. Once
all the forces are calculated, the operation-control
step pair. with largest negative force (or least pos-
itive force) is scheduled. Then P and F values
are updated. The process is repeated untill all
operations are scheduled. The scheduling pro-
cess described above’is a part of the HAL system
(34, 35]. In particular the scheduling/allocation is
performed simultaneously by stepwise refinement
in an iterative loop consisting of four phases. The
first phase (default allocation) allocates single-
function processor to cach type of operation. The

Informatica 18 (1994) 71-79 75

second phase (preliminary schedule) balances the
distribution of similar of operations using force-
directed scheduling. The third phase (refined al-
location) allocates single and multi-function pro-
cessors. The last, fourth phase (final schedule)
batances the distribution of operations requiring
similar processor types.

4 Global Arc Minimization
Algorithm

In last scction we briefly described three ap-
proaches to the scheduling/allocation problem. In
this section we present a new algorithm named
Global Are Minimization (GAM), The algorithm
was developed by the author [44, 45, 46] where
both time and resource constrained scheduling al-
gorithms were described.

In this paper, however, we will concentrate only
on the time constrained scheduling. We consider
situation with m = 1, i.e., all function units are
of the same type (as it is the case in preliminary
scheduling in HAL system). The first step con-
sists of determining the time frames [§;, L;] of
cach operation o; € V using ASAP and ALAP
schedules. Next, the minimum number f,,;, of
function units needed is evaluated. To do this, a
method based on the extended critical parallelism
of flow graph was introduced in [44]. During the
cxecution of the scheduling algorithm the follow-
ing sets of operations are maintained at each con-
trol step 7 = 1,2,...,s:

Oready(r) = {0;“5{ <7< Li}’

ourgent(f) = {o)§; = 7= L},

Odeferrab!e(r) = Oready(r) = Ourgent(f)s and

O finished(T) 1= {0; € V]o; has finished at 7}.

Let f(r) denote the number of occupied function
units at some control step 7. Hence, there are
fmin — f(7) free function units at 7. Since urgent
operations are always taken care of first, in case
of f(r) < fimin some additional operations can be
started. Note, that thesec operations are selected
among deferrable ones. Selection was performed
according to three priority functions: random se-
lection, increasing execution time selection, and
decreasing execution time selection. Since none of
these criteria proved to be superior [45], we used

‘the random selection strategy. Therefore, the al-

gorithm is of a list-scheduling type and is given
helow:

76 Informatica 18 {1994) 71-79

r=10
f(r)=20
repeat
if f(7) > 0 then
f(7) = f(1) = |Oyinished(7)|
endif
() = f(7) + | Ourgent(7)|
if f(1) < fmin then
Let Oadditionu[("') C Odeferrable(r)a
where |Guaditionat(T) £ fmin — f(T).
F(r) = f(r) + |Oaaditionat(T)]

endif
T=17+1
until r = s

After scheduling has been completed the allo-
cation is performed, i.e., the index ¢(o0;), 1 <
(o) £ f, f = maxi¢, <5 f(7) of a function unit
is computed for each operation o; € V. Since the
communication between operations allocated to
different {unction units is a time consuming oper-
ation, the goal is to allocate operations so that the
communication time is minimized. Let us call an
arc o; — o; a global arc if ©{0;) # ¢(0;), i.c.,if op-
erations o; and o; are allocated different function
units. In order to minimize communication time
an allocation criterion which keeps the number
of global arcs as low as possible was successfully
applied. Namely, the allocation problem can be
transformed into the weighted bipartite-matching
problem {21]. The global arc minimization algo-
rithm GAM is described in [46].

As we already mentioned, we have designed
both time and resource constrained scheduling al-
gorithms, Together these aigorithms can be used
to solve the feasible scheduling problem. In par-
ticular, the total cost of scheduling/allocation can
be defined as a function Cost(s, f,¢) of the num-
ber of control steps s, the number of function
units f, and the communication time ¢. Now,
given some default number of control steps s (de-
termined by the critical path of the flow graph),
the time constrained scheduling/allocation (as de-
scribed above) results in f function units and
the total communication time ¢. Next, we iter-
ativelly apply the resource constrained schedul-
ing/allocation with f — k, & = 1,2,... function
units. Finally, we chose the most appropriate k,
i.e. the scheduling with the lowest C'ost. One can
also iterativelly repeat the whole process starting
at higher values of s. (Note, that the process may

J. Sile

stop when s equals the sequential execution time
of the flow graph.)

