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Abstract

The family of snarks – connected bridgeless cubic graphs that cannot be 3-edge-colour-
ed – is well-known as a potential source of counterexamples to several important and
long-standing conjectures in graph theory. These include the cycle double cover conjec-
ture, Tutte’s 5-flow conjecture, Fulkerson’s conjecture, and several others. One way of
approaching these conjectures is through the study of structural properties of snarks and
construction of small examples with given properties. In this paper we deal with the prob-
lem of determining the smallest order of a nontrivial snark (that is, one which is cyclically
4-edge-connected and has girth at least 5) of oddness at least 4. Using a combination of
structural analysis with extensive computations we prove that the smallest order of a snark
with oddness at least 4 and cyclic connectivity 4 is 44. Formerly it was known that such
a snark must have at least 38 vertices and one such snark on 44 vertices was constructed
by Lukot’ka, Máčajová, Mazák and Škoviera in 2015. The proof requires determining all
cyclically 4-edge-connected snarks on 36 vertices, which extends the previously compiled
list of all such snarks up to 34 vertices. As a by-product, we use this new list to test the
validity of several conjectures where snarks can be smallest counterexamples.
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Máčajová), skoviera@dcs.fmph.uniba.sk (Martin Škoviera)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/



278 Ars Math. Contemp. 16 (2019) 277–298

1 Introduction
Snarks are an interesting, important, but somewhat mysterious family of cubic graphs
whose characteristic property is that their edges cannot be properly coloured with three
colours. Very little is known about the nature of snarks because the reasons which cause
the absence of 3-edge-colourability in cubic graphs are not well understood. Snarks are
also difficult to find because almost all cubic graphs are hamiltonian and hence 3-edge-
colourable [44]. On the other hand, deciding whether a cubic graph is 3-edge-colourable
or not is NP-complete [26], implying that the family of snarks is sufficiently rich.

The importance of snarks resides mainly in the fact that many difficult conjectures in
graph theory, such as Tutte’s 5-flow conjecture or the cycle double cover conjecture, would
be proved in general if they could be established for snarks [29, 30]. While most of these
problems are trivial for 3-edge-colourable graphs, and exceedingly difficult for snarks in
general, they often become tractable for snarks that are in a certain sense close to being
3-edge-colourable.

There exist a number of measures of uncolourability of cubic graphs (see [16] for a
recent survey). Among them, the smallest number of odd circuits in a 2-factor of a cubic
graph, known as oddness, has received the widest attention. Note that the oddness of a cubic
graph is an even integer which equals zero precisely when the graph is 3-edge-colourable.
It is known, for example, that the 5-flow conjecture and the Fan-Raspaud conjecture are true
for cubic graphs of oddness at most two [30, 37], while the cycle double cover conjecture
is known to hold for cubic graphs of oddness at most 4 [24, 27]. Snarks with large oddness
thus still remain potential counterexamples to these conjectures and therefore merit further
study.

Figure 1: The smallest known nontrivial snark with oddness ≥ 4.

Several authors have provided constructions of infinite families of snarks with increas-
ing oddness, see, for example, [25, 33, 35, 49]. Most of them focus on snarks with cyclic
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connectivity at least 4 and girth at least 5, because snarks that lack these two properties can
be easily reduced to smaller snarks. We call such snarks nontrivial. All currently available
constructions indicate that snarks of oddness greater than 2 are extremely rare. From [7,
Observation 4.10] it follows that there exist no nontrivial snarks of oddness greater than
2 on up to 36 vertices. The smallest known example of a nontrivial snark with oddness
at least 4 has 44 vertices and its oddness equals 4. It was constructed by Lukot’ka et al.
in [35], superseding an earlier construction of Hägglund [25] on 46 vertices; it is shown in
Figure 1 in a form different from the one displayed in [35]. In [35, Theorem 12] it is also
shown that if we allow trivial snarks, the smallest one with oddness greater than 2 has 28
vertices and oddness 4. As explained in [22, 34], there are exactly three such snarks, one
with cyclic connectivity 3 and two with cyclic connectivity 2. (The latter result rectifies the
false claim made in [35] that there are only two snarks of oddness 4 on 28 vertices.)

The aim of the present paper is to prove the following result.

Theorem 1.1. The smallest number of vertices of a snark with cyclic connectivity 4 and
oddness at least 4 is 44. The girth of each such snark is at least 5.

This theorem bridges the gap between the order 36 up to which all nontrivial snarks
have been generated (and none of oddness greater than 2 was found [7]) and the order 44
where an example of oddness 4 has been constructed [35]. Since generating all nontrivial
snarks beyond 36 vertices seems currently infeasible, it would be hardly possible to find a
smallest nontrivial snark with oddness at least 4 by employing computational force alone.
On the other hand, the current state-of-the-art in the area of snarks, with constructions
significantly prevailing over structural theorems, does not provide sufficient tools for a
purely theoretical proof of our theorem. Our proof is therefore an inevitable combination
of structural analysis of snarks with computations.

The proof consists of two steps. First we prove that every snark with oddness at
least 4, cyclic connectivity 4, and minimum number of vertices can be decomposed into
two smaller cyclically 4-edge-connected snarksG1 andG2 by removing a cycle-separating
4-edge-cut, adding at most two vertices to each of the components, and by restoring 3-
regularity. Conversely, every such snark arises from two smaller cyclically 4-edge-con-
nected snarks G1 and G2 by the reverse process. In the second step of the proof we com-
putationally verify that no combination of G1 and G2 can result in a cyclically 4-edge-
connected snark of oddness at least 4 on fewer than 44 vertices. This requires checking
all suitable pairs of cyclically 4-edge-connected snarks on up to 36 vertices, including
those that contain 4-cycles. Such snarks have been previously generated only up to or-
der 34 [7], which is why we had to additionally generate all cyclically 4-edge-connected
snarks on 36 vertices containing a 4-cycle. This took about 80 CPU years and yielded
exactly 404 899 916 cyclically 4-edge-connected snarks.

It is important to realise that Theorem 1.1 does not yet determine the order of a smallest
nontrivial snark with oddness at least 4. The reason is that it does not exclude the existence
of cyclically 5-connected snarks with oddness at least 4 on fewer than 44 vertices. However,
the smallest currently known cyclically 5-edge-connected snark with oddness at least 4
has 76 vertices (see Steffen [49, Theorem 2.3]), which indicates that a cyclically 5-edge-
connected snark with oddness at least 4 on fewer than 44 vertices either does not exist or
will be very difficult to find.

Our paper is organised as follows. Section 2 provides the necessary background ma-
terial for the proof of Theorem 1.1 and for the results that precede it, in particular for the
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decomposition theorems proved in Section 3. In Section 4 we employ these decomposition
theorems to prove Theorem 1.1. We further discuss this theorem in Section 5 where we
also pose two related problems. In the final section we report about the tests which we
have performed on the set of all cyclically 4-edge-connected snarks of order 36 concerning
the validity of several interesting conjectures in graph theory, such as the dominating cycle
conjecture, the total colouring conjecture, and the Petersen colouring conjecture.

We will continue our investigation of the smallest snarks with oddness at least 4 and
cyclic connectivity 4 in the sequel of this paper [23]. We will display a set of 31 such
snarks, analyse their properties, and prove that they constitute the complete set of snarks
with oddness at least 4 and cyclic connectivity 4 on 44 vertices.

2 Preliminaries
2.1 Graphs and multipoles

All graphs in this paper are finite. For the sake of completeness, we have to permit graphs
containing multiple edges or loops, although these features will in most cases be excluded
by the imposed connectivity or colouring restrictions.

Besides graphs we also consider graph-like structures, called multipoles, that may con-
tain dangling edges and even isolated edges. Multipoles serve as a convenient tool for
constructing larger graphs from smaller building blocks. They also naturally arise as a re-
sult of severing one or several edges of a graph, in particular edges forming an edge-cut. In
this paper all multipoles will be cubic (3-valent).

Every edge of a multipole has two ends and each end can, but need not, be incident
with a vertex. An edge which has both ends incident with a vertex is called proper. If
one end of an edge is incident with a vertex and the other is not, then the edge is called a
dangling edge and, if neither end of an edge is incident with a vertex, it is called an isolated
edge. An end of an edge that is not incident with a vertex is called a semiedge. A multipole
with k semiedges is called a k-pole. Two semiedges s and t of a multipole can be joined
to produce an edge s ∗ t connecting the end-vertices of the corresponding dangling edges.
Given two k-poles M and N with semiedges s1, . . . , sk and t1, . . . , tk, respectively, we
define their complete junction M ∗N to be the graph obtained by performing the junctions
si ∗ ti for each i ∈ {1, . . . , k}. A partial junction is defined in a similar way except that
a proper subset of semiedges of M is joined to semiedges of N . Partial junctions can be
used to construct larger multipoles from smaller ones. In either case, whenever a junction
of two multipoles is to be performed, we assume that their semiedges are assigned a fixed
order. For a more detailed formal development of concepts related to multipoles we refer
the reader, for example, to [15, 36] or [13].

2.2 Cyclic connectivity

Let G be a connected graph. An edge-cut of a graph G, or just a cut for short, is any set
S of edges of G such that G − S is disconnected. An edge-cut is said to be trivial if it
consists of all edges incident with one vertex, and nontrivial otherwise. An important kind
of an edge-cut is a cocycle, which arises by taking a set of vertices or an induced subgraph
H of G and letting S to be the set δG(H) of all edges with exactly one end in H . We omit
the subscript G whenever G is clear from the context.

An edge-cut is said to be cycle-separating if at least two components of G− S contain
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cycles. We say that a connected graph G is cyclically k-edge-connected if no set of fewer
than k edges is cycle-separating in G. The cyclic connectivity of G, denoted by ζ(G), is
the largest number k ≤ β(G), where β(G) = |E(G)| − |V (G)|+ 1 is the cycle rank of G,
for which G is cyclically k-connected (cf. [41, 43]).

It is not difficult to see that for a cubic graphGwith ζ(G) ≤ 3 the value ζ(G) coincides
with the usual vertex-connectivity or edge-connectivity of G. Thus cyclic connectivity in
cubic graphs is a natural extension of the common versions of connectivity (which unlike
cyclic connectivity are bounded above by 3). Another useful observation is that the value
of cyclic connectivity remains invariant under subdivisions and adjoining new vertices of
degree 1.

The following well-known result [41, 43] relates ζ(G) to the length of a shortest cycle
in G, denoted by g(G) and called the girth of G.

Proposition 2.1. For every connected cubic graph G we have ζ(G) ≤ g(G).

Let us observe that in a connected cubic graph every edge-cut S consisting of inde-
pendent edges is cycle-separating: indeed the minimum valency of G − S is 2, so each
component of G − S contains a cycle. Conversely, a cycle-separating edge-cut of mini-
mum size is easily seen to be independent; moreover, G−S has precisely two components,
called cyclic parts or fragments. A fragment minimal under inclusion will be called an
atom. A nontrivial atom is any atom different from a shortest cycle.

The following two propositions provide useful tools in handling cyclic connectivity.
The first of them follows easily by mathematical induction. For the latter we refer the
reader to [41, Proposition 4 and Theorem 11].

Lemma 2.2. Let H be a connected acyclic subgraph of a cubic graph separated from the
rest by a k-edge-cut. Then H has k − 2 vertices.

Proposition 2.3. Let G be a connected cubic graph. The following statements hold:

(i) Every fragment of G is connected, and every atom is 2-connected. Moreover, if
ζ(G) ≥ 3, then every fragment is 2-connected.

(ii) If A is a nontrivial atom of G, then ζ(A) > ζ(G)/2.

In the present paper we focus on cyclically 4-edge-connected cubic graphs, in particular
on those with cyclic connectivity exactly 4. From the results mentioned earlier it follows
that a cyclically 4-edge-connected cubic graph has no bridges and no 2-edge-cuts. Fur-
thermore, every 3-edge-cut separates a single vertex, and every 4-edge-cut which is not
cycle-separating consists of the four edges adjacent to some edge.

An important method of constructing cyclically 4-edge-connected cubic graphs from
smaller ones applies the following operation which we call an I-extension. In a cubic
graph G take two edges e and f , subdivide each of e and f with a new vertex ve and vf ,
respectively, and by add a new edge between ve and vf . The resulting graph, denoted by
G(e, f) is said to be obtained by an I-extension across e and f . It is not difficult to see that
if G is cyclically 4-edge-connected and e and f are non-adjacent edges of G, then so is
G(e, f).

A well-known theorem of Fontet [19] and Wormald [51] states that all cyclically 4-
edge-connected cubic graphs can be obtained from the complete graphK4 and the cubeQ3

by repeatedly applying I-extensions to pairs of non-adjacent edges. However, I-extensions
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are also useful for constructing cubic graphs in general. For example, in [8] all connected
cubic graphs up to 32 vertices have been generated by using I-extensions as main construc-
tion operation.

For more information on cyclic connectivity the reader may wish to consult [41].

2.3 Edge-colourings

A k-edge-colouring of a graphG is a mapping φ : E(G)→ C where C is a set of k colours.
If all pairs of adjacent edges receive distinct colours, φ is said to be proper; otherwise it
is called improper. Graphs with loops do not admit proper edge-colourings because of the
self-adjacency of loops. Since we are mainly interested in proper colourings, the adjective
“proper” will usually be dropped. For multipoles, edge-colourings are defined similarly;
that is to say, each edge receives a colour irrespectively of the fact whether it is, or it is not,
incident with a vertex.

The result of Shannon [47] implies that every loopless cubic graph, and hence every
loopless cubic multipole, can be properly coloured with four colours, see also [32]. In the
study of snarks it is often convenient to take the set of colours C to be the set Z2 × Z2 =
{(0, 0), (0, 1), (1, 0), (1, 1)} where (0, 0), (0, 1), (1, 0), and (1, 1) are identified with 0, 1,
2, and 3, respectively. We say that a multipole is colourable if it admits a 3-edge-colouring
and uncolourable otherwise. For a 3-edge-colouring of a cubic graph or a cubic multipole
we use the colour-set C = {1, 2, 3} because such a colouring is in fact a nowhere-zero
Z2 × Z2-flow. This means that for every vertex v the sum of colours incident with v, the
outflow at v, equals 0 in Z2 × Z2. The following fundamental result [5, 14] is a direct
consequence of this fact.

Theorem 2.4 (Parity Lemma). LetM be a k-pole endowed with a proper 3-edge-colouring
with colours 1, 2, and 3. If the set of all semi-edges contains ki edges of colour i for
i ∈ {1, 2, 3}, then

k1 ≡ k2 ≡ k3 ≡ k (mod 2).

Now letM be a loopless cubic multipole that cannot be properly 3-edge-coloured. Then
M has a proper 4-edge-colouring with colours from the set C = Z2×Z2. Such a colouring
will not be a Z2×Z2-flow anymore since every vertex incident with an edge coloured 0 will
have a non-zero outflow. It is natural to require the colour 0 to be used as little as possible,
that is, to require the set of edges coloured 0 to be the minimum-size colour class. Such
a 4-edge-colouring will be called minimum. In a minimum 4-edge-colouring of M every
edge e coloured 0 must be adjacent to edges of all three non-zero colours; in particular, e
must be a proper edge. It follows that exactly one colour around e appears twice.

By summing the outflows at vertices incident with edges coloured 0 we obtain the
following useful result due to Fouquet [20, Theorem 1] and Steffen [48, Lemma 2.2].

Theorem 2.5. Let φ be a minimum 4-edge-colouring of a loopless cubic multipole M with
m edges coloured 0, and for i ∈ {1, 2, 3} letmi denote the number of those edges coloured
0 that are adjacent to two edges coloured i. Then

m1 ≡ m2 ≡ m3 ≡ m (mod 2).

We finish the discussion of colourings with the definition of the standard recolouring
tool, a Kempe chain. LetM be a cubic multipole whose edges have been properly coloured
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with colours from the set {0, 1, 2, 3} = Z2 × Z2. For any two distinct colours i, j ∈
{1, 2, 3} we define an i-j-Kempe chain P to be a non-extendable walk that alternates the
edges with colours i and j. Clearly, P is either an even circuit, or is a path that ends with
either a semiedge or with a vertex incident with an edge coloured 0. It is easy to see that
switching the colours i and j on P gives rise to a new proper 4-edge-colouring of M .
Furthermore, if the original colouring was a minimum 4-edge-colouring, so is the new one.

2.4 Snarks

A snark is, essentially, a nontrivial cubic graph that has no 3-edge-colouring. Precise def-
initions vary depending on what is to be considered “nontrivial”. In many papers, espe-
cially those dealing with snark constructions, snarks are required to be cyclically 4-edge-
connected and have girth at least 5; see for example [12, 16]. However, in [9, 25] the girth
requirement is dropped, demanding snarks to be cyclically 4-edge-connected but allowing
them to have 4-cycles.

Another group of papers, especially those dealing with the structural analysis of snarks,
adopts the widest possible definition of a snark, permitting all kinds of trivial features such
as triangles, digons and even bridges; see, for example [11, 13, 42]. In this paper, our usage
of the term snark agrees with the latter group: we define a snark to be a connected cubic
graph that cannot be 3-edge-coloured.

This paper deals with snarks that are far from being 3-edge-colourable. Two measures
of uncolourability will be prominent in this paper. The oddness ω(G) of a bridgeless cubic
graph G is the smallest number of odd circuits in a 2-factor of G. The resistance ρ(G) of
a cubic graph G is the smallest number of edges of G which have to be removed in order
to obtain a colourable graph. Obviously, if G is colourable, then ω(G) = ρ(G) = 0. If G
is uncolourable, then both ω(G) ≥ 2 and ρ(G) ≥ 2. Furthermore, ρ(G) ≤ ω(G) for every
bridgeless cubic graph G.

The following lemma is due to Steffen [48].

Lemma 2.6. Let G be a bridgeless cubic graph. Then ρ(G) = 2 if and only if ω(G) = 2.

One of the methods of constructing snarks from smaller ones uses I-extensions (cf.
Subsection 2.2). The following result from [42] tells us when an I-extension of a snark is
again a snark.

Lemma 2.7. Let G be a snark and e and f be distinct edges of G. Then G(e, f) is a snark
if and only if the graph G− {e, f} is uncolourable.

Another method of constructing snarks is based on extending multipoles to cubic graphs,
see [13]. If the multipole in question is uncolourable, it can be extended to a snark simply
by restoring 3-regularity. We are therefore interested in extending colourable multipoles.
For k ≥ 2, we say that a k-pole M extends to a snark if there exists a colourable multipole
N such that M ∗N is a snark. The graph M ∗N is called a snark extension of M .

Given a k-pole M with semiedges e1, e2, . . . , ek, we define its colouring set to be the
following set of k-tuples:

Col(M) = {φ(e1)φ(e2) . . . φ(ek) : φ is a 3-edge-colouring of M} .

Note that the set Col(M) depends on the ordering in which the semiedges are listed. We
therefore implicitly assume that such an ordering is given. As the colourings “inside”
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a multipole can usually be ignored, we define two multipoles M and N to be colour-
equivalent if Col(M) = Col(N).

Any colouring of a colourable multipole can be changed to a different colouring by
permuting the set of colours. The particular colour of a semiedge is therefore not important,
it is only important whether it equals or differs from the colour of any other semiedge.
By saying this we actually define the type of a colouring φ of a multipole M : it is the
lexicographically smallest sequence of colours assigned to the semiedges of M which can
be obtained from φ by permuting the colours.

By the Parity Lemma (Theorem 2.4), each colouring of a 4-pole has one of the follow-
ing types: 1111, 1122, 1212, and 1221. Observe that every colourable 4-pole admits at least
two different types of colourings. Indeed, we can start with any colouring and switch the
colours along an arbitrary Kempe chain to obtain a colouring of another type. Colourable
4-poles thus can have two, three, or four different types of colourings. Those attaining ex-
actly two types are particularly important for the study of snarks; we call them colour-open
4-poles, as opposed to colour-closed multipoles discussed in more detail in [42].

The following result appears in [13].

Proposition 2.8. A colourable 4-pole extends to a snark if and only if it is colour-open.

A 4-pole M will be called isochromatic if its semiedges can be partitioned into two
pairs such that in every colouring ofM the semiedges within each pair are coloured with the
same colour. A 4-poleM will be called heterochromatic of its semiedges can be partitioned
into two pairs such that in every colouring ofM the semiedges within each pair are coloured
with distinct colours. The pairs of semiedges of an isochromatic or a heterochromatic 4-
pole mentioned above will be called couples.

Note that the 4-poleC4 obtained from a 4-cycle by attaching one dangling edge to every
vertex is colour-closed, and hence neither isochromatic nor heterochromatic. Indeed, with
respect to a cyclic ordering of its semiedges it admits colourings of three types, namely
1111, 1122, and 1221 (but not 1212). In particular, if a snark G contains a 4-cycle C, then,
as is well-known, G− V (C) stays uncolourable.

The following two results are proved in [13]:

Proposition 2.9. Every colour-open 4-pole is either isochromatic or heterochromatic, but
not both. Moreover, it is isochromatic if and only if it admits a colouring of type 1111.

Proposition 2.10. Every colour-open 4-pole can be extended to a snark by adding at most
two vertices, and such an extension is unique. A heterochromatic multipole extends by
joining the semiedges within each couple, that is, by adding no new vertex. An isochro-
matic multipole extends by attaching the semiedges of each couple to a new vertex, and by
connecting these two vertices with a new edge.

Colour-open 4-poles can be combined to form larger 4-poles from smaller ones by
employing partial junctions: we take two 4-poles M and N , choose two semiedges in
each of them, and perform the individual junctions. In general, such a junction need not
respect the structure of the couples of the 4-poles participating in the operation. In this
manner it may happen that, for example, a partial junction of two heterochromatic 4-poles
results in an isochromatic dipole or in a heterochromatic dipole. In Theorem 3.5, one of our
decomposition theorems, partial junctions of 4-poles will occur in the reverse direction.
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3 Decomposition theorems
The aim of this section is to show that every snark with oddness at least 4, cyclic connec-
tivity 4, and minimum number of vertices can be decomposed into two smaller cyclically
4-edge-connected snarks G1 and G2 by removing a cycle-separating 4-edge-cut, adding at
most two vertices to each of the components, and by restoring 3-regularity. This will be
proved in two steps – Theorem 3.3 and Theorem 3.5.

Theorem 3.3 is a decomposition theorem for cyclically 4-edge-connected cubic graphs
proved in 1988 by Andersen et al. [2, Lemma 7]. Roughly speaking, it states that every
cubic graph G whose cyclic connectivity equals 4 can be decomposed into two smaller
cyclically 4-edge-connected cubic graphs G1 and G2 by removing a cycle-separating 4-
edge-cut, adding two vertices to each of the components, and by restoring 3-regularity.
Our proof is different from the one in [2] and provides useful insights into the problem.
For instance, it offers the possibility to determine conditions under which it is feasible to
extend a 4-pole to a cyclically 4-edge-connected cubic graph by adding two isolated edges
rather than by adding two new vertices.

Theorem 3.5 deals with a particular situation where the cyclically 4-edge-connected
cubic graph G in question is a snark. As explained in the previous section, every snark
containing a cycle-separating 4-edge-cut that leaves a colour-open component can be de-
composed into two smaller snarks G1 and G2 by removing the cut, adding at most two
vertices to each of the components, and by restoring 3-regularity. Unfortunately, G1 or G2

are not guaranteed to be cyclically 4-edge-connected because snark extensions forced by
the colourings need not coincide with those forced by the cyclic connectivity (see Exam-
ple 3.1 below). Moreover, Proposition 2.10 suggests that restoring 3-regularity by adding
no new vertices, that is, by joining pairs of the four 2-valent vertices to each other in one of
the components, may be necessary in order for G1 or G2 to be a snark. If this is the case,
Theorem 3.3 cannot be applied. Nevertheless, Theorem 3.5 shows that if G is a smallest
nontrivial snark with oddness at least 4, then we can form G1 and G2 in such a way that
they indeed will be cyclically 4-edge-connected snarks.

Example 3.1. We give an example of a cyclically 4-edge-connected snark in which a de-
composition along a given cycle-separating 4-edge-cut forces one of the resulting smaller
snarks to have cyclic connectivity smaller than 4. To construct such a snark take the Pe-
tersen graph and form a 4-pole H of order 10 by severing two non-adjacent edges and a
4-pole I of order 8 by removing two adjacent vertices. It is easy to see thatH is heterochro-
matic with couples being formed by the semiedges obtained from the same edge, and I is
isochromatic with couples formed by the semiedges formerly incident with the same ver-
tex. Let us create a cubic graph G by arranging two copies of H and one copy of I into
a cycle, and by performing junctions that respect the structure of the couples. The partial
junction of two copies of H contained in G, denoted by H2, is again a heterochromatic
4-pole, so G is a junction of an isochromatic 4-pole I with a heterochromatic 4-pole, and
therefore a snark. Furthermore, the cyclic connectivity of G equals 4. Let us decompose
G by removing from G the 4-edge-cut S separating I from H2 and by completing each of
the components to a snark. Proposition 2.10 implies that I can be completed to a copy G′

of the Petersen graph while H2 extends to a snark G′′ of order 20 by joining the semiedges
within each couple, that is, by adding no new vertex. The same Proposition states that
the decomposition of G into G′ and G′′ is uniquely determined by S. However, G′′ has a
cycle-separating 2-edge-cut connecting the two copies of H contained in it. Therefore the
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low connectivity of G′′ is unavoidable.

We proceed to Theorem 3.3. It requires one auxiliary result about comparable cuts. Let
S and T be two edge-cuts in a graph G. Let us denote the two components of G − S by
H1 and H2 and those of G− T by K1 and K2. The cuts S and T are called comparable if
Hi ⊆ Kj or Kj ⊆ Hi for some i, j ∈ {1, 2}.

Lemma 3.2. LetG be a cyclically 4-edge-connected cubic graph and letK be a component
arising from the removal of a cycle-separating 4-edge-cut from G. Then any two nontrivial
2-edge-cuts in K are comparable, or K is a 4-cycle.

Proof. Let S be the cycle-separating 4-edge-cut that separates K from the rest of G, and
let A = {a1, a2, a3, a4} be the set of the vertices of K incident with an edge from S. Since
S is independent, the vertices of A are pairwise distinct. Proposition 2.3 (i) implies that
K is 2-connected. It follows that for every nontrivial 2-edge-cut Q in K the graph K −Q
consists of two components, each containing exactly two vertices of A.

Let R and T be two nontrivial 2-edge-cuts in K. Denote the components of K −R by
X1 and X2, and those of K − T by Y1 and Y2. Observe that the subgraphs Xi ∩ Yj for
i, j ∈ {1, 2} need not all be non-empty. Let a be the number of edges between X1 ∩ Y1
and X1 ∩ Y2, b the number of edges between X1 ∩ Y1 and X2 ∩ Y2, c the number of edges
between X1 ∩Y1 and X2 ∩Y1, d the number of edges between X1 ∩Y2 and X2 ∩Y1, e the
number of edges between X2 ∩ Y1 to X2 ∩ Y2, and finally f the number of edges between
X1 ∩ Y2 and X2 ∩ Y2; see Figure 2.

Y2

X2

X1

a

b

c

e

f R

T

d

Y1

Figure 2: Crossing edge-cuts R and T .

If at least one of the sets X1 ∩ Y1, X1 ∩ Y2, X2 ∩ Y1, and X2 ∩ Y2 is empty, then
the definition of comparable cuts directly implies that the cuts R and T are comparable, as
required. Thus we can assume that all the subgraphs Xi ∩ Yj are nonempty. Our aim is
to show that in this case K is a 4-cycle. We start by showing that each of the subgraphs
X1 ∩ Y1, X1 ∩ Y2, X2 ∩ Y1, and X2 ∩ Y2 contains exactly one element of A. Suppose
that one of them, say X1 ∩ Y1, contains no vertex from A. Since both R and T separate
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the vertices from A in such a way that both components contain two vertices from A, we
deduce that both X1 ∩ Y2 and X2 ∩ Y1 contain two vertices from A each, while X2 ∩ Y2
contains no vertex from A. Now |δK(X1 ∩ Y1)| = a + b + c ≥ 3, because G has no
bridges and no 2-edge-cuts. Further, since X1 ∩ Y2 contains two vertices from A and G is
cyclically 4-edge-connected, we see that |δK(X1 ∩Y2)| = a+ d+ f ≥ 2. However, R is a
2-cut, so b+ c+ d+ f = 2. Therefore 2a ≥ 3 and hence a ≥ 2. Similarly, e ≥ 2. But then
|T | ≥ a+ e ≥ 4, which contradicts the fact that T is a 2-edge-cut. Thus all the subgraphs
Xi ∩ Yj contain an element of A, which in turn implies that each Xi ∩Xj contains exactly
one vertex from A.

To finish the proof we show that a = c = e = f = 1 and b = d = 0. Suppose that
a = 2. Since T is a 2-edge-cut, we have that b = d = e = 0. Now c + d + e ≥ 2
and b + e + f ≥ 2 because G is 3-edge-connected, so c ≥ 2 and f ≥ 2, and hence
|R| ≥ c+ f ≥ 4, a contradiction. Thus a ≤ 1. Similarly, we can derive that c ≤ 1, e ≤ 1,
and f ≤ 1. If b = 2, then a = c = d = e = f = 0 implying that G has a bridge, which is
absurd. Hence b ≤ 1 and similarly d ≤ 1. Suppose that a = 0. As G is 3-edge-connected,
we have 2 ≤ a+ b+ c = b+ c ≤ 2 and similarly 2 ≤ a+ d+ f = d+ f ≤ 2. It follows
that that b = c = d = f = 1 and hence |R| = b + c + d + f = 4, which contradicts the
fact that R is a 2-cut. Therefore a = 1 and similarly c = e = f = 1, which also implies
that b = d = 0. Finally, every subgraph Xi ∩ Yj has |δG(Xi ∩ Yj)| = 3, so Xi ∩ Yj is
acyclic and therefore, by Lemma 2.2, a single vertex. In other words, K is a 4-cycle. This
completes the proof.

We are ready to prove the decomposition theorem of Andresen et al. [2].

Theorem 3.3. LetG be a cyclically 4-edge-connected cubic graph with a cycle-separating
4-edge-cut whose removal leaves components G1 and G2. Then each of G1 and G2 can
be extended to a cyclically 4-edge-connected cubic graph by adding two adjacent vertices
and restoring 3-regularity.

Proof. It suffices to prove the statement for G1. If G1 is a 4-cycle, we can easily extend it
to the complete bipartite graph K3,3 which is cyclically 4-edge-connected, as required. We
therefore assume that G1 is not a 4-cycle. Let A = {a1, a2, a3, a4} be the set of vertices of
G1 incident with an edge of δG(G1). By Lemma 3.2, every 2-edge-cut in G1 separates the
vertices of A into the same two 2-element sets, say {a1, a2} from {a3, a4}. We extend G1

to a cyclically 4-edge-connected cubic graph G̃1 as follows. Let us take two new vertices
x1 and x2 and construct G̃1 from G1 by adding to G1 the edges x1x2, x1a1, x1a3, x2a2,

...

x2

a1 a3a2 a4

x1

Figure 3: Extending G1 to G̃1.
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and x2a4, see Figure 3. We now verify that G̃1 is indeed cyclically 4-edge-connected.
Suppose to the contrary that G̃1 is not cyclically 4-edge-connected. Then G̃1 has a

minimum-size cycle-separating edge-cut F such that |F | < 4. Let H1 and H2 be the
components of G1 − F . The cut F cannot consist entirely of edges of G1 ∪ δG(G1) for
otherwise F would be a cycle-separating edge-cut of G of size smaller than 4. Therefore
the edge x1x2 is contained in F . Since F is an independent cut, the edges x1a1, x1a3,
x2a2, and x2a4 do not belong to F . This in turn implies that a1 and a3 belong to one
component of G̃1 − F while a2 and a4 belong to the other component of G̃1 − F ; without
loss of generality, let a1 and a3 belong to H1. Since G1 contains no bridge, there exist
edges e1 and e2 in G1 such that F = {x1x2, e1, e2}. But then {e1, e2} is a 2-edge cut in
G1 that separates the set {a1, a3} from {a2, a4}, which is a contradiction. This completes
the proof.

