\mathbf{IMFM}

Institute of Mathematics, Physics and Mechanics Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series Vol. 51 (2013), 1188 ISSN 2232-2094

INVERSE LIMITS IN THE CATEGORY OF COMPACT HAUSDORFF SPACES AND UPPER SEMICONTINUOUS FUNCTIONS

Iztok Banič — Tina Sovič

Ljubljana, May 17, 2013

Inverse limits in the category of compact Hausdorff spaces and upper semicontinuous functions

Iztok Banič, Tina Sovič

University of Maribor, Slovenia

Abstract

We investigate inverse limits in the category \mathcal{CHU} of compact Hausdorff spaces with upper semicontinuous (usc) functions. We introduce the notion of weak inverse limits in this category and show that the inverse limits with upper semicontinuous set-valued bonding functions (as they were defined in [15]) together with the projections are not necessarily inverse limits in \mathcal{CHU} but they are always weak inverse limits in this category. This is a realization of our categorical approach to solving a problem stated by W. T. Ingram in [14].

Keywords: Upper semi-continuous functions, Inverse limits, Weak inverse limits

2000 Mathematics Subject Classification: primary 54C60; secondary 54B30

1 Introduction

W. T. Ingram in his book [14] states the following problem:

Problem 6.63. What can be said about inverse limits with set-valued functions if the underlying directed set is not a sequence of integers?

In this paper we present a categorical approach to solving the above problem. Consider an inverse system $(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$ of compact Hausdorff spaces and continuous bonding functions. It is a well-known fact that the space

$$\underline{\varprojlim}(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{{\alpha}{\beta}}\}_{{\alpha},{\beta}\in A}) =$$

$$\{(x_{\gamma})_{\gamma \in A} \in \prod_{\gamma \in A} X_{\alpha} \mid \text{ for all } \alpha, \beta \in A, \alpha < \beta, x_{\alpha} = f_{\alpha\beta}(x_{\beta})\}$$

together with the projection mappings $p_{\gamma}: \varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A}) \to X_{\gamma}, \ p_{\gamma}((x_{\alpha})_{\alpha \in A}) = x_{\gamma}$, is in fact an inverse limit in the category \mathcal{CHC} of compact Hausdorff spaces with continuous functions.

In present paper we extend the category \mathcal{CHC} to the category \mathcal{CHU} of compact Hausdorff spaces with usc functions in such a way that \mathcal{CHC} is interpreted as a proper subcategory of \mathcal{CHU} . This can be done since every continuous function between compact Hausdorff spaces can be interpreted as a usc function.

As one of our main results we show that the inverse limits with upper semicontinuous set-valued bonding functions

$$\varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A}) =$$

$$\{(x_{\gamma})_{\gamma \in A} \in \prod_{\gamma \in A} X_{\alpha} \mid \text{for all } \alpha, \beta \in A, \alpha < \beta, x_{\alpha} \in f_{\alpha\beta}(x_{\beta})\}$$

together with the projections

$$p_{\gamma} : \varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A}) \to X_{\gamma},$$
$$p_{\gamma}((x_{\alpha})_{\alpha \in A}) = \{x_{\gamma}\},$$

are not necessarily inverse limits in the category but they are always so called weak inverse limits in \mathcal{CHU} .

In the second section we give the basic definitions that are used in the paper.

In the third section we give a detailed description of the category \mathcal{CHU} of compact Hausdorff spaces with usc bonding functions.

In the fourth section we give results about inverse limits in the category \mathcal{CHU} .

In the last section we define objects in category \mathcal{CHU} that are called weak inverse limits in this category. We also show that for any inverse system $(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta}\in A})$ in \mathcal{CHU} , the corresponding inverse limit with upper semicontinuous set-valued bonding functions together with projections is always a weak inverse limit in category \mathcal{CHU} .

2 Definitions and notation

For any category \mathcal{K} the class of objects of \mathcal{K} will be denoted by $Ob(\mathcal{K})$, the class of morphisms of \mathcal{K} by $Mor(\mathcal{K})$, and the partial binary associative

operation (composition of morphisms) by \circ . For any $X \in Ob(\mathcal{K})$ the identity morphism on X will be denoted by $1_X : X \to X$.

