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Abstract

A graph is said to be symmetric if its automorphism group is transitive on its arcs. Guo
et al. in 2011 and Pan et al. in 2013 determined all pentavalent symmetric graphs of order
4pq. In this paper, we shall generalize this result by determining all connected pentavalent
symmetric graphs of order four times an odd square-free integer. It is shown in this paper
that, for each such graph Γ , either the full automorphism group AutΓ is isomorphic to
PSL(2, p), PGL(2, p), PSL(2, p)×Z2 or PGL(2, p)×Z2, or Γ is isomorphic to one of 9
graphs.
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1 Introduction
All graphs in this paper are assumed to be finite, simple and undirected. Let Γ be a graph
and denote V Γ and AΓ the vertex set and arc set of Γ , respectively. Let G be a subgroup
of the full automorphism group AutΓ of Γ . Then Γ is called G-vertex-transitive and G-
arc-transitive ifG is transitive on V Γ and AΓ , respectively. An arc-transitive graph is also
called a symmetric graph. It is well known that Γ is G-arc-transitive if and only if G is
transitive on V Γ and the stabilizer Gα := {g ∈ G | αg = α} is transitive on the neighbor
set Γ (α) of the vertex α of Γ .

The cubic and tetravalent graphs have been studied extensively in the literature. In re-
cent years, attention has moved on to pentavalent symmetric graphs and a series of results
have been obtained. For example, all the possibilities of vertex stabilizers of pentavalent
symmetric graphs are determined in [7, 20]. Also, for distinct primes p, q and r, the clas-
sifications of pentavalent symmetric graphs of order 2pq and 2pqr are presented in [9, 19],
respectively. A classification of 1-regular pentavalent graph (that is, the full automorphism
group acts regularly on its arc set) of square-free order is presented in [13]. Recently,
pentavalent symmetric graphs of square-free order have been completely classified in [11].
Furthermore, some classifications of pentavalent symmetric graphs of cube-free order also
have been obtained in recent years. For example, the classifications of pentavalent symmet-
ric graphs of order 12p, 4pq and 2p2 are presented in [8, 16, 5]. More recently, symmetric
graphs of any prime valency which admit a soluble arc-transitive group have been classified
in [14]. The main purpose of this paper is to extend the results in [8, 16] to four times an
odd square-free integer case.

The main result of this paper is the following theorem.

Theorem 1.1. Let n be an odd square-free integer and let Γ be a pentavalent symmetric
graph of order 4n. If n has at least three prime factors, then one of the following statements
holds.

(1) AutΓ ∼= PSL(2, p), PGL(2, p), PSL(2, p)×Z2 or PGL(2, p)×Z2, where p ≥ 29
is a prime. Furthermore, the stabilizer (AutΓ )α and the prime p appear in Table 5
or Table 6.

(2) The triple (Γ , n,AutΓ ) lies in the following Table 1.

Remark 1.2 (Remarks on Theorem 1.1).

(a) The graphs in Table 1 are introduced in Example 3.2.

(b) The graphs C5852 and C3
780 in Table 1, and the graphs in part (1) with automorphism

group PSL(2, p)×Z2 or PGL(2, p)×Z2 can also be constructed from the bipartite
double cover (the definition of bipartite double cover see Section 3) of a pentavalent
symmetric graph of square-free order (see [11, Example 4.3 and Example 4.5] and
[19, Example 3.9 and Example 3.11] for details on these graphs).

2 Preliminaries
We now give some necessary preliminary results. The first one is a property of the Fitting
subgroup, see [18, p. 30, Corollary].

Lemma 2.1. Let F be the Fitting subgroup of a group G. If G is soluble, then F 6= 1 and
the centralizer CG(F ) ≤ F .
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Table 1: Nine ‘sporadic’ pentavalent symmetric graphs of order four times an odd square-
free integer.

Row Γ n AutΓ (AutΓ )α Transitivity Bipartite?

1 C1
17556 3 · 7 · 11 · 19 J1 D10 1-transitive No

2 C2
17556 3 · 7 · 11 · 19 J1 D10 1-transitive No

3 C3
17556 3 · 7 · 11 · 19 J1 D10 1-transitive No

4 C4
17556 3 · 7 · 11 · 19 J1 D10 1-transitive No

5 C5
17556 3 · 7 · 11 · 19 J1 D10 1-transitive No

6 C5852 7 · 11 · 19 J1 × Z2 A5 2-transitive Yes
7 C1

780 3 · 5 · 13 PSL(2, 25)× Z2 F20 2-transitive No
8 C2

780 3 · 5 · 13 PSL(2, 25)× Z2 F20 2-transitive No
9 C3

780 3 · 5 · 13 PSL(2, 25)× Z2 F20 2-transitive Yes

The maximal subgroups of PSL(2, p) are known, see [4, Section 239].

Lemma 2.2. Let T = PSL(2, p), where p ≥ 5 is a prime. Then a maximal subgroup of T
is isomorphic to one of the following groups:

(1) Dp−1, where p 6= 5, 7, 9, 11;

(2) Dp+1, where p 6= 7, 9;

(3) Zp : Z(p−1)/2;

(4) A4, where p = 5 or p ≡ 3, 13, 27, 37 (mod 40);

(5) S4, where p ≡ ±1 (mod 8)

(6) A5, where p ≡ ±1 (mod 5).

By [2, Theorem 2], we may easily derive the maximal subgroups of PGL(2, p).

Lemma 2.3. Let T = PGL(2, p) with p ≥ 5 a prime. Then a maximal subgroup of T is
isomorphic to one of the following groups:

(1) Zp : Zp−1;

(2) D2(p+1);

(3) D2(p−1), where p ≥ 7;

(4) S4, where p ≡ ±3 (mod 8);

(5) PSL(2, p).

