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Abstract

Fibonacci cubes are special subgraphs of the hypercube graphs. Their domination num-
bers and total domination numbers are obtained for some small dimensions by integer linear
programming. For larger dimensions upper and lower bounds on these numbers are given.
In this paper, we present the up-down degree polynomials for Fibonacci cubes containing
the degree information of all vertices in more detail. Using these polynomials we define op-
timization problems whose solutions give better lower bounds on the domination numbers
and total domination numbers of Fibonacci cubes. Furthermore, we present better upper
bounds on these numbers.

Keywords: Fibonacci cubes, domination number, total domination number, integer linear program-
ming.

Math. Subj. Class.: 05C69, 68R10, 11B39

1 Introduction
Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). D ⊆ V (G)
is a dominating set of G if every vertex in V (G) either belongs to D or is adjacent to some
vertex in D. The domination number γ(G) is defined as the minimum cardinality of a
dominating set of the graph G. Similarly, D ⊆ V (G) is a total dominating set if every
vertex in V (G) is adjacent to some vertex in D and the total domination number γt(G)
is defined as the minimum cardinality of a total dominating set of G. Note that the total
domination number is defined for isolate-free graphs and it is not defined for the graphs that
contain isolated vertices. The domination number of the Fibonacci cubes Γn is first given
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in [14] and [2]. These results are extended in [8] by using integer linear programming for
some cases. Total domination number of Γn is considered in [1], in which an upper bound
and a lower bound on γt(Γn) are obtained. The exact values of γ(Γn) and γt(Γn) are also
considered by using integer programming in [1]. The upper bound on γt(Γn) given in [1]
is improved in [15]. We summarize these results in Section 2. The aim of this work is to
improve some of the results given in [1] and [15].

The hypercube Qn of dimension n ≥ 1 is the graph with vertex set V (Qn) = {0, 1}n,
in which two vertices are adjacent if they differ in one coordinate. For convenience Q0 =
K1. All the vertices of Qn are labeled by the binary strings of length n. The Fibonacci
cubes Γn are special subgraphs of Qn and they were introduced by Hsu [7] as a model
of interconnection networks. In literature, many interesting properties of the Fibonacci
cubes have been investigated, see survey [9] for details. In recent years results on disjoint
hypercubes in Γn are presented in [5, 13, 16] and the cube enumerator polynomial of Γn is
considered in [10, 11, 17] and many combinatorial results are given. The domination-type
invariants of Γn are considered in [1, 2, 8, 14, 15] and some numerical results and bounds
are presented.

It is known that Fibonacci strings of length n are the binary strings of length n that
contain no consecutive ones. For this reason we can write

V (Γn) = {b1b2 · · · bn | bi ∈ {0, 1}, 1 ≤ i ≤ n, and bi · bi+1 = 0 for 1 ≤ i < n} and
E(Γn) = {(u, v) | u, v ∈ V (Γn), dH(u, v) = 1},

where dH(u, v) denotes the Hamming distance between u and v, that is, the number of
different coordinates in u and v. The number of vertices of the Fibonacci cubes Γn is Fn+2,
where Fn are the Fibonacci numbers defined as F0 = 0, F1 = 1 and Fn = Fn−1+Fn−2 for
n ≥ 2. For n ≥ 2 we will use the following formulation for the fundamental decomposition
of Γn (see, [9]):

Γn = 0Γn−1 + 10Γn−2. (1.1)

Here note that 0Γn−1 is the subgraph of Γn induced by the vertices that start with 0 and
10Γn−2 is the subgraph of Γn induced by the vertices that start with 10. Furthermore,
0Γn−1 has a subgraph isomorphic to 00Γn−2, and there is a matching between 00Γn−2

and 10Γn−2 (see Figure 1).

Figure 1: Fundamental decompositions of the Fibonacci cube Γn, n ≥ 3.