Hence, our algorithm iterates the schedul-
ing/allocation process changing the resource Jim-
its until a satisfactory design has been found. Re-

call, that a similar approach has been taken in
MIMOLA [27, 51] and Sehwa [32).

5 Experimental results and
comparitions

The scheduling/allocation approach GAM has
been implemented and tested [45). The flow graph
used in this cxample implements a fifth-order
wave digital elliptic filter.

a b ¢
1

de {8h i
1

N= e e T T LT S JUR)

—
o=

—
f—

[
o~}

—
%]

f—
e

' f— Jaand
[=>] i (o]
oA

[a—
-1
Fan Y

'5(//
b1t

a b ¢ de

U
1t 11

F8h i OUT

P
[

Figure 1: Eiliptic filter.

We assume that multipliers require two control

SCHEDULING STRATEGIES IN HIGH-LEVEL SYNTHESIS

Informatica 18 (1994) 71-79 77

Table I: Comparision of scheduling results for the elliptic filter.

[| ASAP [ALAP [ILP [22

[HAL [35] | GAM |

Adders 4 4
Multipliers 4 3
Control steps 17 17

31 2 |3 2 2 2
3 1 3 1 2|1
17121 |17 21 |17 |21

steps for execution and the adders only one. The
critical path length is thus 17 control steps long.
Figure 1 shows the results of applying GAM algo-
rithm on.the elliptic filter. Note, that in case of
time constraint scheduling only 2 multipliers and
2 adders were used.

Finally, Table 1 shows the scheduling results
for the elliptic filter using both approaches from
section 3 and our GAM algorithm. t

6 Concluding remarks

The problem of translating behavioral description
of a system into structural a one has been divided
into a number of subtasks among which the oper-
ation scheduling and hardware allocatlon are the
most important.

The scheduling problem has been researched
quite extensively in the past [1, 9, 13, 16, 20, 24].
However, most of ‘the solutions concentrate on
systems with homogeneous function units. More-
over, neither of the efforts includes communi-
cation overhead. In order to be more realistic
the communication delay has to be considered
in high-level synthesis. Since allocation involves
assigning the operations to hardware, it also de-
termines the communication overhead. Thus, in
high-level synthesis the scheduling and allocation
are closely interrelated (5, 12, 19, 27, 29, 32, 33,
34,-38, 48, 50, 51).- In order to have an optimal
design, both should be performed simultaneously.
Due to the time complexity, however, many sys-
tems perform them separately, or introduce iter-
ation loops between the two tasks, as it.was the
case in our GAM scheduling/allocation approach.

We may conclude that the key tasks of schedul-
ing and allocation are relatively well understood
since there are a variety of effective techniques
that have been applied to them. However, there
are many other areas where high-level synthesis
must continue to develop if it is to become a use-

ful tool for designing computer systems. Such
areas include specification, designer intervention,
input/output, complex timing constraints han-
dling, and the relation of synthesis to the overall
design and fabrication process [28].

References

[1] Adam T. L., Chandy K. M., and Dickson .
R. (1974) A Comparision of List Schedulers for
Parallel Processing Systems, Comm. ACM, 17,
12, p. 685-690.

2] Allen J. (1985) Computer Architecture for
Digital Signal Processing. Proc. of the IEEE,
73, 5, p. 852-873.

(3] Badia R. M., Cortadella J., and Ayguadé
E. (1992) Computed-Aided Synthesis of Data-
Path by Using a Simulated-Annealing-Based
Approach. Proc. 9th IASTED Int’l Symp. Ap-
plied Informatics, p. 326- 329.

[4] Barbacci M. R. (1973} Automated Explo—
ration of the Design Space for Register ‘Transfer
(RT) Systems. Ph.D. Thesis. Carnegie-Mellon
University.

[5] Berstis V. (1989) The V Compiler: Automat-
ing Hardware Design. IEEE Design and Test,
6, 2, p. 8-17.

(6] Blackman T. et al. (1985) The Silc Silicon
Compiler: Language and Features. Proc. 22th
ACM/IEEE Design Automation Conf., p. 232-
237.

[7] Borriello G. and Katz R. H. (1987) Synthe-
sis and Optimization of Interface Transducer
Logic. Proc. ICCAD, p. 274-277.

(8] Brewer F. D. and Gajski D. D. (1987) Knowl-
edge Based Control in Micro-Architecture De-
sign. Proc. 24ith ACM/IEEE Design Automa-
tion Conf., p. 203-209.