From [6, pp. 134–136], we can obtain the following lemma by checking the orders of
nonabelian simple groups.

Lemma 2.4. Let n be an odd square-free integer such that n has at least three prime
factors. Let T be a nonabelian simple group of order 2i · 3j · 5 · n, where 1 ≤ i ≤ 11 and
0 ≤ j ≤ 2. Let p be the largest prime factor of n. Then T is listed in Table 2.
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Table 2: Nonabelian simple groups of order 2i · 3j · 5 · n with 1 ≤ i ≤ 11 and 0 ≤ j ≤ 2.

T |T | n

M22 27 · 32 · 5 · 7 · 11 3 · 7 · 11

M23 27 · 32 · 5 · 7 · 11 · 23 7 · 11 · 23

J1 23 · 3 · 5 · 7 · 11 · 19 7 · 11 · 19

J2 27 · 33 · 52 · 7 3 · 5 · 7
Sz(32) 210 · 52 · 31 · 41 5 · 31 · 41

PSU(3, 4) 26 · 3 · 52 · 13 3 · 5 · 13

PSp(4, 4) 28 · 32 · 52 · 17 3 · 5 · 17

PSL(2, 25) 23 · 3 · 52 · 13 3 · 5 · 13

PSL(2, 28) 28 · 3 · 5 · 17 · 257 3 · 17 · 257

PSL(5, 2) 210 · 32 · 5 · 7 · 31 3 · 7 · 31

PSL(2, 26) 26 · 32 · 5 · 7 · 13 3 · 7 · 13

M23 27 · 32 · 5 · 7 · 11 · 23 3 · 7 · 11 · 23

M24 210 · 33 · 5 · 7 · 11 · 23 3 · 7 · 11 · 23

J1 23 · 3 · 5 · 7 · 11 · 19 3 · 7 · 11 · 19

PSL(2, p) p(p+1)(p−1)
2 (p ≥ 29)

Proof. If T is a sporadic simple group, by [6, p. 135–136], T = M22, M23, M24, J1 or J2.
If T = An is an alternating group, since 34 does not divide |T |, we have n ≤ 8, it then
easily exclude that T = A5, A6, A7 or A8. Hence no T exists for this case.

Suppose now T = X(q) is a simple group of Lie type, where X is one type of Lie
groups, and q = rd is a prime power. If r ≥ 5, as |T | has at most three 3-factors, two
5-factors and one p-factor, it easily follows from [6, p. 135] that the only possibility is
T = PSL(2, p) with p ≥ 29 (note that PSL(2, p) with 5 ≤ p ≤ 23 does not satisfy the
condition of the lemma) or PSL(2, 25), where p is the largest prime factor of n. If r ≤ 3, as
212 and 34 do not divide |T |, then we have T = Sz(32), PSU(3, 4), PSp(4, 4), PSL(2, 26),
PSL(2, 28) or PSL(5, 2).

For a graph Γ and a positive integer s, an s-arc of Γ is a sequence α0, α1, . . . , αs of
vertices such that αi−1, αi are adjacent for 1 ≤ i ≤ s and αi−1 6= αi+1 for 1 ≤ i ≤ s− 1.
In particular, a 1-arc is just an arc. Then Γ is called (G, s)-arc-transitive with G ≤ AutΓ
if G is transitive on the set of s-arcs of Γ . A (G, s)-arc-transitive graph is called (G, s)-
transitive if it is not (G, s + 1)-arc-transitive. In particular, a graph Γ is simply called
s-transitive if it is (AutΓ , s)-transitive.

Let F20 denote the Frobenius group of order 20. The following lemma determines the
stabilizers of pentavalent symmetric graphs, refer to [7, 20].

Lemma 2.5. Let Γ be a pentavalent (G, s)-transitive graph, whereG ≤ AutΓ and s ≥ 1.
Let α ∈ V Γ . Then one of the following holds.

(a) If Gα is soluble, then s ≤ 3 and |Gα|
∣∣ 80. Further, the pair (s,Gα) lies in the
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following table.
s Gα

1 Z5, D10, D20

2 F20, F20 × Z2

3 F20 × Z4

(b) If Gα is insoluble, then 2 ≤ s ≤ 5, and |Gα|
∣∣ 29 · 32 · 5. Further, the pair (s,Gα)

lies in the following table.

s Gα |Gα|
2 A5, S5 60, 120
3 A4 ×A5, (A4 ×A5) : Z2, S4 × S5 720, 1440, 2880
4 ASL(2, 4), AGL(2, 4), AΣL(2, 4), AΓL(2, 4) 960, 1920, 2880, 5760
5 Z6

2 : ΓL(2, 4) 23040

A typical method for studying vertex-transitive graphs is taking normal quotients. Let Γ
be a G-vertex-transitive graph, where G ≤ AutΓ . Suppose that G has a normal subgroup
N which is intransitive on V Γ . Let V ΓN be the set of N -orbits on V Γ . The normal
quotient graph ΓN of Γ induced by N is defined as the graph with vertex set V ΓN , and
B is adjacent to C in ΓN if and only if there exist vertices β ∈ B and γ ∈ C such that β
is adjacent to γ in Γ . In particular, if val(Γ ) = val(ΓN ), then Γ is called a normal cover
of ΓN .

A graph Γ is called G-locally primitive if, for each α ∈ V Γ , the stabilizer Gα acts
primitively on Γ (α). Obviously, a pentavalent symmetric graph is locally primitive. The
following theorem gives a basic method for studying vertex-transitive locally primitive
graphs, see [17, Theorem 4.1] and [12, Lemma 2.5].