In this paper, we present upper bounds on γ(Γn) and γt(Γn). Furthermore, we in-
troduce the up-down degree polynomials for Γn containing the degree information of all
vertices V (Γn) in more detail. Using these polynomials we define optimization problems
whose solutions give lower bound on γ(Γn) and γt(Γn).
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2 Known results and new upper bounds on γ(Γn) and γt(Γn)

In this section, first we summarize some known results on the domination number and the
total domination number of Fibonacci cubes and then we present new uppper bounds for
these numbers. We start with Figure 2 and Figure 3 showing a dominating set and a total
dominating set for small dimensional Γn’s.

Figure 2: Γ0, . . . ,Γ5 and their dominating sets.

Figure 3: Γ1, . . . ,Γ5 and their total dominating sets.

We collect the known values of γ(Γn) and γt(Γn) in Table 1. The values of γ(Γn) for
n ≤ 8 are obtained in [14]. The other values of γ(Γn) are obtained by integer program-
ming. For n = 9 and n = 10 they are obtained in [8] and for n = 11 and n = 12 they
are obtained in [1]. Similarly, all the values of γt(Γn) given in Table 1 are obtained by
computer using integer programming in [1].
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Table 1: Known values of γ(Γn) and γt(Γn).

n 1 2 3 4 5 6 7 8 9 10 11 12 13

|V (Γn)| 2 3 5 8 13 21 34 55 89 144 233 377 610

γ(Γn) 1 1 2 3 4 5 8 12 17 25 39 54 – 61

γt(Γn) 2 2 2 3 5 7 10 13 20 30 44 65 97 – 101

Now we describe the integer linear programming used in [8] and [1]. Suppose each
vertex v ∈ V (Γn) is associated with a binary variable xv . Let N(v) be the set of vertices
adjacent to v and N [v] = N(v) ∪ {v}. The problems of determining γ(Γn) and γt(Γn)
can be expressed as a problem of minimizing the objective function∑

v∈V (Γn)

xv (2.1)

subject to the condition that for every v ∈ V (Γn) we have∑
a∈N [v]

xa ≥ 1 (for domination number),

∑
a∈N(v)

xa ≥ 1 (for total domination number).

The value of the objective function is then γ(Γn) and γt(Γn) respectively. Note that this
problem has Fn+2 variables and Fn+2 constraints. In [1], it is stated that γ(Γ12) and
γt(Γ13) were not computed in real time using the above optimization problem. They got
the estimates

54 ≤ γ(Γ12) ≤ 61 and 97 ≤ γt(Γ13) ≤ 101.

Here, the main difficulty is the order of Γn which equals to the number of variables and the
number of constraints.

By using the degree information of the vertices in Γn the following lower bound on
γ(Γn) is presented in [14].

Theorem 2.1 ([14]). If n ≥ 9, then

γ(Γn) ≥
⌈
Fn+2 − 2

n− 2

⌉
.

By using a similar technique the following lower bound on γt(Γn) is obtained in [1].

Theorem 2.2 ([1]). If n ≥ 9, then

γt(Γn) ≥
⌈
Fn+2 − 11

n− 3

⌉
− 1.

In Section 3 we propose an optimization problem having less number of variables and
constraints to estimate lower bounds on γ(Γn) and γt(Γn). Our results improve the lower
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bounds given in Theorem 2.1 and Theorem 2.2 and we present some numerical values in
Table 2 and Table 3.

By using the exact values in Table 1 and the fundamental decomposition (1.1) of Γn,
the following upper bound on γt(Γn) is obtained in [1].

Theorem 2.3 ([1]). If n ≥ 11, then γt(Γn) ≤ 21Fn−8 + 2Fn−10.

In [1], using the computer result γt(Γ13) ≤ 101 the upper bound in Theorem 2.3 im-
proved to

γt(Γn) ≤ 601Fn−1 − 371Fn, n ≥ 12.

These two upper bounds further improved in [15] by using the values of γ(Γn) and the
fundamental decomposition (1.1) of Γn more than once.

Theorem 2.4 ([15]). If n ≥ 15, then

γ(Γn) ≤ γt(Γn) ≤ 3γ(Γn−3) + 2γ(Γn−4)

≤ 116Fn − 187Fn−1 = 21Fn−8 − (2Fn−10 + Fn−12) .