Before proving the second main result of this section we need the following fact.

Proposition 3.4. LetG be a cubic graph with a cycle-separating 4-edge-cut whose removal
leaves components G1 and G2. If both G1 and G2 are 3-edge-colourable, then ω(G) ≤ 2.

Proof. Assume that bothG1 andG2 are 3-edge-colourable. IfG is 3-edge-colourable, then
ω(G) = 0. Therefore we may assume that G is not 3-edge-colourable. In this situation G1

admits two types of colourings and G2 admits the other two types of colourings. One of
them, say G1 has a colouring φ1 of the type 1111; by Proposition 2.9, G1 is isochromatic
andG2 is heterochromatic. Parity Lemma (Theorem 2.4) implies that if we take an arbitrary
3-edge-colouring φ2 of G2, then exactly two colours occur on the dangling edges of G2.
Let e and f be any two of the dangling edges that receive the same colour. Then, after
permuting the colours in G1, if necessary, φ1 and φ2 can be easily combined to a 3-edge-
colouring of G− {e, f}. This shows that ρ(G) = 2 and therefore ω(G) = 2.

Now we are in position to prove our second decomposition theorem.

Theorem 3.5. Let G be a snark with oddness at least 4, cyclic connectivity 4, and mini-
mum number of vertices. Then G contains a cycle-separating 4-edge-cut S such that both
components of G− S can be extended to a cyclically 4-edge-connected snark by adding at
most two vertices.

In fact, we prove the following stronger and more detailed result which will also be
needed in our next paper [23].

Theorem 3.6. LetG be a snark with oddness at least 4, cyclic connectivity 4, and minimum
number of vertices. Let S be a cycle-separating 4-edge-cut in G whose removal leaves
components G1 and G2. Then, up to permutation of the index set {1, 2}, exactly one of the
following occurs.

(i) Both G1 and G2 are uncolourable, in which case each of them can be extended to a
cyclically 4-edge-connected snark by adding two vertices.

(ii) G1 is uncolourable and G2 is heterochromatic, in which case G1 can be extended to
a cyclically 4-edge-connected snark by adding two vertices, and G2 can be extended
to a cyclically 4-edge-connected snark by adding two isolated edges.
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(iii) G1 is uncolourable and G2 is isochromatic, in which case G1 can be extended to
a cyclically 4-edge-connected snark by adding two vertices, and G2 can be ex-
tended to a cyclically 4-edge-connected snark by adding two vertices, except possibly
ζ(G2) = 2. In the latter case, G2 is a partial junction of two colour-open 4-poles,
which may be isochromatic or heterochromatic in any combination.

Proof. LetG be a snark with ω(G) ≥ 4, ζ(G) = 4, and with minimum number of vertices.
Let S = {s1, s2, s3, s4} be an arbitrary fixed cycle-separating 4-edge-cut in G, and let G1

and G2 be the components of G − S. According to Proposition 3.4, at least one of G1

and G2 is uncolourable. If both G1 and G2 are uncolourable, we can extend each of them
to a cyclically 4-edge-connected snark by applying Theorem 3.3, establishing (i). For the
rest of the proof we may therefore assume that G2 is colourable and G1 is not. Again,
G1 can be extended to a cyclically 4-edge-connected snark by Theorem 3.3. Let G̃1 be
an extension of G1 to a cyclically 4-edge-connected snark by adding two adjacent vertices
y1 and y2 according to Theorem 3.3. Without loss of generality we may assume that the
vertex y1 is incident with the edges s1 and s2 while y2 is incident with s3 and s4.

As regards G2, we prove that either (ii) or (iii) holds. Our first step in this direction is
showing that G2 can be extended to a snark. In view of Proposition 2.8, this amounts to
verifying that G2 is colour-open.

Claim 1. The 4-pole G2 is colour-open.

Proof of Claim 1. Suppose to the contrary that G2 is not colour-open. This means that it
has at least three types of colourings. Since G is a smallest cyclically 4-edge-connected
snark with oddness at least 4 and G̃1 is a cyclically 4-edge-connected snark with fewer
vertices than G, we infer that ω(G̃1) = 2. By Lemma 2.6, there exist two nonadjacent
edges e1 and e2 in G̃1 such that G̃1 − {e1, e2} is colourable. Equivalently, by Lemma 2.7,
the cubic graph G̃1(e1, e2) is colourable.

We claim that the edge y1y2 is one of e1 and e2. Suppose not. Then both e1 and e2 have
at least one end-vertex inG1. As mentioned, G̃1(e1, e2) is a colourable cubic graph. Hence
G1(e1, e2) is a colourable 4-pole, and therefore it has at least two types of colourings.
Since G2 has at least three of the four types, both G1(e1, e2) and G2 admit colourings of
the same type. These colourings can be combined into a colouring of G(e1, e2), implying
that G − {e1, e2} is also colourable. However, from Lemma 2.6 we get that ω(G) = 2,
which is a contradiction proving that one of e1 and e2 coincides with y1y2.

Assuming that y1y2 = e1, let us consider a minimum 4-edge-colouring φ1 of G̃1 where
e1 and e2 are the only edges of G̃1 coloured 0. Theorem 2.5 implies that there exist a
unique non-zero colour that is repeated at both e1 and e2. Without loss of generality we
may assume that the repeated colour is 1 and that φ1(s1) = φ1(s3) = 1, φ1(s2) = 2,
and φ1(s4) = 3. In this situation, G2 cannot have a colouring of type 1212 for otherwise
we could combine this colouring with φ1 to produce a 3-edge-colouring of G − {e2, s4},
which is impossible since ω(G) ≥ 4. Therefore G2 has colourings of all the remaining
three types 1111, 1122, and 1221.

Consider the 1-2-Kempe chain P in G̃1 with respect to the colouring φ1 beginning at
the vertex y2. Clearly, the other end of P must be the end-vertex of e2 incident with edges
of colours 1, 3, and 0. If P does not pass through the vertex y1, we switch the colours
on P producing a 4-edge-colouring φ′1 of G̃1 where φ′1(s1) = 1, φ′1(s2) = φ′1(s3) = 2,
and φ′1(s4) = 3. However, φ′1 can be combined with a colouring of G2 of type 1221
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to obtain a 3-edge-colouring of G − {e2, s4}, which is impossible since ω(G) ≥ 4. If
P passes through y1, we switch the colours only on the segment P0 between y2 and y1,
producing an improper colouring φ′′1 of G̃1 with y1 being its only faulty vertex. Depending
on whether P0 ends with an edge coloured 1 or 2 we get φ′′1(s1) = φ′′1(s2) = φ′′1(s3) = 2
and φ′′1(s4) = 3, or φ′′1(s1) = φ′′1(s2) = 1, φ′′1(s3) = 2, and φ′′1(s4) = 3. In the latter case
we can combine φ′′1 with a colouring of G2 of type 1122, producing a 3-edge-colouring
of G − {e2, s4}. In the former case we first interchange the colours 1 and 2 on G1 and
then combine the resulting colouring with a colouring of G2 of type 1111, again producing
a 3-edge-colouring of G − {e2, s4}. Since ω(G) ≥ 4, in both cases we have reached a
contradiction. This establishes Claim 1.

Proposition 2.10 now implies that G2 can be extended to a snark Ḡ2 by adding at most
two vertices. Recall that such an extension is unique up to isomorphism and depends only
on whether G2 is isochromatic or heterochromatic. We discuss these two cases separately.

Case 1. G2 is isochromatic. First note that in this case Ḡ2 arises from G2 by adding two
new vertices x1 and x2 joined by an edge and by attaching each of the new vertices to
the semiedges in the same couple. From Proposition 2.3 (i) we get that ζ(G2) ≥ 2. If
ζ(G2) ≥ 4, then the same obviously holds for Ḡ2. Assume that ζ(G2) = 3, and let A
denote the set of end-vertices in G2 of the edges of the edge-cut S. Note that |A| = 4
because S is independent. Since ζ(G) = 4, every cycle separating 3-edge-cut R in G2

has the property that each component of G2 −R contains at least one vertex from A. This
readily implies that ζ(Ḡ2) ≥ 4 and establishes the statement (iii) whenever ζ(G2) ≥ 3.
It remains to consider the case where ζ(G2) = 2. Let U be a cycle-separating 2-edge-cut
in G2 and let Q1 and Q2 be the components of G2 − U . Since G is cyclically 4-edge-
connected, each Qi contains exactly two vertices from A and thus both Q1 and Q2 are
4-poles. Each Qi is colourable because any 3-edge-colouring of G2 provides one for Qi.
Furthermore, each Qi is colour-open, because G2 and hence also Qi has an extension to
Ḡ2. Thus G2 is a partial junction of two colour-open 4-poles. It is not difficult to show that
an isochromatic 4-pole can arise from a partial junction of any combination of isochromatic
and heterochromatic 4-poles, as claimed.

Case 2. G2 is heterochromatic. In this case G2 arises from a snark by severing two inde-
pendent edges. Suppose to the contrary that Ḡ2 is not cyclically 4-edge-connected. Then
G2 has at least twelve vertices, because there is only one 2-edge-connected snark of order
less than twelve – the Petersen graph – and its cyclic connectivity equals 5. Let us take a
heterochromatic 4-pole H of order 10 obtained from the Petersen graph and substitute G2

in G with H , creating a new cubic graph G′. Clearly, G′ is a snark of order smaller than
G. To derive a final contradiction with the minimality of G we show that G′ is cyclically
4-edge-connected and has oddness at least 4.

Claim 2. ω(G′) ≥ 4.

Proof of Claim 2. Suppose to the contrary that ω(G′) < 4. Since G1 is uncolourable and
G1 ⊆ G′, we infer that ω(G′) = 2 which in turn implies that ρ(G′) = 2. Therefore there
exist edges e1 and e2 in G′ such that G′ − {e1, e2} is colourable. In other words, G′ has a
minimum 4-edge-colouring ψ where e1 and e2 are the only edges of G′ coloured 0.

Since G1 is uncolourable, at least one of e1 and e2 must have both end-vertices in G1.
Without loss of generality assume that at e1 has both end-vertices in G1. If e2 had at least
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one end-vertex in G1, we could take a 3-edge-colouring of G′ − {e1, e2}, remove H and
reinstateG2 coloured in such a way that the edges in S−{e2} receive the same colours from
G2 as they did from H; this is possible since G2 and H are colour-equivalent. However, in
this way we would produce a 3-edge-colouring of G−{e1, e2}, contrary to the assumption
that ω(G) = 4. Therefore e2 has both ends in H .

Since H is heterochromatic, the edges of S can be partitioned into couples such that
for every 3-edge-colouring of H the colours of both edges within a couple are always
different. Let {si, sj} and {sk, sl} be the couples of H . Further, since ψ is a minimum
4-edge-colouring of G′, all three non-zero colours are present on the edges adjacent to
each of ei, one of the colours being represented twice. By Theorem 2.5, the same colour
occurs twice at both e1 and e2, say colour 1. If we regard ψ as a Z2 × Z2-valuation
and sum the outflows from vertices of G1 we see that the flow through S equals ψ(s1) +
ψ(s2) + ψ(s3) + ψ(s4) = 1. Hence, the distribution of colours in the couples of S, the set
{{ψ(si), ψ(sj)}, {ψ(sk), ψ(sl)}}, must have one of the following four forms:

D1 = {{1, 1}, {2, 3}},
D2 = {{1, 2}, {1, 3}},
D3 = {{2, 2}, {2, 3}},
D4 = {{2, 3}, {3, 3}}.

We now concentrate on the restriction of ψ to G1 and show that it can be modified to a
4-edge-colouring λ of G1 with distribution either D2 or D3. If the colouring ψ of G′

has distribution D4, we can simply interchange the colours 2 and 3 to obtain the distri-
bution D3. Assume that ψ has distribution D1. Let us consider the unique end-vertex u
of e1 in G1 such that the edges incident with u receive colours 1, 3, and 0 from ψ. The
1-2-Kempe chain P starting at u ends with a vertex incident with e2, which means that P
traverses S. Let s be the first edge of S that belongs to P . If ψ(s) = 1, then the desired
4-edge-colouring λ ofG1 with distributionD2 can be obtained by the Kempe switch on the
segment of P that ends with s and by a subsequent permutation of colours interchanging
1 and 2. If ψ(s) = 2, then a 4-edge-colouring of G1 with distribution D3 can be obtained
similarly. In both cases, e1 is the only edge coloured 0 under λ.

If λ has distribution D2, then λ and a 3-edge-colouring of H of type 1212 can be com-
bined to a 3-edge-colouring of G′ − {e1, sl}. However, as observed earlier, by removing
H and reinstating G2 we could produce a 3-edge-colouring of G − {e1, sl}, which is im-
possible because ω(G) ≥ 4. If λ has distribution D3, we can similarly combine λ with
a 3-edge-colouring of H of type 1221 to a 3-edge-colouring of G′ − {e1, si} which is
impossible for the same reason. This contradiction completes the proof of Claim 2.

Claim 3. ζ(G′) = 4.

Proof of Claim 3. Suppose to the contrary that ζ(G′) < 4. Let S′ be a minimum size cycle-
separating edge-cut in G′. If all the edges of S′ had at least one end vertex in G1, then S′

would be a cycle-separating cut also in G, which is impossible. Therefore at least one edge
of S′ has both ends in H , which means that S′ intersects H . Since H is connected, we
conclude that S′

H = S′ ∩ E(H) is an edge-cut of H . Note that S′
H is an independent

set of edges, so S′
H must be a cycle-separating edge-cut in H . Recall, however, that H

arises from the Petersen graph by severing two independent edges e and f . It follows that
S′
H∪{e, f} is a cycle-separating edge-cut in the Petersen graph. Hence, |S′

H∪{e, f}| ≥ 5,
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and consequently 3 ≤ |S′
H | ≤ |S′| ≤ 3. This shows that S′

H = S′ and therefore S′ is
completely contained in H; in particular S′ ∩ S = ∅. Because S′ is an edge-cut of the
entire G′, all the edges of S must join G1 to the same component of H − S′. On the other
hand, the Petersen graph is cyclically 5-edge-connected, therefore both e and f have end-
vertices in different components of H −S′. The way how G′ was constructed from G now
implies that the set of end-vertices of S in H coincides with the set of end-vertices of e and
f . Therefore S has an end-vertex in each component of H −S′, contradicting the previous
observation. This contradiction establishes Claim 3.

Claim 2 and Claim 3 combined provide a final contradiction with the choice of G,
which concludes the proof.

We proceed to proving our second decomposition theorem.

Proof of Theorem 3.5. Let G be a snark with oddness at least 4, cyclic connectivity 4, and
minimum number of vertices. If G contains a cycle-separating 4-edge-cut whose removal
leaves either two uncolourable components or one uncolourable component and one hete-
rochromatic component, then the conclusion follows directly from Theorem 3.6 (i) or (ii),
respectively. Otherwise one of the components is uncolourable and the other one, denoted
by G2, is isochromatic. In this case, G2 contains a subgraph K which is an atom, possibly
K = G2. Clearly, K is colourable and δG(K) is a cycle-separating 4-edge-cut. If K is
heterochromatic, then the conclusion again follows from Theorem 3.6 (ii). Therefore we
may assume that K is isochromatic. Since 4 = ζ(G) < 5 ≤ g(G), we see that K is a non-
trivial atom and from Proposition 2.3 (ii) we infer that ζ(K) ≥ 3. Applying statement (iii)
of Theorem 3.6 with S = δG(K) we finally get the desired result.

4 Main result
We are now ready to prove our main result.

Theorem 1.1. The smallest number of vertices of a snark with cyclic connectivity 4 and
oddness at least 4 is 44. The girth of each such snark is at least 5.

Proof. Let G be a snark with oddness at least 4, cyclic connectivity 4, and minimum order.
We first prove that G has girth at least 5. By Proposition 2.1, the girth of G is at least 4.
Suppose to the contrary that G contains a 4-cycle C, and let S be the edge-cut separating
C from the rest of G. Since S is cycle-separating, it has to satisfy one of the statements
(i) – (iii) of Theorem 3.6. In the notation of Theorem 3.6, C necessarily plays the role of
G2, because it is colourable. In particular, S does not satisfy (i). However, S satisfies
neither (ii) because G2 is not heterochromatic, nor (iii) since G2 is not isochromatic. Thus
we have reached a contradiction proving that the girth of G is at least 5.

In Figure 1 we have displayed a snark with oddness at least 4, cyclic connectivity 4 on
44 vertices. It remains to show that there are no snarks of oddness at least 4 and cyclic
connectivity 4 with fewer than 44 vertices.

Our main tool is Theorem 3.5. It implies that every snark with oddness at least 4,
cyclic connectivity 4, and minimum number of vertices can be obtained from two smaller
cyclically 4-edge-connected snarks G1 and G2 by the following process:

• Form a 4-pole Hi from each Gi by either removing two adjacent vertices or two
nonadjacent edges and by retaining the dangling edges.
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• Construct a cubic graph G by identifying the dangling edges of H1 with those of H2

after possibly applying a permutation to the dangling edges of H1 or H2.

Any graph G obtained in this manner will be called a 4-join of G1 and G2. Note that the
well-known operation of a dot product of snarks [1, 28] is a special case of a 4-join.

We proceed to proving that every snark with cyclic connectivity 4 on at most 42 vertices
has oddness 2. If G is a snark with cyclic connectivity 4 on at most 42 vertices, then by
Theorem 3.5 it contains a cycle-separating 4-edge-cut S such that both components K1

and K2 of G − S can be extended to snarks G1 and G2, respectively, by adding at most
two vertices; in other words, G is a 4-join of G1 and G2. Clearly, |V (K1)| + |V (K2)| =
|V (G)| ≤ 42. Assuming that |V (K1)| ≤ |V (K2)| we see that |V (K1)| ≥ 8, because
the smallest cyclically 4-edge-connected snark has 10 vertices, and hence |V (K2)| ≤ 34.
Therefore both G1 and G2 have order at least 10 and at most 36.

Let Sn denote the set of all pairwise non-isomorphic cyclically 4-edge-connected snarks
of order not exceeding n. To finish the proof it remains to show that every 4-join of two
snarks from S36 with at most 42 vertices has oddness 2. Unfortunately, verification of this
statement in a purely theoretical way is far beyond currently available methods. The final
step of our proof has been therefore performed by a computer.

We have written a program which applies a 4-join in all possible ways to two given
input graphs and have applied this program to the complete list of snarks from the set
S36. More specifically, given an arbitrary pair of input graphs, the program removes in
all possible ways either two adjacent vertices or two nonadjacent edges from each of the
graphs (retaining the dangling edges) and then identifies the dangling edges from the first
graph in the pair with the dangling edges of the second graph, again in all possible (i.e.,
4! = 24) ways. We also use the nauty library [39, 40] to determine the orbits of edges
and edge pairs in the input graphs, so the program only removes two adjacent vertices
or two nonadjacent edges once from every orbit of edges or edge pairs, respectively. The
resulting graphs can still contain isomorphic copies, therefore we also use nauty to compute
a canonical labelling of the graphs and remove the isomorphic copies.

Until now, only the set S34 has been known; it was determined by Brinkmann, Häg-
glund, Markström, and the first author [7] in 2013 and was shown to contain exactly
27 205 766 snarks. Using the program snarkhunter [7, 8] we have been able to generate all
cyclically 4-edge-connected snarks on 36 vertices, thereby completing the determination
of S36. This took about 80 CPU years and yielded exactly 404 899 916 such graphs. The
size of S36 thus totals to 432 105 682 graphs. (The new list of snarks can be downloaded
from the House of Graphs [6] at http://hog.grinvin.org/Snarks.)

Finally, we have performed all possible 4-joins of two snarks from S36 that produce a
snark with at most 42 vertices and checked their oddness. This computation required ap-
proximately 75 CPU days. We have used two independent programs to compute the odd-
ness of the resulting graphs (the source code of these programs can be obtained from [21])
and in each case the results of both programs were in complete agreement. No snark of odd-
ness greater than 2 among them was found, which completes the proof of Theorem 1.1.

5 Remarks and open problems
We have applied the 4-join operation to all valid pairs of snarks from S36 to construct cycli-
cally 4-edge-connected snarks on 44 vertices and checked their oddness. In this manner we
have produced 31 cyclically 4-edge-connected snarks of oddness 4, including the one from
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Figure 1, all of them having girth 5. The most symmetric of them is shown in Figure 4.
We will describe and analyse these 31 snarks in the sequel of this paper [23], where we
also prove that they constitute a complete list of all snarks with oddness at least 4, cyclic
connectivity 4, and minimum number of vertices.

Figure 4: The most symmetric nontrivial snark of oddness 4 on 44 vertices.

As we have already mentioned in Introduction (Section 1), Theorem 1.1 does not yet
determine the smallest order of a nontrivial snark with oddness 4, because there might exist
snarks with oddness at least 4 of order 38, 40, or 42 with cyclic connectivity greater than 4.
Furthermore, it is not immediately clear why a snarkGwith ω(G) ≥ m and minimum order
should have oddness exactlym. This situation suggests two natural problems which require
the following definition: Given integers ω ≥ 2 and k ≥ 2, letm(ω, k) denote the minimum
order of a cyclically k-edge-connected snark with oddness at least ω. For example, one has
m(2, 2) = m(2, 3) = m(2, 4) = m(2, 5) = 10 as exemplified by the Petersen graph, and
m(2, 6) = 28 as exemplified by the Isaacs flower snark J7. The values m(2, k) for k ≥ 7
are not known, however the well-known conjecture of Jaeger and Swart [31] that there are
no cyclically 7-edge-connected snarks would imply that these values are not defined. For
ω = 4, Lukot’ka et al. [35, Theorem 12] showed that m(4, 2) = m(4, 3) = 28. The value
m(4, 4) remains unknown although our Theorem 1.1 seems to suggest that m(4, 4) = 44.

Problem 5.1. Determine the value m(4, 4).

Our second problem asks whether the function m(ω, k) is monotonous in both coordi-
nates.

Problem 5.2. Is it true that m(ω+ 1, k) ≥ m(ω, k) and m(ω, k+ 1) ≥ m(ω, k) whenever
the involved values are defined?
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6 Testing conjectures
After having generated all snarks from the set S34 and those from S36 that have girth at
least 5, Brinkmann et al. [7] tested the validity of several important conjectures whose min-
imal counterexamples, provided that they exist, must be snarks. For most of the considered
conjectures the potential minimal counterexamples are proven to be nontrivial snarks, that
is, those with cyclic connectivity at least 4 and girth at least 5. Nevertheless, in some cases
the girth condition has not been established. Therefore it appears reasonable to check the
validity of such conjectures on the set S36 \ S34 of all cyclically 4-edge-connected snarks
of order 36. We have performed these tests and arrived at the conclusions discussed below;
for more details on the conjectures we refer the reader to [7].

A dominating circuit in a graph G is a circuit C such that every edge of G has an
end-vertex on C. Fleischner [17] made the following conjecture on dominating cycles.

Conjecture 6.1 (Dominating circuit conjecture). Every cyclically 4-edge-connected snark
has a dominating circuit.

The dominating circuit conjecture exists in several different forms (see, for example,
[3, 18]) and is equivalent to a number of other seemingly unrelated conjectures such as the
Matthews-Sumner conjecture about the hamiltonicity of claw-free graphs [38]. For more
information on these conjectures see [10].

Our tests have resulted in the following claim.

Claim 6.2. Conjecture 6.1 has no counterexample on 36 or fewer vertices.

The total chromatic number of a graph G is the minimum number of colours required
to colour the vertices and the edges of G in such a way that adjacent vertices and edges
have different colours and no vertex has the same colour as its incident edges. The total
colouring conjecture [4, 50] suggests that the total chromatic number of every graph with
maximum degree ∆ is either ∆ + 1 or ∆ + 2. For cubic graphs this conjecture is known to
be true by a result of Rosenfeld [45], therefore the total chromatic number of a cubic graph
is either 4 or 5. Cavicchioli et al. [12, Problem 5.1] asked for a smallest nontrivial snark
with total chromatic number 5. Brinkmann et al. [7] showed that such a snark must have
at least 38 vertices. Sasaki et al. [46] displayed examples of snarks with connectivity 2 or
3 whose total chromatic number is 5 and asked [46, Question 2] for the order of a smallest
cyclically 4-edge-connected snark with total chromatic number 5. Brinkmann et al. [9]
constructed cyclically 4-edge-connected snarks with girth 4 and total chromatic number 5
for each even order greater than or equal to 40. Our next claim shows that the value asked
for by Sasaki et al. is either 38 or 40.

Claim 6.3. All cyclically 4-edge-connected snarks with at most 36 vertices have total chro-
matic number 4.

The following conjecture was made by Jaeger [30] and is known as the Petersen co-
louring conjecture. If true, this conjecture would imply several other profound conjectures,
in particular, the 5-cycle double cover conjecture and the Fulkerson conjecture.

Conjecture 6.4 (Petersen colouring conjecture). Every bridgeless cubic graph G admits a
colouring of its edges using the edges of the Petersen graph as colours in such a way that
any three mutually adjacent edges of G are coloured with three mutually adjacent edges of
the Petersen graph.
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It is easy to see that the smallest counterexample to this conjecture must be a cyclically
4-edge-connected snark. Brinkmann et al. [7] showed that the smallest counterexample to
the Petersen colouring conjecture must have order at least 36. Here we improve the latter
value to 38.

Claim 6.5. Conjecture 6.4 has no counterexamples on 36 or fewer vertices.

References
[1] G. M. Adelson-Velsky and V. K. Titov, On edge 4-chromatic cubic graphs (in Russian), in:

V. K. Zakharov, V. P. Kozyrev, K. A. Rybnikov, V. N. Sachkov, V. E. Stepanov and V. E.
Tarakanov (eds.), Voprosy Kibernetiki, Proceedings of the Seminar on Combinatorial Mathe-
matics (Moscow State University, Moscow, January 27 – 29, 1971), Moscow, 1973 pp. 5–14.

[2] L. D. Andersen, H. Fleischner and B. Jackson, Removable edges in cyclically 4-edge-connected
cubic graphs, Graphs Combin. 4 (1988), 1–21, doi:10.1007/bf01864149.

[3] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, in: J. A. Bondy and U. S. R.
Murty (eds.), Progress in Graph Theory, Academic Press, Toronto, Ontario, 1984 pp. 81–87,
proceedings of the conference on combinatorics held at the University of Waterloo, Waterloo,
Ontario, 1982.

[4] M. Behzad, G. Chartrand and J. K. Cooper, Jr., The colour numbers of complete graphs, J.
London Math. Soc. 42 (1967), 226–228, doi:10.1112/jlms/s1-42.1.226.
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Abstract

Given two familiesX and Y of integral polytopes with nice combinatorial and algebraic
properties, a natural way to generate a new class of polytopes is to take the intersection
P = P1 ∩ P2, where P1 ∈ X , P2 ∈ Y . Two basic questions then arise: 1) when P is
integral and 2) whether P inherits the “old type” from P1,P2 or has a “new type”, that is,
whether P is unimodularly equivalent to a polytope inX∪Y or not. In this paper, we focus
on the families of order polytopes and chain polytopes. Following the above framework,
we create a new class of polytopes which are named order-chain polytopes. When studying
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their volumes, we discover a natural relation with Ehrenborg and Mahajan’s results on
maximizing descent statistics.

Keywords: Poset, order-chain polytope, unimodular equivalence.

Math. Subj. Class.: 52B05, 52B20

1 Introduction
This paper was motivated by the following two questions about intersecting two integral
polytopes P1 and P2, which come from two given families X and Y of polytopes respec-
tively:

1) when the intersection P = P1 ∩ P2 is integral and

2) whether P inherits the “old type” from P1,P2 or has a “new type”, that is, whether
P is unimodularly equivalent to a polytope in X ∪ Y or not.

Usually, we shall start with those families X and Y of polytopes which have nice combi-
natorial and algebraic properties. In this paper, we focus on the families of order polytopes
and chain polytopes. Instead of considering the intersection of an arbitrary d-dimensional
order polytope and an arbitrary d-dimensional chain polytope, we will consider the inter-
section of an order polytope O(P ′) and a chain polytope C(P ′′), both of which arise from
weak subposets P ′, P ′′ of a given poset. The resulting polytope is called an order-chain
polytope, which generalizes both order polytope and chain polytope.

The order polytope O(P ) as well as the chain polytope C(P ) arising from a finite
partially ordered set P has been studied by many authors from viewpoints of both com-
binatorics and commutative algebra. Especially, in [16], the combinatorial structures of
order polytopes and chain polytopes are explicitly discussed. Furthermore, in [9], the natu-
ral question when the order polytope O(P ) and the chain polytope C(P ) are unimodularly
equivalent is solved completely. It follows from [5] and [8] that the toric ring ([7, p. 37])
of O(P ) and that of C(P ) are algebras with straightening laws ([6, p. 124]) on finite dis-
tributive lattices. Thus in particular the toric ideal ([7, p. 35]) of each of O(P ) and C(P )
possesses a squarefree quadratic initial ideal ([7, p. 10]) and possesses a regular unimodular
triangulation ([7, p. 254]) arising from a flag complex. Furthermore, toric rings of order
polytopes naturally appear in algebraic geometry (e.g., [2]) and in representation theory
(e.g., [18]).

We begin by introducing some basic notation and terminology. Given a convex polytope
P ⊂ Rd, a facet hyperplane of P ⊂ Rd is defined to be a hyperplane in Rd which contains
a facet of P . If

H = {(x1, x2, . . . , xd) ∈ Rd : a1x1 + a2x2 + · · ·+ adxd − b = 0},

where each ai and b belong to R, is a hyperplane of Rd and v = (y1, y2, . . . , yd) ∈ Rd,
then we set

H(v) = a1y1 + a2y2 + · · ·+ adyd − b.

E-mail addresses: hibi@math.sci.osaka-u.ac.jp (Takayuki Hibi), amenda860111@gmail.com (Nan Li),
pmgb@swu.edu.cn (Teresa Xueshan Li), lly-mu@hotmail.com (Li Li Mu), a-tsuchiya@ist.osaka-u.ac.jp
(Akiyoshi Tsuchiya)
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Let (P,4) be a finite partially ordered set (poset, for short) on [d] = {1, . . . , d}. For
each subset S ⊆ P , we define ρ(S) =

∑
i∈S ei, where e1, . . . , ed are the canonical unit

coordinate vectors of Rd. In particular ρ(∅) = (0, 0, . . . , 0), the origin of Rd. A subset
I of P is an order ideal of P if i ∈ I , j ∈ [d] together with j 4 i in P imply j ∈ I .
An antichain of P is a subset A of P such that any two elements in A are incomparable.
We say that j covers i if i ≺ j and there is no k ∈ P such that i ≺ k ≺ j. A chain
j1 ≺ j2 ≺ · · · ≺ js is saturated if jq covers jq−1 for 1 < q ≤ s, and it is called a maximal
chain if, moreover, j1 is a minimal element and js is a maximal element of P . A poset
can be represented with its Hasse diagram, in which each cover relation i ≺ j corresponds
to an edge denoted by e = {i, j}. For a finite poset P , we let c(P ), m?(P ) and m?(P )
denote the number of maximal chains, the number of minimal elements and the number of
maximal elements of P , respectively. We denote by E(P ) the set of edges in the Hasse
diagram of P .

In [16], Stanley introduced two convex polytopes arising from a finite poset, the order
polytope and the chain polytope. Following [9], we employ slightly different definitions.
Given a finite poset (P,4) on [d], the order polytope O(P ) is defined to be the convex
polytope consisting of those (x1, . . . , xd) ∈ Rd such that

(1) 0 ≤ xi ≤ 1 for 1 ≤ i ≤ d;

(2) xi ≥ xj if i 4 j in P .

The chain polytope C(P ) of P is defined to be the convex polytope consisting of those
(x1, . . . , xd) ∈ Rd such that

(1) xi ≥ 0 for 1 ≤ i ≤ d;

(2) xi1 + · · ·+ xik ≤ 1 for every maximal chain i1 ≺ · · · ≺ ik of P .