Theorem 2.6. Let Γ be a G-vertex-transitive locally primitive graph, where G ≤ AutΓ ,
and let N CG have at least three orbits on V Γ . Then the following statements hold.

(i) N is semi-regular on V Γ , G/N ≤ AutΓN , and Γ is a normal cover of ΓN ;

(ii) Gα ∼= (G/N)γ , where α ∈ V Γ and γ ∈ V ΓN ;

(iii) Γ is (G, s)-transitive if and only if ΓN is (G/N, s)-transitive, where 1 ≤ s ≤ 5 or
s = 7.

For reduction, we need some information of pentavalent symmetric graphs of order
4pq, stated in the following lemma, see [8, Theorem 4.1] and [16, Theorem 3.1].

Lemma 2.7. Let Γ be a pentavalent symmetric graph of order 4pq, where q > p ≥ 3 are
primes. Then the pair (AutΓ , (AutΓ )α) lies in the following Table 3, where α ∈ V Γ .

Remark 2.8 (Remarks on Lemma 2.7).

(a) Suppose that Γ is one of the graphs in Lemma 2.7 and M is an arc-transitive sub-
group of AutΓ . Then M is insoluble (for convenience, we prove this conclusion in
Lemma 4.4 and we remark that Lemma 4.4 is independent where it is used).

(b) By MAGMA [1], the graphs C(2)
66 and C5

132 in [8, Theorem 4.1] are isomorphic,
Aut(C5

132) ∼= PGL(2, 11)× Z2.
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Table 3: Pentavalent symmetric graphs of order 4pq.

Γ (p, q) AutΓ (AutΓ )α

C60 (3, 5) A5 ×D10 D10

C1
132 (3, 11) PSL(2, 11)× Z2 D10

Ci132, 2 ≤ i ≤ 4 (3, 11) PGL(2, 11) D10

C5
132 (3, 11) PGL(2, 11)× Z2 D20

C(2)
574 (7, 41) PSL(2, 41)× Z2 A5

C4108 (13, 79) PSL(2, 79) A5

The final lemma of this section gives some information about the pentavalent symmetric
graphs of square-free order, refer to [19, Theorem 1.1] and [11, Theorem 1.1].

Lemma 2.9. Let Γ be a pentavalent symmetric graph of order 2n, where n is an odd
square-free integer and has at least three prime factors. Then one of the following state-
ments holds.

(1) AutΓ is soluble and AutΓ ∼= D2n : Z5.

(2) AutΓ = PSL(2, p) or PGL(2, p), where p ≥ 5 is a prime.

(3) The triple (Γ , 2n,AutΓ ) lies in the following Table 4.

Table 4: Two ‘sporadic’ pentavalent symmetric graphs.

Γ 2n AutΓ (AutΓ )α

C390 390 PSL(2, 25) F20

C2926 2926 J1 A5

3 Some examples
In this section, we give some examples of pentavalent symmetric graphs of order 4n with
n an odd square-free integer.

In order to construct our graphs we first introduce the definition of a coset graph. Let G
be a finite group and let H be a core-free subgroup of G. Let τ ∈ G and τ2 ∈ H . Define
the coset graph Cos(G,H, τ) of G with respect to H as the graph with vertex set [G : H]
such that Hx, Hy are adjacent if and only if yx−1 ∈ HτH . The following lemma about
coset graphs is well known and the proof of the lemma follows from the definition of coset
graphs.

Lemma 3.1. Using the notation as above, the coset graph Γ = Cos(G,H, τ) is G-arc-
transitive graph and

(1) valΓ = |H : H ∩Hτ |;
(2) Γ is connected if and only if 〈H, τ〉 = G.
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Conversely, eachG-arc-transitive graph Σ is isomorphic to the coset graph Cos(G,Gv, τ),
where τ ∈ NG(Gvw) is a 2-element such that τ2 ∈ Gv , and v ∈ V Σ, w ∈ Σ(v).

We next introduce the definition of the bipartite double cover of a graph. Let Γ be a
graph with vertex set V Γ . The standard double cover of Γ is defined as the undirected
bipartite graph Γ̃ with biparts V0 and V1, where Vi = {(v, i) | v ∈ V Γ}, such that two
vertices (x, 0) and (y, 1) are adjacent if and only if x, y are adjacent in Γ . It is easily
shown that the standard double cover can be represented as a direct product: Γ̃ = Γ ×K2.
Furthermore, Γ̃ is connected if and only if Γ is connected and non-bipartite.

For a given small permutation group X , we may determine all graphs which admit X
as an arc-transitive automorphism group by using MAGMA [1]. It is then easy to have the
following result.

Example 3.2.

(1) There is a unique pentavalent symmetric graph of order 5852 which admits J1 × Z2

as an arc-transitive automorphism group; and its full automorphism group is J1×Z2.
This graph is denoted by C5832 which satisfies the conditions in Row 6 of Table 1.

(2) There are five pentavalent symmetric graphs of order 17556 admitting J1 as an arc-
transitive automorphism group; and their full automorphism group are all isomorphic
to J1. These five graphs are denoted by Ci17556 which satisfy the conditions in Row 1
to Row 5 of Table 1, where 1 ≤ i ≤ 5.

(3) There are three pentavalent symmetric graphs of order 780 which admit PSL(2, 25)×
Z2 as an arc-transitive automorphism group; and their full automorphism group are
all isomorphic to PSL(2, 25) × Z2. These three graphs are denoted by Cj780 which
satisfy the conditions in Row 7 to Row 9 of Table 1, where 1 ≤ j ≤ 3.

Remark 3.3 (Remarks on Example 3.2).