Furthermore, γt(Γ14) ≤ 166 .

We implemented the same integer linear programming problem (2.1) using CPLEX in
NEOS Server [3, 4, 6] for n = 13 and obtain the estimates (takes approximately 2 hours)

78 ≤ γ(Γ13) ≤ 93.

Using this result with γ(Γ12) ≤ 61 we obtain the following bound on the domination
number of Γn.

Theorem 2.5. If n ≥ 12, then γ(Γn) ≤ 21Fn−8 − (2Fn−10 + 8Fn−12).

Proof. The proof mimics the proof of [1, Theorem 2.1]. By the fundamental decomposition
(1.1) of Γn we have γ(Γn) ≤ γ(Γn−1) + γ(Γn−2). We know that γ(Γ12) ≤ 61 and
γ(Γ13) ≤ 93. For n ≥ 12 define the sequence (bn) with bn = bn−1 + bn−2 where
b12 = 61 and b13 = 93. Then by induction we have bn = 21Fn−8− 2Fn−10− 8Fn−12 for
any n ≥ 12. We complete the proof since γ(Γn) ≤ bn for n ≥ 12.

Combining the results in Theorem 2.5 and Theorem 2.4 we get the following result
which improves Theorem 2.3 and Theorem 2.4.

Theorem 2.6. If n ≥ 16, then

γt(Γn) ≤ 21Fn−8 − (2Fn−10 + 8Fn−12) .

3 Up-down degree enumerator polynomial
In this section we present the up-down degree enumerator polynomial for Γn. It contains
the degree information of all vertices V (Γn) in more detail. Using this polynomial we
write optimization problems whose solutions are lower bounds on γ(Γn) and γt(Γn).

For each fixed v ∈ V (Γn) we write a monomial xuyd where d = w(v) is the Hamming
weight of v and u is deg(v)− d (that is, deg(v) = u+ d). Recall that, by the definition of
Γn, (v, v′) ∈ E(Γn) if and only if dH(v, v′) = 1. Therefore, the number of neighbors of v
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whose weight is one more than the weight of v (say up neighbors of v, w(v′) = w(v) + 1)
is u and the number of neighbors of v whose weight is one less than the weight of v (say
down neighbors of v, w(v′) = w(v)− 1) is d. For this reason we call the polynomial

Pn(x, y) =
∑

v∈V (Γn)

xdeg(v)−w(v)yw(v) =
∑

v∈V (Γn)

xuyd

as the up-down degree enumerator polynomial of Γn. By using the fundamental decom-
position (1.1) of Γn we obtain the following recursive relation which will be useful to
calculate Pn(x, y).

Theorem 3.1. Let Pn(x, y) be the up-down degree enumerator polynomial of Γn. Then
for n ≥ 3 we have

Pn(x, y) = xPn−1(x, y) + yPn−2(x, y) + yPn−3(x, y)− xyPn−3(x, y),

where
P0(x, y) = 1, P1(x, y) = x+ y and P2(x, y) = x2 + 2y.

Proof. P0, P1 and P2 are clear from Figure 2. Assume that n ≥ 3. We know that the up-
down degree enumerator polynomials of Γn−1, Γn−2 and Γn−3 are Pn−1(x, y), Pn−2(x, y)
and Pn−3(x, y) respectively. By (1.1) we have

Γn = 0Γn−1 + 10Γn−2 (3.1)
= (00Γn−2 + 010Γn−3) + 10Γn−2 (3.2)

and there is a matching between 00Γn−2 and 10Γn−2 (see also Figure 1). From this de-
composition we have the following three different cases:

1. Assume that v ∈ 10Γn−2. These vertices are the ones in Γn−2 whose weights
d = w(v) increase by one in Γn. Furthermore, their degrees increase by one due to
the matching between 00Γn−2 and 10Γn−2, which means that u = deg(v)−w(v) re-
mains the same in Γn. Therefore, these vertices contribute yPn−2(x, y) to Pn(x, y).