Recall (see [16] for details) that there is a close connection between the combinatorial
structure of P and the geometric structures of O(P ) and C(P ). For instance, the following
connections are not hard to prove:

• The number fd−1(O(p)) of facets of O(P ) is equal to m?(P ) + m?(P ) + |E(P )|.
Equivalently, if we let P̂ = P ∪ {0̂, 1̂} be the poset obtained from P by adjoining
a minimum element 0̂ and a maximum element 1̂, then we have fd−1(O(P )) =
|E(P̂ )|.

• The number fd−1(C(P )) of facets of C(P ) is equal to d+ c(P ).

• The vertices of O(P ) are exactly those ρ(I) for which I is an order ideal of P , and
the vertices of C(P ) are exactly those ρ(A) for whichA is an antichain of P . Since it
is well known that order ideals of P are in one-to-one correspondence with antichains
of P , the order polytope O(P ) and the chain polytope C(P ) have the same number
of vertices.

Let P be a finite poset, we define an edge partition of P to be a map

` : E(P ) −→ {o, c}.

Equivalently, an edge partition of P is an ordered pair

(oE(P ), cE(P ))
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of subsets of E(P ) such that oE(P )∪ cE(P ) = E(P ) and oE(P )∩ cE(P ) = ∅. An edge
partition ` is called proper if oE(P ) 6= ∅ and cE(P ) 6= ∅.

Suppose that (P,4) is a poset on [d] with an edge partition ` = (oE(P ), cE(P )).
Let P ′` and P ′′` denote the d-element weak subposets of P with cover relations given by
the edge sets oE(P ) and cE(P ) respectively. Here by a weak subposet of P , we mean a
subset Q of elements of P and a partial ordering 4∗ of Q such that if x 4∗ y in Q, then
x 4 y in P . The order-chain polytope OC`(P ) with respect to the edge partition ` of P is
defined to be the convex polytope

O(P ′`) ∩ C(P ′′` )

in Rd. Clearly the notion of order-chain polytope is a natural generalization of both order
polytope and chain polytope of a finite poset.

For example, let P be the chain 1 ≺ 2 ≺ · · · ≺ 7 with

oE(P ) = {{1, 2}, {4, 5}, {5, 6}}, cE(P ) = {{2, 3}, {3, 4}, {6, 7}}.

Then P ′` is the disjoint union of the following four chains:

1 ≺ 2, 3, 4 ≺ 5 ≺ 6, 7

and P ′′` is the disjoint union of

1, 2 ≺ 3 ≺ 4, 5 and 6 ≺ 7.

Hence the order-chain polytope OC`(P ) is the convex polytope consisting of those
(x1, . . . , x7) ∈ R7 such that

(1) 0 ≤ xi ≤ 1 for 1 ≤ i ≤ 7;

(2) x1 ≥ x2, x4 ≥ x5 ≥ x6;

(3) x2 + x3 + x4 ≤ 1, x6 + x7 ≤ 1.

It should be noted that, for any poset P on [d] and any edge partition ` of P , the dimen-
sion of the order-chain polytope OC`(P ) is equal to d. In fact, let x = (1/d, . . . , 1/d) ∈
Rd, clearly, we have x ∈ OC`(P ). If P ′` is an antichain, thenO(P ′`) is the d-cube [0, 1]d. In
this case, OC`(P ) is exactly the same as the chain polytope C(P ) and so is d-dimensional.
If P ′` is not an antichain, then P ′′` is not a d-element chain. In this case, x ∈ ∂O(P ′`) and
x ∈ C(P ′′` ) \ ∂C(P ′′` ), since no facet hyperplane of C(P ′′` ) contains x. In this case, we can
find a ball Bd(x) centered at x such that Bd(x) ⊂ C(P ′′` ) \ ∂C(P ′′` ). Keeping in mind that
x belongs to the boundary of O(P ′`), we deduce that Bd(x) ∩ (O(P ′`) \ ∂O(P ′`)) 6= ∅. It
follows that (O(P ′`) \ ∂O(P ′`)) ∩ (C(P ′′` ) \ ∂C(P ′′` )) 6= ∅, as desired.

Recall that an integral convex polytope (a convex polytope is integral if all of its vertices
have integer coordinates) is called compressed ([15]) if all of its “pulling triangulations”
are unimodular. Equivalently, a compressed polytope is an integral convex polytope any
of whose reverse lexicographic initial ideals are squarefree ([17]). It follows from [13,
Theorem 1.1] that all order polytopes and all chain polytopes are compressed. Hence the
intersection of an order polytope and a chain polytope is compressed if it is integral. In
particular every integral order-chain polytope is compressed. It then follows that every
integral order-chain polytope possesses a unimodular triangulation and is normal ([12]).
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Then one of the natural question, which we study in Section 2, is when an order-chain
polytope is integral. We call an edge partition ` of a finite poset P integral if the order-
chain polytope OC`(P ) is integral. We show that every edge partition of a finite poset P is
integral if and only if P is cycle-free. Here by a cycle-free poset P we mean that the Hasse
diagram of P is a cycle-free graph (i.e., an unoriented graph that does not have cycles).
Furthermore, we prove that every poset P with |E(P )| ≥ 2 possesses at least one proper
integral edge partition.

In Section 3, we consider the problem when an integral order-chain polytope is unimod-
ularly equivalent to either an order polytope or a chain polytope. This problem is related
to the work [9], in which the authors characterize all finite posets P such that O(P ) and
C(P ) are unimodularly equivalent. We show that if P is either a disjoint union of chains or
a zigzag poset, then the order-chain polytope OC`(P ), with respect to each edge partition
` of P , is unimodularly equivalent to the chain polytope of some poset (Theorem 3.3 and
Theorem 3.4). On the other hand, for each positive integer d ≥ 6, we find a d-dimensional
integral order-chain polytope which is not unimodularly equivalent to any chain polytope
nor order polytope. This means that the notion of order-chain polytope is a nontrivial gen-
eralization of order polytope or chain polytope.

We conclude the present paper with an observation on the volume of order-chain poly-
topes in Section 4. An interesting question is to find an edge partition ` of a poset P which
maximizes the volume of OC`(P ). In general, it seems to be very difficult to find a com-
plete answer. We shall discuss the case when P is a chain on [d], which involves Ehrenborg
and Mahajan’s problem (see [3]) of maximizing the descent statistics over certain family
of subsets.

2 Integral order-chain polytopes
In this section, we consider the problem when an order-chain polytope is integral. We shall
prove that every edge partition of a poset P is integral if and only if P is cycle-free. We
also prove that every finite poset P with |E(P )| ≥ 2 has at least one proper integral edge
partition.

Theorem 2.1. Let P be a finite poset. Then every edge partition of P is integral if and only
if P is a cycle-free poset.

Proof. Suppose that each edge partition ` of P is integral. If the Hasse diagram of P has
a cycle C, then it is easy to find a non-integral edge partition. In fact, let e = {i, j} be an
arbitrary edge from C and ` = (E(P ) \ {e}, {e}). We now show that ` is not integral. To
this end, let I be the connected component of the Hasse diagram of P ′` which contains i
and j and let v = (v1, v2, . . . , vd) ∈ Rd with

vk =

{
1
2 , if k ∈ I
0, otherwise.

Then it is easy to see that

v =
⋂

{p,q}∈E(I)

Hpq

⋂
t/∈I

Ht

⋂
Hij ,
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where

Hpq = {(x1, x2, . . . , xd) | xp = xq} for e = {p, q} ∈ E(I)

Ht = {(x1, x2, . . . , xd) | xt = 0} for t /∈ I
Hij = {(x1, x2, . . . , xd) | xi + xj = 1}

are all facet hyperplanes of OC`(P ). So we deduce that v is a vertex of OC`(P ), and ` is
not integral.

Conversely, suppose that P is a cycle-free poset on [d] and ` is an edge partition of
P . If v = (a1, a2, . . . , ad) is a vertex of OC`(P ), then we can find d independent facet
hyperplanes of OC`(P ) such that

v =

(
d−m⋂
i=1

H ′i

)
∩

 m⋂
j=1

H ′′j

 , (2.1)

where m = dim
(⋂d−m

i=1 H ′i
)
, each H ′i is a facet hyperplane of O(P ′`) and each H ′′j is

a facet hyperplane of C(P ′′` ) which corresponds to a chain Cj of length ≥ 2 in P ′′` . By
[16, Theorem 2.1], there is a set partition π = {B1, B2, . . . , Bm+1} of [d] such that
B1, B2, . . . , Bm are connected as subposets of P ′` , Bm+1 = {i ∈ [d] : ai = 0 or 1}
and

d−m⋂
i=1

H ′i = {(x1, x2, . . . , xd) | xi = xj if {i, j} ⊆ Bk for some 1 ≤ k ≤ m,
and xr = ar if r ∈ Bm+1}.

Let Bm+1 = {r1, r2, . . . , rs} and for 1 ≤ k ≤ m, let bk denote the same values of all
a′is, i ∈ Bk. Then it suffices to show that each bk is an integer. Keeping in mind the
assumption that the Hasse diagram of P is cycle-free, we find that |Ci ∩ Bj | ≤ 1 for
1 ≤ i, j ≤ m. For 1 ≤ i, j ≤ m, let

cij =

{
1, if |Ci ∩Bj | = 1

0, otherwise
(2.2)

and for 1 ≤ i ≤ m, 1 ≤ j ≤ s, let

di,m+j =

{
1, if rj ∈ Ci
0, otherwise.

(2.3)

By (2.1), (b1, b2, . . . , bm, ar1 , ar2 , . . . , ars) must be the unique solution of the following
linear system: 

∑m
j=1 cijyj +

∑m+s
j=m+1 dijyj = 1, 1 ≤ i ≤ m

ym+1 = ar1
ym+2 = ar2

...
ym+s = ars .

(2.4)
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Now it suffices to show that the determinant of the coefficient matrix

A =



c11 · · · c1m d1,m+1 · · · d1,m+s

...
...

...
...

cm1 · · · cmm dm,m+1 · · · dm,m+s

0 · · · 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1


(2.5)

is equal to 1 or −1. Now construct a bipartite graph G with vertex set

{B1, B2, . . . , Bm, C1, C2, . . . , Cm},

and edge set
{{Bi, Cj} | 1 ≤ i, j ≤ m, |Bi ∩ Cj | = 1}.

Let

C =

 c11 · · · c1m
...

...
cm1 · · · cmm

 .

Then we have

det(C) =
∑
σ∈Sm

sign(σ)c1σ1
· · · cmσm

. (2.6)

Clearly, each nonzero term in (2.6) corresponds to a perfect matching in the graphG. Since
the Hasse diagram of P is cycle-free, the graph G must be a cycle-free bipartite graph,
which means that there is at most one perfect matching in G. So we have det(C) = 0, 1 or
−1. Note that the linear equations (2.4) has unique solution (b1, b2, . . . , bm, ar1 , . . . , ars).
Then we find that det(C) = ±1. It follows that each bi is an integer. So the vertex v of
OC`(P ) is integral.

For a general finite poset P with |E(P )| ≥ 2, the following theorem indicates that there
exists at least one proper integral edge partition.

Theorem 2.2. Suppose that P is a finite poset. Let Min(P ) denote the set of all minimal
elements in P . For S ⊆ Min(P ), let ES(P ) denote the set of all edges in E(P ) which are
incident to some elements in S. Then the edge partition

` = (E(P ) \ ES(P ), ES(P ))

is integral.

Proof. Suppose that v is a vertex of OC`(P ). Then v can be represented as intersection
of d independent facet hyperplanes, as in (2.1). Keeping the notation in the proof of The-
orem 2.1, we can deduce that |Ci| = 2 and |Bi ∩ Cj | ≤ 1 for 1 ≤ i, j ≤ m. So we can
construct in the same way two matrices A and C as those in the proof of Theorem 2.1.
Then, we can construct a graph G with vertex set {B1, B2, . . . , Bm, r1, r2, . . . , rs} and
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edge set determined by C1, C2, . . . , Cm. More precisely, {Bi, Bj} is an edge of G if and
only if there exists 1 ≤ k ≤ m such that Ck = {i′, j′} for some i′ ∈ Bi, j

′ ∈ Bj , and
{Bi, rj} is an edge of G if and only if there exists 1 ≤ k ≤ m such that Ck = {rj , i′} for
some i′ ∈ Bi. Obviously, G is a bipartite graph with bipartition (B1,B2), where

B2 = {Bj : 1 ≤ j ≤ m, Bj = {k} for some k ∈ S} ∪ {rt : 1 ≤ t ≤ s, rt ∈ S},

and
B1 = {B1, B2, . . . , Bm, r1, r2, . . . , rs} \ B2.

Moreover, by the construction of the graph G, its incidence matrix is c11 · · · c1m d1,m+1 · · · d1,m+s

...
...

...
...

cm1 · · · cmm dm,m+1 · · · dm,m+s


where cij , di,m+j are defined in (2.2) and in (2.3) respectively. A well known fact shows
that the incidence matrix of any bipartite graph is totally unimodular (a matrix A is totally
unimodular if every square submatrix has determinant 0, +1, or −1). So the submatrix C
has determinant 0, 1 or −1. This completes the proof.

Example 2.3. By Theorem 2.1, if the Hasse diagram of P has a cycle, then there exists at
least one non-integral edge partition `.

(1) For example, let P denote the poset whose Hasse diagram is a 4-cycle (see Figure 1)
and let E1 = {{1, 2}, {2, 4}, {3, 4}}. Then the edge partition `1 = (E1, {1, 3}) is
non-integral, since v =

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
is a vertex of OC`1(P ) given by{

x1 = x2 = x4 = x3

x1 + x3 = 1.

However, it is easy to see that the edge partition `2 = ({1, 3}, E1) is integral. So
we find that the complementary edge partition `c = (cE(P ), oE(P )) of an integral
edge partition ` = (oE(P ), cE(P )) is not necessarily integral.

(2) For any poset P whose Hasse diagram is a cycle and any edge partition ` of P , it is
not hard to show that all coordinates of each vertex of OC`(P ) are 0, 1 or 1

2 .

2 3

4

1

Figure 1: Hasse diagram of poset P from Example 2.3.
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3 Unimodular equivalence

In this section, we shall compare the newly constructed order-chain polytopes with some
known polytopes. Specifically, we will focus on integral order-chain polytopes and con-
sider their unimodular equivalence relation with order polytopes or chain polytopes.

Recall (see, for example, [9]) that a d× d integral matrix U is unimodular if det(U) =
±1. A map ϕ : Rd → Rd is a unimodular transformation if there exist a d× d unimodular
matrix U and an integral vector w ∈ Zd such that ϕ(v) = vU +w. Two integral polytopes
P and Q in Rd are unimodularly equivalent if there exists a unimodular transformation
ϕ : Rd → Rd such that Q = ϕ(P). Much of the importance of unimodular equivalence
arises from the fact that combinatorial type and Ehrhart polynomial of an integral polytope
are invariant modulo unimodular equivalence. For instance, classification of polytopes with
certain properties (modulo unimodular equivalence) has gained some attentions recently
(see, for example, [1, 10, 11]).

We shall use the ideas in the proof of the following theorem due to Hibi and Li [9].

Theorem 3.1 ([9, Theorem 1.3]). The order polytope O(P ) and the chain polytope C(P )
of a finite poset P are unimodularly equivalent if and only if the poset shown in Figure 2
does not appear as a subposet of P .

3

1 2

54

Figure 2: The “forbidden” poset from Theorem 3.1.

Definition 3.2. A poset P on [d] is said to be a zigzag poset if its cover relations are given
by

1 ≺ · · · ≺ i1 � i1 + 1 � · · · � i2 ≺ i2 + 1 ≺ · · · ≺ i3 � · · · � ik ≺ ik + 1 ≺ · · · ≺ d

for some 0 ≤ i1 < i2 < · · · < ik ≤ d.

Theorem 3.3. Suppose that P is a disjoint union of chains. Then for any edge partition
`, the order-chain polytope OC`(P ) is unimodularly equivalent to a chain polytope C(Q),
where Q is a disjoint union of zigzag posets.

Proof. We firstly assume that P is a chain:

1 ≺ 2 ≺ 3 ≺ · · · ≺ d.
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and ` is an edge partition of P given by:

o : 1 ≺ 2 ≺ · · · ≺ i1
c : i1 ≺ i1 + 1 ≺ · · · ≺ i2
o : i2 ≺ i2 + 1 ≺ · · · ≺ i3

...
c : it−1 ≺ it−1 + 1 ≺ · · · ≺ it
o : it ≺ it + 1 ≺ · · · ≺ it+1

...
c : ik−1 ≺ ik−1 + 1 ≺ · · · ≺ ik = d,

where 1 ≤ i1 < i2 < · · · < ik−1 ≤ ik = d. Then the order-chain polytope OC`(P ) is
given by 

x1 ≥ x2 ≥ · · · ≥ xi1
xi1 + xi1+1 + · · ·+ xi2 ≤ 1

xi2 ≥ xi2+1 ≥ · · · ≥ xi3
...

xit−1
+ xit−1+1 + · · ·+ xit ≤ 1

xit ≥ xit+1 ≥ · · · ≥ xit+1

...
xik−1

+ xik−1+1 + · · ·+ xd ≤ 1

0 ≤ xi ≤ 1, 1 ≤ i ≤ d.

(3.1)

Now define a map ϕ : Rd → Rd as follows:

(1) if i is a maximal element in P ′` , then let x′i = xi;

(2) if i is not a maximal element in P ′` , then {i, i + 1} must be an edge in the Hasse
diagram of P ′` . Let x′i = xi − xi+1.

Let ϕ(x1, x2, . . . , xd) = (x′1, x
′
2, . . . , x

′
d).

Now it is easy to show that ϕ is a unimodular transformation. Moreover, the system
(3.1) is transformed into:

x′1 + x′2 + · · ·+ x′i1 ≤ 1

x′i1 + x′i1+1 + · · ·+ x′i2 + x′i2+1 + · · ·+ x′i3 ≤ 1
...

x′it−1
+ x′it−1+1 + · · ·+ x′it + x′it+1 + · · ·+ x′it+1

≤ 1
...

x′ik−1
+ x′ik−1+1 + · · ·+ x′d ≤ 1

0 ≤ x′i ≤ 1, 1 ≤ i ≤ d.
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Obviously, this system corresponds to the chain polytope C(Q) for the zigzag poset Q:

1 ≺ 2 ≺ · · · ≺ i1 � i1 + 1 � · · · � i2 � i2 + 1 � · · · � i3 ≺ · · ·

or the dual zigzag poset Q∗:

1 � 2 � · · · � i1 ≺ i1 + 1 ≺ · · · ≺ i2 ≺ i2 + 1 ≺ · · · ≺ i3 � · · ·

So we deduce that OC`(P ) is unimodularly equivalent to the chain polytope of some
zigzag poset.

Now we continue to prove the general case that P is a disjoint union of k chains:

P = C1 ] C2 ] · · · ] Ck.

Since
O(P ]Q) = O(P )×O(Q) and C(P ]Q) = C(P )× C(Q),

we have
OC`(P ]Q) = O((P ]Q)′`) ∩ C((P ]Q)′′` )

= O(P ′` ]Q′`) ∩ C(P ′′` ]Q′′` )

= [O(P ′`)×O(Q′`)] ∩ [C(P ′′` )× C(Q′′` )]

= [O(P ′`) ∩ C(P ′′` )]× [O(Q′`) ∩ C(Q′′` )]

= OC`(P )×OC`(Q).

(3.2)

Hence we conclude that

OC`(C1 ] · · · ] Ck) = OC`(C1)× · · · × OC`(Ck)

ϕ1×···×ϕk∼= C(Q1)× · · · × C(Qk)

= C(Q1 ] · · · ]Qk),

where Qi are zigzag posets.

Similarly, we can modify the proof of Theorem 3.3 slightly to get the following result:

Theorem 3.4. Suppose that P is a finite zigzag poset. Then for any edge partition `, the
order-chain polytope OC`(P ) is unimodularly equivalent to a chain polytope C(Q) for
some zigzag poset Q.

Proof. Suppose that P is a zigzag poset on [d] and ` is an edge partition of P . Define a
map ϕ : Rd → Rd as follows:

(1) if i is covered by at most one element in P ′` , let

x′i =

{
xi, if i is a maximal element in P ′`
xi − xj , if i is covered by j in P ′` (j = i− 1 or i+ 1).

(2) if i is covered by both i− 1 and i+ 1 in P ′` , let

x′i = 1− xi.
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Let
ϕ(x1, x2, . . . , xd) = (x′1, x

′
2, . . . , x

′
d).

It is not hard to show that ϕ is the desired unimodular transformation.

The following example shows that not every order-chain polytope OC`(P ) of a cycle-
free poset P is unimodularly equivalent to some chain polytope.

Example 3.5. Let P be the poset shown in Figure 2 with an edge partition

` = ({{1, 3}, {3, 4}, {3, 5}}, {2, 3}).

Let
ϕ(x1, x2, x3, x4, x5) = (x1, 1− x2, x3, x4, x5).

It is obvious that ϕ is a unimodular transformation and ϕ(OC`(P )) = O(P ). However, by
checking all 63 different non-isomorphic posets with 5 elements, we find that O(P ) is not
equivalent to any chain polytope.

Furthermore, for any d ≥ 6, we shall find an integral order-chain polytope in Rd which
is not unimodularly equivalent to any chain polytope or order polytope. To this end, we
need the following lemma.

Lemma 3.6.

(1) None of the chain polytopes of finite posets on [d] possesses d+ 4 vertices and d+ 7
facets.

(2) None of the order polytopes of finite posets on [d] possesses d+ 4 vertices and d+ 7
facets.

Proof. (1) Assume, by contradiction, that P is a finite poset on [d] such that C(P ) has
d + 4 vertices and d + 7 facets. Since the vertices of C(P ) are those ρ(A) for which A
is an antichain of P , we can deduce that P possesses exactly d + 4 antichains. Keeping
in mind that ∅, {1}, . . . , {d} are antichains of P , we find that there is no antichain A in P
with |A| ≥ 3. Otherwise, the number of antichains of P is at least d + 5. It then follows
that there are exactly three 2-element antichains in P . We need to consider the following
four cases:

(i) Let, say, {1, 2}, {1, 3}, {1, 4} be the 2-element antichains of P . Then the maximal
chains of P are P \ {1} and P \ {2, 3, 4}.

(ii) Let, say, {1, 2}, {1, 3}, {2, 4} be the 2-element antichains of P . Then the maximal
chains of P are P \ {1, 2}, P \ {1, 4} and P \ {2, 3}.

(iii) Let, say, {1, 2}, {1, 3}, {4, 5} be the 2-element antichains of P . Then the maximal
chains of P are P \ {1, 4}, P \ {1, 5}, P \ {2, 3, 4} and P \ {2, 3, 5}.

(iv) Let, say, {1, 2}, {3, 4}, {5, 6} be the 2-element antichains of P . It can be shown
easily that P possesses exactly eight maximal chains.

Recall that the number of facets of C(P ) is equal to d+c(P ), it follows from the assumption
that there are exactly 7 maximal chains in P , which is a contradiction. As a result, none of
the chain polytopes C(P ) of a finite poset P on [d] with d + 4 vertices can possess d + 7
facets, as desired.
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(2) Let P be a finite poset on [d] and suppose that the number of vertices of O(P ) is
d + 4 and the number of facets of O(P ) is d + 7. Since the number of vertices of O(P )
and that of C(P ) coincide, it follows from the proof of (a) that there is no antichain A in P
with |A| ≥ 3 and that P includes exactly three 2-element antichains. On the other hand,
it is known [9, Corollary 1.2] that the number of facets of O(P ) is less than or equal to
that of C(P ). Hence the number of maximal chains of P is at least 7. Thus, by using the
argument in the proof of (a), we can assume that the antichains of P are {1, 2}, {3, 4} and
{5, 6}. Then, it is easy to prove that the number |E(P̂ )| of edges in the Hasse diagram of
P̂ = P ∪ {0̂, 1̂} is at most d + 6. So we deduce that the number of facets of O(P ) is at
most d+ 6, a contradiction with the assumption.

We remark that, by modifying the argument of the statement (1) in Lemma 3.6, we can
prove directly that the order polytope of Example 3.5 cannot be unimodularly equivalent to
any chain polytope.

Example 3.7. Let P be the finite poset shown in Figure 3. Let ` be the edge partition with

1 2

3 4

5 6

Figure 3: Poset P from Example 3.7.

oE(P ) = {{3, 5}, {3, 6}} and cE(P ) = E(P ) \ oE(P ). Then it is easy to verify that
OC`(P ) is an integral polytope with 10 vertices and 13 facets. (Since the number of facets
of the order-chain polytope is small, we can compute this by hand. Of course, we can also
compute this by using the software polymake [4].) So it follows from Lemma 3.6 that
the integral order-chain polytope OC`(P ) cannot be unimodularly equivalent to any order
polytope or any chain polytope.

In fact, for any d > 6, let Pd be the poset shown in Figure 4 and let ` be the edge
partition with

oE(Pd) = {{3, 5}, {3, 6}, {5, 7}, {6, 7}, {7, 8}, . . . , {d− 1, d}} .

It is easy to see that the order-chain polytope OC`(Pd) has d+ 4 vertices and d+ 7 facets.
Therefore OC`(Pd) cannot be unimodularly equivalent to any order polytope or any chain
polytope.

Recall that Example 3.5 shows that there is an order polytope which is not unimodularly
equivalent to any chain polytope. To conclude this section, we will prove that, for each
d ≥ 9, there exists a finite poset P on [d] for which the chain polytope C(P ) cannot be
unimodularly equivalent to any order polytope.

Recall that, for a finite poset P on [d], we have

fd−1(O(P )) = m?(P ) +m?(P ) + |E(P )|
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1 2

3 4

5 6

7

8

d

...

Figure 4: Poset Pd from Example 3.7.

and

fd−1(C(P )) = d+ c(P ),

To present our results, we firstly discuss upper bounds for fd−1(O(P )) and fd−1(C(P )).
By [9, Theorem 2.1], if d ≤ 4, then O(P ) and C(P ) are unimodularly equivalent and
fd−1(O(P )) = fd−1(C(P )) ≤ 2d. Moreover, for each 1 ≤ d ≤ 4, there exists a finite
poset P on [d] with fd−1(O(P )) = fd−1(C(P )) = 2d.

Lemma 3.8. Let d ≥ 5 and P be a finite poset on [d]. Then

fd−1(O(P )) ≤
⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d (3.3)

and

fd−1(C(P )) ≤


3k + d, d = 3k

4 · 3k−1 + d, d = 3k + 1

2 · 3k + d, d = 3k + 2.

(3.4)

Furthermore, both upper bounds for fd−1(O(P )) and fd−1(C(P )) are tight.

Proof. (Order polytope) Let d = 4. Since the right-hand side of (3.3) is equal to 2d (= 8),
the inequality (3.3) also holds for d = 4. Let d ≥ 5 and P be a finite poset on [d]. We will
prove (3.3) by induction on d. Suppose that 1 is a minimal element of P and let a be the
number of elements in P which cover 1.
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If a = 0, then O(P ) = O(P \ {1})× [0, 1] and so

fd−1(O(P )) = fd−2(O(P \ {1})) + 2

≤
⌊
d

2

⌋(
d− 1−

⌊
d

2

⌋)
+ d− 1 + 2

≤
⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d.

If 1 ≤ a ≤ bd/2c, then from the facts that |E(P \{1})| = |E(P )|−a, m?(P \{1}) ≥
m?(P )− 1 and m?(P \ {1}) = m?(P ), we have

fd−1(O(P )) = m?(P ) +m?(P ) + |E(P )|
≤ m?(P \ {1}) +m?(P \ {1}) + 1 + |E(P \ {1})|+ a

≤
⌊
d

2

⌋(
d− 1−

⌊
d

2

⌋)
+ (d− 1) +

⌊
d

2

⌋
+ 1

≤
⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d.

Now we consider the case bd/2c + 1 ≤ a ≤ d − 1. Let, say, 2 be an element of P
which covers 1. Since the set of the elements of P which cover 1 is an antichain of P , it
follows that |E(P \{2})| ≥ |E(P )|− (d−a), m?(P \{2}) ≥ m?(P ) andm?(P \{2}) ≥
m?(P )− 1. Hence

fd−1(O(P )) = m?(P ) +m?(P ) + |E(P )|
≤ m?(P \ {2}) + 1 +m?(P \ {2}) + |E(P \ {2})|+ (d− a)

≤
⌊
d

2

⌋(
d− 1−

⌊
d

2

⌋)
+ (d− 1) +

(
d−

⌊
d

2

⌋
− 1

)
+ 1

≤
⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d.

Therefore, the inequality (3.3) holds. We proceed to show that this upper bound for
fd−1(O(P )) is tight. In fact, let P be the finite poset P on [d] with

E(P ) =

{
{i, j} ∈ [d]× [d] : 1 ≤ i ≤

⌊
d+ 1

2

⌋
,

⌊
d+ 1

2

⌋
+ 1 ≤ j ≤ d

}
.

Clearly, we have

fd−1(O(P )) =

⌊
d+ 1

2

⌋(
d−

⌊
d+ 1

2

⌋)
+ d.

(Chain polytope) Let d ≥ 5. Let P1 be a finite poset on [d] and M1 the set of minimal
elements of P1. If P1 is an antichain, then fd−1(C(P1)) = 2d. Suppose that P1 is not an
antichain. Let P2 = P1 \M1 and M2 be the set of minimal elements of P2. In general,
if Pi is not an antichain and Mi is the set of minimal element of Pi, then we set Pi+1 =
Pi \Mi. By continuing this construction, we can get an integer r ≥ 1 such that each of
the P1, . . . , Pr−1 is not an antichain and that Pr is an antichain. Let P be the finite poset
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on [d] such that i1 ≺ i2 ≺ · · · ≺ ir if ij ∈ Mj for 1 ≤ j ≤ r. One has c(P1) ≤ c(P ) =
|M1| · · · |Mr|. For any integer d ≥ 5, let

M(d) = max

{
r∏
i=1

mi : 1 ≤ r ≤ d, m1 +m2 + · · ·+mr = d, mi ∈ N+

}
.

Then the desired inequalities (3.4) follows immediately from the following claim:

M(d) =


3k, d = 3k

4 · 3k−1, d = 3k + 1

2 · 3k, d = 3k + 2.

(3.5)

So it suffices to prove this claim. Since for any integer m ≥ 4,

m ≤
⌊
m+ 1

2

⌋(
m−

⌊
m+ 1

2

⌋)
,

we can assume that, to maximize the product
∏r
i=1mi, all parts mi ≤ 3. We can also

assume without loss of generality that there are at most two mis that are equal to 2, since
23 < 32. Then the claim (3.5) follows immediately.

Finally, for each d ≥ 5, the existence of a finite poset P on [d] for which the equality
holds in (3.4) follows easily from the above argument.

Remark 3.9. The special case d = 1976 of claim (3.5) is exactly the problem 4 in the In-
ternational Mathematical Olympiad (IMO) in 1976, where the maximum value of a prod-
uct of positive integers summing up to 1976 is asked for. The answer is 2 · 3658 since
1976 = 3 · 658 + 2.

A routine computation shows that, for each 1 ≤ d ≤ 8, the right-hand side of (3.3)
coincides with that of (3.4) and that, for each d ≥ 9, the right-hand side of (3.3) is strictly
less than that of (3.4). Hence

Corollary 3.10. For each d ≥ 9, there exists a finite poset P on [d] for which the chain
polytope C(P ) cannot be unimodularly equivalent to any order polytope.

4 Volumes of OC`(P )

Given a poset P on [d], Corollary 4.2 in [16] shows that the volumes of O(P ) and C(P )
are given by

V (O(P )) = V (C(P )) =
e(P )

d!
,

where e(P ) is the number of linear extensions of P . (Recall that a linear extension of P is
a permutation π = π1π2 · · ·πd of [d] such that π−1(i) < π−1(j) if i ≺ j in P .)

For order-chain polytopes, different edge partitions usually give rise to polytopes with
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different volumes. For example, let P be the poset as follows:

1

2 3

4

It is easy to see that

V (O(P )) = V (C(P )) =
3

4!
.

Let
` = ({1, 2}, {{1, 3}, {3, 4}}), `′ = ({{1, 2}, {1, 3}}, {3, 4}),

then we have
V (OC`(P )) =

1

4!
and V (OC`′(P )) =

5

4!
.

Hence one has the following inequality:

V (OC`(P )) < V (O(P )) = V (C(P )) < V (OC`′(P )).