For a directed set A (A is nonempty and equipped with a reflexive and transitive binary relation \leq with the property that every pair of elements has an upper bound), a family of objects $\{X_{\alpha} \mid \alpha \in A\}$ of \mathcal{K} , and a family of morphisms $\{f_{\alpha\beta}: X_{\beta} \to X_{\alpha} \mid \alpha, \beta \in A, \alpha \leq \beta\}$ of \mathcal{K} , such that

- 1. for each $\alpha \in A$, $f_{\alpha\alpha} = 1_{X_{\alpha}}$,
- 2. for each $\alpha, \beta, \gamma \in A$, from $\alpha \leq \beta \leq \gamma$ it follows that $f_{\alpha\beta} \circ f_{\beta\gamma} = f_{\alpha\gamma}$, we call an inverse system (in \mathcal{K}) and denote it by

$$(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta}\in A}).$$

We assume throughout the paper that A is cofinite, i.e. every $\alpha \in A$ has at most finitely many predecessors.

Next we define inverse limits in \mathcal{K} .

Definition 2.1. An object $X \in Ob(\mathcal{K})$, together with morphisms $\{p_{\alpha} : X \to X_{\alpha} \mid \alpha \in A\}$ is an inverse limit of an inverse system $(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$ in the category \mathcal{K} , if

1. for all $\alpha, \beta \in A$, from $\alpha \leq \beta$ it follows that the diagram

commutes;

2. for any object $Y \in \mathcal{K}$ and any family of morphisms $\{\varphi_{\alpha} : Y \to X_{\alpha} \mid \alpha \in A\}$ it follows that if the diagram

commutes, then there is a unique morphism $\varphi: Y \to X$ such that for each $\alpha \in A$ the diagram

commutes.

A map or mapping is a continuous function.

If X is a compact Hausdorff space, then 2^X denotes the set of all nonempty closed subsets of X.

The graph $\Gamma(f)$ of a function $f: X \to 2^Y$ is the set of all points $(x, y) \in X \times Y$ such that $y \in f(x)$.

A function $f: X \to 2^Y$ is upper semi-continuous function if for each $x \in X$ and for each open set $U \subseteq Y$ such that $f(x) \subseteq U$ there is an open set V in X such that

- 1. $x \in V$;
- 2. for all $v \in V$ it holds that $f(v) \subseteq U$.

The following is a well-known characterization of usc functions between Hausdorff compacta (see [15, p. 120, Theorem 2.1]).

Theorem 2.2. Let X and Y be compact Hausdorff spaces and $f: X \to 2^Y$ a function. Then f is use if and only if its graph $\Gamma(f)$ is closed in $X \times Y$.

At the end of this section we introduce the notion of inverse limits with usc set-valued bonding functions as it was introduced by Mahavier in [19] and Ingram and Mahavier in [15]. In the last section we use this notion as a motivation for defining inverse limits with usc set-valued bonding functions for arbitrary inverse systems.

An inverse sequence of compact Hausdorff spaces X_k with usc bonding functions f_k is a sequence $\{X_k, f_k\}_{k=1}^{\infty}$, where $f_k : X_{k+1} \to 2^{X_k}$ is usc for each k.

The inverse limit with usc set-valued bonding functions of an inverse sequence $\{X_k, f_k\}_{k=1}^{\infty}$ is defined to be the subspace of the product space

 $\prod_{k=1}^{\infty} X_k$ of all $x = (x_1, x_2, x_3, \ldots) \in \prod_{k=1}^{\infty} X_k$, such that $x_k \in f_k(x_{k+1})$ for each k. The inverse limit of $\{X_k, f_k\}_{k=1}^{\infty}$ is denoted by $\varprojlim \{X_k, f_k\}_{k=1}^{\infty}$.

Since the introduction of such inverse limits, there has been much interest in the subject and many papers appeared [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 17, 18, 22, 23, 24, 25, 26].

3 The category \mathcal{CHU}

The category \mathcal{CHU} of compact Hausdorff spaces and usc functions consists of the following objects and morphisms:

- 1. $Ob(\mathcal{CHU})$: compact Hausdorff spaces;
- 2. $Mor(\mathcal{CHU})$: the usc functions from X to Y is the set of morphisms from X to Y, denoted by $Mor(\mathcal{CHU})(X,Y)$.