2. Assume that v ∈ 010Γn−3. These vertices are the ones in Γn−3 whose weights
d = w(v) increase by one in Γn and their degrees increase by one due to the matching
between 010Γn−3 and 000Γn−3 ⊂ 00Γn−2, which means that u = deg(v)−w(v) re-
mains the same in Γn. Therefore, these vertices contribute yPn−3(x, y) to Pn(x, y).

3. Assume that v ∈ 00Γn−2. These vertices are the ones in 0Γn−1 that are not in
010Γn−3. In Γn−1 the up-down degree enumerator polynomial of these vertices
becomes Pn−1(x, y) − yPn−3(x, y). The weights d = w(v) of all such vertices
remain the same in Γn but their degrees increase by one due to the matching between
00Γn−2 and 10Γn−2, that is, u = deg(v)− w(v) increase by one in Γn. Therefore,
these vertices contribute x(Pn−1(x, y)− yPn−3(x, y)) to Pn(x, y).

By adding all of the above contributions we get the desired result.

Now we describe an optimization problem using the up-down degree enumerator poly-
nomial Pn(x, y). Let DT be a total dominating set of Γn. Then by the definition of Fi-
bonacci cubes for every vertex v ∈ V (Γn) with weight w(v) then there must exist a vertex
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vD ∈ N(v) ∩ DT with w(vD) = w(v) ∓ 1. Furthermore, assume that for any fixed ver-
tex vD ∈ DT its corresponding monomial be xuyd in the Pn(x, y). This means that vD
dominates u distinct vertices v ∈ V (Γn) with weight w(v) = w(vD) + 1 and d distinct
vertices v ∈ V (Γn) with weight w(v) = w(vD) − 1. Note that for all vD ∈ DT some of
the dominated vertices may coincide. Now assume that

Pn(x, y) =
∑

v∈V (Γn)

xuyd =
∑

cudx
uyd. (3.3)

For each pair (u, d) in Pn(x, y) we associate an integer variable zud which counts the num-
ber of vertices in DT with weight d and degree u+ d, that is, the number of vertices in DT

having d down neighbors and u up neighbors. Clearly, we have the bounds 0 ≤ zud ≤ cud .
Our aim is to minimize |DT |, that is, our objective function is to minimize∑

u,d

zud .

Then by the above observation to dominate all the vertices having a fixed weight d such
that 1 ≤ d ≤ dn2 e − 1 we must have

rd :
∑
u

(
u · zud−1 + (d+ 1) · zud+1

)
≥
∑
u

cud

since any vertex with weight d− 1 having u up neighbors can dominate u distinct vertices
with weight d and any vertex with weight d + 1 (all have d + 1 down neighbors) can
dominate d+ 1 distinct vertices with weight d. By the same argument, for d = 0 we must
have

r0 :
∑
u

zu1 ≥
∑
u

cu0 = 1

and for d = dn2 e we must have

rdn2 e :
∑
u

u · zudn2 e−1 ≥
∑
u

cudn2 e
=

{
1 if n is odd,
n
2 + 1 if n is even.

Now subject to these constraints r0, . . . , rdn2 e the value of the objective function will be a
lower bound on γt(Γn). Similarly, to find a lower bound on γ(Γn) we need to modify all
of the constraints rd, 0 ≤ d ≤ dn2 e. By the definition of the dominating set, for each fixed
d we need to add all of the variables zud to the left side of the constraint rd.

Remark 3.2. We remark that using [12, Theorem 4.6] we can easily obtain the coefficients
cud in (3.3). By the definition of the up-down degree enumerator polynomial we know that
cud is the number of vertices in Γn whose number of up neighbors is u and weight is d. That
is, cud equals to the number of vertices of Γn having degree u+ d and weight d. Therefore,
[12, Theorem 4.6] gives

cud =

(
d+ 1

n− 2d− u+ 1

)(
n− 2d

u

)
.
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Remark 3.3. We know that the number of vertices of Γn with weight d is equal to the
right hand side of the above constraints rd. By definition of Γn this number is equal to the
number of Fibonacci strings of length n and weight d. Therefore we have

∑
u

cud =

(
n− d+ 1

d

)
.