It should be noted that, for an arbitrary poset P , we can not always find edge partitions
such that this inequality holds. For example, if P is a chain, then there is no edge partition
` such that V (OC`(P )) < V (O(P )) = V (C(P )). Then a natural question is to ask which
edge partition ` gives rise to an order-chain polytope with maximum volume. It seems
very difficult to solve this problem in general case. In this section, we consider the special
case when P is a chain P on [d]. We transform it to a problem of maximizing descent
statistics over certain family of subsets. For references on this topic, we refer the reader to
[3] and [14].

Let P be a chain on [d]. By the proof of Theorem 3.3, for an edge partition ` of P , the
order-chain polytopeOC`(P ) is unimodularly equivalent to a chain polytope C(P1), where
P1 is a zigzag poset such that all maximal chains, except the first one (containing 1) and
the last one (containing d), consist of at least three elements. So we have

V (OC`(P )) = V (C(P1)) =
e(P1)

d!
.

Conversely, for such a zigzag poset P1, it is easy to find an edge partition ` of P such that
OC`(P ) is unimodularly equivalent to C(P1).Denote byZ(d) the set of such zigzag posets
P1 on [d]. Thus, to compute the maximum volume over all order-chain polytopes of the
chain P , it suffices to compute the maximum number of linear extensions for all zigzag
posets P1 ∈ Z(d). Next we shall represent this problem as a problem of maximizing
descent statistic over a certain class of subsets. To this end, we recall some notions and
basic facts. Given a permutation π = π1π2 · · ·πd, let Des(π) denote its descent set {i ∈
[d − 1] : πi > πi+1}. For S ⊆ [d − 1], define the descent statistic β(S) to be the number
of permutations of [d] with descent set S. Note that there is an obvious bijection between
zigzag posets on [d] and subsets of [d− 1] given by

S : P 7→ {j ∈ [d− 1] : j � j + 1}.
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Moreover, a permutation π = π1π2 · · ·πd of [d] is a linear extension of P if and only
if Des(π−1) = S(P ). Let F(d) = S(Z(d)). Then we can transform the problem of
maximizing volume of order-chain polytopes of a d-chain to the problem of maximizing
the descent statistic β(S), where S ranges over F(d).

Observe that β(S) = β(S̄), where S̄ = [d− 1] \S. Following [3], we will encode both
S and S̄ by a list L = (l1, l2, . . . , lk) of positive integers such that l1 + l2 + · · · + lk =
d − 1. Given S ⊆ [d − 1], a run of S is a set R ⊆ [d − 1] of consecutive integers of
maximal cardinality such that R ⊆ S or R ⊆ S̄. For example, if d = 10, then the set
S = {1, 2, 5, 8, 9} has 5 runs: {1, 2}, {3, 4}, {5}, {6, 7}, {8, 9}. Suppose that S has k
runs R1, R2, . . . , Rk with |Ri| = li, let L(S) = (l1, l2, . . . , lk).

Lemma 4.1. Suppose that S ⊆ [d− 1] and L(S) = (l1, l2, . . . , lk). Then S ∈ F(d) if and
only if li ≥ 2 for all 2 ≤ i ≤ k − 1.

Proof. The lemma follows immediately from the fact that Z(d) consists of zigzag posets
P such that all maximal chains in P , except the first one (containing 1) and the last one
(containing d), contain at least three elements.

Denote by Fd the dth Fibonacci number. By Lemma 4.1, it is easy to see that |F(d)| =
2Fd for d ≥ 2. Based on computer evidences, we conjectured the following results about
maximizing descent statistic over F(d), which in fact1 is a special case of Theorem 6.1
in [3].

Proposition 4.2. Suppose that d ≥ 2 and S ⊆ [d− 1].

(1) If d = 2m and

L(S) = (1, 2, 2, . . . , 2︸ ︷︷ ︸
m−1

) or L(S) = (2, 2, . . . , 2︸ ︷︷ ︸
m−1

, 1),

then β(T ) ≤ β(S) for any T ∈ F(d).

(2) If d = 2m+ 1 and
L(S) = (1, 2, 2, . . . , 2︸ ︷︷ ︸

m−1

, 1),

then β(T ) ≤ β(S) for any T ∈ F(d).

Equivalently, by the proof of Theorem 3.3, we have

Proposition 4.3. Let P be a chain on [d]. Then the alternating edge partition ` =
(oE(P ), cE(P )) with

oE(P ) =

{
{{1, 2}, {3, 4}, . . . , {d− 1, d}}, if d is even
{{1, 2}, {3, 4}, . . . , {d− 2, d− 1}}, otherwise

gives rise to an order-chain polytope OC`(P ) with maximum volume.

1We thank Joe Gallian and Mitchell Lee for bringing [3, Theorem 6.1] to our attention.
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Abstract

The space of linearly recursive sequences of complex numbers admits two distinguished
topologies. Namely, the adic topology induced by the ideal of those sequences whose first
term is 0 and the topology induced from the Krull topology on the space of complex power
series via a suitable embedding. We show that these topologies are not equivalent.
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1 Introduction
A linearly recursive sequence of complex numbers is a sequence of elements of C which
satisfies a recurrence relation with constant coefficients. These sequences arise widely in
mathematics and have been studied extensively and from different points of view, see [12]
∗This paper was written while P. Saracco was member of the “National Group for Algebraic and Geomet-

ric Structures, and their Applications” (GNSAGA – INdAM). His stay as visiting researcher at the campus
of Ceuta of the University of Granada was financially supported by IEMath-GR. Research supported by grant
PRX16/00108, and Spanish Ministerio de Economı́a y Competitividad and the European Union FEDER, grant
MTM2016-77033-P.

The authors thank A. Ardizzoni for the fruitful (coffees and) discussions. The first author would like to thank all
the members of the dipartimento di Matematica “Giuseppe Peano” for providing a very fruitful working ambience.
†Home page: https://www.ugr.es/˜kaoutit/
‡Home page: https://sites.google.com/site/paolosaracco/
E-mail addresses: kaoutit@ugr.es (Laiachi El Kaoutit), paolo.saracco@ulb.ac.be (Paolo Saracco)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/



320 Ars Math. Contemp. 16 (2019) 319–329

for a survey on the subject. Classically they are related with formal power series, in the
sense that a sequence (sn)n≥0 is linearly recursive if and only if its generating function∑
n≥0 snZ

n is a rational function p(Z)/q(Z), where p(Z), q(Z) ∈ C[Z] and q(0) 6= 0.
Nevertheless, few topological properties seems to be known. For instance, it is known that
the space Lin(C) of all linearly recursive sequences of any order forms an augmented
algebra under the Hurwitz product, with augmentation given by the projection on the
0-th component. As such, it comes endowed with a natural topology, which is the adic
topology induced by the kernel J of this augmentation. Besides, there is a monomor-
phism of algebras which assigns every linearly recursive sequence (sn)n≥0 to the power
series

∑
n≥0 (sn/n!)Zn. Through this monomorphism, the algebra of linearly recursive

sequences can be considered as a subalgebra of C[[Z]] and, as such, it inherits another nat-
ural topology, namely the one induced by the Krull topology on C[[Z]] (the adic topology
induced by the unique maximal ideal m of C[[Z]], which is also the augmentation ideal
induced by the evaluation at 0).

These two topologies are very close. Namely, up to the embedding above, one can see
that J = m ∩ Lin(C), so that the adic topology is finer than the induced one. A natural
question which arises is if these are equivalent or not. Notice that, since the finiteness
hypotheses are not fulfilled, Artin-Rees Lemma fails to be applied in this context. In fact,
in this note we will compare these two topologies and we will give a negative answer to the
previous question: the J-adic topology is strictly finer than the induced one.

As a by-product, we will see that the adic completion of Lin(C) is larger than its
completion with respect to the induced topology, which in fact can be identified with C[[Z]]
itself, in the sense that we will provide a split surjective morphism

L̂in(C)→ C[[Z]].

Our approach will take advantage of the fact that, from an algebraic point of view,
linearly recursive sequences may be identified with the finite (or continuous) dual of the
algebra C[X] of polynomial functions of the additive affine algebraic C-group, and that the
formal power series can be considered as its full linear dual C[X]∗.

The main motivation behind this note comes from studying the completion of the finite
dual Hopf algebra of the universal enveloping algebra of a finite-dimensional complex Lie
algebra.

2 The space of linearly recursive sequences and Hurwitz’s product
We assume to work over the field C of complex numbers. However, it will be clear that
this choice is not restrictive as the results will hold as well if we consider any algebraically
closed field k of characteristic 0 instead. An augmented complex algebra A, is an algebra
endowed with a morphism of algebras A→ C, called the augmentation.

All vector spaces, algebras and coalgebras are assumed to be over C. The unadorned
tensor product ⊗ denotes the tensor product over C. All maps are assumed to be at least
C-linear. For every vector space V , the C-linear dual of V is V ∗ = HomC(V,C) (i.e.,
the vector space of all linear forms from V to C). Given a coalgebra C, for dealing with
the comultiplication of an element x ∈ C we will resort to the Sweedler’s Sigma notation
∆(x) =

∑
x1⊗x2.

Consider the vector space CN of all sequences (zn)n≥0 of complex numbers. A se-
quence (zn)n≥0 ∈ CN is said to be linearly recursive if there exists a family of constant
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coefficients c1, . . . , cr ∈ C, r ≥ 1, such that

zn = c1zn−1 + c2zn−2 + · · ·+ crzn−r for all n ≥ r.

Denote by Lin(C) ⊆ CN the vector subspace of all linearly recursive sequences.
Then the study of the algebraic and/or topological properties of the vector spaceLin(C)

depends heavily on which product we are choosing on the vector space CN, since the latter
can be endowed with at least two algebra structures, as the subsequent Lemma 2.1 entails.

Lemma 2.1. The assignmentΦ : CN → C[X]∗ given by[
Φ
(
(zn)n≥0

)]
(Xm) = zm for all m ≥ 0

is an isomorphism of vector spaces.

Next we recall how the vector space Lin(C) can be endowed with a Hopf algebra
structure, by using the Hurwitz’s product. Recall first that C[X] is in fact a Hopf algebra,
as it can be identified with the algebra of polynomial functions on the affine complex line
A1

C = C, viewed as an algebraic group with the sum. Comultiplication, counit and antipode
are the algebra morphisms induced by the assignments

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X.

From this it follows that C[X]∗ is an augmented algebra under the convolution product

(f ∗ g) (Xn) =

n∑
k=0

(
n

k

)
f
(
Xk
)
g
(
Xn−k) for all n ≥ 0. (2.1)

The unit of C[X]∗ is the counit ε of C[X]. The augmentation ε∗ is given by evaluation at 1.
As a consequence, the vector space CN turns out to be an augmented algebra as well

in such a way that Φ becomes an algebra isomorphism. The product of this algebra is the
so-called Hurwitz’s product

(zn)n≥0 ∗ (un)n≥0 =

(
n∑
k=0

(
n

k

)
zk un−k

)
n≥0

. (2.2)

The unit is the sequence (zn)n≥0 with z0 = 1 and zn = 0 for all n ≥ 1. The augmentation
is given by the projection on the 0-th component. The vector space of all sequences CN

endowed with this algebra structure will be denoted by HCN.
Recall also that given a Hopf algebra as C[X], we may consider its finite dual1 Hopf

algebra C[X]◦. This is the vector subspace of all linear maps which vanish on a finite-
codimensional ideal (i.e., one that leads to a finite-dimensional quotient algebra). Here we
will focus only on the case of our interest and we refer to [4, Chapter 9] and [9, Chapter VI]
for a more extended treatment.

1In the literature, it appears also under the names Sweedler dual or continuous dual, where continuity is with
respect to the linear topology whose neighbourhood base at 0 consists exactly of the finite-codimensional ideals,
see e.g. [6, §3].
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Lemma 2.2. Given the Hopf algebra C[X], the set

C[X]◦ =
{
f ∈ C[X]∗ | ker(f) ⊇ I, for I a non-zero ideal of C[X]

}
is an augmented subalgebra of C[X]∗ which is also a Hopf algebra. The augmentation ε◦
is given by the restriction of ε∗. The comultiplication on C[X]◦ is defined in such a way
that for f ∈ C[X]◦, we have

∆◦(f) =
∑

f1⊗ f2 ⇐⇒
(
f(pq) =

∑
f1(p)f2(q), for all p, q ∈ C[X]

)
. (2.3)

The antipode is given by pre-composing with the one of C[X], i.e., S◦(f) = f ◦ S for all
f ∈ C[X]◦.

Since the algebra C[X] is a principal ideal domain, it turns out that the space of linearly
recursive sequences Lin(C) can be identified with C[X]◦ via the isomorphismΦ, whence
it becomes an augmented subalgebra of HCN and a Hopf algebra. For further reading, we
refer the interested reader to [3, 6, 10] and [11, Chapter 2].

3 Two filtrations on the space of linearly recursive sequences
In this and in the next section, we will implicitly make use of the identifications HCN =
C[X]∗ and Lin(C) = C[X]◦, via the isomorphism of algebrasΦ of Lemma 2.1.

As augmented algebras, both C[X]∗ and C[X]◦ inherit a natural filtration. Namely, if
we let I := ker(ε∗) and J := ker(ε◦) be their augmentation ideals, then we can consider
C[X]∗ and C[X]◦ as filtered with the adic filtrations Fn (C[X]∗) = In and Fn (C[X]◦) =
Jn, n ≥ 0.

Moreover, C[X]◦ inherits a filtration F ′n (C[X]◦) = In ∩ C[X]◦ induced from the
canonical inclusion C[X]◦ ⊆ C[X]∗ as well and it is clear that Fn (C[X]◦) ⊆ F ′n (C[X]◦).
Hence, the J-adic filtration on C[X]◦ is finer than the induced one. As we will show in this
section, it is in fact strictly finer.

For every λ ∈ C we define φλ : C[X]→ C to be the algebra map such that φλ(X) = λ.
The set Ga := AlgC (C[X],C) = {φλ | λ ∈ C} is a group with group structure given by

φλ · φλ′ := φλ ∗ φλ′ = φλ+λ′ , eGa
:= ε = φ0, (φλ)

−1
:= φλ ◦ S = φ−λ.

Lemma 3.1 ([4, Example 9.1.7]). Denote by ξ the distinguished element in C[X]∗ which
satisfies ξ(Xn) = δn,1 for all n ≥ 0 (Kronecker’s delta). Then the convolution product
(2.1) induces an isomorphism of Hopf algebras

Ψ : C[ξ]⊗CGa −→ C[X]◦,
(
ξn⊗φλ 7−→ ξn ∗ φλ

)
, (3.1)

where CGa is the group algebra on Ga and C[ξ] is a polynomial Hopf algebra as in Sec-
tion 2.

We denote by

ϑ : C[ξ] �
� ψ // C[X]◦ �

� ι // C[X]∗ (3.2)

the algebra monomorphism induced by Ψ.
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Remark 3.2. It is worthy to point out that Lemma 3.1 is a particular instance of the
renowned Cartier-Gabriel-Kostant-Milnor-Moore Theorem, which states that for a cocom-
mutative Hopf k-algebra H over an algebraically closed field k of characteristic zero, the
multiplication inH induces an isomorphism of Hopf algebras U (P (H)) #CG (H) ∼= H ,
where the left-hand side is endowed with the smash product algebra structure (see [4,
Corollary 5.6.4 and Theorem 5.6.5], [9, Theorems 8.1.5, 13.0.1 and §13.1] and [8, The-
orem 15.3.4]).

Denote by εa : CGa → C the counit of the group algebra, which acts via εa(φλ) =
φλ(1) = 1 for all λ ∈ C, and by εξ : C[ξ] → C the counit of the polynomial algebra in ξ
defined by εξ(ξ) = 0. These maps are in fact the restrictions of the counit ε◦ : C[X]◦ → C
to the vector subspaces of C[X]◦ generated by Ga and {ξn | n ≥ 0}, respectively. Thus,
up to the isomorphism Ψ of equation (3.1), we have ε◦ = εξ ⊗ εa.

Lemma 3.3. The isomorphism Ψ of (3.1) induces an isomorphism of vector spaces

Cξ̄ ⊕ ker(εa)

ker(εa)2
∼=

J

J2
,

where ξ̄ = ξ + 〈ξ2〉 in the quotient 〈ξ〉/〈ξ2〉.

Proof. First of all, as Ψ is an isomorphism of Hopf algebras, it induces an isomorphism
of vector spaces between J/J2 and ker(εξ ⊗ εa)/ ker(εξ ⊗ εa)2. Set K := ker(εξ ⊗ εa).
The family of assignments

〈ξk〉
〈ξk+1〉

⊗ ker(εa)h

ker(εa)h+1
−→ Kn

Kn+1(
ξk + 〈ξk+1〉

)
⊗
(
x+ ker(εa)h+1

)
7−→

(
ξk ⊗x

)
+Kn+1

for h, k ≥ 0 and n = h+ k induces a graded isomorphism of graded vector spaces

gr(C[ξ])⊗ gr(CGa) ∼= gr
(
C[ξ]⊗CGa

)
,

see e.g. [5, Lemma VIII.2]. In particular, the degree 1 component of this together with Ψ
induce the stated isomorphism

Cξ̄ ⊕ ker(εa)

ker(εa)2
∼=
(
〈ξ〉
〈ξ2〉
⊗ CGa

ker(εa)

)
⊕
(
C[ξ]

〈ξ〉
⊗ ker(εa)

ker(εa)2

)
∼=

K

K2
∼=

J

J2
.

The key fact is that the quotient ker(εa)/ker(εa)2 does not vanish, as we will show in
the subsequent lemma. To this aim, recall that there is an algebra isomorphism

Θ: C[X]∗ −→ C[[Z]],
(
f 7−→

∑
k≥0

f(ek)Zk
)
, (3.3)

where ek = Xk/k! for all k ≥ 0. Notice that Θ ◦ ϑ(ξ) = Z, where ϑ is the morphism
given in (3.2).

Lemma 3.4. The element φ1 − ε+ ker(εa)2 in the quotient ker(εa)/ker(εa)2 is non-zero.
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Proof. Assume by contradiction that φ1 − ε ∈ ker(εa)2. By applying Ψ, this implies that
φ1 − ε ∈ J2, whence φ1 − ε ∈ I2 in C[X]∗. Since Θ induces a bijection between In

and 〈Zn〉 ⊆ C[[Z]] for all n ≥ 1, claiming that φ1 − ε ∈ I2 in C[X]∗ would imply that∑
k≥1 Z

k/k! ∈ 〈Z2〉, which is a contradiction. Thus, φ1 − ε /∈ ker(εa)2.

It follows from Lemma 3.3 and Lemma 3.4 that the elements ξ + J2 and φ1 − ε+ J2

are linearly independent in J/J2. In particular, φ1 − ε− ξ /∈ J2. However, φ1 − ε− ξ as
an element of C[X]∗ maps e0 = 1 and e1 = X to 0 and it maps en = Xn/n! to 1/n! for
all n ≥ 2. Hence φ1 − ε− ξ = ξ2 ∗ h(2) ∈ I2, where for every k ≥ 0

h(k)(en) :=
1

(n+ k)!
for all n ≥ 0.

Indeed,

(ξ2 ∗ h(2)) (en) =
∑
i+j=n

ξ2(ei)h(2)(ej) =

{
0 n = 0, 1
1
n! n ≥ 2

This shows that φ1 − ε − ξ is an element in C[X]◦ ∩ I2 but not in J2, so that J2 (
C[X]◦ ∩ I2. Now, by induction one may see that for every n ≥ 1 the element

φ1 −

(
n−1∑
k=0

1

k!
ξk

)
= ξn ∗ h(n) ∈ In ∩ C[X]◦ (3.4)

does not belong to Jn, so that the two filtrations do not coincide. We point out that, under
the isomorphism C[X]∗ ∼= C[[Z]] of equation (3.3), the element of equation (3.4) corre-
sponds to

exp(Z)−

(
n−1∑
k=0

1

k!
Zk

)
= Zn ·

∑
k≥0

1

(n+ k)!
Zk

 .

Summing up, we have shown that the J-adic filtration on C[X]◦ is strictly finer than
the filtration induced from the inclusion ι : C[X]◦ → C[X]∗.

4 Comparing the two topologies on C[X]◦

Recall that a filtration on an algebra naturally induces on it a linear topology, whose neigh-
bourhood base at 0 is given exactly by the elements of the filtration (see for example
[1, III.49, Example 3] or [5, §I, Chapter D]). Furthermore, given an algebra A endowed
with the m-adic filtration associated to an ideal m ⊆ A, the completion of A with re-
spect to the linear topology induced by this filtration is, by definition, Â = lim←−n (A/mn),
i.e., the projective limit of the projective system A/mn with the obvious projection maps
A/mn � A/mm for n ≥ m. An algebra A is said to be Hausdorff and complete if the
canonical map A → Â is an isomorphism. For further details, we refer to [5, §II, Chap-
ter D].

Example 4.1. For every n ≥ 0, there is a linear isomorphism between C[X]∗/In+1 and
the linear dual of the vector subspace C[X]≤n ⊆ C[X] of all polynomials of degree up to
n. These in turn induce an isomorphism

Ĉ[X]∗ = lim←−
n

(
C[X]∗

In+1

)
∼= C[X]∗ (4.1)
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by which we conclude that C[X]∗ is complete with respect to the I-adic topology.

Remark 4.2. Let us consider again the algebra monomorphism ϑ : C[ξ] → C[X]∗ of
equation (3.2). Since ϑ(ξ) ∈ ker(ε∗) = I , we have that ϑ is a filtered morphism of filtered
algebras and so we may consider its completion ϑ̂ : Ĉ[ξ] → Ĉ[X]∗ ∼= C[X]∗. Therefore,
up to the canonical identification C[[ξ]] = C[[Z]], the map ϑ̂ turns out to be the inverse of
Θ. A useful consequence of this is that every element g ∈ C[X]∗ can be written as

g =
∑
k≥0

g(ek)ξk, (4.2)

where as before ek = Xk/k! for all k ≥ 0. By the right-hand side of equation (4.2), we
mean the image in C[X]∗ of the element(

n∑
k=0

g(ek)ξk + In+1

)
n≥0

= lim
n→∞

(
n∑
k=0

g(ek)ξk

)

via the isomorphism (4.1). Since ξi (ej) = δi,j for all i, j ≥ 0, given any p =
∑t
i=0 piei ∈

C[X] the sequence
(∑n

k=0 g(ek)ξk
)

(p), n ≥ 0, eventually becomes constant and it equals
the element

∑t
i=0 pig(ei) = g(p). In light of this interpretation, In = 〈ξn〉 for all n ≥ 0,

in the algebra C[X]∗.

We already know from Section 3 that the J-adic filtration on C[X]◦ does not coincide
with the one induced by the inclusion C[X]◦ ⊆ C[X]∗. Nevertheless, the topologies they
induce may still be equivalent ones (that is, the two filtrations may be equivalent). Our next
aim is to show that these topologies are not even equivalent, by showing that the J-adic
completion of C[X]◦ is not homeomorphic to C[X]∗ via the completion of the inclusion
map ι : C[X]◦ → C[X]∗.

Remark 4.3. It is worthy to mention that C[X]◦ is dense in C[X]∗ with respect to the finite
topology on C[X]∗ (the one induced by the product topology on CC[X]), see for instance
[2, Exercise 1.5.21]. On the other hand, since for every f ∈ C[X]∗ and for all n ≥ 0,
we have that f + 〈ξn〉 = O (f ; e0, e1, . . . , en−1), the space of linear maps which coincide
with f on e0, e1, . . . , en−1, it turns out that the I-adic topology on C[X]∗ is coarser then
the linear one. It follows then that C[X]◦ ⊆ C[X]∗ is dense with respect to the I-adic
topology as well and hence one may check that

lim←−
n

(
C[X]◦

C[X]◦ ∩ In

)
∼= lim←−

n

(
C[X]∗

In

)
∼= C[X]∗.

Now, consider the completion ψ̂ : C[[ξ]] → Ĉ[X]◦, where ψ is the filtered monomor-
phism of algebras given in (3.2). In view of Remark 4.2, one shows that ι̂ ◦ ψ̂ = ϑ̂.
Therefore, ι̂ is a split epimorphism, as ϑ̂ is an homeomorphism whose inverse is Θ.

Remark 4.4. In fact C[X]∗ is a complete Hopf algebra in the sense of [7, Appendix A] and
ι̂ : Ĉ[X]◦ → C[X]∗ becomes an effective epimorphism of complete Hopf algebras (see [7,
Proposition 2.19, page 274]).
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The subsequent proposition gives conditions under which ι̂ becomes an homeomor-
phism.

Proposition 4.5. The following assertions are equivalent:

(1) the canonical map ι̂ : Ĉ[X]◦ → C[X]∗ is injective;

(2) the canonical map ι̂ : Ĉ[X]◦ → C[X]∗ is an homeomorphism;

(3) the J-adic and the induced filtrations on C[X]◦ coincide;

(4) the J-adic and the induced topologies on C[X]◦ are equivalent.

Proof. We already observed that ψ̂ ◦ Θ is a continuous section of ι̂. Thus, if ι̂ injective
then it will be bijective with inverse ψ̂ ◦ Θ, and so an homeomorphism. This proves the
implication (1)⇒ (2). To show that (2)⇒ (3), let us denote by

Fn

(
Ĉ[X]◦

)
= ker

(
Ĉ[X]◦ → C[X]◦/Jn

)
the canonical filtration on Ĉ[X]◦. If ι̂ is an homeomorphism, then its inverse has to be
ψ̂ ◦Θ. As a consequence, we obtain the second of the following chain of isomorphisms

C[X]◦

Jn
∼=

Ĉ[X]◦

Fn

(
Ĉ[X]◦

) ∼= C[X]∗

In
,

for every n ≥ 1. Their composition sends

f + Jn ∈ C[X]◦/Jn to ι(f) + In ∈ C[X]∗/In,

which shows that Jn = In∩C[X]◦. Thus the two filtrations coincide. Since the implication
(3)⇒ (4) is clear, let us show that (4)⇒ (1). Saying that the two topologies are equivalent,
implies that every Jn (which is open in the J-adic topology) has to be open in the induced
topology as well. In particular, it has to contain an element of the neighbourhood base
of 0. Therefore, we may assume that for every n ≥ 0, there exists m ≥ n such that
Im ∩ C[X]◦ ⊆ Jn. Given (fn + Jn)n≥0 an element in the kernel of ι̂, we have that
fn ∈ In for every n ≥ 0. This implies that for every n ≥ 0, there exists m ≥ n such that

fn + Jn = fm + Jn ∈ (Im ∩ C[X]◦) + Jn = Jn,

which means that (fn + Jn)n≥0 = 0 and this settles the proof.

In conclusion, it follows from the result of Section 3 that none of the equivalent condi-
tions in Proposition 4.5 holds, as the two filtrations do not coincide. An explicit non-zero
element which lies in the kernel of ι̂ is exactly the one coming from equation (3.4). Indeed,
on the one hand (

φ1 −
n∑
k=0

1

k!
ξk + Jn+1

)
n≥0

∈ Ĉ[X]◦

is non-zero, but on the other hand a direct check shows that

ι̂

(φ1 −
n∑
k=0

1

k!
ξk + Jn+1

)
n≥0

 =

(
φ1 −

n∑
k=0

1

k!
ξk + In+1

)
n≥0

= 0

in C[X]∗.
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Remark 4.6. Observe that an element
(
fn + Jn+1

)
n≥0

in Ĉ[X]◦ can be considered as
the formal limit limn→∞ (fn) of the Cauchy sequence {fn | n ≥ 0} in C[X]◦ with the
J-adic topology. The element

(
φ1 + Jn+1

)
n≥0

can be identified with φ1 itself, as limit
of a constant sequence. On the other hand the element

(∑n
k=0 ξ

k/k! + Jn+1
)
n≥0

can be
considered as the limit limn→∞

(∑n
k=0 ξ

k/k!
)
. As we already noticed, φ1 is associated

with the exponential function, in the sense that its power series expansion in C[X]∗ is∑
k≥0 ξ

k/k! = exp(ξ). However, it follows from what we showed that in Ĉ[X]◦ the
Cauchy sequence

{∑n
k=0 ξ

k/k! | n ≥ 0
}

does not converge to φ1.

5 Final remarks
As we mentioned in the introduction, linearly recursive sequences have already been stud-
ied deeply as “rational” power series. What we plan to do in this section is to provide a
possible explanation of why the topological richness expounded in the previous sections
didn’t enter the picture before and to provide an overview of the different interpretations of
these sequences.

The commutative diagram of algebras in (5.1) summarizes the state of the art. Therein,
CN is endowed with the algebra structure given by the product (xn)n≥0 (yn)n≥0 =(∑n

k=0 xkyn−k
)
n≥0

.

Lin(C)
s�

&&

∼= // C[X]◦
t�

ι

''
HCN Φ //

∼=ζ

��

C[X]∗

∼= Θ

��
CN Ω // C[[Z]]

Lin(C)
+ �

88

∼=
ω // C[Z]〈Z〉

* 


88

(5.1)

The isomorphism Ω sends any sequence (xn)n≥0 to the power series
∑
n≥0 xnZ

n, while
the isomorphism ζ sends a sequence (zn)n≥0 to the sequence (zn/n!)n≥0. The alge-
bra C[Z]〈Z〉 denotes the localization of C[Z] at the maximal ideal 〈Z〉, that is, the set of
fractions p(Z)/q(Z) with q(0) 6= 0. Lastly, the isomorphism ω is induced by the restric-
tion of Ω to Lin(C) and it is given as follows. For a sequence (an)n≥0 in Lin(C), let
cr = 1, cr−1, . . . , c0 ∈ C, r ≥ 1 be the family of constant coefficients such that

al+r + cr−1al+r−1 + cr−2al+r−2 + · · ·+ c0al = 0, for all l ≥ 0.

If we consider

q(Z) =

r∑
i=0

cr−iZ
i and p(Z) =

r−1∑
j=0

(
j∑
i=0

cr−iaj−i

)
Zj ,
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then

q(Z)

∑
n≥0

anZ
n

 = p(Z).

Thus, ω acts via
ω((an)n≥0) := p(Z)/q(Z) ∈ C[Z]〈Z〉.

As one can realize from diagram (5.1), there are essentially two linear topologies which
can be induced on Lin(C): one from HCN, which we denote by TH, and the other from
CN, which we denote by T. Apart from these, Lin(C) has its own two adic topologies
given by the ideals I := Lin(C) ∩ a, where a is the augmentation ideal of HCN, and
J := Lin(C) ∩ b, where b is the augmentation ideal of CN.

It follows from the definitions that the I-adic topology on Lin(C) is finer than TH

and the J -adic one is finer than T. On the one hand, in view of the previous sections, the
I-adic topology is in fact strictly finer than TH. On the other hand, however, one can show
that the J -adic topology turns out to be equivalent to T, since it is known that Ĉ[Z]〈Z〉 is

homeomorphic to Ĉ[Z] ∼= C[[Z]], and this may be the reason why topologies on Lin(C)
weren’t analysed before.

Finally, comparing the topologies T and TH on Lin(C) seems to be more involved.
Apparently it is possible that these are different. However, it is not clear to us how to show,
for instance, that any open neighbourhood of the form Lin(C) ∩ an (the product is that of
CN) is not contained in some open Lin(C) ∩ bm (the product now is in HCN). What is
clear instead is that the isomorphism ζ does not map linearly recursive sequences in HCN

to linearly recursive sequences in CN.
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Abstract

Let n, q and r be positive integers, and letKn
N be the n-skeleton of an (N−1)-simplex.

We show that for N sufficiently large every embedding of Kn
N in R2n+1 contains a link

consisting of r disjoint n-spheres, such that every pairwise linking number is a nonzero
multiple of q. This result is new in the classical case n = 1 (graphs embedded in R3)
as well as the higher dimensional cases n ≥ 2; and since it implies the existence of an
r-component link with all pairwise linking numbers at least q in absolute value, it also
extends a result of Flapan et al. from n = 1 to higher dimensions. Additionally, for r = 2
we obtain an improved upper bound on the number of vertices required to force a two-
component link with linking number a nonzero multiple of q. Our new bound has growth
O(nq2), in contrast to the previous bound of growth O(

√
n4nqn+2).