We also define the partial binary operation \circ (the composition) as follows. For each $f \in Mor(\mathcal{CHU})(X,Y)$ and each $g \in Mor(\mathcal{CHU})(Y,Z)$ we define $g \circ f \in Mor(\mathcal{CHU})(X,Z)$ by

$$(g \circ f)(x) = g(f(x)) = \bigcup_{y \in f(x)} g(y)$$

for each $x \in X$.

Theorem 3.1. CHU is a category.

Proof. First we show that \circ is well-defined. Let $f: X \to Y$ and $g: Y \to Z$ be any morphisms. Let also $x \in X$ be arbitrary and let U be an open set in Z such that $(g \circ f)(x) \subseteq U$. Since g is use and $f(x) \subseteq Y$, it holds that for each $y \in f(x)$ there is an open set W_y in Y such that

- 1. $y \in W_y$;
- 2. for all $w \in W_y$ it holds that $g(w) \subseteq U$.

Let $W = \bigcup_{y \in f(x)} W_y$. Since W is open in Y, $f(x) \subseteq W$, and since f is usc, there is an open set V in X such that

- 1. $x \in V$;
- 2. for all $v \in V$ it holds that $f(v) \subseteq W$.

Let $v \in V$ be arbitrary. Then

$$(g \circ f)(v) = g(f(v)) = \bigcup_{z \in f(v)} g(z) \subseteq U$$

since for each $z \in f(v)$, it holds that $g(z) \subseteq U$. Therefore \circ is well-defined.

It is obvious that the composition \circ of usc functions is an associative operation.

All that is left to show is that for each $X \in Ob(\mathcal{CHU})$ there is a morphism $1_X : X \to X$ such that $1_X \circ f = f$ and $g \circ 1_X = g$ for any morphisms $f : Y \to X$ and $g : X \to Z$. We easily see that the identity map $1_X : X \to X$, defined by $1_X(x) = \{x\}$ for each $x \in X$, is the usc function satisfying the above conditions.

4 Inverse limits in \mathcal{CHU}

In this section we show that if $(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta}\in A})$ is an inverse system of compact Hausdorff spaces and usc set-valued bonding functions, then

$$\varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$$

(see Definition 4.1) together with the projections is not necessarily an inverse limit in the category \mathcal{CHU} .

Motivated by [15, 19], we define in Definition 4.1 objects in \mathcal{CHU} , that are called inverse limits with usc set-valued bonding functions. Since such object were first introduced by Mahavier in [19] and Ingram and Mahavier in [15], where they call them the inverse limits with usc set-valued bonding functions, we continue to use the same name for them.

Definition 4.1. Let $(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta}\in A})$ be any inverse system in CHU. We call the object

$$\varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A}) = \{x \in \prod_{\alpha \in A} X_{\alpha} \mid \text{for all } \alpha < \beta, \ x_{\alpha} \in f_{\alpha\beta}(x_{\beta})\}$$

an inverse limit with usc set-valued bonding functions.

In the following theorem we prove that $\varprojlim(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta}\in A})$ is really an object of \mathcal{CHU} .

Theorem 4.2. Let $(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta}\in A})$ be any inverse system in CHU. Then the inverse limit with usc set-valued bonding functions

$$\underline{\varprojlim}(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$$

is a compact Hausdorff space.

Proof. For each $\gamma \in A$, X_{γ} is a compact Hausdorff space, therefore the product $\prod_{\gamma \in A} X_{\gamma}$ is a compact Hausdorff space. Since $\varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$ is a subspace of the Hausdorff space, it is also a Hausdorff space. We show that $\varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$ is a closed subset of the compact space $\prod_{\gamma \in A} X_{\gamma}$ to show that it is compact.

Let for all $\alpha, \beta \in A$, $\alpha < \beta$,

$$G_{\alpha\beta} = \Gamma(f_{\alpha\beta}) \times \prod_{\gamma \in A \setminus \{\alpha,\beta\}} X_{\gamma} = \{x \in \prod_{\gamma \in A} X_{\gamma} \mid x_{\alpha} \in f_{\alpha\beta}(x_{\beta})\}.$$