78 ° Informatica 18 (1994) 71-79

[9] Coffman E. G. and Denning P. J. (1973) Op-
erating Systems Theory. Prentice-Hall, Engle-
wood Cliffs.

{10] DeMan H., Rabaey J., Six P., and Claesen
L. (1986) Cathedrall II: A Silicon Compiler
for Digital Signal Processing. IEEE Design and
Test, 3, 6, p. 13-25.

[11] Devadas $. and Newton A. R. (1989) Algo-

rithm for Hardware Allocation in Data Path
Synthesis. IEEE Trans. CAD, 8 7, p. 768-781.

[12] Director S. W., Parker A. C., Siewiorck D. .,
and Thomas D. E. (1981) A Design Mcthodol-
ogy and Computer Aids for Digital VLSI Sys-
tems. IEEE Trans. Circuils Sys., 28, 7, p. 634-
645.

[13] Fernandez E. B, and Bussell B. (1973)
Bounds on the Number of Processors and Time

. for Multiprocessor Optimal Scedules. IEEFE
~¥Lrans. Compulers, 22, 8, p. 715-751.

[14] Frank G. A., Franke D. L., and Ingogly W. I,
(1985) An Architecture Design and Assessment
System. VLS!I Design, August, p. 30-530.

(15] Friedman T. D. and Yang 8. C. (1969) Meth-
ods used in an Automatic Logic Design Gener-
ator (ALERT). IEEE Trans. Compulers, 18, p.
593-614. :

[16] Garey M. R., Graham R. L., and Johnson D.
S. (1978) Performance Guarantees for Schedul-
ing Algorithms. Oper. Res., 26, 1, p. 3-21.

[17] Girezye E. F. and Knight J. P. (1984) An
ADA to Standard Cell Hardware Compiler
Based orn Graph Grammars and Scheduling.

" Proc IEEE Int’l Conf. Computer Design, p.
726-731.

[18] Hafer L. J. and Parker A. C. (1978) Register-
Transfer Level Digital Design Automation: The
Allocation Process. Proc 15th ACM/IEEE De-
sign Automation Conf., p. 213-219.

[19] Hafer L. J. and Parker A. C. (1983) A For-
mal Method for the Specification, Analysis, and
Design of Register-Transfer Level Digital Logic.
IEEE Trans. CAD, 2,1, p. 4-18.

[20] Hu T. C. (1961) Parallel Sequencing and As-
sembly Line Problems. Oper. Res., 9, p. 841-
848.

{21) Huang C. Y., Chen Y. 8., Lin Y. L. and
Hsu Y. C. (1990) Data Path Allocation Based

1. Sile

on Bipartite Weihted Matching. Proc 27th
ACM/IEEE Design Automation Conf., p. 499-
504.

(22] Hwang C. T., Lee J. H., and Hsu Y. C. (1991)
A Formal Approach to the Scheduling Problem
in High Level Synthesis. JEEE Trans. CAD, 10,
4, p. 464-475.

[23] Jansen K. (1993) The Allocation Probiem in
Hardware Design. Discrete Applied Mathemal-
ics, 43, p. 37-46.

[24] Kasahara . and Narita S. (1984) Practical
Multiprocessor Scheduling Algorithms for Ef-
ficient Parallel Processing. IEEE Trans. Com-
puters, 33, 11, p. 1023-1029.

[25] Kurdahi F. J. and Parker A. C. (1987)
REAL: A Program for REgister ALlocation.
Proc 24th ACM/IEEE Design Automation
Conf,, p. 210-215.

[26) van Laarhoven P. M. J. and Aarts E. M. L.
(1987) Simulated Annecaling: Theory and Ap-
plications. Kluwer Academic Publ, Group, Dor-
drecht.

[27] Marwedel P. (1986) A New Synthesis Algo-
rithm for the MIMOLA Software System. Proc
23rd ACM/IEEE Design Auiomation Conf., p.
271-277.

[28] McFarland M. C., Parker A. C., and Cam-
posano R. (1990) The High-Level Synthesis of
Digital Systems. Proc. of the IEEE, 78, 2, p.
301-318.

[29] McFarland M. C. (1986) Using Bottom-Up
Design ‘Techniques in the Synthesis of Digital
Hardware from Abstract Behavioral Descrip-
tions. PProc 23rd ACM/IEEE Design Automa-
tion Conf., p. 174-180.