Keywords: Intrinsic linking, complete n-complex, Ramsey theory.

Math. Subj. Class.: 57Q45, 57M25, 57M15

1 Introduction
In the early 1980s Sachs [11] and Conway and Gordon [1] proved that every embedding
of the complete graph K6 in R3 contains a pair of disjoint cycles that form a nontrivial
link, and Conway and Gordon also showed that every embedding of K7 in R3 contains
a nontrivial knot. These facts are expressed by saying that K6 is intrinsically linked, and
K7 is intrinsically knotted. Since then, a number of authors have shown that embeddings
of larger complete graphs necessarily exhibit more complex linking behaviour, such as
non-split many-component links [4, 6]; two component links with linking number large
in absolute value [2]; and two component links with linking number a nonzero multiple
of a given integer [5, 6]. Embeddings of larger complete graphs must also exhibit more
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complicated knotting behaviour, such as knots with second Conway co-efficient large in
absolute value [2].

Such Ramsey-type results for intrinsic linking can also be shown to hold in higher di-
mensions. Let Kn

N be the n-skeleton of an (N − 1)-simplex, which we call the complete
n-complex on N vertices. Then Kn

2n+4 is intrinsically linked, in the sense that every em-
bedding in R2n+1 contains a pair of disjoint n-spheres that have nonzero linking num-
ber [10, 12]; and moreover, the linking results described above can all be extended to
embeddings of sufficiently large complete n-complexes in R2n+1 [13].

Flapan, Mellor and Naimi [3, Theorem 1] have shown that intrinsic linking of graphs is
arbitrarily complex, in the following sense: Given positive integers r and α, every embed-
ding of a sufficiently large complete graph in R3 contains an r-component link in which
the linking number of each pair of components is at least α in absolute value. The main
goal of this paper is to prove an analogue of this result in all dimensions, with the condi-
tion on the magnitude of the linking numbers replaced by a divisibility condition instead.
Namely, we show that, given positive integers r and q, every embedding of a sufficiently
large complete n-complex in R2n+1 contains a link consisting of r disjoint n-spheres, in
which all pairwise linking numbers are nonzero multiples of q.

This result is new in the classical case n = 1 as well as the higher dimensional cases
n ≥ 2. Since a nonzero multiple of q has magnitude at least q, it also extends the Flapan-
Mellor-Naimi result to n ≥ 2. The techniques used to prove it draw heavily on those of
Flapan, Mellor and Naimi (for the construction of many-component links with all pairwise
linking numbers nonzero), as well as those of our previous paper [13] (for intrinsic linking
with n ≥ 2, and constructing links with linking numbers divisible by q). By refining
a technique from [13] we also obtain a vastly improved upper bound on the number of
vertices required in the case r = 2. Our new bound has growth O(nq2), in contrast to the
previous best bound [13, Theorem 1.4] of growth O(

√
n4nqn+2).

We note that Flapan, Mellor and Naimi [3, Theorem 2] further show that intrinsic link-
ing of complete graphs is arbitrarily complex in an even stronger sense: one can addition-
ally require that the second co-efficient of the Conway polynomial of each component has
absolute value at least α as well. As an integral measure of the complexity of a knot, the
second Conway co-efficient may be regarded as the natural analogue of the pairwise link-
ing number, viewed as an integral measure of the complexity of a two-component link. By
Hoste [7, Lemma 2.1(i)] the Conway polynomial ∇L(z) of an oriented r-component link
L = K1 ∪K2 ∪ · · · ∪Kr has the form

∇L(z) = zr−1[a0 + a1z
2 + · · ·+ amz

2m],

and by the second Conway co-efficient we mean the co-efficient a1. When L = K1 is a
knot we have a0 = 1 (Kauffman [9, Proposition 4.1], or see Hoste [7, Lemma 2.1(iii)]),
so a1 is the first nontrivial co-efficient of ∇L(z); and when L = K1 ∪ K2 is a two-
component link we have a0 = `k(K1,K2) (Hoste [7, Lemma 2.1(iv)]), so here it is the
linking number that is the first nontrivial co-efficient of∇L(z). Moreover, for a knotK the
mod two reduction of a1 is equal to the Arf invariant of K (Kauffman [9, Section 4(a)], or
see [7, Lemma 2.1(iii)]), so the linking number and the second Conway co-efficient may
both be regarded as integral lifts of the mod two invariants used to establish the first results
in intrinsic knotting and linking: the intrinsic linking of K6 is proved by considering a
sum of pairwise linking numbers mod two, and the intrinsic knotting of K7 is proved by
considering the sum of the Arf invariants of the Hamiltonian cycles in an embedding of K7
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in R3 [1].
We do not consider knotting of the components in this paper. This is chiefly for reasons

of dimension: knotting of n-spheres occurs in Rn+2, whereas linking of n-spheres occurs in
R2n+1, so the only dimension in which we can consider intrinsic knotting and linking of n-
complexes simultaneously is the classical case n = 1. We have not given this case separate
consideration, instead giving uniform arguments that work for all n. To our knowledge
there are at present no known divisibility results for intrinsic knotting, and we pose the
following question:

Question 1.1. Let q ≥ 2 be a positive integer. Does there exist N such that every em-
bedding of KN in R3 contains a knot with second Conway co-efficient a nonzero multiple
of q?

Hoste [8] shows that the first Conway co-efficient a0 of an r-component oriented link
L is equal to any cofactor of a certain matrix of pairwise linking numbers associated with
L. It then follows from Theorem 1.3 below that for N sufficiently large every embedding
of Kn

N in R2n+1 contains a non-split r-component link satisfying a0 ≡ 0 (mod q). As
a strengthening of Theorem 1.3, we might additionally ask that a0 be nonzero, motivating
the following question:

Question 1.2. Let n, q and r be positive integers, with q ≥ 2 and r ≥ 3. Does there exist
N such that every embedding of Kn

N in R2n+1 contains an r-component link with first
Conway co-efficient a nonzero multiple of q?

We conjecture that the answer to both questions above is yes.

1.1 Statement of results

Throughout this paper, an r-component link means r disjoint oriented n-spheres embedded
in R2n+1. Given a 2-component link L1 ∪ L2 we will write `k(L1, L2) for their linking
number, and `k2(L1, L2) for their linking number mod two. For {i, j} = {1, 2} the integral
linking number is given by the homology class [Li] in Hn(R2n+1 − Lj ;Z) ∼= Z.

Our main result is as follows:

Theorem 1.3. Let n, q and r be positive integers, with r ≥ 2. For N sufficiently large
every embedding of Kn

N in R2n+1 contains an r-component link L1 ∪ · · · ∪ Lr such that,
for every i 6= j, `k(Li, Lj) is a nonzero multiple of q.

Since every nonzero multiple of q has absolute value at least q, Theorem 1.3 immedi-
ately gives us the following extension of Theorem 1 of Flapan et al. [3] to higher dimen-
sions:

Corollary 1.4. Let n, λ and r be positive integers, with r ≥ 2. For N sufficiently large
every embedding of Kn

N in R2n+1 contains an r-component link L1 ∪ · · · ∪ Lr such that,
for every i 6= j, |`k(Li, Lj)| ≥ λ.

The r = 2 case of Theorem 1.3 is proved as Theorem 1.4 of [13], with an upper bound
of growth O(

√
n4nqn+2) on the number of vertices required. We re-prove this result with

a greatly improved bound with growth O(nq2):
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Theorem 1.5. For r = 2, the conclusion of Theorem 1.3 holds for

N ≥ κn(q) =

{
24q2, n = 1,

4q2(2n+ 4) + n+
⌈
4q2−2
n

⌉
+ 1, n ≥ 2.

In other words, every embedding of Kn
κn(q)

in R2n+1 contains a two component link
L1 ∪ L2 such that the linking number `k(L1, L2) is a nonzero multiple of q.

We note that the bound of Theorem 1.5 is equal to the best known upper bound on the
number of vertices required to force the existence of a generalised key ring with q keys
(see Flapan et al. [3, Lemma 1] for the case n = 1 (although they don’t state the bound
explicitly), and Tuffley [13, Theorem 1.2] for n ≥ 2).

1.2 Overview

As is the case with most Ramsey-type results on intrinsic linking, Theorems 1.3 and 1.5 are
proved by using the connect sum operation to combine simpler links into more complicated
ones. To achieve the divisibility condition we will require the building block components
to be “large”, in the sense that they all contain two copies of a fixed suitably triangulated
disc. The triangulation will not only need to have many n-simplices, but must also have
a combinatorial structure analogous to a path in a graph. Accordingly, we call such a
triangulated disc an n-path. We give a precise definition of a path in Section 2, and then
re-establish a number of known results on intrinsic linking to show that we can require the
necessary components to be large in this sense.

The bulk of the work required to prove Theorem 1.3 is done in Proposition 3.1, which
forms the main technical lemma of the paper. Section 3 is devoted to the proof of this. The
proposition plays the role of Flapan, Mellor and Naimi’s Lemma 2, and the statement and
proof are heavily modelled on theirs, making modifications as needed for it to work in all
dimensions and achieve the divisibility condition. From an arithmetic standpoint, realising
the divisibility condition largely boils down to repeatedly applying the following simple
number-theoretic observation, used by both Fleming [5] and Tuffley [13]:

Let `1, `2, . . . , `q be integers. Then there exist 0 ≤ a < b ≤ q such that

b∑
i=a+1

`i ≡ 0 (mod q).

The work then is in achieving this sum topologically, with the integers involved being
linking numbers with respect to some fixed sphere S. Paths and generalised key rings
(links in which one component has nonzero linking number with all the others) play crucial
roles in this.

With Proposition 3.1 established it is a relatively simple matter to prove Theorem 1.3,
and we do this in Section 4. The underlying argument is essentially that of Flapan, Mellor
and Naimi’s proof of their Theorem 1, using our Proposition 3.1 in place of their Lemma 2,
and with some additional considerations to ensure that the building block components are
sufficiently large, in the sense described above.

Finally, we turn our attention to the two component case in Section 5, and establish
the improved bound of Theorem 1.5. This is done by simply improving the construction
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of the building block link used in our original proof [13, Theorem 1.4] of this result. This
building block is a generalised key ring with q keys that are all sufficiently large, and our
original approach was to obtain this by working with a subdivision of Kn

N . By taking
the subdivision fine enough, we could ensure that each key contained the required pair
of paths. However, Lemma 5.1 gives us a simple way to enlarge the keys of an existing
key ring, thereby eliminating the need to subdivide. This by itself dramatically reduces
the number of vertices required. By additionally “recycling” vertices left over from earlier
stages of the construction, we show that we can in fact do this using no more vertices than
were needed to construct the initial key ring with q keys, reducing the number of vertices
still further.

1.3 Some notation and terminology

The combinatorial structure of a link with many components is usefully described by its
linking pattern:

Definition 1.6 (Flapan et al. [3, Definitions 1 and 2]). Given a link L, the linking pattern
of L is the graph with vertices the components of L, and an edge between two components
K and L if and only if `k(K,L) 6= 0. The mod 2 linking pattern of L is the graph with
vertices the components of L, and an edge between two components K and L if and only
if `k2(K,L) 6= 0.

An (r + 1)-component link R ∪ L1 ∪ · · · ∪ Lr is a generalised key ring with ring R
and keys L1, . . . , Lr if its linking pattern contains the star on r + 1 vertices as a subgraph,
with R as the central vertex. Thus, the components Li all link R, just like the keys on a key
ring. The link is referred to as a “generalised” key ring to reflect the fact that the keys may
link each other, which is not typically the case with the kinds of key rings we carry on our
persons.

The linking numbers between components of two disjoint many-component links are
conveniently collected into a linking matrix as follows:

Definition 1.7. Given disjoint ordered oriented links J = J1∪· · ·∪Js, L = L1∪· · ·∪Lt,
we define their linking matrix `k(J ,L) to be the s× t matrix with (i, j)-entry `k(Ji, Lj).

We will say that a matrix A is positive if all entries of A are positive, and nonvanishing
if every entry of A is nonzero.

2 Constructing links with large components
A common strategy in proving Ramsey-type results for intrinsic linking is to start with a
link with many components and relatively simple linking behaviour, and combine some
of the components to form a link with fewer components but more complicated linking
behaviour. Our arguments to prove Theorem 1.3 will require that the building block linking
components are “large” in a suitable sense. Thus, in this section we re-establish a number
of known results on intrinsic linking to prove the existence of links with large components.

In the classical one-dimensional case (graphs embedded in R3) we will simply require
our components to have sufficiently many vertices (equivalently, sufficiently many edges).
In principle, no additional work is required in this case, because we could simply take a
sufficiently large complete graph and subdivide each edge into a suitably long path, as is
done in Flapan [2]. The combinatorics of triangulated n-spheres are more complicated
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for n ≥ 2, however, and it will not be sufficient to simply work with spheres with many
vertices or n-simplices. Instead, we will additionally require our components to be large in
the following sense, where D is chosen in advance:

Definition 2.1. Let D be an n-dimensional triangulated disc. A triangulated n-sphere is
large with respect to D or D-large if it contains two disjoint oppositely oriented copies
of D.

When it comes time to prove Theorem 1.3 we will chooseD so that it has a triangulation
of the following form:

Definition 2.2. Let D be an n-dimensional triangulated disc with ` n-simplices. Then D
is a path of length ` if its n-simplices may be labelled ∆1, . . . ,∆` such that

Dab =

b⋃
i=a

∆i

is a disc for any 1 ≤ a ≤ b ≤ `.

For n = 1 this definition co-incides with the usual meaning of a path in a graph. To
construct a path for n ≥ 2 we may start with ` n-simplices ∆1, . . . ,∆`, and choose distinct
(n− 1)-simplices γi, δi belonging to ∆i. Choose simplicial isomorphisms φi : δi → γi+1

for 1 ≤ i ≤ ` − 1, and glue the ∆i according to the φi. The result is a disc Dn, and the
triangulation Dn = ∆1 ∪ · · · ∪∆` satisfies Definition 2.2 by construction. In Lemma 2.6
of [13] it is shown that a disc constructed in this way has ` + n vertices, and the number
of (n − 1)-simplices in ∂Dn is `(n − 1) + 2. We note that for n ≥ 2 a path does not
necessarily have this form: for instance, for n = 2 the triangulation of a regular n-gon by
radii may be given the structure of a path.

We begin by establishing the existence of D-large n-spheres with arbitrarily many ad-
ditional n-simplices. For convenience, we let σn(D,m) be the minimal number of vertices
of a triangulated sphere satisfying the conditions of the following lemma.

Lemma 2.3. Let D be a triangulated disc, and let m be a positive integer. There is a
triangulation of Sn that contains two disjoint oppositely oriented copies of D, together
with at least m additional n-simplices.

Proof. Consider D × I . If V = {v0, . . . , vN} is the vertex set of D, then D × I has a
triangulation with vertex set V × {0, 1}, and simplices of the form

δj = [(vi0 , 0), . . . , (vij , 0), (vij , 1), . . . , (vik , 1)]

for 0 ≤ j ≤ k and each k-simplex δ = [vi0 , . . . , vik ] of D with i0 < i1 < · · · < ik. As a
first pass we let S = ∂(D × I) with the induced triangulation.

The n-sphere S contains two disjoint copies of D, namely D × {0} and D × {1},
and they are oppositely oriented because they are exchanged by reflection in the equator
∂D × { 12}. Suppose that ∂D contains a total of t simplices of dimension n − 1. Each
contributes a total of n simplices of dimension n to ∂D × I , so S has a total of nt addi-
tional n-simplices. If nt ≥ m does not hold then let S′ be a triangulated n-sphere with at
least m− nt+ 1 simplices of dimension n (such a triangulated sphere certainly exists, for
example by taking the boundary of a sufficiently long (n+ 1)-path, as constructed above).
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Choose n-simplices δ and δ′ belonging to ∂D × I and S′, respectively, and form the con-
nected sum of S and S′ by gluing the discs S − δ and S′ − δ′ along their boundaries. The
resulting sphere satisfies the conditions given in the conclusion of the lemma.

We now use Lemma 2.3 to prove the existence of generalised key rings with large rings.
To do this we require the following slight strengthening of Lemma 3.2 of [13], which is in
turn an extension of Lemma 1 of Flapan et al. [3] to all dimensions.

Lemma 2.4. Let D be a triangulated disc. Suppose that Kn
N is embedded in R2n+1 such

that it contains a link

L ∪ J1 ∪ · · · ∪ Jm2 ∪X1 ∪ · · · ∪Xm2 ,

where `k2(Ji, Xi) = 1 for all i, and L contains two disjoint oppositely oriented copies of
D and at least m2 additional n-simplices. Then there is an n-sphere Z in Kn

N with all its
vertices on L∪ J1 ∪ · · · ∪ Jm2 , and an index set I with |I| ≥ m

2 , such that `k2(Z,Xj) = 1
for all j ∈ I and Z contains two disjoint oppositely oriented copies of D.

In Lemma 3.2 of [13] we require only that L has at least m2 n-simplices. Thus, the
difference between the two results is the stronger condition that L contains the two copies
of D and a further m2 n-simplices, and the additional conclusion that Z contains two
disjoint oppositely oriented copies of D. To prove the stronger form it is only necessary to
observe that in proving the original result we can ensure that the copies of D in L end up
in Z.

Proof. The first step in the proof of [13, Lemma 3.2] is to construct an n-sphere S with
all its vertices on L ∪ J1 ∪ · · · ∪ Jm2 , and meeting each sphere Ji in an n-simplex δi.
This is done by choosing a distinct n-simplex δ′i belonging to L for each i = 1, . . . ,m2,
and applying [13, Corollary 2.2] to obtain a sphere Qi ⊆ Kn

N with all its vertices on
δi ∪ δ′i, and meeting Ji in δi and L in δ′i. The sphere S is then constructed from L and
the Qi by omitting the interiors of the discs δ′i. Thus, we can ensure that S contains two
disjoint oppositely oriented copies of D by choosing the δ′i from among the m2 additional
n-simplices of L, leaving the copies of D intact.

At the final step in the proof of [13, Lemma 3.2], the required sphere Z is constructed
from S and a (possibly empty) subset of the Ji, by omitting the interiors of the correspond-
ing n-simplices δi. Therefore, since S contains the required copies ofD, we are guaranteed
that Z does too.

Corollary 2.5. Let D be a triangulated disc, and r a positive integer. For N sufficiently
large, every embedding of Kn

N in R2n+1 contains an (r + 1)-component link R ∪ L1 ∪
· · ·∪Lr such that `k2(R,Li) = 1 for all i, and R contains two disjoint oppositely oriented
copies of D. It suffices to take

N ≥ κn(D, r) = 4r2(2n+ 4) + σn(D, 4r2).

Proof. Given an embedding of Kn
κn(D,r)

in R2n+1, choose 4r2 disjoint copies of Kn
2n+4

contained in the embedding, together with a copy of Kn
σn(D,4r2)

. By Taniyama [12] the ith
copy of Kn

2n+4 contains a 2-component link Ji ∪ Xi such that `k2(Ji, Xi) = 1, and the
copy of Kn

σn(D,4r2)
contains a triangulated sphere L that contains two disjoint oppositely
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oriented copies of D and at least 4r2 additional n-simplices. The result now follows by
applying Lemma 2.4 with m = 2r to the link

L ∪ J1 ∪ · · · ∪ J4r2 ∪X1 ∪ · · · ∪X4r2 .

Finally, we extend Proposition 1 of Flapan et al. [3] to higher dimensions, with the
additional conclusion that all components are large with respect to a chosen triangulated
disc D. This result serves as the base case for the inductive argument proving Theorem 1.3
in Section 4.

Proposition 2.6. Let D be a triangulated disc, and let r be a positive integer. For N
sufficiently large, every embedding of Kn

N in R2n+1 contains a 2r-component link

J1 ∪ · · · ∪ Jr ∪ L1 ∪ · · · ∪ Lr,

such that `k2(Ji, Lj) is nonzero for all i and j, and each component contains two disjoint
oppositely oriented copies of D.

The link given by this result has mod two linking pattern containing the complete bi-
partite graph Kr,r, because each component Ji has nonzero mod 2 linking number with
each component Lj . The argument to prove the existence of such a link is exactly that of
Flapan et al.’s proof of their Proposition 1, and the extension to higher dimensions already
follows from our paper [13]: as noted in Section 1.2.2 of [13] their Proposition 1 is a purely
combinatorial argument that depends only on their Lemma 1 and the existence of gener-
alised key rings, and these are generalised to higher dimensions in [13]. So the work to be
done here is to ensure that each component contains copies of the disc D.

For n = 1 this already follows from Flapan et al.’s Proposition 1, because we may
simply subdivide each edge of a sufficiently large complete graph into paths of length `.
A similar approach could be taken in higher dimensions, using the subdivisions of Kn

N

constructed in [13], but this introduces many unnecessary vertices. We give a simpler
argument that doesn’t make use of subdivision, and requires far fewer vertices.

Proof. Following Flapan et al. [3] let m = (4r)2
r

4 , and let

N = mκn(D, r) + rσn(D,m).

Then Kn
N contains m copies of Kn

κn(D,r)
and r copies of Kn

σn(D,m), all disjoint from one
another. Given an embedding of Kn

N in R2n+1, by Corollary 2.5 the ith copy of Kn
κn(D,r)

contains a generalised key ring

Ri ∪ Ji1 ∪ · · · ∪ Jir

such that the ring Ri is D-large; and the jth copy of Kn
σn(D,m) contains a D-large sphere

Lj that contains at least m additional n-simplices.
Apply Lemma 2.4 to the link

L1 ∪ J11 ∪ · · · ∪ Jm1 ∪R1 ∪ · · · ∪Rm.

This yields a D-large sphere Z1 with all its vertices on L1 ∪ J11 ∪ · · · ∪ Jm1, and an index

set I1 with |I1| ≥
√
m
2 = (4r)2

r−1

4 = m1, such that `k2(Z1, Ri) = 1 for all i ∈ I1.
Suppose now that for some 1 ≤ k < r we have constructed D-large spheres Z1, . . . , Zk
and an index set Ik such that
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(1) all vertices of Zj lie on Lj ∪ J1j ∪ · · · ∪ Jmj for 1 ≤ j ≤ k;

(2) |Ik| ≥ mk = (4r)2
r−k

4 ;

(3) `k2(Zj , Ri) = 1 for all 1 ≤ j ≤ k and i ∈ Ik.

Applying Lemma 2.4 to the link

Lk+1 ∪

(⋃
i∈Ik

Ji(k+1)

)
∪

(⋃
i∈Ik

Ri

)

we obtain a D-large sphere Zk+1 with all its vertices on Lk+1 ∪ J1(k+1) ∪ · · · ∪ Jm(k+1),

and an index set Ik+1 ⊆ Ik with |Ik+1| ≥
√
mk

2 = (4r)2
r−k−1

4 = mk+1, such that
`k2(Zk+1, Ri) = 1 for all i ∈ Ik+1. This gives us D-large spheres Z1, . . . , Zk+1 and
an index set Ik+1 such that conditions (1) – (3) hold with k replaced by k+ 1, so by induc-
tion there areD-large spheres Z1, . . . , Zr and an index set Ir such that they hold for k = r.

Since mr = (4r)2
r−r

4 = r, the first 2r components of

Z1 ∪ · · · ∪ Zr ∪

(⋃
i∈Ir

Ri

)

are the required link.

3 The main technical lemma
This section is dedicated to proving the following analogue of Lemma 2 of Flapan et al. [3],
which forms the main technical lemma of this paper:

Proposition 3.1 (Main technical lemma). Let q ∈ N. Suppose that Kn
N is embedded

in R2n+1 such that it contains a link with oriented components J1, . . . , JA, L1, . . . , LB ,
X1, . . . , XS and Y1, . . . , YT satisfying

(1) A ≥ 2SqS+T ;

(2) B ≥ 3S2T (S + T )qS+T ;

(3) `k(Ja, Xs) is nonzero for all a and s;

(4) `k(Lb, Yt) is nonzero for all b and t; and

(5) each component Ja, Lb contains two disjoint oppositely oriented copies of a fixed
path D of length λ ≥ (2q)S+T .

Then Kn
N contains an n-sphere Z with all its vertices on J1 ∪ · · · ∪ JA ∪ L1 ∪ · · · ∪ LB

such that, for each s and t, `k(Z,Xs) and `k(Z, Yt) are nonzero multiples of q.

We note that the hypotheses of our Proposition 3.1 are much stronger than the hypothe-
ses of Flapan et al.’s Lemma 2: we require A and B to be much greater, and we have
the additional hypothesis (5) that the components Ja, Lb are large with respect to a cer-
tain path. This is to be expected, since our conclusion is strictly stronger than theirs: any
nonzero multiple of q is necessarily at least q in magnitude.

Before proving Proposition 3.1 we first establish the following lemma on sums of vec-
tors in Rd, which we will use in the proof.
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Lemma 3.2. Let f ∈ Rd be a vector with all entries nonzero, and for i = 0, . . . , N let
vi ∈ Rd. If N ≥ 2d then there exist 0 ≤ j < k ≤ N such that every entry of f + vk − vj
is nonzero.

Proof. The proof is by induction on d. In the base case d = 1, suppose that N ≥ 2. If
either f + v1 − v0 or f + v2 − v1 is nonzero then we are done, and otherwise

f + v2 − v0 = (f + v2 − v1) + (f + v1 − v0)− f = −f 6= 0.

Thus the lemma holds in the base case d = 1.
Suppose now that the lemma holds for some d ≥ 1, and let v0,v1, . . . ,vN be N +

1 ≥ 2d+1 + 1 vectors in Rd+1. We claim that there is N ′ ≥ 2d and N ′ + 1 indices
0 ≤ i0 < i1 < · · · < iN ′ ≤ N such that, for any 0 ≤ j < k ≤ N ′, the (d + 1)th entry
of f + vik − vij is nonzero. The inductive step will then follow by applying the inductive
hypothesis to the first d entries of f and vi0 , . . . ,viN′ .

Write x(i) for the ith entry of x ∈ Rm. To prove the claim we consider the graph
with vertex set {0, 1, . . . , N}, and an edge between j and k if j < k and the difference
v
(d+1)
k − v(d+1)

j is equal to the forbidden value −f (d+1). Now observe that for any path
(i0, i1, . . . , im) in this graph we have

v
(d+1)
im

− v(d+1)
i0

=

m∑
j=1

[v
(d+1)
ij

− v(d+1)
ij−1

] = −f (d+1)
m−1∑
j=1

sign(ij − ij−1).

In particular, if the path is a cycle then im = i0, and it follows that

fd+1
m−1∑
j=1

sign(ij+1 − ij) = 0.

Since f (d+1) is nonzero by hypothesis the sum must be zero, and since each term is ±1,
for this to occur it must involve an even number of terms. Thus any cycle must be of even
length, and it follows that our graph is bipartite.

Colour the vertices black and white in such a way that there is no edge between vertices
of the same colour, and let 0 ≤ i0 < i1 < · · · < iN ′ ≤ N be the vertices belonging to the
larger colour class. Then N ′ + 1 ≥ d(N + 1)/2e ≥ d(2d+1 + 1)/2e = 2d + 1, and for any
0 ≤ j < k ≤ N ′ we have f (d+1) + v

(d+1)
ik

− v(d+1)
ij

6= 0, as required. Lemma 3.2 now
follows by our discussion above.

Proof of Proposition 3.1. Let

J = J1 ∪ · · · ∪ JA, X = X1 ∪ · · · ∪XS ,

L = L1 ∪ · · · ∪ LB , Y = Y1 ∪ · · · ∪ YT .

Following Flapan et al. [3], we begin by replacing the links J and L with sublinks J ′,
L′′ for which we have some control over the signs of the entries of the linking matrices
`k(J ′,X ), `k(L′′,Y) and `k(L′′,X ). To do this, we first consider the patterns of signs of
the entries of the vectors `k(Ja,X ). Since these vectors have S entries, and all are nonzero,
there are 2S possibilities for the patterns of signs (positive and negative) in each one. It
follows that we can choose at least A/2S ≥ qS+T of them that all have the same pattern of
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signs. Moreover, after reversing the orientation of some components of X if necessary, we
may assume that these signs are all positive. Thus, setting J ′ = J1 ∪ · · · ∪ JqS+T , we may
assume without loss of generality that the linking matrix `k(J ′,X ) is positive.

Applying the same argument to the vectors `k(Lb,Y), we obtain a sublink L′ of L with
at least 3S(S+T )qS+T components such that the linking matrix `k(L′,Y) is positive. We
now consider the patterns of signs (positive, negative or zero) of the vectors `k(Lb,X ) for
Lb a component of L′. There are now 3S possibilities for these patterns, so we may choose
at least (S + T )qS+T components that have the same pattern. Setting L′′ = L1 ∪ · · · ∪
L(S+T )qS+T we may therefore assume without loss of generality that the linking matrix
`k(L′′,Y) is positive, and that each column of `k(L′′,X ) is either positive, negative, or
zero. From now on we restrict our attention to the sublinks J ′ and L′′ of J and L.

Our next goal is to construct a sublink Z = Z1 ∪ · · · ∪ ZC of J ′ ∪ L′′ such that every
entry of

z =

C∑
c=1

`k(Zc,X ∪ Y)

is a nonzero multiple of q. At the final step we will obtain the required n-sphere Z as a
connect sum of the components of Z . To this end we begin by considering the sums

jα =

α∑
a=1

`k(Ja,X ∪ Y)

modulo q for 1 ≤ α ≤ qS+T . Each vector jα has S + T entries, so there are qS+T pos-
sibilities when considered mod q. Since we have qS+T vectors in total, by the pigeonhole
principle we can either find one that is zero modulo q, or two that are equal modulo q. In
either case, there are integers 0 ≤ α0 < α1 ≤ qS+T such that the vector

j =

α1∑
a=α0+1

`k(Ja,X ∪ Y)

is zero modulo q. Moreover, the first S entries of j are given by
∑α1

a=α0+1 `k(Ja,X ), and
are therefore nonzero, because the vector `k(Ja,X ) is positive for each a. We will use
Jα0+1 ∪ · · · ∪ Jα1 as the first α1 − α0 components of Z .

We now consider the sums
β∑
b=1

`k(Lb,X ∪ Y)

modulo q for 1 ≤ β ≤ (S + T )qS+T . Since there are again qS+T possibilities mod q,
and we have (S + T )qS+T sums in total, we can either find S + T of them that are zero
mod q, or S + T + 1 of them that are identical mod q. In either case, there are integers
0 ≤ β0 < β1 < · · · < βS+T ≤ (S + T )qS+T such that the vectors

`i =

βi∑
b=β0+1

`k(Lb,X ∪ Y)

are zero modulo q. Any additional components of Z will be chosen from among Lβ0+1 ∪
Lβ0+2 ∪ · · · ∪ LβS+T

.
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To choose the remaining components of Z we consider the sequence of S + T + 1
vectors j, j + `1, . . . , j + `S+T . From above these vectors are all zero when considered
modulo q, and we claim that it is possible to choose at least one of them that is nonvanishing
when considered as an integer vector. To see this, consider first the (S+ t)-entries for some
1 ≤ t ≤ T , which are given by

j(S+t) =

α1∑
a=α0+1

`k(Ja, Yt),

(j + `i)
(S+t) =

α1∑
a=α0+1

`k(Ja, Yt) +

βi∑
b=β0+1

`k(Lb, Yt).

Since the linking matrix `k(L′′,Y) is positive these form a strictly increasing sequence,
and consequently the (S + t)-entry vanishes for at most one of our S + T + 1 vectors.

Next, consider the s-entries for some 1 ≤ s ≤ S, which are given by

j(s) =

α1∑
a=α0+1

`k(Ja, Xs),

(j + `i)
(s) =

α1∑
a=α0+1

`k(Ja, Xs) +

βi∑
b=β0+1

`k(Lb, Xs).