(a) Let Γ be a pentavalent symmetric graph of order 4nwith n an odd square-free integer
and having at least three prime factors. Then the graphs appearing in Example 3.2
are the only sporadic graphs of such Γ . In fact, let A = AutΓ . If A is insoluble
and has no nontrivial soluble normal subgroup, then Lemma 4.2 shows that Ci17556

with 1 ≤ i ≤ 5 are the only sporadic graphs. If A is insoluble and has a soluble
minimal normal subgroup N = Z2, then Lemma 4.3 shows that C5832 and Cj780 with
1 ≤ j ≤ 3 are the only sporadic graphs. If A is soluble or has a soluble minimal
normal subgroup N = Zr with r > 2, then Lemma 4.1 and Lemma 4.6 show that no
such Γ exists.

(b) Since both C2926 and C390 are non-bipartite, the bipartite double cover of both C2926

and C390 is connected pentavalent symmetric graph of order 4n. In fact, the graph
C5832 is isomorphic to the bipartite double cover of C2926 and the graph C3

780 is iso-
morphic to the bipartite double cover of C390.

Example 3.4. Let p be a prime such that

p ≡ 49, 79, 81, 111 (mod 160)

and let A = PSL(2, p). Then by Lemma 2.2, A has a subgroup H ∼= A5. Let K < H
with K ∼= A4. Then NA(K) = K : 〈τ〉 ∼= S4, where τ ∈ A − H is an involution. Let
Γ = Cos(A, H,HτH). Then Γ is a connected pentavalent symmetric graph.
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Example 3.5. Let p be a prime such that

p ≡ 9, 39, 41, 71 (mod 80)

and let A = PGL(2, p). Then by Lemma 2.2 and Lemma 2.3, A has a subgroup H ∼= A5.
Let K < H with K ∼= A4. Then NA(K) = K : 〈τ〉 ∼= S4 is a maximal subgroup of A,
where τ ∈ A−H is an involution, and so 〈H, τ〉 = A. Let Γ = Cos(A, H,HτH). Then
Γ is a connected pentavalent symmetric graph.

Example 3.6. Let p be a prime such that

p ≡ 9, 39, 41, 71 (mod 80)

and let A = PSL(2, p)×Z2 = T ×〈z〉, where T = PSL(2, p) and 〈z〉 = Z2. Then T has a
subgroup H ∼= A5. Let K < H with K ∼= A4. Then NA(K) = K : 〈τ〉× 〈z〉 ∼= S4×Z2,
where τ ∈ T −H is an involution. Let Γ = Cos(A, H,HτzH). Then Γ is a connected
pentavalent symmetric graph.

Example 3.7. Let p be a prime such that

p ≡ 11, 19, 21, 29 (mod 40)

and let A = PGL(2, p)×Z2 = T ×〈z〉, where T = PGL(2, p) and 〈z〉 = Z2. Then T has
a subgroupH ∼= A5. LetK < H withK ∼= A4. Then NA(K) = K : 〈τ〉×〈z〉 ∼= S4×Z2,
where τ ∈ T −H is an involution. Let Γ = Cos(A, H,HτzH). Then Γ is a connected
pentavalent symmetric graph.

4 Proof of Theorem 1.1
Let n be an odd square-free integer and n has at least three prime factors. Let Γ be a
pentavalent symmetric graph of order 4n. Set A = AutΓ . By Lemma 2.5, |Aα|

∣∣ 29 ·32 ·5,
and hence |A|

∣∣ 211 · 32 · 5 · n. Assume that n = p1p2 · · · ps, where s ≥ 3 and pi’s are
distinct primes.

Lemma 4.1. The group A is insoluble.

Proof. Suppose to the contrary that A is soluble. Let F be the Fitting subgroup of A. By
Lemma 2.1, F 6= 1 and CA(F ) ≤ F . Further, F = O2(A)×Op1(A)×Op2(A)× · · · ×
Ops(A), where O2(A), Op1(A), Op2(A), . . . , Ops(A) denote the largest normal 2-, p1-,
p2-, . . . , ps-subgroups of A, respectively.

For each pi ∈ {p1, p2, . . . , ps}, Opi(A) has at least three orbits on V Γ , by Theo-
rem 2.6, Opi(A) is semi-regular on V Γ . Therefore, F is semi-regular on V Γ and so |F |
divides |V Γ | = 4n. Since n = p1p2 · · · ps, we have Opi(A) ≤ Zpi . This argument also
proves O2(A) ≤ Z4 or Z2

2. If O2(A) = Z4 or Z2
2, then by Theorem 2.6, the normal

quotient graph ΓO2(A) is a pentavalent symmetric graph of odd order, which is a contra-
diction. Thus, O2(A) ≤ Z2, F ∼= Zm, where m

∣∣ 2n. It implies that CA(F ) ≥ F , and so
CA(F ) = F .

If F has at least three orbits on V Γ , then, by Theorem 2.6, ΓF is A/F -arc-transitive.
Since A/F = A/CA(F ) ≤ Aut(F ) is abelian, we have (A/F )δ = 1, where δ ∈ V ΓF ,
which is a contradiction.
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Thus, F has at most two orbits on V Γ . If F is transitive on V Γ , then F is regular
on V Γ , a contradiction with F ∼= Zm, where m

∣∣ 2n. Hence F has two orbits on V Γ and
F ∼= Z2n. LetK = Op3(A)×Op4(A)×· · ·×Ops(A). ThenK ∼= Zp3p4···ps . SinceKEA
has 4p1p2 orbits on V Γ , by Theorem 2.6(i), ΓK is an A/K-arc-transitive pentavalent graph
of order 4p1p2, and hence ΓK satisfies the conditions in Table 3. Since A/K is soluble, by
Remark 2.8, a contradiction occurs. Hence A is insoluble. This completes the proof of the
Lemma.