(30] Pangrle B. M. and Gajski D. D. (1987) Slicer:
A State Synthesizer for Intelligent Silicon Com-
pilation. Proc IEEE Int’l Conf. Computer De-
sign: VLST in Computers & Processors,

(31} Pangrle B. M. and Gajski D. D. (1987) De-
sign Tools for Intelligent Silicon Compilation.
IEEE Trans. CAD, 8, 6, p. 1098-1112.

[32] Park N. and Parker A. C. (1986) SEHWA: A
Program for Synthesis of Pipelines. Proc 23nd
ACM/IEEE Design Aulomation Conf., p. 454-
460.

SCHEDULING STRATEGIES IN HIGH-LEVEL SYNTIESIS

(33] Parker A. C., Pizarro J., and Mlinar M.
{1986) MAHA: A Program for Datapath Syn-
thesis. Proc 28vd ACM/IEEE Design Automa-
tion Conf., p. 461-466.

[34] Paulin P. G., Knight J. P, and Girczyc E.
F. (1986) HAL: A Multi-Paradigm Approach
to Automatic Data Path Synthesis. Proc 23rd
ACM/IEEE Design Automation Conf., p. 263-
270. '

[35] Paulin P. G. and Knight J. I>. (1987) Force-
Directed Scheduling in Automatic Data Path
Synthesis. Proc 24th ACM/IEEE Design Au-
tomation Conf., p. 195-202.

(36] Paulin P. G. (1989) Scheduling and Binding
Algorithms for High-Level Synthesis. Proc 26th
ACM/IEEFE Design Automation Conf., p. 1-6.

[37] Peng Z. (1986) Synthesis of VLSI Systems
with the CAMAD Design Aid. Proc 23th
ACM/IEEE Design Automalion Conf., p. 278-
284. R

[38] Potkonjak M. and Rabaey J. (1989) A

 Scheduling and Resource Allocation Algorithm
for Hierarchical Signal Flow Graphs. Proc 26th
ACM/IEEE Design Automation Conf., p. 7-12.

[39] Robié B. and Silc J. (1986) On Choosing a
PMlan for the Execution of Data Flow Program
Graph. Infermalica, 10, 3, p. 11-17.

[40] Robié B., Silc J., and Kolbezen P. (1987) Re-
source Optimization in Parallel Data Driven
Architecture. Proc 5th IASTED Int’l Symp.
Applicd Informatics, p. 86-89. -

Informatica 18 (1994) 71-79 79

[41] Robi¢ B., Kolbezen P., and Silc J. (1992)
Area Optimization of Dataflow-Graph Map-
pings. Parallel Computing, 18, 3, p. 297-311.

[12] Southard J. R. (1983) MacPitts: An Ap-
proach to Silicon Compilation. fEEE Com-
puler, 16, 12, p. 74-82.

[13] Sile J. and Robic B. (1989) Synchronous
Dataflow-Based Architecture. Microprocessing
and Microprograming, 27, 1-5, p. 315-322.

[44] Silc J., Robit B., and Patnaik L. M. (1990)
Performance Evaluation of an Extended Static
Dataflow Architecture. Computers and Artifi-
cial Intelligence, 9, 1, p. 13-60.

[45] Sile J. (1992) Time optimization of asyn-
chronous processing with introduction of some
synchronization mechanisms. Ph.D. Thesis,
University of Ljubljana, Slovenia. (in Slovene)

[46] Silc J. and Robi¢ B. (1993) Program Parti-
tioning for a Control/Data Driven Computer.
Journal of Compuling and Information Tech-
nology, 1, 1, p. 47-55.

{47] Thomas D. E., Hitchcock C. Y., Kowalski T.
J., Rajan J. V. and Walker R. (1983) Automatic
Data Path Synthesis. IEEE Trans. Compulers,
16, 12, p. 59-70.

[18) Trickey 1. (1987) Flamel: A High-Level
liardware Compiler. IFE} Trans. CAD, 8, 2,
p. 259-269.

{49] Tsai F. S. and ilsu Y. C. (1992) STAR: An
Automatic Data Path Allocator. IEEFE Trans.
CAD, 11, 9, p. 1053-1064.

[50] Tseng C. J. and Siewiorek D. P. (1986) Auto-
mated Syntihesis of Data Paths in Digital Sys-
tems, IEEF Trans. CAD, 5, 3, p. 379-395.

[51} Zimmermann G. (1980) MDS - The Mimola
Design Mcthod. J. Digitel Systems, 4, 3, p. 337-
369.