Recall that the first sum is positive, and that each column of the linking matrix `k(L′′,X )
is either positive, negative, or zero. It follows that the above sequence of integers is either
constant (in which case it is positive), or it is strictly increasing or strictly decreasing. In
any case we again conclude that the s-entry vanishes for at most one of our S + T + 1
vectors. Thus there are at most S + T vectors for which one of the entries vanishes, and so
there is at least one for which no entry vanishes, proving the claim. We may then set

Z = Z1 ∪ · · · ∪ ZC

=

{
Jα0+1 ∪ · · · ∪ Jα1

if j is nonvanishing, or
Jα0+1 ∪ · · · ∪ Jα1

∪ Lβ0+1 ∪ · · · ∪ Lβi
if j + `i is nonvanishing.

With this choice of Z , every entry of

z0 =

C∑
c=1

`k(Zc,X ∪ Y)

is a nonzero multiple of q, as required.
Our final task is to obtain the required n-sphere as a suitable connect sum of the com-

ponents of Z . To do this we will inductively construct oriented spheres F1, . . . , FC−1 such
that, for each 1 ≤ γ ≤ C − 1,

(a) the vertices of Fγ lie on Zγ ∪ Zγ+1 (and so Fγ is disjoint from X , Y , and the rest
of Z);

(b) Fγ−1 ∩ Zγ and Fγ ∩ Zγ are disjoint discs, each of which is oppositely oriented by
Zγ and Fγ−1 or Fγ ;
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(c) every entry of the vector

zγ = z0 +

γ∑
i=1

`k(Fi,X ∪ Y)

is a nonzero multiple of q.

We will then obtain the required sphere Z from the union of Z and the Fc by omitting the
interiors of the discs Fc ∩ Zc and Fc ∩ Zc+1. Conditions (a) and (b) imply that Fc and Fc′
are disjoint for all c and c′, and it follows that Z is a connect sum of spheres, and hence
itself a sphere. Moreover, as a chain we have Z =

∑C
c=1 Zc +

∑C−1
c=1 Fc, so

`k(Z,X ∪ Y) = z0 +

C−1∑
c=1

`k(Fc,X ∪ Y),

and by condition (c) every entry of this vector is a nonvanishing multiple of q.
The underlying technique for constructing the spheres Fc comes from the proof of

Theorem 1.4 of Tuffley [13], but additional work is required to ensure that condition (c)
is satisfied. By hypothesis (5) each sphere Zc contains two disjoint copies of the path D,
one of each orientation. We begin by labelling these Dc and D′c in such a way that there
is an orientation reversing simplicial isomorphism φc : Dc → D′c+1. This may be done
inductively: first label the copies of D contained in Z1 arbitrarily, and then once Dc and
D′c have been chosen, choose Dc+1 and D′c+1 so that D′c+1 is oppositely oriented to Dc.
We will choose the spheres Fc so that the following strengthened form of condition (a)
holds for 1 ≤ γ ≤ C − 1:

(a′) the vertices of Fγ lie on Dγ ∪D′γ+1.

This condition serves to ensure that Fγ−1 ∩ Zγ and Fγ ∩ Zγ are disjoint, as required by
condition (b).

Suppose that for some 0 ≤ c < C − 1 the spheres F1, . . . , Fc have been constructed
so that conditions (a′), (b) and (c) hold for 0 ≤ γ ≤ c. When c = 0 conditions (a′) and (b)
are empty, and condition (c) is that every entry of z0 is a nonzero multiple of q, so we may
take c = 0 as our base case. Let ∆1, . . . ,∆λ be a labelling of the n-simplices of the path
Dc+1 as in Definition 2.2, and for 1 ≤ ` ≤ λ let P` be the oriented sphere satisfying

P` ∩ Zc+1 = ∆`, P` ∩ Zc+2 = φc+1(∆`)

that results from applying Corollary 2.2 of Tuffley [13] to the pairs (Zc+1, Dc+1) and
(Zc+2, D

′
c+2). The vertices of these spheres all lie on Dc+1 ∪D′c+2, and for any 1 ≤ µ ≤

ν ≤ λ, the chain
∑ν
`=µ P` represents a sphere meeting Dc+1 in the disc

⋃ν
`=µ ∆`, and

D′c+2 in the disc
⋃ν
`=µ φc+1(∆`).

For 1 ≤ ` ≤ λ we consider the sums

∑̀
i=1

`k(Pi,X ∪ Y)

modulo q. As above there are qS+T possibilities for these modulo q, and we have λ ≥
2S+T qS+T of them, so we can either find 2S+T of them that are identically zero mod q, or
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2S+T + 1 of them that are equal mod q. In either case there are integers 0 ≤ µ0 < µ1 <
· · · < µ2S+T such that the vectors

pj =

µj∑
i=µ0+1

`k(Pi,X ∪ Y)

are identically zero mod q for 1 ≤ j ≤ 2S+T .
Set p0 = 0, and apply Lemma 3.2 to the vectors p0,p1, . . . ,p2S+T ∈ RS+T with

f = zc. This yields indices 0 ≤ j < k ≤ 2S+T such that no entry of

zc + pk − pj = zc +

µk∑
i=µj+1

`k(Pi,X ∪ Y)

is zero. Moreover, the vectors zc, pj and pk are all identically zero mod q, so every entry
of zc + pk − pj is a nonzero multiple of q.

Let Fc+1 =
∑µk

i=µj+1 Pi. Then Fc+1 represents an n-sphere with all its vertices on
Zc+1 ∪ Zc+2, and meeting Zc+1 and Zc+2 in the discs

Fc+1 ∩ Zc+1 =

µk⋃
i=µj+1

∆i ⊆ Dc+1, Fc+1 ∩ Zc+2 = φc+1

 µk⋃
i=µj+1

∆i

 ⊆ D′c+2.

The construction of Corollary 2.2 of Tuffley [13] ensures that these discs are oppositely
oriented by Fc+1 and Zc+1 ∪ Zc+2, so conditions (a′) and (b) are satisfied; and with this
choice of Fc+1 we have zc+1 = zc + pk − pj , so condition (c) is too. This completes the
inductive step, and we now obtain the required sphere Z as described above.

4 Proof of Theorem 1.3
We are now in a position to prove our main result, Theorem 1.3. The strategy is that of
Flapan et al.’s proof of their Theorem 1.

Proof of Theorem 1.3. Following Flapan et al. [3], for each u, v ∈ N letH(u, v) denote the
complete (u + 2)-partite graph with parts P1 and P2 containing v vertices each, and parts
Q1, . . . , Qu containing a single vertex each. We will prove by induction on u that for every
u ≥ 0 and v, ` ≥ 1, for N sufficiently large every embedding of Kn

N in R2n+1 contains a
link L such that

(L1) the linking pattern of L contains the graph H(u, v);

(L2) the linking number between any two distinct components in Q1 ∪ · · · ∪ Qu is a
nonzero multiple of q; and

(L3) every component in P1 ∪P2 contains disjoint oppositely oriented copies of a path D
of length at least `.

For simplicity, we will say that a link L satisfying conditions (L1) – (L3) with the given
parameter values satisfies property (u, v, `).
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The base case u = 0 follows from Proposition 2.6 with r = v, by choosing D to be a
path of length `. Suppose then that the claim holds for some u ≥ 0. Given v, ` ≥ 0, let

S = v,

T = u+ v,

A = B = 2T 3S(S + T )qS+T ≥ 2SqS+T ,

λ = max{`, (2q)S+T },

and let w = S + A = S + B. By our inductive hypothesis, for N sufficiently large every
embedding of Kn

N in R2n+1 contains a link L satisfying property (u,w, λ). We will show
that every such embedding also contains a link L′ satisfying property (u+ 1, v, `).

Given an embedding of Kn
N in R2n+1 and a link L contained in it satisfying property

(u,w, λ), label the components of L such that

P1 = {X1, . . . , XS , L1, . . . , LB},
P2 = {Y1, . . . , YS , J1, . . . , JA},

and Qi = {Yv+i} for 1 ≤ i ≤ u. Then all linking numbers `k(Ja, Xs) and `k(Lb, Yt) are
nonzero by (L1), and every component Ja, Lb contains two disjoint copies of a path D of
length at least λ ≥ (2q)S+T , by (L3). So we may apply Proposition 3.1 to L to obtain a
sphere Z with all its vertices on J1∪· · ·∪JA∪L1∪· · ·∪LB and linking every component
Xs, Yt with linking number a nonzero multiple of q. Let

L′ = X1 ∪ · · · ∪XS ∪ Y1 ∪ · · · ∪ YT ∪ Z
= X1 ∪ · · · ∪Xv ∪ Y1 ∪ · · · ∪ Yu+v ∪ Z,

and partition the components as P ′1 ∪ P ′2 ∪Q′1 ∪ · · · ∪Q′u+1 such that

P ′1 = {X1, . . . , Xv},
P ′1 = {Y1, . . . , Yv},

and

Q′i =

{
{Yv+i} 1 ≤ i ≤ u,
{Z} i = u+ 1.

Then with respect to this partition the linking pattern of L′ contains the graph H(u+ 1, v);
any two components in Q′1 ∪ · · · ∪Q′u+1 have linking number a nonzero multiple of q; and
every component in P1 ∪ P2 contains a copy of D, which is a path of length at least λ ≥ `.
So L′ satisfies property (u+ 1, v, `), completing the inductive step. By (L2) the result now
follows by restricting attention to Q1 ∪ · · · ∪Qu, with u = r.

5 The two component case
We now turn to the two component case, and establish the improved bound of Theorem 1.5.

From the proof of [13, Theorem 1.4] it suffices to prove every embedding of Kn
κn(q)

contains a generalised key ring with q keys each large with respect to a path D of length
q. The approach of [13] was to work with a subdivision of Kn

N , in which each n-simplex
was subdivided into qn simplices. This is a fairly extravagant approach, since only 2q
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n-simplices from each component are used to form the required paths. The reduction in
the number of vertices required comes from Lemma 5.1, which gives us a simple and
economical way to enlarge the keys of an existing generalised key ring. A further modest
saving comes from “recycling” some of the vertices leftover from the construction of the
initial key ring.

Lemma 5.1. Let Kn
N be embedded in R2n+1 such that it contains a link X ∪ Y with

`k(X,Y ) 6= 0. Let D be a triangulated n-disc with d vertices, and suppose that V is a set
of 2d− (n+ 1) vertices of Kn

N disjoint from X ∪ Y . Then Kn
N contains a D-large sphere

Z with all its vertices on Y ∪ V such that `k(X,Z) 6= 0.
The result also holds with all linking numbers calculated mod 2.

Proof. Choose an n-simplex ∆ belonging to Y, and let S = ∂(D × I) with the trian-
gulation with 2d vertices from the proof of Lemma 2.3. Then ∆ ∪ V contains a total of
(n+1)+(2d−(n+1)) = 2d vertices, so we may embed S inKn

N such that all vertices of S
lie on ∆∪V and ∆ is an n-simplex of ∂D× I . Orient S such that ∆ receives opposite ori-
entations from S and Y, and consider the chains S and T = S+Y . Both represent D-large
n-spheres with all their vertices on Y ∪ V , and the linking numbers `k(X,S), `k(X,T )
cannot both be zero because in the homology group Hn(R2n+1 −X) we have

[T ]− [S] = [S + Y ]− [S] = [Y ] 6= 0. (5.1)

We may therefore choose one of S and T to be Z so that `k(X,Z) 6= 0.
If `k2(X,Y ) 6= 0 then equation (5.1) holds in Hn(R2n+1 − X;Z/2Z), and we may

again choose Z to be one of S and T so that `k2(X,Z) 6= 0.

Corollary 5.2. Let q be a positive integer. Then every embedding of Kn
κn(q)

in R2n+1

contains a generalised key ring in which each key is large with respect to a path D of
length q.

Proof. By [13, Theorem 1.2] every embedding of Kn
κn(q)

in R2n+1 contains a generalised
key ringLwith q keys. This link is constructed by applying [13, Lemma 3.2] (the extension
of [3, Lemma 1] to higher dimensions) to a link

L ∪ J1 ∪ · · · ∪ J4q2 ∪K1 ∪ · · · ∪K4q2 ,

in which `k2(Ji,Ki) is nonzero for all i, and each component Ji,Ki is the boundary of
an (n + 1)-simplex. This yields an n-sphere R with all vertices on L ∪ J1 ∪ · · · ∪ J4q2
and linking at least q of the Ki, which forms the ring of the generalised key ring. Let
Ki1 , . . . ,Kiq be the keys.

Recall that a path D of length q can be constructed using as few as d = q + n vertices.
Since only q of the Ki are components of L this leaves at least (4q2 − q)(n + 2) =
q(4q − 1)(n+ 2) vertices of Kn

κn(q)
that do not belong to L. Observe that

(4q − 1)(n+ 2) = (4q − 1)n+ 8q − 2 ≥ 2n+ 2q = 2d > 2d− (n+ 1).

The spare vertices are therefore more than enough to apply Lemma 5.1 q times to R and
each key Kij in turn, replacing Kij with a D-large sphere Zj that still links R. Then

R ∪ Z1 ∪ · · · ∪ Zq

is the desired link.
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For completeness’ sake we sketch the steps needed to prove Theorem 1.5 from this
point. For any missing details see the proof of [13, Theorem 1.4], or the corresponding step
of the proof of Proposition 3.1.

Proof of Theorem 1.5. By Corollary 5.2, every embedding of Kn
κn(q)

in R2n+1 contains a
generalised key ring R∪Z1 ∪ · · · ∪Zq such that each key Zi is large with respect to a path
D of length q. Orient the Zi so that all linking numbers with R are positive. Working in
the homology group Hn(R2n+1 −R;Z), let 1 ≤ a ≤ b ≤ q be such that

b∑
i=a

[Zi] ≡ 0 (mod q),

and note that this sum is positive. From now on we restrict our attention to the spheres
Za, . . . , Zb.

If a = b we are done. Otherwise, we use the fact that each component Zi is D-large to
construct oriented spheres Fa, . . . , Fb−1 such that, for a ≤ i ≤ b− 1,

(a) the vertices of Fi lie on Zi ∪ Zi+1 (and so Fi is disjoint from R and the rest of
the Zj);

(b) Fi−1 ∩ Zi and Fi ∩ Zi are disjoint discs, each of which is oppositely oriented by Zi
and Fi−1 or Fi;

(c) the linking number `k(R,Fi) is zero mod q.

The construction of the Fi is identical to that of the corresponding spheres in Proposi-
tion 3.1, except that the simpler condition (c) means we only require D to have length
q, and the spheres can all be constructed simultaneously instead of inductively. Now if
`k(R,Fi) is nonzero for some i then R ∪ Fi is the required link; and otherwise, we let Z
be the connect sum of Za, . . . , Zb, Fa, . . . , Fb−1 obtained by omitting the interiors of the
discs Fi ∩Zi and Fi ∩Zi+1 for each i. Then Z is an n-sphere, and in Hn(R2n+1 −R) we
have

[Z] =

b∑
i=a

[Zi] +

b−1∑
i=a

[Fi] =

b∑
i=a

[Zi],

which is a nonzero multiple of q.
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Abstract

In this paper we study the problem of hyperball (hypersphere) packings in 3-dimen-
sional hyperbolic space. We introduce a new definition of the non-compact saturated ball
packings with generalized balls (horoballs, hyperballs) and describe to each saturated hy-
perball packing, a new procedure to get a decomposition of 3-dimensional hyperbolic space
H3 into truncated tetrahedra. Therefore, in order to get a density upper bound for hyper-
ball packings, it is sufficient to determine the density upper bound of hyperball packings in
truncated simplices.

Keywords: Hyperbolic geometry, hyperball packings, Dirichlet-Voronoi cell, packing density, Coxeter
tilings.

Math. Subj. Class.: 52C17, 52C22, 52B15

1 Introduction
In n-dimensional hyperbolic space Hn (n ≥ 2) there are 3 kinds of generalized “balls”
(spheres): the usual balls (spheres), horoballs (horospheres) and hyperballs (hyperspheres).

The classical problems of ball packings and coverings with congruent generalized balls
of hyperbolic spaces Hn are extensively discussed in the literature, however there are sev-
eral essential open questions e.g.:

1. What are the optimal ball packing and covering configurations of usual spheres and
what are their densities (n ≥ 3) (see [1, 5, 7, 12])?

2. The monotonicity of the density related to the Böröczky type ball configurations
depending on the radius of the congruent balls (n ≥ 4) (see [4, 10]).
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3. What are the optimal horoball packing and covering configurations and what are their
densities allowing horoballs in different types (n ≥ 4) (see [3, 8, 9])?

4. What are the optimal packing and covering arrangements using non-compact balls
(horoballs and hyperballs) and what are their densities? These are the so-called hyp-
hor packings and coverings (see [21]).

5. What are the optimal hyperball packing and covering configurations and what are
their densities (n ≥ 3)?

In this paper we study the 5th question related to saturated, congruent hyperball packings
in 3-dimensional hyperbolic space H3.

In the hyperbolic plane H2 the universal upper bound of the hypercycle packing density
is 3
π , proved by I. Vermes in [24] and the universal lower bound of the hypercycle covering

density is
√
12
π determined by I. Vermes in [25].

In [15] and [16] we studied the regular prism tilings (simply truncated Coxeter or-
thoscheme tilings) and the corresponding optimal hyperball packings in Hn (n = 3, 4) and
we extended the method developed in the former paper [20] to 5-dimensional hyperbolic
space. Moreover, their metric data and their densities have been determined. In paper
[19] we studied the n-dimensional hyperbolic regular prism honeycombs and the corre-
sponding coverings by congruent hyperballs and we determined their least dense covering
densities. Furthermore, we formulated conjectures for the candidates of the least dense
hyperball covering by congruent hyperballs in the 3- and 5-dimensional hyperbolic space
(n ∈ N, 3 ≤ n ≤ 5).

In [22] we discussed congruent and non-congruent hyperball (hypersphere) packings
of the truncated regular tetrahedron tilings. These are derived from the Coxeter simplex
tilings {p, 3, 3} (7 ≤ p ∈ N) and {5, 3, 3, 3, 3} in 3- and 5-dimensional hyperbolic space.
We determined the densest hyperball packing arrangement and its density with congru-
ent hyperballs in H5 and determined the smallest density upper bounds of non-congruent
hyperball packings generated by the above tilings in Hn (n = 3, 5).

In [21] we deal with packings derived by horo- and hyperballs (briefly hyp-hor pack-
ings) in n-dimensional hyperbolic spaces Hn (n = 2, 3) which form a new class of the
classical packing problems. We constructed in the 2- and 3-dimensional hyperbolic spaces
hyp-hor packings that are generated by complete Coxeter tilings of degree 1 i.e. the funda-
mental domains of these tilings are simple frustum orthoschemes and we determined their
densest packing configurations and their densities. We proved using also numerical ap-
proximation methods that in the hyperbolic plane (n = 2) the density of the above hyp-hor
packings arbitrarily approximate the universal upper bound of the hypercycle or horocy-
cle packing density 3

π and in H3 the optimal configuration belongs to the {7, 3, 6} Coxeter
tiling with density≈ 0.83267. Furthermore, we analyzed the hyp-hor packings in truncated
orthoschemes {p, 3, 6} (6 < p < 7, p ∈ R) whose density function is attained its maxi-
mum for a parameter which lies in the interval [6.05, 6.06] and the densities for parameters
lying in this interval are larger that ≈ 0.85397. That means that these locally optimal hyp-
hor configurations provide larger densities that the Böröczky-Florian density upper bound
(≈ 0.85328) for ball and horoball packings but these hyp-hor packing configurations can
not be extended to the entirety of hyperbolic space H3.

In [23] we studied a large class of hyperball packings in H3 that can be derived from
truncated tetrahedron tilings. In order to get a density upper bound for the above hyperball
packings, it is sufficient to determine this density upper bound locally, e.g. in truncated
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tetrahedra. Thus, we proved that if the truncated tetrahedron is regular, then the density
of the densest packing is ≈ 0.86338. This is larger than the Böröczky-Florian density
upper bound for balls and horoballs but our locally optimal hyperball packing configuration
cannot be extended to the entirety of H3. However, we described a hyperball packing
construction, by the regular truncated tetrahedron tiling under the extended Coxeter group
{3, 3, 7} with maximal density ≈ 0.82251.

Recently, (to the best of author’s knowledge) the candidates for the densest hyperball
(hypersphere) packings in the 3, 4 and 5-dimensional hyperbolic space Hn are derived by
the regular prism tilings that have been published in papers [15, 16] and [20].

In this paper we study hyperball (hypersphere) packings in 3-dimensional hyperbolic
space. We develope a decomposition algorithm that for each saturated hyperball packing
provides a decomposition of H3 into truncated tetrahedra. Therefore, in order to get a
density upper bound for hyperball packings, it is sufficient to determine the density upper
bound of hyperball packings in truncated simplices.

2 Projective model and saturated hyperball packings in H3

We use for H3 (and analogously for Hn, n ≥ 3) the projective model in the Lorentz space
E1,3 that denotes the real vector space V4 equipped with the bilinear form of signature
(1, 3),

〈x,y〉 = −x0y0 + x1y1 + x2y2 + x3y3,

where the non-zero vectors

x = (x0, x1, x2, x3) ∈ V4 and y = (y0, y1, y2, y3) ∈ V4,

are determined up to real factors, for representing points of Pn(R). Then H3 can be in-
terpreted as the interior of the quadric Q = {(x) ∈ P3 | 〈x,x〉 = 0} =: ∂H3 in the real
projective space P3(V4,V4) (here V4 is the dual space of V4). Namely, for an interior
point y holds 〈y,y〉 < 0.

Points of the boundary ∂H3 in P3 are called points at infinity, or at the absolute of H3.
Points lying outside ∂H3 are said to be outer points of H3 relative to Q. Let (x) ∈ P3, a
point (y) ∈ P3 is said to be conjugate to (x) relative toQ if 〈x,y〉 = 0 holds. The set of all
points which are conjugate to (x) form a projective (polar) hyperplane pol(x) := {(y) ∈
P3 | 〈x,y〉 = 0}. Thus, the quadric Q induces a bijection (linear polarity V4 → V4) from
the points of P3 onto their polar hyperplanes.

PointX(x) and hyperplane α(a) are incident if xa = 0 (x ∈ V4\{0}, a ∈ V4\{0}).
The hypersphere (or equidistance surface) is a quadratic surface at a constant distance

from a plane (base plane) in both halfspaces. The infinite body of the hypersphere, con-
taining the base plane, is called hyperball.

The half hyperball with distance h to a base plane β is denoted by Hh+. The volume
of a bounded hyperball piece Hh+(A), delimited by a 2-polygon A ⊂ β, and its prism
orthogonal to β, can be determined by the classical formula (2.1) of J. Bolyai [2].

Vol(Hh+(A)) =
1

4
Area(A)

[
k sinh

2h

k
+ 2h

]
(2.1)

The constant k =
√
−1
K is the natural length unit in H3, where K denotes the constant

negative sectional curvature. In the following we may assume that k = 1.
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Let Bh be a hyperball packing in H3 with congruent hyperballs of height h.
The notion of saturated packing follows from that fact that the density of any packing

can be improved by adding further packing elements as long as there is sufficient room to
do so. However, we usually apply this notion for packings with congruent elements. Now,
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1
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T
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P1
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Figure 1: (a) Saturated hyp-hor packing, at present a = 0.7. (b) Saturated horocycle
packing with parameter a = 1√

2
.

we modify the classical definition of saturated packing for non-compact ball packings with
generalized balls (horoballs, hyperballs) in n-dimensional hyperbolic space Hn (n ≥ 2
integer parameter):

Definition 2.1. A ball packing with non-compact balls (horoballs or/and hyperballs) in Hn
is saturated if no new non-compact ball can be added to it.

We illustrate the meaning of the above definition by 2-dimensional Coxeter tilings given
by the Coxeter symbol [∞] (see Figure 1), which are denoted by Ta. The fundamental
domain of Ta is a Lambert quadrilateral A0A1P0P1 (see [21]) that is denoted by Fa. It
is derived by the truncation of the orthoscheme A0A1A2 by the polar line π of the outer
vertex A2. The other initial principal vertex A0 of the orthoscheme is lying on the absolute
quadric of the Beltrami-Cayley-Klein model.

The images of Fa under reflections on its sides fill the hyperbolic plane H2 without
overlap. The tilings Ta contain a free parameter 0 < a < 1, a ∈ R. The polar straight
line of A2 is π and π ∩ A0A2 = P0, π ∩ A1A2 = P1. If we fix the parameter a then a
optimal hypercycle tiling can be derived from the mentioned Coxeter tiling (see Figure 1(a))
but here there are sufficient rooms to add horocycles with centre A0 and with centres at
the images of A0. This saturated hyp-hor packing (packing with horo- and hyperballs) is
illustrated in Figure 1(a). The Figure 1(b) shows a saturated horocycle packing belonging
to the same Coxeter tiling.

To obtain hyperball (hypersphere) packing bounds it obviously suffices to study satu-
rated hyperball packings (using the above definition) and in what follows we assume that
all packings are saturated unless otherwise stated.
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3 Decomposition into truncated tetrahedra
We take the set of hyperballs {Hhi } of a saturated hyperball packingBh (see Definition 2.1).
Their base planes are denoted by βi. Thus, in a saturated hyperball packing the distance
between two ultraparallel base planes d(βi, βj) is at least 2h (where for the natural indices
holds i < j and d is the hyperbolic distance function).

In this section we describe a procedure to get a decomposition of 3-dimensional hy-
perbolic space H3 into truncated tetrahedra corresponding to a given saturated hyperball
packing.

Step 1. The notion of the radical plane (or power plane) of two Euclidean spheres can be
extended to the hyperspheres. The radical plane (or power plane) of two non-intersecting
hyperspheres is the locus of points at which tangents drawn to both hyperspheres have the
same length (so these points have equal power with respect to the two non-intersecting hy-
perspheres). If the two non-intersecting hyperspheres are congruent also in Euclidean sense
in the model then their radical plane coincides with their “Euclidean symmetry plane” and
any two congruent hypersphere can be transformed into such an hypersphere arrangement.

Using the radical planes of the hyperballs Hhi , similarly to the Euclidean space, can be
constructed the unique Dirichlet-Voronoi (in short D-V) decomposition of H3 to the given
hyperball packing Bh. Now, the D-V cells are infinite hyperbolic polyhedra containing the
corresponding hyperball, and its vertices are proper points of H3. We note here (it is easy
to see), that a vertex of any D-V cell cannot be outer or boundary point of H3 relative to Q,
because the hyperball packing Bh is saturated by the Definition 2.1.

Step 2. We consider an arbitrary proper vertex P ∈ H3 of the above D-V decomposition
and the hyperballs Hhi (P ) whose D-V cells meet at P . The base planes of the hyper-
ballsHhi (P ) are denoted by βi(P ), and these planes determine a non-compact polyhedron
Di(P ) with the intersection of their halfspaces containing the vertex P . Moreover, denote
A1, A2, A3, . . . the outer vertices of Di(P ) and cut off Di(P ) with the polar planes αj(P )
of its outer vertices Aj . Thus, we obtain a convex compact polyhedron D(P ). This is
bounded by the base planes βi(P ) and “polar planes” αj(P ). Applying this procedure for
all vertices of the above Dirichlet-Voronoi decomposition, we obtain an other decomposi-
tion of H3 into convex polyhedra.

Step 3. We consider D(P ) as a tile of the above decomposition. The planes from the finite
set of base planes {βi(P )} are called adjacent if there is a vertex As of Di(P ) that lies on
each of the above plane. We consider non-adjacent planes βk1(P ), βk2(P ), βk3(P ), . . . ,
βkm(P ) ∈ {βi(P )} (kl ∈ N+, l = 1, 2, 3, . . . ,m) that have an outer point of intersection
denoted by Ak1···km . Let ND(P ) ∈ N denote the finite number of the outer points Ak1···km
related to D(P ). It is clear, that its minimum is 0 if Di(P ) is tetrahedron. The polar plane
αk1···km of Ak1···km is orthogonal to planes βk1(P ), βk2(P ), . . . , βkm(P ) (thus, it con-
tains their poles Bk1 , Bk2 , . . . , Bkm ) and divides D(P ) into two convex polyhedra D1(P )
and D2(P ).

Step 4. If ND1(P ) 6= 0 and ND2(P ) 6= 0 then ND1(P ) < ND(P ) and ND2(P ) < ND(P )

then we apply the Step 3 for polyhedra Di(P ), i ∈ {1, 2}.

Step 5. If NDi(P ) 6= 0 or NDj(P ) = 0 (i 6= j, i, j ∈ {1, 2}) then we consider the
polyhedron Di(P ) where NDi(P ) = ND(P ) − 1 because the vertex Ak1···km is left out and
apply the Step 3.
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Step 6. If ND1(P ) = 0 and ND2(P ) = 0 then the procedure is over for D(P ). We continue
the procedure with the next cell.

Step 7. It is clear, that the above plane αk1···km intersects every hyperball Hhj (P )
(j = k1, . . . , km).

Lemma 3.1. The plane αk1···km ofAk1···km does not intersect the hyperballsHhs (P ) where
Ak1···km /∈ βs(P ).

Proof. Let Hhs (P ) (Ak1···km /∈ βs(P )) be an arbitrary hyperball corresponding to D(P )
with base plane βs(P ) whose pole is denoted by Bs. The common perpendicular σ of
the planes αk1···km and βs(P ) is the line through the point Ak1···km and Bs. We take
a plane κ containing the above common perpendicular, and its intersections with αk1···km
andHhs (P ) are denoted by φ and η. We obtain the plane arrangement illustrated in Figure 2
which coincides with the configuration that is investigated in [24]. There I. Vermes noticed
that the straight line φ = αk1···km ∩ κ does not intersect the hypercycle η = Hhs (P ) ∩ κ.
The plane αk1···km and the hyperballHhs (P ) can be generated by rotation of φ and η about
the common perpendicular σ; therefore, they are disjoint.

Bs

A

a
b

s

k= f

h

s

km....k
1

km....k
1

Figure 2: The plane κ and its intersections with D(P ) andHhs (P ).

Step 8. We have seen in Steps 3, 4, 5 and 6 that the number of the outer vertices Ak1···km
of any polyhedron obtained after the cutting process is less than the original one, and we
have proven in Step 7 that the original hyperballs form packings in the new polyhedra
D1(P ) andD2(P ), as well. We continue the cutting procedure described in Step 3 for both
polyhedra D1(P ) and D2(P ). If a derived polyhedron is a truncated tetrahedron then the
cutting procedure does not give new polyhedra, thus the procedure will not be continued.
Finally, after a finite number of cuttings we get a decomposition of D(P ) into truncated
tetrahedra, and in any truncated tetrahedron the corresponding congruent hyperballs from
{Hhi } form a packing. Moreover, we apply the above method for the further cells.
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Finally we get the following:

Theorem 3.2. The above described algorithm provides for each congruent saturated hy-
perball packing a decomposition of H3 into truncated tetrahedra. �

The above procedure is illustrated for regular octahedron tilings derived by the reg-
ular prism tilings with Coxeter-Schläfli symbol {p, 3, 4}, 6 < p ∈ N. These Coxeter
tilings and the corresponding hyperball packings are investigated in [15]. In this situation
the convex polyhedron D(P ) is a truncated octahedron (see Figure 3) whose vertices Bi
(i = 1, 2, 3, 4, 5, 6) are outer points and the octahedron is cut off with their polar planes βi.
These planes are the base planes of the hyperballs Hhi . We can assume that the centre of
the octahedron coincides with the centre of the model.

First, we choose three non-adjacent base planes β2, β3, β4. Their common point, de-
noted by A234 and its polar plane α234 are determined by points B2, B3, B4 containing the
centre P as well. Then we consider the non-adjacent base planes β2, β4, β5 and the polar
plane α245 of their common point A245. It is clear that the points B2, B4, B5 lie in the
plane α245 (see Figure 3).

By the above two “cuttings” we get the decomposition of D(P ) into truncated sim-
plices.
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Figure 3: Truncated octahedron tiling derived from the regular prism tilings with Coxeter-
Schläfli symbol {p, 3, 4} and its decomposition into truncated tetrahedra.

Remark 3.3.