Since the graph $\Gamma(f_{\alpha\beta})$ of $f_{\alpha\beta}$ is by Theorem 2.2 a closed subset of $X_{\beta} \times X_{\alpha}$, $G_{\alpha\beta}$ is also a closed subset of $\prod_{\gamma \in A} X_{\gamma}$. It is obvious that

$$\varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A}) = \bigcap_{\alpha,\beta \in A, \alpha < \beta} G_{\alpha\beta}$$

and hence $\varprojlim (A, \{X_{\alpha}\}_{{\alpha} \in A}, \{f_{{\alpha}{\beta}}\}_{{\alpha},{\beta} \in A})$ is a closed subset of $\prod_{{\gamma} \in A} X_{{\gamma}}$. \square

In the following example we construct an inverse limit with usc set-valued bonding functions that is not an inverse limit in \mathcal{CHU} regardless of the choice of morphisms $\{p_{\alpha}: X \to X_{\alpha} \mid \alpha \in A\}$.

Example 4.3. Let $A = \mathbb{N}$, $X_k = [0,1]$, and let $f_{k(k+1)} = f$ for each $k \in \mathbb{N}$, where $f: [0,1] \to 2^{[0,1]}$ is the function on [0,1] defined by its graph

$$\Gamma(f) = \{(t,t) \in [0,1] \times [0,1] \mid t \in [0,1]\} \cup (\{1\} \times [0,1]).$$

Also let $X = \varprojlim(\mathbb{N}, \{[0,1]\}_{k \in \mathbb{N}}, \{f_{k\ell}\}_{k,\ell \in \mathbb{N}})$ and let $\{p_i : X \to X_i \mid i \in \mathbb{N}\}$ be any set of morphisms in \mathcal{CHU} , such that the diagrams (1) always commute. We show that X with $\{p_i : X \to X_i \mid i \in \mathbb{N}\}$ is not an inverse limit of $(\mathbb{N}, \{[0,1]\}_{k \in \mathbb{N}}, \{f_{k\ell}\}_{k,\ell \in \mathbb{N}})$ in \mathcal{CHU} . Let Y = [0,1] be an object in \mathcal{CHU} and let $\{\varphi_k : Y \to X_k \mid k \in \mathbb{N}\}$ be the family of morphisms where $\varphi_k(t) = [0,1]$ for each k and each $t \in Y$. The diagram (2) always commutes. We distinguish the following two cases.

- 1. If there is a positive integer i_0 , such that $1 \notin p_{i_0}(x)$ for each $x \in X$, then suppose that Φ is any morphism $Y \to X$. Then $\varphi_{i_0}(t) = [0,1]$ but $1 \notin p_{i_0}(\Phi(t))$ for any $t \in Y$. Therefore the diagram (3) does not commute for $\alpha = i_0$.
- 2. If for each positive integer i there is $x^i \in X$ such that $1 \in p_i(x^i)$, then let $s \in X$ be an accumulation point of the sequence $\{x^i\}_{i=1}^{\infty}$. We show

first that $p_i(s) = [0,1]$ for each i. Let k be any positive integer. Then for each $\ell > k$, it follows from

$$[0,1] \supseteq p_k(x^{\ell}) = f_{k\ell}(p_{\ell}(x^{\ell})) \supseteq f_{k\ell}(1) \supseteq [0,1]$$

that $p_k(x^{\ell}) = [0,1]$. Let $\{n_i\}_{i=1}^{\infty}$ be any increasing sequence of positive integers such that

- $n_i > k$ for each i;
- $\bullet \lim_{i \to \infty} x^{n_i} = s.$

It follows from $p_k(x^{n_i}) = [0,1]$ that $\{x^{n_i}\} \times [0,1] \subseteq \Gamma(p_k)$ for each i. This means that for each $t \in [0,1]$, the point $(x^{n_i},t) \in \Gamma(p_k)$. Therefore $\lim_{i \to \infty} (x^{n_i},t) = (s,t) \in \Gamma(p_k)$ for each t, since $\Gamma(p_k)$ is a closed subset of $X \times [0,1]$. It follows that $\{s\} \times [0,1] \subseteq \Gamma(p_k)$ and hence $p_k(s) = [0,1]$.

Next, let $\Phi, \Psi: Y \to X$ be the morphisms in \mathcal{CHU} , defined by

$$\Phi(t) = X,$$

$$\Psi(t) = \{s\}$$

for each $t \in Y$. It follows from

$$p_k(\Phi(t)) = p_k(X) = [0, 1] = \varphi_k(t)$$

and

$$p_k(\Psi(t)) = p_k(\{s\}) = [0, 1] = \varphi_k(t)$$

that the diagram (3) commutes for both $\varphi = \Phi$ and $\varphi = \Psi$. Therefore there is no unique morphism φ such that all diagrams (3) commute.