Remark 3.4. To find the number of variables zud we need to find the number of monomials
in Pn(x, y). Assume that n is even. Then by the structure of the vertices in Fibonacci
cubes (it can also be seen from the structure of Fibonacci strings) n − 3d ≤ u ≤ n − 2d.
Therefore the number of variables zud becomes

bn3 c∑
d=0

(d+ 1) +

n
2∑

d=bn3 c+1

(n− 2d+ 1)

which is equal to

s2 − 2sr +
3r(r + 1)

2
+ 1

where r = bn3 c and s = n/2. Similarly, if n is odd we obtain that the number of variables
zud is

s2 − s(2r + 1) +
r(3r + 5)

2
+ 2

where r = bn3 c and s = dn2 e.

Now we illustrate our optimization problem for n = 14. We have the following poly-
nomial by Theorem 3.1.

P14(x, y) = 8y7 +

7y6x2 + 42y6x+ 35y6 +

6y5x4 + 60y5x3 + 120y5x2 + 60y5x+ 6y5 +

5y4x6 + 60y4x5 + 150y4x4 + 100y4x3 + 15y4x2 +

4y3x8 + 48y3x7 + 112y3x6 + 56y3x5 +

3y2x10 + 30y2x9 + 45y2x8 +

2yx12 + 12yx11 +

x14

and this polynomial corresponds to the following optimization problem:

Objective function:

min : z14
0 + z12

1 + z11
1 + z10

2 + z9
2 + z8

2 + z8
3 + z7

3 + z6
3 + z5

3 +

z6
4 + z5

4 + z4
4 + z3

4 + z2
4 + z4

5 + z3
5 + z2

5 + z1
5 + z0

5 + z2
6 + z1

6 + z0
6 + z0

7
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Constraints for γt(Γ14):

r7 : 2z2
6 + z1

6 ≥ 8

r6 : 4z4
5 + 3z3

5 + 2z2
5 + z1

5 + 7z0
7 ≥ 84

r5 : 6z6
4 + 5z5

4 + 4z4
4 + 3z3

4 + 2z2
4 + 6z2

6 + 6z1
6 + 6z0

6 ≥ 252

r4 : 8z8
3 + 7z7

3 + 6z6
3 + 5z5

3 + 5z4
5 + 5z3

5 + 5z2
5 + 5z1

5 + 5z0
5 ≥ 330

r3 : 10z10
2 + 9z9

2 + 8z8
2 + 4z6

4 + 4z5
4 + 4z4

4 + 4z3
4 + 4z2

4 ≥ 220

r2 : 12z12
1 + 11z11

1 + 3z8
3 + 3z7

3 + 3z6
3 + 3z5

3 ≥ 78

r1 : 14z14
0 + 2z10

2 + 2z9
2 + 2z8

2 ≥ 14

r0 : z12
1 + z11

1 ≥ 1

Constraints for γ(Γ14):

r7 : 2z2
6 + z1

6 + z0
7 ≥ 8

r6 : 4z4
5 + 3z3

5 + 2z2
5 + z1

5 + z2
6 + z1

6 + z0
6 + 7z0

7 ≥ 84

r5 : 6z6
4 + 5z5

4 + 4z4
4 + 3z3

4 + 2z2
4 + z4

5 + z3
5 +

z2
5 + z1

5 + z0
5 + 6z2

6 + 6z1
6 + 6z0

6 ≥ 252

r4 : 8z8
3 + 7z7

3 + 6z6
3 + 5z5

3 + z6
4 + z5

4 + z4
4 + z3

4 +

z2
4 + 5z4

5 + 5z3
5 + 5z2

5 + 5z1
5 + 5z0

5 ≥ 330

r3 : 10z10
2 + 9z9

2 + 8z8
2 + z8

3 + z7
3 + z6

3 +

z5
3 + 4z6

4 + 4z5
4 + 4z4

4 + 4z3
4 + 4z2

4 ≥ 220

r2 : 12z12
1 + 11z11

1 + z10
2 + z9

2 + z8
2 + 3z8

3 + 3z7
3 + 3z6

3 + 3z5
3 ≥ 78

r1 : 14z14
0 + z12

1 + z11
1 + 2z10

2 + 2z9
2 + 2z8

2 ≥ 14

r0 : z14
0 + z12

1 + z11
1 ≥ 1

Bounds:

z14
0 ≤ 1 z12

1 ≤ 2 z11
1 ≤ 12 z10

2 ≤ 3 z9
2 ≤ 30

z8
2 ≤ 45 z8

3 ≤ 4 z7
3 ≤ 48 z6

3 ≤ 112 z5
3 ≤ 56

z6
4 ≤ 5 z5

4 ≤ 60 z4
4 ≤ 150 z3

4 ≤ 100 z2
4 ≤ 15

z4
5 ≤ 6 z3

5 ≤ 60 z2
5 ≤ 120 z1

5 ≤ 60 z0
5 ≤ 6

z2
6 ≤ 7 z1

6 ≤ 42 z0
6 ≤ 35 z0

7 ≤ 8

The value of the objective function gives a lower bound on γ(Γ14) and γt(Γ14) respec-
tively. Note that the above problem have only 24 variables and 8 constraints (instead of
having 987 variables and 987 constraints, see Section 2). In general using the up-down de-
gree enumerator polynomial Pn(x, y) of Γn in Theorem 3.1 we can write an optimization
problem having less number of variables zud (see Remark 3.4) and dn2 e+ 1 constraints rd.
The solutions of these problem give lower bounds on γ(Γn) and γt(Γn). One can easily
see that the number of variables and the number of constraints are very smaller than the
ones in the optimization problem described in Section 2.
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For illustration we implemented the above integer linear programming problem using
CPLEX in NEOS Server [3, 4, 6] for 13 < n ≤ 26 and immediately obtain the lower
bounds presented in Table 2 and Table 3. Note that for n = 26, the number of variables
in our optimization problem is 70 by Remark 3.4 and it is F28 = 317811 for the general
optimization problem (2.1). In addition, the upper bounds in these tables are obtained by
Theorem 2.5 for n ≥ 14 and Theorem 2.6 for n ≥ 16. Note that the first bounds in
both tables are obtained in [1] and the upper bounds on γt(Γ14) and γt(Γ15) comes from
Theorem 2.4.

Table 2: Current best bounds on γ(Γn), 12 ≤ n ≤ 26.

n γ(Γn) n γ(Γn) n γ(Γn)

12 54 – 61 17 344 – 648 22 3060 – 7189

13 78 – 93 18 528 – 1049 23 4748 – 11632

14 98 – 154 19 819 – 1697 24 7381 – 18821

15 148 – 247 20 1270 – 2746 25 11472 – 30453

16 224 – 401 21 1970 – 4443 26 17912 – 49274

Table 3: Current best bounds on γt(Γn), 13 ≤ n ≤ 26.

n γ(Γn) n γ(Γn) n γ(Γn)

13 97 – 101 18 578 – 1049 23 5075 – 11632

14 110 – 166 19 890 – 1697 24 7865 – 18821

15 164 – 261 20 1374 – 2746 25 12191 – 30453

16 246 – 401 21 2121 – 4443 26 19033 – 49274

17 376 – 648 22 3281 – 7189

Remark 3.5. For n = 12, Theorem 2.1 gives γ(Γ12) ≥ 38 and Theorem 2.2 gives
γt(Γ12) ≥ 40. The values of the objective function in our optimization problems hav-
ing 19 variables and 7 constraints give lower bounds γ(Γ12) ≥ 44 and γt(Γ12) ≥ 50.

For the case n = 13, Theorem 2.1 gives γ(Γ13) ≥ 56 and Theorem 2.2 gives
γt(Γ13) ≥ 59. The values of the objective function in our optimization problems hav-
ing 22 variables and 8 constraints give lower bounds γ(Γ13) ≥ 65 and γt(Γ13) ≥ 75.
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