1. If we try to define the density of system of sets in hyperbolic space as we did in
Euclidean space, i.e. by the limiting value of the density with respect to a sphere
C(r) of radius r with a fixed centre O. But since for a fixed value of h the volume
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of spherical shell C(r + h) − C(r) is the same order of magnitude as the volume
of C(r), the argument used in Euclidean space to prove that the limiting value is
independent of the choice of O is does not work in hyperbolic space. Therefore
the definition of packing density is crucial in hyperbolic spaces Hn as shown by
K. Böröczky [3], for nice examples also see [6, 14]. The most widely accepted no-
tion of packing density considers the local densities of balls with respect to their
Dirichlet-Voronoi cells (cf. [3] and [7]), but in our cases these cells are infinite hy-
perbolic polyhedra. The other possibility: the packing density δ can be defined
(see [15, 20, 24, 25]) as the reciprocal of the ratio of the volume of a fundamen-
tal domain for the symmetry group of a tiling to the volume of the ball pieces con-
tained in the fundamental domain (δ < 1). Similarly is defined the covering density
∆ > 1. In order to determine an upper bound for the density of congruent hyper-
ball packings in Hn we used an extended notion of such local density. Therefore, we
had to construct a decomposition of Hn into compact cells to define local density to a
given hyperball packing and these corresponding cells are (not absolutely congruent)
truncated tetrahedra (see the above algorithm and [23]).

2. From the above section it follows that, to each saturated hyperball packing Bh of
hyperballsHhi there is a decomposition of H3 into truncated tetrahedra. Therefore, in
order to get a density upper bound for hyperball packings, it is sufficient to determine
the density upper bound of hyperball packings in truncated simplices. We observed
in [23] that some extremal properties of hyperball packings naturally belong to the
regular truncated tetrahedron (or simplex, in general, see Lemma 3.2 and Lemma 3.3
in [23]). Therefore, we studied hyperball packings in regular truncated tetrahedra,
and prove that if the truncated tetrahedron is regular, then the density of the densest
packing is ≈ 0.86338 (see Theorem 5.1 in [23]). However, these hyperball packing
configurations are only locally optimal, and cannot be extended to the whole space
H3. Moreover, we showed that the densest known hyperball packing, dually related
to the regular prism tilings, introduced in [15], can be realized by a regular truncated
tetrahedron tiling with density ≈ 0.82251.

3. In [22] we discussed the problem of congruent and non-congruent hyperball (hyper-
sphere) packings to each truncated regular tetrahedron tiling. These are derived from
the Coxeter simplex tilings {p, 3, 3} and {5, 3, 3, 3, 3} in the 3- and 5-dimensional
hyperbolic space. We determined the densest hyperball packing arrangement and its
density with congruent hyperballs in H5 (≈ 0.50514) and determined the smallest
density upper bounds of non-congruent hyperball packings generated by the above
tilings: in H3 (≈ 0.82251); in H5 (≈ 0.50514).

The question of finding the densest hyperball packings and horoball packings with
horoballs of different types in the n-dimensional hyperbolic spaces n ≥ 3 has not been
settled yet either (see e.g. [8, 9, 13, 23]).

Optimal sphere packings in other homogeneous Thurston geometries represent another
huge class of open mathematical problems. For these non-Euclidean geometries only very
few results are known (e.g. [17, 18]). Detailed studies are the objective of ongoing research.
The applications of the above projective method seem to be interesting in (non-Euclidean)
crystallography as well, a topic of much current interest.
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1 Introduction
A dominating set of a graphG is a set S of vertices ofG such that every vertex not in S has
a neighbor in S, where two vertices are neighbors if they are adjacent. A total dominating
set of a graph G with no isolated vertex is a set S of vertices such that every vertex in
G has a neighbor in S. Domination and its variations in graphs are now well studied.
The literature on this subject has been surveyed and detailed in the two books by Haynes,
Hedetniemi, and Slater [6, 7]. For a recent book on total domination in graphs we refer the
reader to [13]. A survey of total domination in graphs can also be found in [9].

A classical result in domination theory, due to Ore [14] in 1962, is that every graph with
no isolated vertex has two disjoint dominating sets. However, it is not the case that every
graph with no isolated vertex can be partitioned into a dominating set and a total dominating
set. Henning and Southey [11] showed that every connected graph with minimum degree
at least two that is not a cycle on five vertices has a disjoint dominating set and a total
dominating set. Further, in [12] they present a constructive characterization of connected
graphs of order at least 4 that have a disjoint dominating set and a total dominating set.
Disjoint dominating and total dominating sets in graphs are studied further, for example,
in [10]. A characterization of graphs with disjoint dominating and paired-dominating sets
is characterized in [15].

It remains, however, an outstanding problem to determine which graphs have two dis-
joint total dominating sets. Zelinka [16] in 1989 showed that no minimum degree condi-
tion in a graph is sufficient to guarantee that there exist two disjoint total dominating sets
in the graph. Heggernes and Telle [8] showed that the decision problem to decide for a
given graph G if it has two disjoint total dominating sets is NP-complete, even for bipartite
graphs. Sufficient conditions for a graph to have two disjoint total dominating sets were
obtained by Delgado, Desormeaux, and Haynes [4], but the authors in [4] were not able to
characterize such graphs. Cubic graphs that have two disjoint total dominating sets were
recently studied by Desormeaux, Henning and Haynes [5]. In particular, they show that
cubic graphs that are 5-chordal or claw-free (we do not define these concepts here) can be
partitioned into two total dominating sets.

The total domatic number tdom(G) ofG is the maximum number of disjoint total dom-
inating sets [3]. This can also be considered as a coloring of the vertices such that every
vertex has a neighbor of every color (and has been called the coupon coloring problem [2]).
Recent work on the total domatic number can be found, for example, in [1, 5]. The funda-
mental problem in total domination theory in graphs of determining which graphs have two
disjoint total dominating sets can be phrased as follows: Determine which graphs G satisfy
tdom(G) ≥ 2. We call a graph a TDP-graph (standing for “total dominating partitionable
graph”) if its vertex set can be partitioned into two total dominating sets; that is, a graph G
is a TDP-graph if and only if tdom(G) ≥ 2.

In this paper, we provide a constructive characterization of the graphs that have two
disjoint total dominating sets, or, equivalently, a characterization of the TDP-graphs. We
describe a procedure to build TDP-graphs in terms of a 2-coloring of the vertices that indi-
cate the role each vertex plays in the sets associated with the two disjoint total dominating
sets. We show that the resulting family we construct, starting from four initial base graphs
and applying one of seventeen operations to extend graphs in the family to larger graphs, is
precisely the class of all TDP-graphs.

Our characterization provides a method for creating the TDP-graphs using a finite set
of precise operations. The construction places the TDP-graphs in another context, devel-



M. A. Henning and I. Peterin: A characterization of graphs with disjoint total dominating sets 361

oping them from four base graphs and applying a sequence of operations from seventeen
operations that are independent and necessary to produce a TDP-graph; that is, we show
that this method produces precisely the family of TDP-graphs in that every graph generated
by this method/algorithm is a TDP-graph and further every TDP-graph can be constructed
in this way.

We remark that this procedure does not solve the decision problem to decide if a given
graph has two disjoint total dominating sets in polynomial time. If one follows the steps
in the proof of Section 4, one does indeed obtain an algorithm for this decision problem.
However, this algorithm is far from polynomial time complexity. In particular, the first
step of this algorithm is to discard some edges in order to obtain so-called sparse TDP-
graph. Unfortunately, the proof does not provide those edges and this already spoils the
time complexity.

1.1 Notation

For notation and graph theory terminology we generally follow [13]. All graphs in this
paper are finite and simple, without loops or multiple edges. The order of a graph G
is denoted by n(G) = |V (G)|, and the size of G by m(G) = |E(G)|. We denote the
degree of a vertex v in the graph G by dG(v). The maximum (minimum) degree among
the vertices of G is denoted by ∆(G) (δ(G), respectively). The open neighborhood of v
is NG(v) = {u ∈ V (G) | uv ∈ E(G)}. For a set S ⊆ V (G), its open neighborhood is
the set NG(S) =

⋃
v∈S NG(v). For subsets X and Y of vertices of G, we denote the set

of edges with one end in X and the other end in Y by [X,Y ]. For a set S ⊆ V (G), the
subgraph induced by S is denoted by G[S]. Further, the subgraph of G obtained from G
by deleting all vertices in S and all edges incident with vertices in S is denoted by G− S;
that is, G− S = G[V (G) \ S]. If S = {v}, we simply denote G− {v} by G− v.

The distance between two vertices u and v in G, denoted dG(u, v), is the minimum
length of a (u, v)-path inG. ByWuv we denote the set of all vertices ofG which are closer
to u than to v; that is,Wuv = {w | dG(w, u) < dG(w, v)}. Symmetrically,Wvu is defined.
A block of a graph G is a maximal connected subgraph of G which has no cut-vertex of
its own. A block containing exactly one cut-vertex of G is called an end-block. It is well
known that any two different blocks of a graph have at most one vertex in common, namely
a cut-vertex. Furthermore, a connected graph with at least one cut-vertex has at least two
end-blocks. Let X denote the set of cut-vertices of a connected graph G and let Y denote
the set of its blocks. The block graph of G is a bipartite graph with partite sets X and Y
in which a vertex x ∈ X is adjacent to a vertex y ∈ Y if x is a vertex of the block y. It is
well-known that the block graph of any connected graph is a tree.

A walk is a finite, alternating sequence of vertices and edges in which each edge of the
sequence joins the vertex that precedes it in the sequence to the vertex that follows it in
the sequence. A non-backtracking walk is a walk with the additional constraint that no two
consecutive edges on the walk are repeated.

Let u be a cut-vertex of a graph G. Let H1 and H2 be two vertex disjoint subgraphs
of G − u that contain all the components of G − u, where each of H1 and H2 contain at
least one component of G−u. We call H1 and H2 the associated subgraphs of G−u. For
i ∈ [2], we denote by Hu

i the subgraph of G induced by V (Hi) ∪ {u}. Further, the vertex
in Hu

1 named u we rename u′, and the vertex in Hu
2 named u we rename u′′ in order to

distinguish between u, u′ and u′′. We use the standard notation [k] = {1, . . . , k}.
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2 The graph family G
In this section, we construct a graph family G such that every graph in the family has two
disjoint total dominating sets. First, we define a 2-coloring of a graph G as a partition S =
(SR, SB) of V (G). The color of a vertex v, denoted color(v), is the letter X ∈ {R,B}
such that v ∈ SX , where “R” and “B” here stand for red and blue, respectively. Thus, our
2-coloring of G is a coloring of the vertices of G, one color to each vertex, using the colors
red and blue. We denote by X the letter X ∈ {R,B} \ {X}, and we call X the color
different from X . Thus, if X = R, then X = B while if X = B, then X = R. We denote
by (G,S) a graph G with a given 2-coloring S. Our aim is to describe a procedure to build
TDP-graphs in terms of 2-colorings. For i ∈ [4], by a 2-colored Gi, we shall mean the
graph Gi and its associated 2-coloring shown in Figure 1. Further, we call each 2-colored
Gi a 2-colored base graph.

X X

XX

(a) G1

X

X

X X
X

X

(b) G2

X

X

X
X

X

X

X

(c) G3

X

X

X

X

X X
X

X

X

X

(d) G4

Figure 1: The four 2-colored base graphs G1, G2, G3, G4.

Let G be the minimum family of 2-colored graphs that:

(i) contains the four 2-colored base graphs; and

(ii) is closed under the seventeen operations O1 through to O17 listed below, which ex-
tend a 2-colored graph (G′, S′) to a new 2-colored graph (G,S).

In Figures 2 – 7, the vertices of G′ are colored black and the new vertices of G are colored
white for illustrative purposes, even though the actual colors of the vertices are indicated
by the letters X and X .

Operation O1: (G,S) is obtained from (G′, S′) by adding an edge between two nonadja-
cent vertices of the same color. See the upper diagram of Figure 2.

Operation O2: (G,S) is obtained from (G′, S′) by adding an edge between two nonadja-
cent vertices of different color. See the lower diagram of Figure 2.

G′O1:
X

X

7→
X

X

G′O2:
X

X

7→
X

X

Figure 2: The operations O1 and O2.
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Operation O3: If u and v are distinct vertices of different color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding a new vertex of any color adjacent to both u and v. See
the left diagram in the upper part of Figure 3.

Operation O4: If u and v are distinct vertices of the same color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding adjacent vertices x and y and edges ux and vy with
color(x) = color(y) 6= color(u). See the middle diagram in the upper part of Figure 3.

Operation O5: If u and v are distinct vertices of different color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding adjacent vertices x and y and edges ux and vy with
color(x) = color(u) 6= color(y). See the right diagram in the upper part of Figure 3.

Operation O6: If u and v are distinct vertices of the same color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding a path xyz with color(y) = color(z) 6= color(x) =
color(u) and adding edges ux and vz. See the left diagram in the lower part of Figure 3.

Operation O7: If u and v are distinct vertices of the same color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding a path xyzw and edges ux and vw with color(x) =
color(w) = color(u) 6= color(y) = color(z). See the middle diagram in the lower part of
Figure 3.

G′O3:
X

X

X/X G′O4:
X X

XX
G′O5:

X X

XX

G′O6:
X X

X
XX

G′O7:
X

X

X

X

X
X

G′O8:
X

X X

XX
X

Figure 3: The operations O3 –O8.

Operation O8: If u and v are distinct vertices of different color from (G′, S′), then (G,S)
is obtained from (G′, S′) by adding a path xyzw and edges ux and vw with color(x) =
color(y) = color(v) 6= color(z) = color(w). See the right diagram in the lower part of
Figure 3.

OperationO9: If u and v are adjacent vertices of different color from (G′, S′), then (G,S)
is obtained from (G′, S′) by subdividing uv with four consecutive vertices x, y, z, w where
x is adjacent to u and color(u) = color(z) = color(w) 6= color(x) = color(y). See the
upper diagram of Figure 4.

OperationO10: If u and v are adjacent vertices of the same color from (G′, S′), then (G,S)
is obtained from (G′, S′) by subdividing uv with four consecutive vertices x, y, z, w where
x is adjacent to u and color(u) = color(x) = color(w) 6= color(y) = color(z). See the
lower diagram of Figure 4.

Operation O11: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′) by
adding an edge xy together with the edges vx and vy where color(x) = color(y) 6=
color(v). See the left diagram of Figure 5.

Operation O12: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′) by
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G′O9:
X

X

7→
X

X X

XX
X

G′O10:
X

X

7→
X

X X

XX
X

Figure 4: The operations O9 and O10.

adding a path xyz together with the edges vx and vz where color(x) = color(y) 6=
color(z) = color(v). See the middle diagram of Figure 5.

Operation O13: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′) by
adding a path xyzw together with the edges vx and vw where color(x) = color(w) =
color(v) 6= color(y) = color(z). See the right diagram of Figure 5.

G′O11:
X

X
X G′O12: X

X

X

X

G′O13: X

X X

XX

Figure 5: The operations O11, O12 and O13.

Operation O14: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′)
by adding a 3-cycle, xyzx, together with the edge vx where color(x) = color(v) 6=
color(y) = color(z). See the left diagram of Figure 6.

Operation O15: If v is a vertex from (G′, S′) of any color, then (G,S) is obtained from
(G′, S′) by adding a 4-cycle, xyzwx, together with the edge vxwhere color(x) = color(y) 6=
color(z) = color(w). See the middle diagram of Figure 6, where the notation X/X means
that the vertex can have any color.

Operation O16: If v is a vertex from (G′, S′), then (G,S) is obtained from (G′, S′) by
adding a 5-cycle, xyzwtx, together with the edge vx where color(x) = color(y) =
color(t) 6= color(z) = color(w) = color(v). See the right diagram of Figure 6.

G′O14: X
X

X

X

G′O15: X/X
X

X
X

X

G′O16: X
X

X X

XX

Figure 6: The operations O14, O15 and O16.

Operation O17: If u is a cut-vertex from (G′, S′) with associated subgraphs Hu
1 and Hu

2 ,
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and in NHu
1

(u′) there exists a vertex of the same color as u and in NHu
2

(u′′) there exists a
vertex of different color as u, then (G,S) is obtained from Hu

1 and Hu
2 by adding a new

vertex v and the edges u′v and vu′′. The color of all vertices from Hu
1 remains the same

as in G′, color(v) = color(u′′) 6= color(u′) = color(u) and the color of all vertices from
Hu

2 is exchanged with respect to their color in G′. See the diagram of Figure 7, where
the notation A means that the color of all vertices from the set A in (G′, S′) is changed
in (G,S).

G′

O17:
A

X

u
X X

7→ A

X
X

X

X X

u′ v u′′

Figure 7: The operation O17.

We remark that, by definition, all operations O3 to O17 produce new vertices. Further,
exactly one new vertex created in each of the operations O14 to O16 has degree 3, and all
other new vertices created using operations O3 to O17 have degree 2 in G. In operations
O11 to O13, if the selected vertex v from (G′, S′) is a cut-vertex of G′ it is also a cut-
vertex in G, while if v is not a cut-vertex of G′ it becomes a cut-vertex in G. Moreover all
operations from O14 to O17 produce new cut vertices. In this sense all operations, except
O1 and O2, can be viewed as base operations which build the sparse skeleton of TDP-
graphs, while O1 and O2 fill this skeleton with additional edges. This is also the main idea
of the proof. First to discard all edges which are there by one of the operations O1 and O2,
and then study the resulting vertices of degree two.

Lemma 2.1. If (G,S) ∈ G for some 2-coloring S = (SR, SB), then G is a TDP-graph.
Further, S = (SR, SB) is a partition of V (G) into two total dominating sets of G.

Proof. We proceed by induction on the number, k ≥ 0, of operations O1 through O17

used to construct a 2-colored graph (G,S) ∈ G. If k = 0, then (G,S) is one of the four
2-colored base graphs illustrated in Figure 1, and one can readily observe that G is a TDP-
graph and S = (SR, SB) is a partition of V (G) into two total dominating sets of G. This
establishes the base case. Let k ≥ 1 and suppose that every 2-colored graph (G′, S′) ∈ G
that can be constructed using fewer than k operations satisfies the desired result.

Let (G,S) ∈ G be a 2-colored graph that can be built from one of the 2-colored base
graphs by a sequence of k operations O1 –O17. Let Oj be the last operation of that se-
quence where j ∈ [17], and let (G′, S′) be the graph obtained from the same 2-colored
base graph with the same sequence as that used to construct (G,S) but without applying
the last operationOj . Thus, (G′, S′) ∈ G can be constructed using fewer than k operations.

By the induction hypothesis, the graph G′ is a TDP-graph and S′ = (S′A, S
′
B) is a

partition of V (G′) into two total dominating sets of G′. If j ∈ [2], then S = S′ and G is
a TDP-graph since no new vertices were added. For 3 ≤ j ≤ 17 it is a simple exercise
to check from the color of the new vertices added to (G′, S′) when forming (G,S) that
the operation Oj yields two disjoint total domination sets, namely SR and SB . Thus, G
is a TDP-graph, and S = (SR, SB) is a partition of V (G) into two total dominating sets
of G.
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3 Main result
Our main result is to provide a constructive characterization of the graphs that have two
disjoint total dominating sets, or, equivalently, a characterization of the TDP-graphs.

We prove that the class of all TDP-graphs is precisely the family G constructed in
Section 2. A proof of Theorem 3.1 is given in Section 4.

Theorem 3.1. A graph G is a TDP-graph if and only if every component of (G,S) is in G
for some 2-coloring S. Further, if (G,S) ∈ G, then S = (SR, SB) is a partition of V (G)
into two total dominating sets of G.

4 Proof of Theorem 3.1
The sufficiency follows from Lemma 2.1. To prove the necessity, let G be a TDP-graph
and let S = (SR, SB) be a partition of V (G) into two total dominating sets of G. We
show that (G,S) ∈ G by induction on m = |E(G)|. Since G is a TDP-graph, we note that
δ(G) ≥ 2, G has order n ≥ 4, and m ≥ 4. If m = 4, then necessarily G ∼= C4, and (G,S)
is the 2-colored base graph G1, and so (G,S) ∈ G. This establishes the base case. Let
m ≥ 5 and assume that every TDP-graph G′ of size less than m where S′ = (S′R, S

′
B) is a

partition of V (G′) into two total dominating sets satisfies (G′, S′) ∈ G.
Let G be a TDP-graph of order n and size m, and let S = (SR, SB) be a partition of

V (G) into two total dominating sets of G. If G is disconnected, we apply the inductive
hypothesis to each component of G to produce the desired result. Hence, we may assume
that G is connected.

Our general strategy in what follows is to reduce the graph G to a TDP-graph G′ of
size less than m, apply the inductive hypothesis to G′ to show that (G′, S′) ∈ G, and then
reconstruct the graph (G,S) from (G′, S′) by applying one of the operationsOx, x ∈ [17],
to show that (G,S) ∈ G. We state this formally, since we will frequently use the following
statement.

Statement 4.1. If G′ is a TDP-graph of size less than m, where S′ = (S′R, S
′
B) is a

partition of V (G′) into two total dominating sets, and (G,S) can be constructed from
(G′, S′) by applying one of the operations Ox, where x ∈ [17], then (G,S) ∈ G.

We define three graphsGR, GB andGRB associated with the graphG and the partition
S = (SR, SB). Let GR and GB be the subgraphs of G induced by the sets SR and SB ,
respectively, and so GR = G[SR] and GB = G[SB ]. Let GRB be the (spanning) subgraph
of G with V (GRB) = V (G) and E(GRB) = E(G) \ (E(GR) ∪ E(GB)).

Claim 4.2. If some component of GR, GB or GRB is not a star, then (G,S) ∈ G.

Proof. Suppose that there exists a component, C, of GR, GB or GRB which is not a star.
If C contains a cycle v1 . . . vkv1, k ≥ 3, then G can be obtained from G′ = G − v1v2
by either applying operation O1 in the case when C is a component of GR or GB or by
applying operationO2 in the case when C is a component of GRB . If C contains no cycle,
then C is a tree different from a star. Therefore, there exists a path u1u2u3u4 in C and G
can be obtained fromG′ = G−u2u3 by either applying operationO1 in the case whenC is
a component of GR or GB or by applying operationO2 in the case when C is a component
of GRB . In all cases, since S = (SR, SB) is a partition of V (G) into two total dominating
sets of G, the same partition S′ = S = (SR, SB) is a partition of V (G′) into two total
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dominating sets of G′. By the inductive hypothesis, (G′, S′) ∈ G. We can obtain G from
the same 2-colored base graph as G′ and the same sequence of operations from O1 –O17

used to construct (G′, S′) by adding at the end of this sequence the operation O1 or O2.
Hence (G,S) ∈ G.

By Claim 4.2, we may assume that every component of GR, GB or GRB is a star, for
otherwise the desired result follows. We call the resulting graph G a sparse TDP-graph
with associated partition S = (SR, SB).

We now partition the sets SR and SB in two different ways depending on the role that
the vertices in SR and SB , respectively, play in the graphs GR, GB and GRB . First, let
SR = R1 ∪R2 ∪R3 and SB = B1 ∪B2 ∪B3 where

R1 = {v ∈ SR | dGR
(v) ≥ 2}

R2 = {v ∈ SR \R1 | NG(v) ∩R1 6= ∅}
R3 = SR \ (R1 ∪R2)

and

B1 = {v ∈ SB | dGB
(v) ≥ 2}

B2 = {v ∈ SB \B1 | NG(v) ∩B1 6= ∅}
B3 = SB \ (B1 ∪B2).

Next, we define a partition of V (G) = V (GRB) as the union of the two partitions
SR = R1B ∪R2B ∪R3B and SB = RB1 ∪RB2 ∪RB3 where

R1B = {v ∈ SR | dGRB
(v) ≥ 2}

R2B = {v ∈ SR \R1B | v has a neighbor in GRB that belongs to RB1}
R3B = SR \ (R1B ∪R2B)

and

RB1 = {v ∈ SB | dGRB
(v) ≥ 2}

RB2 = {v ∈ SB \RB1 | v has a neighbor in GRB that belongs to R1B}
RB3 = SB \ (RB1 ∪RB2).

We note that every vertex in R3 has degree 1 in GR, and every vertex in R3B has
degree 1 in GRB . Analogously, every vertex in B3 and RB3 has degree 1 in GB and GRB ,
respectively. In particular, vertices from R3 ∩ R3B and from B3 ∩ RB3 have degree 2 in
G. Further, the neighbor of a vertex from R3 in GR belongs to R3, and, analogously, the
neighbor of a vertex from B3 in GB belongs to B3. We proceed further with the following
series of structural properties of the graph G.

Claim 4.3. δ(G) = 2.

Proof. Recall that G is a sparse TDP-graph with associated partition S = (SR, SB). Thus,
SR and SB are disjoint total dominating sets of G which form a partition of V (G). Every
vertex v ∈ V (G) has at least one neighbor in SR and at least one neighbor in SB . Hence,
δ(G) ≥ 2. Suppose, to the contrary, that δ(G) > 2.
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Suppose thatR1B 6= ∅ and let v ∈ R1B. Let v1, . . . , vk, where k ≥ 2, be the neighbors
of v in GRB . By Claim 4.2 and the definition of the set RB2, we note that for each i ∈ [k],
vi ∈ RB2 and the vertex v is the only neighbor of vi that belongs to the set SR. Further,
since dG(vi) > 2, the vertex vi has at least two neighbors in SB . By Claim 4.2, every
component of the graph GB is a star, implying that no two neighbors of v are adjacent
or have a common neighbor in GB . Further, every neighbor of vi in G different from v
belongs to the set B2, and has the vertex vi as its only neighbor in GB . Thus, the set B2

contains at least 2k vertices at distance 2 from v in G.
For i ∈ [k], let wi denote an arbitrary neighbor of vi in GB , and so wi ∈ B2. Since

dG(wi) > 2 and wi has only one neighbor in SB , namely the vertex vi, we note that
wi ∈ RB1 and therefore wi has at least two neighbors in R2B. By Claim 4.2 and the
definition of the set R2B, we note that every neighbor of wi different from vi belongs to
the set R2B. Further, each such neighbor of wi has exactly one neighbor that belongs to
the set SB , namely the vertex wi, and therefore has at least two neighbors in SR by the
minimum degree condition. By Claim 4.2, every component of the graph GR is a star, and
therefore two distinct vertices of degree at least 2 in GR belong to different components of
GR. This implies that this subset R2B of vertices in SR contains at least 4k vertices.

By the minimum degree condition, these vertices inR2B also belong toR1 and each of
them has at least two neighbors in R2. Further, analogously as before, no two such vertices
are the same, implying that this subset of R2 contains at least 8k − 1 vertices distinct from
v, all of which belong to the set R1B, noting that one of these vertices may possibly be
the vertex v. By repeating this process for all these vertices we see that we have an infinite
process with infinite growth, which is not possible in a finite graph G. Therefore, the set
R1B = ∅. Analogously, the set RB1 = ∅. Therefore, R2B and RB2 are also empty.

We now consider a vertex v ∈ R3B. By Claim 4.2, every component of the graphGRB

is a star, implying that the vertex v has exactly one neighbor in SB and, by the minimum
degree condition, at least two neighbors in SR. Thus, v ∈ R1 and each neighbor of v in
SR belong to R2. Further, by Claim 4.2, each such neighbor of v in R2 has degree 1 in GR

and, therefore, by the minimum degree condition, has at least two neighbors in SB . Thus,
every neighbor of v inR2 belongs to the setR1B, contradicting our earlier observation that
the set R1B is an empty set. This completes the proof of Claim 4.3.

By Claim 4.3, every sparse TDP-graph has minimum degree 2. In particular, δ(G) = 2.
Let D = {v ∈ V (G) | dG(v) = 2}.

Claim 4.4. If a vertex in D is a cut-vertex of G, then (G,S) ∈ G.

Proof. Suppose that a vertex in D is a cut-vertex of G. Suppose firstly that D contains two
adjacent vertices, x and y, that are both cut-vertices ofG, and let e = xy. LetCx andCy be
the components ofG−ewhich contain x and y, respectively. Further, let x′ be the neighbor
of x in Cx and let y′ be the neighbor of y in Cy . We have two possibilities with respect to
the color of the vertices x, x′, y, y′. Either color(x′) = color(x) 6= color(y) = color(y′)
or color(x′) = color(y′) 6= color(x) = color(y). In both cases, let G′ be the graph
obtained from G−{x, y} by adding the edge x′y′, and changing the color of all vertices in
V (Cy) \ {y} while retaining the color of all vertices in V (Cx) \ {x}. Let S′ = (S′R, S

′
B)

be the resulting partition of V (G′). We note that G′ is a TDP-graph, where S′ = (S′R, S
′
B)

is a partition of V (G′) into two total dominating sets and that x′ and y′ are cut vertices of
G′. If x and x′ have the same color in G, then we use Statement 4.1 with the operationO17
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and the cut vertex y′ to show that (G,S) ∈ G, while if x and x′ have different color in G,
we use Statement 4.1 with the operation O17 and the cut vertex x′.

Thus, we may assume that no two adjacent vertices of D are both cut-vertices of G.
Let v be a cut-vertex of G that belongs to D with neighbors u′ and u′′. Without loss of
generality we may assume that color(v) = color(u′′) 6= color(u′). Let Cu′ and Cu′′ be the
components ofG−v containing u′ and u′′, respectively. Since S = (SR, SB) is a partition
of V (G) into two total dominating sets of G, there exists a neighbor of u′ in Cu′ of the
same color as u′ and a neighbor of u′′ in Cu′′ whose color is different from that of u′′. Let
G′ be the graph obtained from G − v by identifying the vertices u′ and u′′ into one new
vertex u, and joining u to every neighbor of u′ and u′′. Further, we assign to u the same
color as that of u′, while we change the color of all vertices in V (Cu′′) \ {u′′} and retain
the color of all vertices in V (Cu′) \ {u′}. Let S′ = (S′R, S

′
B) be the resulting partition of

V (G′). We note that G′ is a TDP-graph, where S′ = (S′R, S
′
B) is a partition of V (G′) into

two total dominating sets. We now use Statement 4.1 with the operation O17 to show that
(G,S) ∈ G, where Hu

1 = Cu′ and Hu
2 = Cu′′ .

By Claim 4.4, we may assume that no vertex in D is a cut-vertex of G, for otherwise
the desired result follows. We note that every vertex in D has one neighbor in SR and one
neighbor in SB . Further, every component in G[D] is a path or a cycle.

Claim 4.5. Let C be a component of G[D]. If C is a cycle or if C is a path of order at
least 5 or if C is a path of order 4 and the ends of C do not have a common neighbor, then
(G,S) ∈ G.

Proof. Suppose that C is a cycle. Since G is a connected TDP-graph, this implies that
G ∼= Cn where n ≡ 0 (mod 4). In this case, G can be obtained from the 2-colored
base graph G1 by repeated applications of operation O9 (or operation O10). Hence, we
may assume that C is a path, for otherwise the desired result follows. Let C be the path
x1 . . . xk, where k ≥ 4. Let u be the neighbor of x1 not on C. If k ≥ 5, let v = x5,
while if k = 4, let v be the neighbor of x4 not on C. By assumption, u 6= v. Let
X = {x1, x2, x3, x4}.

Suppose first that color(u) = color(x1), implying that color(x2) = color(x3) 6=
color(x4) = color(v) = color(x1). If u and v are adjacent in G, let G′ = G − X . In
this case, the graph G′ is a TDP-graph and we use Statement 4.1 with the operation O7 to
show that (G,S) ∈ G. If u and v are not adjacent in G, let G′ be obtained from G−X by
adding the edge uv. Once again, the graph G′ is a TDP-graph. We use Statement 4.1 with
the operation O10 to show that (G,S) ∈ G.

Suppose next that color(u) 6= color(x1), implying that color(x2) = color(v) 6=
color(x3) = color(x4) = color(u). If u and v are adjacent in G, let G′ = G − X .
In this case, the graph G′ is a TDP-graph and we use Statement 4.1 with the operation O8

to show that (G,S) ∈ G. If u and v are not adjacent in G, let G′ be obtained from G−X
by adding the edge uv. Once again, the graph G′ is a TDP-graph. We use Statement 4.1
with the operation O9 to show that (G,S) ∈ G.