We now consider the case where A is insoluble and has no nontrivial soluble normal
subgroup.

Lemma 4.2. Assume that A is insoluble and has no nontrivial soluble normal subgroup.
Then AutΓ ∼= J1, PSL(2, p) or PGL(2, p) with p ≥ 29. Further, if AutΓ ∼= J1, then
Γ ∼= Ci17556 satisfies the conditions in Row 1 to Row 5 of Table 1 of Theorem 1.1, where
1 ≤ i ≤ 5. If AutΓ ∼= PSL(2, p) or PGL(2, p), then Γ satisfies the conditions in Table 5.

Table 5: AutΓ is almost simple.

AutΓ (AutΓ )α Γ Remark

PSL(2, p) A5 Example 3.4 p ≡ 49, 79, 81, 111 (mod 160)

PGL(2, p) A5 Example 3.5 p ≡ 9, 39, 41, 71 (mod 80)

PSL(2, p) D10 p ≡ 9, 39, 41, 71 (mod 80)

PGL(2, p) D10 p ≡ 11, 19, 21, 29 (mod 40)

PSL(2, p) D20 p ≡ 49, 79, 81, 111 (mod 160)

PGL(2, p) D20 p ≡ 9, 39, 41, 71 (mod 80)

Proof. Let N be the socle of A. Then N is insoluble and 4 divides |N |. If N has more
than three orbits on V Γ , then by Theorem 2.6, ΓN is a pentavalent symmetric graph of odd
order, a contradiction. Hence, N has at most two orbits on V Γ , so 2n divides |N |.

Assume that A has at least two minimal normal subgroups N1 and N2. Then by a
similar argument as above, we have that 2n divides both |N1| and |N2|. Hence 4n2 divides
|A| = 211 · 32 · 5 · n, and so n divides 29 · 32 · 5. It implies that n = 3 · 5, a contradiction
with n having at least three prime factors. So A has a unique minimal normal subgroup
and we may write N = Sd, where S is a nonabelian simple group and d ≥ 1.

Since ps > 5, ps divides |N | and p2
s does not divide |N | as |A|

∣∣ 211 ·32 ·5 ·p1p2 · · · ps,
we conclude that d = 1 and N = S is a nonabelian simple group. Hence A is almost
simple with socle S.

If Sα = 1, then S acts regularly on V Γ . Hence S is a non-abelian simple group such
that |S| = 4n. By checking the orders of nonabelian simple groups (see [6, pp. 135–136]
for example), we have that S = PSL(2, p) and so A ≤ Aut(S) = PGL(2, p), which is
impossible as A is transitive on AΓ , |A| ≤ 2|S| and |AΓ | = 5|S|. Hence Sα 6= 1. Since
Γ is connected and S C A, we have 1 6= S

Γ(α)
α C A

Γ(α)
α , it follows that 5

∣∣ |Sα|, we thus
have 10 · p1p2 · · · ps divides |S|.
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Thus, soc(A) = S is a nonabelian simple group such that |S|
∣∣ 211 · 32 · 5 · n and

10 · n
∣∣ |S|. Hence the triple (S, |S|, n) lies in Table 2 of Lemma 2.4. We will analyse all

the candidates one by one in the following.
Assume (S, n) = (J1, 3 ·7 ·11 ·19). Then |V Γ | = 17556 and A ∼= J1 as Out(J1) = 1.

It then follows from Example 3.2 that Γ ∼= Ci17556 satisfies the conditions in Row 1 to
Row 5 of Table 1 of Theorem 1.1, where 1 ≤ i ≤ 5.

Assume (S, n) = (Sz(32), 5 · 31 · 41). Since Out(Sz(32)) ∼= Z5 (see Atlas [3] for
example), A ∼= Sz(32) or Sz(32).Z5, so |Aα| = |A|

4n = 1280 or 6400, which is not possible
by Lemma 2.5. Similarly, for the case (S, n) = (PSL(5, 2), 3 · 7 · 31), then A ∼= PSL(5, 2)

or PSL(5, 2).Z2 as Out(PSL(5, 2)) ∼= Z2. Thus, |Aα| = |A|
4n = 3840 or 7680, which is

impossible by Lemma 2.5. For the case where (S, n) = (PSL(2, 28), 3 · 17 · 257), since
A ∼= PSL(2, 28).O, where O ≤ Out(PSL(2, 28)) ∼= Z8, we have |Aα| = |A|

4n = 2k · 5,
where 6 ≤ k ≤ 9, which is also impossible by Lemma 2.5. For the case where (S, n) =
(PSU(3, 4), 3 · 5 · 13), since A ∼= PSU(3, 4).O, where O ≤ Out(PSU(3, 4)) ∼= Z4, we
have |Aα| = |A|

4n = 2k · 5, where 4 ≤ k ≤ 6, which is impossible by Lemma 2.5.
Assume (S, n) = (PSp(4, 4), 3 · 5 · 17). Since S ≤ A ≤ Aut(S) ∼= PSp(4, 4).Z4, we

have |Aα| = |A|
4n = 960, 1920 or 3840. If |Aα| = 960 or 1920, then by Lemma 2.5, Aα

∼=
ASL(2, 4) or AΣL(2, 4). However, by Atlas [3], PSp(4, 4) has no subgroup isomorphic to
ASL(2, 4) and PSp(4, 4).Z2 has no subgroup isomorphic to AΣL(2, 4). If |Aα| = 3840,
then also by Lemma 2.5, a contradiction occurs.