Note that in the second part of Example 4.3, $\Psi(t) \subseteq \Phi(t) = (\prod_{k=1}^{\infty} \varphi_k(t)) \cap X$ holds true for each $t \in Y$. The following lemma shows that such an inclusion is not accidental. It will be used in the proof of Theorem 5.5.

Lemma 4.4. Let $(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$ be any inverse system in CHU and let $X = \varprojlim(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$. Suppose that for an object Y of CHU and a family of morphisms $\{\varphi_{\alpha} : Y \to X_{\alpha} \mid \alpha \in A\}$ the diagram (2) commutes for any α and β , $\alpha < \beta$. Then $\varphi : Y \to X$, defined by $\varphi(y) = (\prod_{\gamma \in A} \varphi_{\gamma}(y)) \cap X$ for each $y \in Y$, is a morphism in CHU such that for each $\alpha \in A$ the diagram (3) commutes. Even more, for any morphism $\Psi : Y \to X$ such that $p_{\alpha}(\Psi(y)) = \varphi_{\alpha}(y)$ for each $\alpha \in A$ and for each $y \in Y$, $\Psi(y) \subseteq \varphi(y)$ holds true for all $y \in Y$.

Proof. We show that φ satisfies all the conditions in the following steps.

- 1. The set $\prod_{\gamma \in A} \varphi_{\gamma}(y)$ is a closed subset of $\prod_{\alpha \in A} X_{\alpha}$, therefore $\varphi(y)$ is a closed subset of X for any $y \in Y$.
- 2. Next we show that for any $y \in Y$, the set $\varphi(y)$ is nonempty. Let $y \in Y$ be arbitrarily chosen. Next, let for each positive integer n, $A_n \subseteq A$ be the set of all elements $\alpha \in A$ that have exactly n-1 predecessors. For any $\alpha \in A_1$ we arbitrarily choose $t_{\alpha} \in \varphi_{\alpha}(y)$. For any $\beta \in A_2$ there is an $\alpha \in A_1$ such that $\alpha < \beta$. For any such α and β it follows from $t_{\alpha} \in \varphi_{\alpha}(y) \subseteq f_{\alpha\beta}(\varphi_{\beta}(y))$ that there is $t_{\beta} \in \varphi_{\beta}(y)$ such that $t_{\alpha} \in f_{\alpha\beta}(t_{\beta})$. We choose and fix such t_{β} for each $\beta \in A_2$. Suppose that we have already constructed $t_{\alpha} \in \varphi_{\alpha}(y)$ for all $\alpha \in A_n$. Then for any $\beta \in A_{n+1}$ there is an $\alpha \in A_n$ such that $\alpha < \beta$. For any such α and β it follows from $t_{\alpha} \in \varphi_{\alpha}(y) \subseteq f_{\alpha\beta}(\varphi_{\beta}(y))$ that there is $t_{\beta} \in \varphi_{\beta}(y)$ such that $t_{\alpha} \in f_{\alpha\beta}(t_{\beta})$. We choose and fix such t_{β} for each $\beta \in A_{n+1}$.

Then obviously $x = (t_{\alpha})_{{\alpha} \in A} \in \varphi(y)$ and therefore $\varphi(y)$ is nonempty.

3. We show that φ is a usc function. Let $y \in Y$ be arbitrary point and let

$$U = (U_{\gamma_1} \times U_{\gamma_2} \times U_{\gamma_3} \times \dots \times U_{\gamma_n}) \times \prod_{\gamma \in A \setminus \{\gamma_1, \gamma_2, \dots, \gamma_n\}} X_{\gamma_n}$$

be an open set in X such that $\varphi(y) \subseteq U$, where for each $i = 1, 2, 3, \ldots, n$, U_{γ_i} is an open set in X_{γ_i} . It follows from the definitions of φ and U that $\varphi_{\gamma_i}(y) \subseteq U_{\gamma_i}$ for each $i = 1, 2, 3, \ldots, n$. Since each φ_{γ_i} is usc, there is an open set V_i in Y such that

- (a) $y \in V_i$;
- (b) for each $x \in V_i$, it holds that $\varphi_{\gamma_i}(x) \subseteq U_{\gamma_i}$

for each i. We define $V = \bigcap_{i=1}^{n} V_i$. Then V is an open set in Y for which

- (a) $y \in V$;
- (b) for each $x \in V$, it holds that $\varphi(x) = \prod_{\gamma \in A} \varphi_{\gamma}(x) \subseteq U$

holds true. Therefore φ is a usc function and so it is a morphism from Y to X.