Assume (S, n) = (PSL(2, 26), 3 · 7 · 13). Recall that S has at most two orbits on
V Γ , |Sα| = |S|

4n = 240 or |S|2n = 480. However, by Lemma 2.2, PSL(2, 26) has no
maximal subgroup with order a multiple of 240, a contradiction occurs. Similarly, for the
case (S, n) = (J2, 3 · 5 · 7), then |Sα| = |S|

4n = 2880 or |S|2n = 5760. By Atlas [3], J2 has
no maximal subgroup with order a multiple of 2880, a contradiction also occurs.

Assume S ∼= M23. Then n = 3 · 7 · 11 · 23 or 7 · 11 · 23, and as Out(M23) = 1, we
have A = S and |Aα| = |M23|

4n = 480 or 1440. By Lemma 2.5, it is impossible for the case
|Aα| = 480. For the latter case, by a direct computation using MAGMA [1], no graph Γ
exists. If (S, n) = (M22, 7 · 11 · 23), as Out(M22) ∼= Z2, we have A ∼= M22 or M22.Z2,
so |Aα| = |A|

4n = 480 or 960, a computation by MAGMA [1] shows that no graph Γ exists.
Similarly, we can exclude the case where (S, n) = (PSL(2, 25), 3 · 5 · 13) by MAGMA [1].

Assume (S, n) = (M24, 3 · 7 · 11 · 23) or (J1, 3 · 7 · 11 · 19). Since Out(M24) =

Out(J1) = 1, we always have A = S. Hence |Aα| = |A|
4n = 11520 or 10. A computation

by MAGMA [1] also shows that no graph Γ exists.
Finally, assume S ∼= PSL(2, p) with p ≥ 29 a prime. Then A ∼= PSL(2, p) or

PGL(2, p). By Lemma 2.2, Lemma 2.3 and Lemma 2.5, we have Aα
∼= Z5, D10, D20

or A5. If Aα
∼= Z5, then Γ is an arc-regular pentavalent graph of order four times

an odd square-free integer. However, by [15, Theorem 1.1], no such Γ exists. Hence
Aα
∼= D10, D20 or A5. If Aα

∼= A5, then by Lemma 2.2 and Lemma 2.3, we have p ≡ ±1
(mod 5). Since |A : Aα| = 4n, we have |A| is divisible by 16, but not by 32. Since
|A| = |PSL(2, p)| = p(p−1)(p+1)

2 or |PGL(2, p)| = p(p − 1)(p + 1), we have p ≡ ±15
(mod 32) for A ∼= PSL(2, p) or p ≡ ±7 (mod 16) for A ∼= PGL(2, p). Since p ≡ ±1
(mod 5), we have p ≡ 49, 79, 81, 111 (mod 160) for A ∼= PSL(2, p) or p ≡ 9, 39, 41, 71
(mod 80) for A ∼= PGL(2, p). These graphs are constructed in Example 3.4 and Exam-
ple 3.5. Similarly, if Aα

∼= D10 or D20, then p satisfies the condition in Table 5. This
completes the proof of the Lemma.
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We next assume that A has a nontrivial soluble normal subgroup. Let N be a soluble
minimal normal subgroup of A. Then there exists a prime r

∣∣ 4n such thatN ∼= Zdr . Further,
N has at least three orbits on V Γ . It follows from Theorem 2.6 that N is semi-regular on
V Γ , and so |N | = |Zr|d

∣∣ |V Γ | = 4n. If d ≥ 2, then (r, d) = (2, 2). It follows that ΓN
is an arc-transitive graph of odd order, a contradiction. Hence d = 1, N = Zr. The next
lemma consider the case where r = 2.

Lemma 4.3. Assume that A is insoluble and has a soluble minimal normal subgroup N =
Z2. Then one of the following statements holds:

(1) AutΓ ∼= PSL(2, p)×Z2 or PGL(2, p)×Z2, where p ≥ 29 is a prime. Furthermore,
Γ satisfies the conditions in Table 6.

(2) AutΓ ∼= PSL(2, 25)×Z2 and Γ is isomorphic to Ci780 in Table 1, where 1 ≤ i ≤ 3.

(3) AutΓ ∼= J1 × Z2 and Γ is isomorphic to C5852 in Table 1.

Table 6: AutΓ has a normal subgroup isomorphic to Z2.

AutΓ (AutΓ )α Γ Remark

PSL(2, p)× Z2 A5 Example 3.6 p ≡ 9, 39, 41, 71 (mod 80)

PGL(2, p)× Z2 A5 Example 3.7 p ≡ 11, 19, 21, 29 (mod 40)

PSL(2, p)× Z2 D10 p ≡ 11, 19, 21, 29 (mod 40)

PSL(2, p)× Z2 D20 p ≡ 9, 39, 41, 71 (mod 80)

PGL(2, p)× Z2 D20 p ≡ 11, 19, 21, 29 (mod 40)

Proof. Since N has more than three orbits on V Γ , then by Theorem 2.6, ΓN is an A/N -
arc-transitive pentavalent graph of order n̄ = 2n. It follows that ΓN is isomorphic to
one of the graphs in Lemma 2.9. Since A/N ≤ AutΓN and A/N is insoluble, we have
that AutΓN is insoluble and so AutΓN ∼= PSL(2, p), PGL(2, p), PSL(2, 25) or J1. Let
Ā := Aut Γ̄ .