4. Next we show that the diagram (3) commutes, i.e. for any $\alpha \in A$ and any $y \in Y$, $\varphi_{\alpha}(y) = (p_{\alpha} \circ \varphi)(y)$ holds true. Choose any $\alpha \in A$ and any

 $y \in Y$. Obviously

$$p_{\alpha}(\varphi(y)) = p_{\alpha}((\prod_{\gamma \in A} \varphi_{\gamma}(y)) \cap X) \subseteq p_{\alpha}(\prod_{\gamma \in A} \varphi_{\gamma}(y)) = \varphi_{\alpha}(y).$$

Next we show that $\varphi_{\alpha}(y) \subseteq p_{\alpha}(\varphi(y))$. Let $z \in \varphi_{\alpha}(y)$ be arbitrarily chosen. We show that $z \in p_{\alpha}(\varphi(y))$ by showing that there is a point $x \in \varphi(y)$ such that $z \in p_{\alpha}(x)$. Let k be the positive integer such that $\alpha \in A_k$. For each $\gamma \in A_k \setminus \{\alpha\}$ let $t_{\gamma} \in \varphi_{\gamma}(y)$ be arbitrary and let $t_{\alpha} = z$. For each $\gamma \in A_{k-1}$ we choose $t_{\gamma} \in \varphi_{\gamma}(y)$ such that if $\alpha \in A_{k-1}$, $\beta \in A_k$, and $\alpha < \beta$, then $t_{\alpha} \in f_{\alpha\beta}(t_{\beta})$. This can be done since $f_{\alpha\beta}(\varphi_{\beta}(y)) = \varphi_{\alpha}(y)$ and therefore $f_{\alpha\beta}(t_{\beta}) \subseteq \varphi_{\alpha}(y)$.

Continuing in the same fashion we choose for each i = 1, 2, 3, ..., k-1 and each $\gamma \in A_i$ an element $t_{\gamma} \in \varphi_{\gamma}(y)$ such that $t_{\alpha} \in f_{\alpha\beta}(t_{\beta})$ for each $\alpha \in A_i$, $\beta \in A_{i+1}$, $\alpha < \beta$.

Next, for each $\beta \in A_{k+1}$ and for each $\alpha \in A_k$ such that $\beta > \alpha$, since $t_{\alpha} \in \varphi_{\alpha}(y) = f_{\alpha\beta}(\varphi_{\beta}(y))$, there is $t_{\beta} \in \varphi_{\beta}(y)$, such that $t_{\alpha} \in f_{\alpha\beta}(t_{\beta})$.

We continue inductively in the same fashion and choose for each $i = k + 1, k + 2, k + 3, \ldots$ and each $\beta \in A_{i+1}$ an element $t_{\beta} \in \varphi_{\alpha}(y)$ such that $t_{\alpha} \in f_{\alpha\beta}(t_{\beta})$ for each $\alpha \in A_i$, such that $\alpha < \beta$.

Let $x \in \prod_{\gamma \in A} X_{\gamma}$ be such an element that $p_{\gamma}(x) = \{t_{\gamma}\}$ for each $\gamma \in A$. It follows from the construction of x that $x \in \varphi(y)$ and $z \in p_{\alpha}(x)$.

5. Suppose that $\psi: Y \to X$ is a morphism in \mathcal{CHU} such that for each $\alpha \in A$ and for each $y \in Y$, $p_{\alpha}(\Psi(y)) = \varphi_{\alpha}(y)$. Let $y \in Y$ be arbitrary and let $z \in \psi(y)$. Obviously $z \in X$ since ψ is a morphism from Y to X. It follows from $p_{\alpha}(z) \subseteq p_{\alpha}(\psi(y)) = \varphi_{\alpha}(y)$ (for each α) that $z \in \prod_{\gamma \in A} \varphi_{\gamma}(y)$. Therefore $z \in \varphi(y)$ and hence $\psi(y) \subseteq \varphi(y)$.