Suppose that Ā ∼= PSL(2, p) or PGL(2, p). Since A/N is insoluble, by Lemma 2.2
and Lemma 2.3, A/N is isomorphic to A5, PSL(2, p) or PGL(2, p). If A/N ∼= A5, then
since ΓN is an A/N -arc-transitive pentavalent graph of order n̄ = 2n, we have 2n ·5

∣∣ |A5|.
It implies that n divides 6, a contradiction with n having at least three odd prime factors.
Thus, A/N is isomorphic to PSL(2, p) or PGL(2, p). Therefore, A ∼= N.PSL(2, p) or
N.PGL(2, p), that is, A ∼= PSL(2, p) × Z2, SL(2, p), PGL(2, p) × Z2 or SL(2, p).Z2.
Assume first that A ∼= SL(2, p). Note that SL(2, p) has a unique central involution. Then
by Lemma 2.5, Aα

∼= Z5. It follows that |V Γ | = |A : Aα| is divisible by 8 as |SL(2, p)|
is divisible by 8, a contradiction. Assume next that A ∼= SL(2, p).Z2. Then A contains a
normal subgroup H isomorphic to SL(2, p). Since 8

∣∣ |H|, we have Hα 6= 1. By Theo-
rem 2.6, H has at most two orbits on V Γ and so |Aα||Hα|

∣∣ 2. If H is transitive on V Γ , then H
is arc-transitive. A similar argument with the case A ∼= SL(2, p), a contradiction occurs.
Therefore, H has two orbits on V Γ and so Hα = Aα. Since H has a unique central in-
volution, by Lemma 2.5, Aα

∼= Z5, it follows that |V Γ | = |A : Aα| is divisible by 16, a
contradiction. Therefore, A ∼= PSL(2, p)×Z2 or PGL(2, p)×Z2 in this case. By a similar
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argument as for the case A ∼= PSL(2, p) (the last paragraph in the proof of Lemma 4.2), we
have that Γ satisfies the condition in Table 6. Note that since 16 divides |PGL(2, p)×Z2|
and |A : Aα| = 4n, we have (A,Aα) 6= (PGL(2, p)× Z2,D10).

Suppose that Ā ∼= PSL(2, 25). Since ΓN is A/N -arc-transitive, we have that
5 · 390

∣∣ |A/N |. By checking the maximal subgroup of PSL(2, 25) (see Atlas [3] for
example), we have that A/N = Ā ∼= PSL(2, 25). It follows that A ∼= SL(2, 25) or
PSL(2, 25) × Z2. If A ∼= PSL(2, 25) × Z2, then by Example 3.2, Γ ∼= Ci780 in Table 1,
where 1 ≤ i ≤ 3. If A ∼= SL(2, 25), then by MAGMA [1], no graph Γ exists.

Suppose that Ā ∼= J1. Similarly, since ΓN is A/N -arc-transitive, we have that
5 · 2926

∣∣ |A/N |. By checking the maximal subgroup of J1 (see Atlas [3] for example), we
have that A/N = Ā ∼= J1. Since the Schur multiplier of J1 is Z1, A ∼= N.J1

∼= J1 × Z2.
By Example 3.2, Γ ∼= C5852 in Table 1.

Finally, suppose that r > 2. We first prove the following lemma.

Lemma 4.4. Let Σ be a graph. Assume that Σ is isomorphic to one of the graphs appearing
in Lemma 2.7, in Lemma 4.2 or in Lemma 4.3. IfM is an arc-transitive subgroup of Aut Σ,
then M contains the derived subgroup of Aut Σ.

Proof. Let Σ be a graph and isomorphic to one of the graphs appearing in Lemma 2.7, in
Lemma 4.2 or in Lemma 4.3. Let M be an arc-transitive subgroup of B = Aut Σ. Then
B = MBαβ , where (α, β) ∈ AΣ. In particular, m := |B : M | divides |Bαβ |. Assume
first that Σ is isomorphic to one of the graphs appearing in Lemma 2.7. Then, in the first
three rows of Table 3, we have that M has index at most two, and for the fourth row M
has index at most four, so in particular, M contains B′. For the last two rows, we have that
m
∣∣ 12. Since there is no faithful representation ofB in degreem for 2 < m ≤ 12, we have

1 ≤ m ≤ 2 and so M also contains B′.
Now assume that Σ is isomorphic to one of the graphs appearing in Lemma 4.2 or in

Lemma 4.3. ThenB is isomorphic to one of the groups PSL(2, p), PGL(2, p), PSL(2, p)×
Z2, PGL(2, p)×Z2, J1, J1×Z2 or PSL(2, 25)×Z2 with p ≥ 29. If B ∼= J1, then M has
index at most two. IfB ∼= J1×Z2, thenM has index at most 12. IfB ∼= PSL(2, 25)×Z2,
then M has index at most four. For these three cases, by a similar argument as above, we
also haveM containsB′. IfB ∼= PSL(2, p), then since p

∣∣n and 20n
∣∣ |M |, by Lemma 2.2,

M ≤ Zp : Z p−1
2

or M = B ∼= PSL(2, p). If M ≤ Zp : Z p−1
2

, then M ∼= Zp : Zl for some

l
∣∣ p−1

2 . Thus, M has a normal subgroup, say S ∼= Zp, which has more than three orbits
on V Σ. It then follows from Theorem 2.6 that the normal quotient graph ΣS is M/S-
arc-transitive, a contradiction occurs as M/S ∼= Zl is cyclic. Hence, M 6≤ Zp : Z p−1

2

and so M = B′ ∼= PSL(2, p). If B ∼= PGL(2, p), then since 20n
∣∣ |M |, by Lemma 2.3,

M ≤ Zp : Zp−1, M ≤ PSL(2, p) or M = B ∼= PGL(2, p). With a similar argument, we
can conclude that M ≥ B′ ∼= PSL(2, p). Similarly, we can further show that M ≥ B′ ∼=
PSL(2, p) for the case B ∼= PSL(2, p)× Z2 or PGL(2, p)× Z2.

Now assume that A has a soluble minimal normal subgroup N = Zr for r > 2.

Lemma 4.5. Assume that A has a soluble minimal normal subgroup N = Zr for r > 2.
Then the normal quotient ΓN is not isomorphic to any graph appearing in Lemma 2.7,
Lemma 4.2 or Lemma 4.3.
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Proof. Suppose to the contrary that ΓN is isomorphic to one of the graphs appearing in
Lemma 2.7, Lemma 4.2 or Lemma 4.3. Let M/N = (AutΓN )′, and let Ω := {PSL(2, p),
J1,PSL(2, 25),A5}. By checking the graphs appearing in Lemma 2.7, in Lemma 4.2 or in
Lemma 4.3, we have that AutΓN is isomorphic to one of the groups PSL(2, p), PGL(2, p),
PSL(2, p)×Z2, PGL(2, p)×Z2, J1, J1×Z2, PSL(2, 25)×Z2 or A5×D10. Thus, M/N
is isomorphic to one of the groups in Ω. Since the order of the Schur multiplier of a group
in Ω is less than or equal to 2 (see [10, Theorem 7.1.1] for PSL(2, p) and Atlas [3] for the
others) and r > 2, we have that M ′ ∈ Ω.

By Theorem 2.6, A/N ≤ AutΓN is transitive on AΓN . It follows from Lemma
4.4 that A/N contains the derived subgroup of AutΓN , that is, M/N ≤ A/N . Since
M/N E AutΓN , we have M/N E A/N . Therefore, M ′ char M E A, it implies that
M ′EA. IfM ′ has more than three orbits on V Γ , then by Theorem 2.6, ΓM ′ is a pentavalent
symmetric graph of odd order, a contradiction. Thus, M ′ has at most two orbits on V Γ and
so 2n divides |M ′|. Let Ā := AutΓN , n̄ := n

r and M̄ := M/N . Then M ′ ∼= M̄ .
Let ρ be the bijection from the orbits of M ′ on V Γ to the orbits of M̄ on V ΓN defined

by:
αM

′
→ δM̄ , where α ∈ V Γ and δ = αN ∈ V ΓN .

Then we can conclude that, for some k ∈ {2, 4}, |M ′ : (M ′)α| = kn and |M̄ : M̄δ| = kn
r .

It gives |(M ′)α|r = |M̄δ|. Since |M̄δ|
∣∣ |Āδ| and |Āδ|

∣∣ 29 · 32 · 5, we have |M̄δ|
∣∣ 29 · 32 · 5

and so r = 3 or 5.
Assume first that r = 5. Since Γ is connected and 1 6= M ′α C Aα, we have 1 6=

M ′α
Γ(α) C A

Γ(α)
α , it follows that 5

∣∣ |M ′α|. Therefore, 52
∣∣ |M̄δ|, a contradiction.

Now assume that r = 3. Since M̄ ∼= M ′ has at most two orbits on V ΓN (if not (ΓN )M̄
is a pentavalent symmetric graph of odd order, a contradiction), we have that |M̄ : M̄δ| =
2n̄ or 4n̄, where δ ∈ V Γ̄ . Now 2n divides |M̄ | and |M̄ : M̄δ| = 2n

r or 4n
r . It implies that

r = 3 divides M̄δ . Therefore 3
∣∣ |Āδ|. By Lemma 2.5, Āδ is insoluble, because |Āδ| does

not divide 80, forcing that M̄δ is insoluble. Recall that M̄ ∼= M ′ ∈ Ω. If M̄ ∼= PSL(2, p),
then by Lemma 2.2, M̄δ

∼= A5. Hence M ′α ≤ (M ′N)α ∼= (M ′N/N)δ = M̄δ
∼= A5 by

Theorem 2.6(ii). Note that |M ′α| = 20, it contradicts that A5 has no subgroup of order 20.
If M̄ ∼= J1, then ΓN ∼= C5852 or Ci17556 in Table 1, where 1 ≤ i ≤ 5. If ΓN ∼= Ci17556,
then Āδ

∼= D10 is soluble, a contradiction. If ΓN ∼= C5852, then M̄δ = Āδ
∼= A5. A

similar argument with the case M̄ ∼= PSL(2, p) leads to a contradiction. If M̄ ∼= A5, then
ΓN ∼= C60 in Table 3 and Āδ

∼= D10 is soluble, a contradiction. If M̄ ∼= PSL(2, 25), then
ΓN ∼= C1

780, C2
780 or C3

780 in Table 1 and Āδ
∼= F20 is soluble, also a contradiction.

The final lemma completes the proof of Theorem 1.1.

Lemma 4.6. Assume A is insoluble. Then A has no soluble minimal normal subgroup
isomorphic to Zr with r > 2.

Proof. Suppose that, on the contrary, A has a soluble minimal normal subgroup N = Zr
with r > 2. We prove the lemma by induction on the order of Γ .

Assume first that n = pqt has three prime factors. (Note that, by Table 3, the conclusion
of Lemma 4.6 does not hold for n = pq.) Without loss of generality, we may assume that
r = t. Then ΓN is a pentavalent symmetric graph of order 4pq. By Lemma 2.7, ΓN is
isomorphic to one of the graphs in Table 3, which contradicts to Lemma 4.5.

Assume next that n has at least four prime factors. Note that AutΓN is insoluble. If
AutΓN has no nontrivial soluble normal subgroup, then ΓN is isomorphic to one of the
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graphs in Lemma 4.2, which contradicts to Lemma 4.5. If AutΓN has a soluble minimal
normal subgroup N̄ , then we can also conclude that N̄ ∼= Zf with f a prime. If f > 2,
then by induction, no such ΓN exists, a contradiction. If f = 2, then ΓN is isomorphic
to one of the graphs appearing in Lemma 4.3, which also contradicts to Lemma 4.5. This
completes the proof of the Lemma.
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