5 Weak inverse limits in \mathcal{CHU}

In this section we introduce the notion of weak inverse limits in \mathcal{CHU} and show that $\varprojlim(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta}\in A})$ (together with the projections) is always a weak inverse limit in \mathcal{CHU} .

In Definition 5.1 we define a weak commutation of a diagram in the category \mathcal{CHU} .

Definition 5.1. Let $X, Y, Z \in Ob(\mathcal{CHU})$ and let $f: X \to Y$, $g: X \to Z$ and $h: Z \to Y$ be any morphisms in \mathcal{CHU} . The diagram

10

weakly commutes, if for any $x \in X$, $f(x) \subseteq (h \circ g)(x)$.

Example 5.2. Let $f:[0,1] \to 2^{[0,1]}$, $g:[0,1] \to 2^{[0,1]}$ be identity functions on [0,1] and let $h:[0,1] \to 2^{[0,1]}$ be defined by

$$h(x) = [0, 1]$$

for all $x \in [0,1]$. Then the diagram

weakly commutes but does not commute.

In the following definition we generalize the notion of inverse limits in $\mathcal{CHU}.$

Definition 5.3. An object $X \in Ob(\mathcal{CHU})$, together with morphisms $\{p_{\alpha} : X \to X_{\alpha} \mid \alpha \in A\}$, is a weak inverse limit of an inverse system

$$(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$$

in CHU, if

- 1. for all $\alpha, \beta \in A$, from $\alpha \leq \beta$ it follows that the diagram (1) weakly commutes;
- 2. for any object $Y \in \mathcal{CHU}$ and any family of morphisms $\{\varphi_{\alpha} : Y \to X_{\alpha} \mid \alpha \in A\}$ it follows that if the diagram (2) commutes, then for any morphism $\Psi : Y \to X$ such that for each $\alpha \in A$ and for each $y \in Y$, $p_{\alpha}(\Psi(y)) = \varphi_{\alpha}(y)$, $\Psi(y) \subseteq (\prod_{\gamma \in A} \varphi_{\gamma}(y)) \cap X$ holds true for all $y \in Y$.

Note that each inverse limit in \mathcal{CHU} is always a weak inverse limit in \mathcal{CHU} .

Example 5.4. Let $X = \varprojlim(\mathbb{N}, \{[0,1]\}_{k \in \mathbb{N}}, \{f_{k\ell}\}_{k,\ell \in \mathbb{N}})$ be the inverse limit with usc set-valued bonding functions that we defined in Example 4.3. Then X, together with the projection mappings, is obviously not an inverse limit but it is a weak inverse limit in \mathcal{CHU} .

We show in the following theorem that the inverse limits with upper semicontinuous set-valued bonding functions together with projections are always weak inverse limits in \mathcal{CHU} .

Theorem 5.5. Let $(A, \{X_{\alpha}\}_{{\alpha}\in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta}\in A})$ be any inverse system in CHU. Then the inverse limit with usc set-valued bonding functions

$$\underline{\varprojlim}(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A}),$$

together with projections

$$p_{\gamma} : \varprojlim (A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A}) \to X_{\gamma},$$
$$p_{\gamma}((x_{\alpha})_{\alpha \in A}) = \{x_{\gamma}\},$$

is a weak inverse limit of the inverse system $(A, \{X_{\alpha}\}_{\alpha \in A}, \{f_{\alpha\beta}\}_{\alpha,\beta \in A})$ in \mathcal{CHU} .

Proof. Let $X = \varprojlim (A, \{X_{\alpha}\}_{{\alpha} \in A}, \{f_{\alpha\beta}\}_{{\alpha},{\beta} \in A})$. First we prove that the diagram (1) weakly commutes. Choose any $x \in X$ and let $\alpha < \beta$. Then $p_{\alpha}(x) = \{x_{\alpha}\} \subseteq f_{\alpha\beta}(\{x_{\beta}\}) = (f_{\alpha\beta} \circ p_{\beta})(x)$.

Next, suppose that for an object $Y \in \mathcal{CHU}$ and a family of morphisms $\{\varphi_{\alpha}: Y \to X_{\alpha} \mid \alpha \in A\}$ the diagram (2) commutes. By Lemma 4.4, for any morphism $\Psi: Y \to X$ such that for each $\alpha \in A$ and for each $y \in Y$, $p_{\alpha}(\Psi(y)) = \varphi_{\alpha}(y), \Psi(y) \subseteq (\prod_{\gamma \in A} \varphi_{\gamma}(y)) \cap X$ holds true for all $y \in Y$. \square

Acknowledgments

The authors thank Uroš Milutinović for constructive discussion.

This work was supported in part by the Slovenian Research Agency, under Grant P1-0285.

References

- [1] I. Banič, On dimension of inverse limits with upper semicontinuous setvalued bonding functions, Topology Appl. 154 (2007), 2771–2778.
- [2] I. Banič, Inverse limits as limits with respect to the Hausdorff metric, Bull. Austral. Math. Soc. 75 (2007), 17–22.
- [3] I. Banič, Continua with kernels, Houston J. Math. 34 (2008), 145–163.
- [4] I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, *Limits of inverse limits*, Topology Appl. 157 (2010), 439–450.
- [5] I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, *Paths through inverse limits*, Topology Appl. 158 (2011), 1099–1112.
- [6] I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, Towards the complete classification of generalized tent maps inverse limits, http://dx.doi.org/10.1016/j.topol.2012.09.017.
- [7] I. Banič, M. Črepnjak, M. Merhar, U. Milutinović and T. Sovič Ważewski's universal dendrite as an inverse limit with one set-valued bonding function, preprint (2012).
- [8] W. J. Charatonik and R. P. Roe, *Inverse limits of continua having trivial shape*, to appear in Houston J. Math.
- [9] W. J. Charatonik and R. P. Roe, Mappings between inverse limits of continua with multivalued bonding functions, preprint
- [10] A. N. Cornelius, Weak crossovers and inverse limits of set-valued functions, preprint (2009),
- [11] J. Dugundji, *Topology*, Allyn and Bacon, Inc., Boston, London, Sydney, Toronto, 1966.
- [12] A. Illanes, A circle is not the generalized inverse limit of a subset of [0, 1]², Proc. Amer. Math. Soc. 139 (2011), 2987–2993.
- [13] A. Illanes, S. B. Nadler, *Hyperspaces. Fundamentals and recent advances*, Marcel Dekker, Inc., New York, 1999.
- [14] W. T. Ingram, An Introduction to Inverse Limits with Set-valued Functions, Springer, New York et al., 2012.

- [15] W. T. Ingram, W. S. Mahavier, *Inverse limits of upper semi-continuous set valued functions*, Houston J. Math. 32 (2006), 119–130.
- [16] W. T. Ingram, Inverse limits of upper semicontinuous functions that are unions of mappings, Topology Proc. 34 (2009), 17–26.
- [17] W. T. Ingram, Inverse limits with upper semicontinuous bonding functions: problems and some partial solutions, Topology Proc. 36 (2010), 353–373.
- [18] J. A. Kennedy and S. Greenwood, *Pseudoarcs and generalized inverse limits*, preprint (2010).
- [19] W. S. Mahavier, Inverse limits with subsets of $[0,1] \times [0,1]$, Topology Appl. 141 (2004), 225–231.
- [20] S. Mardešić and J. Segal, *Shape theory*, North-Holland, Amsterdam, 1982.
- [21] S. B. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992.
- [22] V. Nall, Inverse limits with set valued functions, Houston J. Math. 37 (2011), 1323–1332.
- [23] V. Nall, Connected inverse limits with set valued functions, Topology Proc. 40 (2012), 167–177.
- [24] V. Nall, Finite graphs that are inverse limits with a set valued function on [0, 1], Topology Appl. 158 (2011), 1226–1233.
- [25] A. Palaez, Generalized inverse limits, Houston J. Math. 32 (2006), 1107–1119.
- [26] S. Varagona, Inverse limits with upper semi-continuous bonding functions and indecomposability, Houston J. Math. 37 (2011), 1017–1034.

Authors:

Iztok Banič,

- (1) Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, Maribor 2000, Slovenia
- (2) Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana 1000, Slovenia

iztok.banic@uni-mb.si

Tina Sovič, Faculty of Civil Engineering, University of Maribor, Smetanova 17, Maribor 2000, Slovenia tina.sovic@um.si