By Claim 4.5, we may assume that every component of G[D] is a path-component
of order at most 4, and that the ends of a path-component of G[D] of order 4 have a
common neighbor in G. In what follows we adopt the following notation. Let P be a
path-component of G[D], and so P ∼= Pk for some k ∈ [4]. Let P be the path x1 . . . xk,
and let u and v be the vertices in G that do not belong to P and are adjacent to x1 and xk,
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respectively. We call u and v the vertices in G − V (P ) associated with the path P . By
assumption, if k = 4, then u = v. We note that if k = 1, then u 6= v. We define next a
good path-component.

Definition 4.6. A path-component P of G[D] is a good path-component if P ∼= Pk where
k ∈ [3], and both u and v have neighbors of both colors in the graph G− = G − V (P ),
where u and v are the vertices in G− associated with P .

Claim 4.7. If G[D] contains a good path-component, then (G,S) ∈ G.

Proof. Suppose that G[D] contains a good path-component, P : x1 . . . xk. By definition,
k ∈ [3]. Suppose that k = 1. Since P is a good path-component, the graph G′ = G − x1
is a TDP-graph. Furthermore, color(u) 6= color(v) since G is a TDP-graph. We now use
Statement 4.1 with the operation O3 to show that (G,S) ∈ G.

Suppose that k = 2. Suppose that color(x1) = color(x2). Then, color(u) 6= color(x1)
and either u = v or u 6= v and color(u) = color(v). In both cases, since P is a good path-
component, the graph G′ = G − V (P ) is a TDP-graph. If u = v, we use Statement 4.1
with the operationO11 to show that (G,S) ∈ G, while if u 6= v, we use Statement 4.1 with
the operation O4 to show that (G,S) ∈ G. Suppose that color(x1) 6= color(x2). Then,
color(u) = color(x1) and color(v) = color(x2). Since P is a good path-component, the
graph G′ = G− V (P ) is a TDP-graph, and we use Statement 4.1 with the operationO5 to
show that (G,S) ∈ G.

Suppose that k = 3. Without loss of generality we may assume that color(x1) 6=
color(x2) = color(x3), implying that color(u) = color(x1) and either u = v or u 6= v
and color(u) = color(v). Since P is a good path-component, the graph G′ = G − V (P )
is a TDP-graph. If u = v, we use Statement 4.1 with the operation O12 to show that
(G,S) ∈ G, while if u 6= v, we use Statement 4.1 with the operation O6 to show that
(G,S) ∈ G.

By Claim 4.7, we may assume that G contains no good path-component, for otherwise
the desired result follows. We define next an end-block path component of G[D].

Definition 4.8. A path-component P of G[D] with associated vertices u and v is an end-
block path component of G[D] if u = v.

We are now in a position to present the following property of non-backtracking walks
in the graph G.

Claim 4.9. Suppose that W : w1w2 . . . wk is a non-backtracking walk in G and no vertex
of W belongs to an end-block path component of G[D]. If w2 is not the only neighbor of
w1 in G whose color is color(w2), then wi−1 is the only neighbor of wi in G whose color
is color(wi−1) for all i ∈ [k] \ {1}.

Proof. Since W is a non-backtracking walk in G, we note that no two consecutive edges
onW are equal; that is, wi−1 6= wi+1 for all i ∈ [k−1]\{1}. Suppose, to the contrary, that
the claim is false. Let ` ≥ 2 be the smallest integer such that the vertex w` has a neighbor
different from w`−1 of the same color as w`−1.

Claim 4.9.1. ` ≥ 3.
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Proof. Renaming colors if necessary, we may assume that color(w1) = X . By suppo-
sition, at least one neighbor, say v1, of w1 different from w2 has the same color as w2.
Suppose firstly that color(w2) = X . By supposition, color(v1) = X . If w2 has a neighbor,
z2 say, different from w1, of color X , then either v1 = z2, in which case v1w1w2v1 is a 3-
cycle in GX , or v1 6= z2, in which case v1w1w2z2 is a path P4 in GX . Both cases produce
a contradiction. Suppose secondly that color(w2) = X . By supposition, color(v1) = X .
If w2 has a neighbor, z2 say, different from w1, of color X , then v1w1w2z2 is a path P4

in GRB , a contradiction. We deduce, therefore, that w1 is the only neighbor of w2 whose
color is color(w1). Hence, ` ≥ 3.

By Claim 4.9.1, we have that ` ≥ 3. Renaming colors if necessary, we may assume that
color(w`−1) = X . By supposition, the vertex w` has a neighbor, v`+1 say, different from
w`−1 of the same color asw`−1; that is, color(v`+1) = X . Further sinceG is a TPD-graph,
the vertex w` has a neighbor of color X .

Claim 4.9.2. dG(w`−1) = 2.

Proof. Suppose that dG(w`−1) ≥ 3. Let v` be a neighbor of w`−1 different from w`−2
and w`. Suppose that color(w`−2) = X . By the minimality of `, the vertex w`−2 is the
only neighbor of w`−1 whose color is color(w`−2); that is, all neighbors of w`−1 differ-
ent from w`−2 must have color X . In particular, color(v`) = color(w`) = X . Hence,
v`w`−1w`v`+1 is a path P4 in GRB , a contradiction. Hence, color(w`−2) = X . Thus,
all neighbors of w`−1 different from w`−2 must have color X . In particular, color(v`) =
color(w`) = X . If v` = v`+1, then v`w`−1w`v` is a 3-cycle in GX , a contradiction. If
v` 6= v`+1, then v`w`−1w`v`+1 is a path P4 in GX , a contradiction.

By Claim 4.9.2, the vertex w`−1 has degree 2 in G; that is, w`−1 ∈ D. By supposition,
the vertex w1 has at least two neighbors whose color is color(w2) and at least one vertex
whose color is different from color(w2). In particular, the vertex w1 has degree at least 3 in
G. Let p ≥ 1 be the largest integer such that dG(wp) ≥ 3 and p ≤ `−2. Possibly, p = `−2.
We now consider the path P : wp+1 . . . w`−1 and note that P is a path-component in G[D].
If wp = w`, then P is an end-block path component ofG[D], contradicting the supposition
that no vertex of W belongs to an end-block path component of G[D]. Hence, wp 6= w`

and the vertices wp and w` associated with the path-component P in G[D] are distinct
vertices.

We now consider the graph G− = G − V (P ). By our earlier observations, the vertex
w` has neighbors of both colors in G−. If p = 1, then the vertex wp has neighbors of
both colors in G−. If p ≥ 2, then by the minimality of ` the vertex wp once again has
neighbors of both colors in G−. Thus the path P is a good-path component, contradicting
our earlier assumption that G contains no good path-component. This completes the proof
of Claim 4.9.

Claim 4.10. If G contains a cycle that is not an end-block of G, then (G,S) ∈ G.

Proof. Assume that some cycle C in G is not an end-block in G. Let P be a path-
component of G[D] with associated vertices u and v. Suppose firstly that u = v. Thus,
P is an end-block path component of G[D] and CP = G[V (P ) ∪ {u}] is a cycle in G.
Further, CP is an end-block of G with u as its cut-vertex in G. Suppose that dG(u) ≥ 4.
We now consider the graph G− = G− V (P ). By our earlier assumptions, no vertex in D
is a cut-vertex of G, implying that G− is a connected graph.
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Claim 4.10.1. The vertex u has neighbors of both colors in G−.

Proof. Suppose, to the contrary, that all neighbors of u in G− have the same color. By
supposition, there is a cycle C in G− that contains no vertex that belongs to an end-block
component of G[D]. Hence there exists a non-backtracking walk W : w1w2 . . . wk in G
that starts at the vertex u, proceeds from u toC, goes all the way aroundC, and then returns
to u, without entering any end-block path component of G[D]. We note that k ≥ 3 and that
w1 = wk = u. By our supposition that all neighbors of u in G− have the same color, the
vertex w2 is not the only neighbor of w1 in G whose color is color(w2). By Claim 4.9, the
vertex wk−1 is the only neighbor of wk in G whose color is color(wk−1). This contradicts
our supposition that all neighbors of u in G− have the same color.

By Claim 4.10.1, the vertex u has neighbors of both colors in G−. Since G is a TDP-
graph, this implies that the graphG− is a TDP-graph. Hence, we can use Statement 4.1 with
the operation O11 or O12 or O13, depending on the length of P , to show that (G,S) ∈ G.
We may therefore assume that dG(u) = 3 (and still u = v), for otherwise (G,S) ∈ G,
as desired. Thus, the vertex u has degree 1 in G−. Let x be the neighbor of u in G−.
By our earlier assumptions, no vertex in D is a cut-vertex of G. In particular, the cut-
vertex x does not belong to D, and so dG(x) ≥ 3. We now consider the (connected) graph
G−u = G− − u obtained from G− by deleting the vertex u. Using analogous arguments as
in the proof of Claim 4.10.1, the vertex x has neighbors of both colors in G−u . Hence, we
can use Statement 4.1 with the operation O14 or O15 or O16, depending on the length of
P , to show that (G,S) ∈ G.

Suppose next that u 6= v. Using analogous arguments as in the proof of Claim 4.10.1,
the vertices u and v each have neighbors of both colors in G−u . Thus the path P is a
good-path component, contradicting our earlier assumption that G contains no good path-
component. This completes the proof of Claim 4.10.

By Claim 4.10, we may assume that every cycle inG is an end-block ofG, for otherwise
(G,S) ∈ G as desired. Every block ofG that is not an end-block is a copy ofK2 consisting
of a single edge. By our earlier assumptions, every cycle in G has length 3, 4 or 5. Let
T− be the graph obtained from G by deleting all vertices that belong to an end-block path
component of G[D]. By our earlier assumptions, the graph T− is a tree. In particular,
every vertex of T− is a cut-vertex of G. By our earlier assumptions, no vertex in D is a
cut-vertex of G, implying that every vertex of D belongs to an end-block path component
of G[D]. Hence, every vertex of D belongs to an end-block of G.

Claim 4.11. If two cycles of G intersect, then (G,S) ∈ G.

Proof. Suppose that two different cycles C1 and C2 of G intersect. Since every cycle in G
is an end-block of G, these two cycles intersect in exactly one common vertex, v say.

Claim 4.11.1. If G contains exactly one cut-vertex, then (G,S) is a 2-colored base
graph G3.

Proof. Suppose that G contains exactly one cut-vertex. Since the cut-vertices of G are
precisely the vertices in the tree T−, this implies that V (T−) = {v}. Thus, every block
of G is an end-block that contains the vertex u. Let C1 be the cycle vv1v2 . . . vk−1v and
let color(v) = X , where k ∈ {3, 4, 5}. If k = 3, then color(v1) = color(v2) = X . If
k = 4, then color(v2) = X and, renaming v1 and v3, if necessary, we may assume that
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color(v1) = X and color(v3) = X . If k = 5, then color(v2) = color(v3) = X and
color(v1) = color(v4) = X .

Suppose thatG contains an end-block, C say, that is a 4-cycle. If C ′ is an arbitrary end-
block different from C, then C ′ − v is a good path-component of G[D], a contradiction.
Hence, no end-block of G is a 4-cycle.

Thus, since G is a TDP-graph, at least one end-block is a 3-cycle and at least one end-
block is a 5-cycle. Renaming the end-blocks if necessary, we may assume that C1 is a
3-cycle and C2 is a 5-cycle. These two cycles, together with their associated 2-colorings
described above, form the 2-colored base graph G3. If G contains at least three blocks
and C ′ is an arbitrary end-block different from C1 and C2, then C ′ − v is a good path-
component of G[D], a contradiction. Hence, G contains exactly two end-blocks, implying
that (G,S) is the 2-colored base graph G3.

By Claim 4.11.1, we may assume thatG contains at least two cut-vertices, for otherwise
(G,S) ∈ G as desired. As observed earlier, the cut-vertices of G are precisely the vertices
in the tree T−. Let x be a neighbor of v in T−. Renaming the cycle C1 and C2 and the
vertex x if necessary, we may assume without loss of generality that the vertex v has a
neighbor, y say, in C1 such that color(x) 6= color(y). We now consider the graph G− =
G−(V (C2)\{v}). SinceG is a TDP-graph, this implies that the graphG− is a TDP-graph.
Hence, we can use Statement 4.1 with the operation O11 or O12 or O13, depending on the
length of C2, to show that (G,S) ∈ G.

By Claim 4.11, we may assume that no two cycles ofG intersect, for otherwise (G,S) ∈
G as desired. The tree T− therefore contains at least two vertices. Further, every leaf in T−

has degree 3 in G and belongs to exactly one end-block of G. Let p1p2 . . . pk be a longest
path in T−. Necessarily, p1 and pk are both leaves in T−. Since T− contains no vertex
of D, we note that every vertex in T− has degree at least 3 in G. Let C1 and Ck be the
end-blocks in G that contain p1 and pk, respectively.

Claim 4.12. If k ∈ {2, 3}, then (G,S) ∈ G.

Proof. Suppose firstly that k = 2. In this case, G is obtained from the two cycles C1

and C2 by adding the edge p1p2. If C1 is a 4-cycle, then the cycle C1 together with its
associated 2-coloring is the 2-colored base graph G1. Starting with this 2-colored base
graph G1, we can use Statement 4.1 with the operation O14 or O15 or O16, depending on
the length of C2, to show that (G,S) ∈ G. Analogously, if C2 is a 4-cycle, (G,S) ∈ G.
Hence, we may assume that neither C1 nor C2 is a 4-cycle. With this assumption, if C1 is
a 3-cycle, then C2 is also a 3-cycle noting that G is a TDP-graph. In this case, (G,S) is the
2-colored base graph G2. If C1 is a 5-cycle, then C2 is also a 5-cycle. In this case, (G,S)
is the 2-colored base graph G4. Hence if k = 2, then (G,S) ∈ G.

Suppose secondly that k = 3. We now consider the (connected) graph G− = G −
V (C1). We note that the vertex p2 has degree at least 2 inG−. If the vertex p2 has neighbors
of both colors in G−, then G− is a TPD-graph. In this case, we can use Statement 4.1 with
the operation O14 or O15 or O16, depending on the length of C1, to show that (G,S) ∈ G.
Hence we may assume that all neighbors of p2 inG− have the same color which is different
to color(p1) (noting that G is a TPD-graph). This implies that the vertex p2 has neighbors
of both colors in the graph G− V (C2), and once again we can use Statement 4.1 with the
operationO14 orO15 orO16, depending on the length of C2, to show that (G,S) ∈ G.
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By Claim 4.12, we may assume that k ≥ 4, for otherwise (G,S) ∈ G as desired. We
now consider the (connected) graph G− = G − V (C1). If the vertex p2 has neighbors
of both colors in G−, then as in the proof of Claim 4.12 we can use Statement 4.1 with
the operation O14 or O15 or O16, depending on the length of C1, to show that (G,S) ∈ G.
Hence we may assume that all neighbors of p2 inG− have the same color. We now consider
the walk p2p3 . . . pk. By assumption, p3 is not the only neighbor of p2 in G whose color
is color(p3). By Claim 4.9, the vertex pk−2 is the only neighbor of pk−1 in G whose color
is color(pk−2). This implies that the vertex pk−1 has neighbors of both colors in the graph
G − V (C2). Hence, G − V (C2) is a TPD-graph and we can use Statement 4.1 with the
operation O14 or O15 or O16, depending on the length of C2, to show that (G,S) ∈ G.
This completes the proof of Theorem 3.1.

5 Closing remarks
We remark that although our characterization in Theorem 3.1 solves a long-standing prob-
lem in the theory of total domination in graphs which has been open for several decades,
it remains a challenging problem to determine in polynomial time if a given graph is a
TDP-graph even for some special graph classes. Our method cannot be used to decide if
a given graph G is a TDP-graph in polynomial time. The reason for that is that we have
no specified vertex partition together with G. Indeed, recognizing this class of graphs is
known to be NP-complete (see [8]). However, we nonetheless believe that our construc-
tive proof gives valuable insights into the problem and gives an entirely new description of
TDP-graphs, placing them in another context.

We close with a short discussion about the independence of operations O1 to O17 in
the class G. For this purpose, we will construct small graphs in G from our 2-colored base
graphs that cannot be built by any other construction in G, thereby showing that operation
Oi is independent for each i ∈ [17]. The independence of these seventeen operations used
to build graphs in the family G show that none of them are redundant, and all are needed in
the construction.

• Apply operation O2 on G1 (to obtain the graph K4 − e).
• Apply operationO3 onG1 to obtain the house graph; that is, the graph obtained from

a 5-cycle by adding an edge.

• Apply operation O1 once and operation O2 three times on the house graph to ob-
tain K5.

• Apply operation O4 to two nonadjacent vertices of degree 2 on G2.

• The independence of operation Ox, where x ∈ {5, 6, 11, 12, 13, 14, 15, 16}, can be
seen by applying Ox once on G1.

• The independence of operation Ox, where x ∈ {7, 10}, can be seen by applying Ox

once on adjacent vertices of degree 3 in G2.

• The independence of operation Ox, where x ∈ {8, 9}, can be seen by applying Ox

once on adjacent vertices of degree 3 in G4.

• Apply operation O17 once on the cut-vertex of G3.

Hence, all seventeen operations are independent. Further, our proof of Theorem 3.1
shows that all seventeen operations are necessary to give our characterization of TDP-
graphs.
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Abstract

LetG be the simple group PSU(3, 22n

), n > 0. For any subgroupH ofG, we compute
the Möbius function µL(H,G) of H in the subgroup lattice L of G, and the Möbius func-
tion µL̄([H], [G]) of [H] in the poset L̄ of conjugacy classes of subgroups of G. For any
prime p, we provide the Euler characteristic of the order complex of the poset of non-trivial
p-subgroups of G.

Keywords: Unitary groups, Möbius function, subgroup lattice.
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1 Introduction
The Möbius function µ(H,G) on the subgroups of a finite group G is defined recursively
by µ(G,G) = 1 and

∑
K≥H µ(K,G) = 0 if H < G. This function was used in 1936 by

Hall [12] to enumerate k-tuples of elements of G which generate G, for a given k.
The combinatorial and group-theoretic properties of the Möbius function were investi-

gated by many authors; see the paper [14] by Hawkes, Isaacs, and Özaydin. The Möbius
function is defined more generally on a locally finite poset (P,≤) by the recursive defini-
tion µ(x, x) = 1, µ(x, y) = 0 if x 6≤ y, and

∑
x≤z≤y µ(z, y) = 0 if x ≤ y; for instance,

the poset taken into consideration may be the subgroup lattice L of a finite groupG ordered
by inclusion. Mann [19, 20] studied µ(H,G) in the broader context of profinite groups G
and defined a probabilistic zeta function P (G, s) associated to G, related to the probability
of generating G with s elements when G is positively finitely generated.

The Möbius function on a poset P also appears in the context of topological invariants
of the order simplicial complex ∆(P) associated to P , see the works of Brown [2] and
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Quillen [25]; if P is the subgroup lattice of a finite group G, then the reduced Euler char-
acteristic of ∆(P) is equal to µ({1}, G). This motivates the search for µ({1}, G) indepen-
dently of the knowledge of µ(H,G) for other subgroups H of G, see for instance [26, 27]
and the references therein; µ({1}, G) is often called the Möbius number of G. Shareshian
provided a formula in [26] for µ({1},Sym(n)), and computed µ({1}, G) in [27] when
G ∈ {PGL(2, q),PSL(2, q),PGL(3, q),PSL(3, q),PGU(3, q),PSU(3, q)} with q odd or
G is a Suzuki group Sz(22h+1).

Consider the poset L̄ of conjugacy classes [H] of subgroups H of a finite group G,
ordered as follows: [H] ≤ [K] if and only if H is contained in some conjugate of K in
G. After Hawkes, Isaacs, and Özaydin [14], we denote by λ(H,G) the Möbius function
µ([H], [G]) in L̄, while µ(H,G) is the Möbius function in L. Some attempt was done to
search relations between the Möbius functions µ(H,G) and λ(H,G); Hawkes, Isaacs, and
Özaydin [14] proved that, if G is solvable, then

µ({1}, G) = |G′| · λ({1}, G). (1.1)

The property (1.1), which we call (µ, λ)-property, does not hold in general for non-solvable
groups; see [1]. Pahlings [23] proved that, if G is solvable, then

µ(H,G) = [NG′(H) : H ∩G′] · λ(H,G) (1.2)

for any subgroup H of G. The analysis of the generalized (µ, λ)-property (1.2), although
false in general for non-solvable groups, is of interest since it relates the Möbius functions
µ(H,G) and λ(H,G).

A lot of work was done by several authors about probabilistic functions for groups; see
for instance [6, 10, 19, 20]. In particular, Mann posed in [19] a conjecture, the validity of
which would imply that the sum ∑

H

µ(H,G)

[G : H]s

over all subgroups H < G of finite index of a positively finitely generated profinite group
G is absolutely convergent for s in some right complex half-plane and, for s ∈ N large
enough, represents the probability of generating G with s elements. Lucchini [18] showed
that this problem can be reduced so that Mann’s conjecture is reformulated as follows: there
exist two constants c1, c2 ∈ N such that, for any finite monolithic groupGwith non-abelian
socle,

1. |µ(H,G)| ≤ [G : H]c1 for any H < G such that G = H soc(G), and

2. the number of subgroups H < G of index n in G such that H soc(G) = G and
µ(H,G) 6= 0 is upper bounded by nc2 , for any n ∈ N.

It seems natural to investigate this conjecture on finite monolithic groups starting by almost
simple groups. Mann’s conjecture has been shown to be satisfied by the alternating and
symmetric groups [3], as well as by those families of groups G for which µ(H,G) has
been computed for any subgroup H; namely, PSL(2, q) [8, 12], PGL(2, q) [8], the Suzuki
groups Sz(22h+1) [9], and the Ree groups R(32h+1) [24].

In this paper, we take into consideration the three dimensional projective special unitary
group G = PSU(3, q) over the field with q = 22n

elements, for any positive n (note that
PSU(3, q) = PGU(3, q) as 3 - (q + 1)). In particular, the following results are obtained.
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(i) We compute µ(H,G) for any subgroup H of G, as summarized in Table 1. This
shows that the groups PSU(3, 22n

) satisfy Mann’s conjecture.

(ii) We compute λ(H,G) for any subgroup H of G, as summarized in Table 1. This
shows that the groups PSU(3, 22n

) satisfy the (µ, λ)-property, but do not satisfy the
generalized (µ, λ)-property.

(iii) We compute the Euler characteristic χ(∆(Lp \ {1})) of the order complex of the
poset Lp \ {1} of non-trivial p-subgroups of G, for any prime p, as summarized in
Table 2.

For the subgroups listed in Table 1, the isomorphism type determines a unique conjugacy
class in G.

Table 1: Subgroups H of G = PSU(3, q), q = 22n

, with µ(H) 6= 0 or λ(H) 6= 0.

Isomorphism type of H |H| NG(H) µ(H,G) λ(H,G)

G q3(q3 + 1)(q2 − 1) H 1 1

(Eq . Eq2) o Cq2−1 q3(q2 − 1) H −1 −1

PSL(2, q)× Cq+1 q(q2 − 1)(q + 1) H −1 −1

(Cq+1 × Cq+1) o Sym(3) 6(q + 1)2 H −1 −1

Cq2−q+1 o C3 3(q2 − q + 1) H −1 −1

Eq o Cq2−1 q(q2 − 1) H 1 1

(Cq+1 × Cq+1) o C2 2(q + 1)2 H 1 1

Sym(3) 6 Sym(3)× Cq+1 q + 1 1

C3 3 Cq2−1 o C2
2(q2−1)

3 1

C2 2 (Eq . Eq2) o Cq+1 − q
3(q+1)

2 −1

Table 2: Euler characteristic of the order complex of the poset of proper p-subgroups of G.

Prime p p - |G| p = 2 p | (q + 1) p | (q − 1) p | (q2 − q + 1)

χ(∆(Lp \ {1})) 0 q3 + 1 − q
6−2q5−q4+2q3−3q2

3
q6+q3

2 − q
6+q5−q4−q3

3

The paper is organized as follows. Section 2 contains preliminary results on the Möbius
functions µ(H,G) and λ(H,G) and the relation between the Möbius function and the Euler
characteristic of the order complex; this section contains also preliminary results on the
groups G = PSU(3, 22n

), whose elements are described geometrically in their action on
the Hermitian curve associated to G. Sections 3 and 4 are devoted to the determination
of µ(H,G) and λ(H,G), respectively, for any subgroup H of G. Section 5 provides the
Euler characteristic of the order complex of the poset of proper p-subgroups of G, for any
prime p.
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2 Preliminary results
Let (P,≤) be a finite poset. The Möbius function µP : P × P → Z is defined recursively
as follows:

µP(x, y) = 0 if x 6≤ y; µP(x, x) = 1;
∑

x≤z≤y

µP(z, y) = 0 if x < y.

If x < y, then µP(x, y) can be equivalently defined by∑
x≤z≤y

µP(x, z) = 0.

To the poset P we can associate a simplicial complex ∆(P) whose vertices are the
elements of P and whose i-dimensional faces are the chains a0 < · · · < ai of length
i in P; ∆(P) is called the order complex of P . Provided that P has a least element 0,
the Euler characteristic of the order complex of P \ {0} is computed as follows (see [28,
Proposition 3.8.6]):

χ(∆(P \ {0})) = −
∑

x∈P\{0}

µP(0, x).

Given a finite groupG, we will consider the following two Möbius functions associated
to G.

(i) The Möbius function on the subgroup lattice L of G, ordered by inclusion. We will
denote µL(H,G) simply by µ(H).

(ii) The Möbius function on the poset L̄ of conjugacy classes [H] of subgroups H of G,
ordered as follows: [H] ≤ [K] if and only if H is contained in the conjugate gKg−1

for some g ∈ G. We will denote µL̄([H], [G]) simply by λ(H).

Two facts will be used to compute µ(H). The first easy fact is that, if H and K are
conjugate in G, then µ(H) = µ(K). The second fact is due to Hall [12, Theorem 2.3], and
is stated in the following lemma.

Lemma 2.1. If H < G satisfies µ(H) 6= 0, then H is the intersection of maximal sub-
groups of G.

For any prime p, let Lp be the subposet of L given by all p-subgroups of G, so that

χ(∆(Lp \ {1})) = −
∑

H∈Lp\{1}

µLp({1}, H). (2.1)

By a result of Brown [2], χ(∆(Lp \ {1})) is congruent to 1 modulo the order |G|p of a
Sylow p-subgroup of G. In order to compute explicitly χ(∆(Lp \ {1})) we will use the
following result of Hall [12, Equation (2.7)]:

Lemma 2.2. Let H be a p-group of order pr. If H is not elementary abelian, then
µLp({1}, H) = 0. If H is elementary abelian, then µLp({1}, H) = (−1)rp(

r
2).

We describe now the groupG which will be considered in the following sections. Let n
be a positive integer, q = 22n

, Fq be the finite field with q element, and F̄q be the algebraic
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closure of Fq . Let U be a non-degenerate unitary polarity of the plane PG(2, q2) over Fq2 ,
and Hq ⊂ PG(2, F̄q) be the Hermitian curve defined by U . The following homogeneous
equations define models forHq which are projectively equivalent over Fq2 :

Xq+1 + Y q+1 + Zq+1 = 0; (2.2)

XqZ +XZq − Y q+1 = 0. (2.3)

The models (2.2) and (2.3) are called the Fermat and the Norm-Trace model of Hq , re-
spectively. The set of Fq2 -rational points of Hq is denoted by Hq(Fq2), and consists of
the q3 + 1 isotropic points of U . The full automorphism group Aut(Hq) of Hq is defined
over Fq2 , and coincides with the unitary subgroup PGU(3, q) of PGL(3, q2) stabilizing
Hq(Fq2), of order |PGU(3, q)| = q3(q3 + 1)(q2 − 1).

The combinatorial properties ofHq(Fq2) can be found in [16]. In particular, any line `
of PG(2, q2) has either 1 or q+1 common points withHq(Fq2), that is, ` is either a tangent
line or a chord of Hq(Fq2); in the former case ` contains its pole with respect to U , in the
latter case ` doesn’t. Also, PGU(3, q) acts 2-transitively on Hq(Fq2) and transitively on
PG(2, q2)\Hq; PGU(3, q) acts transitively also on the non-degenerate self-polar triangles
T = {P1, P2, P3} ⊂ PG(2, q2) \ Hq with respect to U . Recall that, if σ ∈ PGU(3, q)
stabilizes a point P ∈ PG(2, q2), then σ stabilizes also the polar line of P with respect to
U , and vice versa.

The curve Hq is non-singular and Fq2 -maximal of genus g = q(q−1)
2 , that is, the size

ofHq(Fq2) attains the Hasse-Weil upper bound q2 + 1 + 2gq. This implies thatHq is Fq4 -
minimal and Fq6 -maximal, so that Hq(Fq4) \ Hq(Fq2) = ∅ and |Hq(Fq6) \ Hq(Fq2)| =

q6 + q5 − q4 − q3. Let Φq2 be the Frobenius map (X,Y, Z) 7→ (Xq2 , Y q
2

, Zq
2

) over
PG(2, F̄q2); then the Fq6 \Fq2 -rational points ofHq split into q6+q5−q4−q3

3 non-degenerate
triangles {P,Φq2(P ),Φ2

q2(P )}. The group PGU(3, q) is transitive on such triangles.
Since 3 - (q + 1), we have PGU(3, q) = PSU(3, q); henceforth, we denote by G

the simple group PSU(3, q). The following classification of subgroups of G goes back to
Hartley [13]; here we use that log2(q) has no odd divisors different from 1. The notation
S2 stands for a Sylow 2-subgroup of G, which is a non-split extension Eq . Eq2 of its
elementary abelian center of order q by an elementary abelian group of order q2.

Theorem 2.3. Let n > 0, q = 22n

, and G = PSU(3, q). Up the conjugation, the maximal
subgroups of G are the following.

(i) The stabilizer M1(P ) ∼= S2 o Cq2−1 of a point P ∈ Hq(Fq2), of order q3(q2 − 1).

(ii) The stabilizer M2(P ) ∼= PSL(2, q)× Cq+1 of a point P ∈ PG(2, q2) \ Hq(Fq2), of
order q(q2 − 1)(q + 1).

(iii) The stabilizer M3(T ) ∼= (Cq+1 × Cq+1) o Sym(3) of a non-degenerate self-polar
triangle T = {P,Q,R} ⊂ PG(2, q2) \ Hq with respect to U , of order 6(q + 1)2.

(iv) The stabilizer M4(T ) ∼= Cq2−q+1 o C3 of a triangle T = {P,Φq2(P ),Φ2
q2(P )} ⊂

Hq(Fq6) \ Hq(Fq2), of order 3(q2 − q + 1).

For a detailed description of the maximal subgroups of G, both from an algebraic and
a geometric point of view, we refer to [11, 21, 22].



382 Ars Math. Contemp. 16 (2019) 377–401

In our investigation it is useful to know the geometry of the elements of PGU(3, q)
on PG(2, F̄q), and in particular on Hq(Fq2). This can be obtained as a corollary of The-
orem 2.3, and is stated in Lemma 2.2 with the usual terminology of collineations of pro-
jective planes; see [16]. In particular, a linear collineation σ of PG(2, F̄q) is a (P, `)-
perspectivity, if σ preserves each line through the point P (the center of σ), and fixes each
point on the line ` (the axis of σ). A (P, `)-perspectivity is either an elation or a homology
according to P ∈ ` or P /∈ `. Lemma 2.4 was obtained in [21] in a more general form (i.e.,
for any prime power q).

Lemma 2.4. For a nontrivial element σ ∈ G = PSU(3, q), q = 22n

, one of the following
cases holds.

(A) ord(σ) | (q + 1) and σ is a homology, with center P ∈ PG(2, q2) \ Hq and axis `P
which is a chord ofHq(Fq2); (P, `P ) is a pole-polar pair with respect to U .

(B) 2 - ord(σ) and σ fixes the vertices P1, P2, P3 of a non-degenerate triangle T ⊂
PG(2, q6).

(B1) ord(σ) | (q+ 1), P1, P2, P3 ∈ PG(2, q2) \Hq , and the triangle T is self-polar
with respect to U .

(B2) ord(σ) | (q2 − 1) and ord(σ) - (q + 1); P1 ∈ PG(2, q2) \ Hq and P2, P3 ∈
Hq(Fq2).

(B3) ord(σ) | (q2 − q + 1) and P1, P2, P3 ∈ Hq(Fq6) \ Hq(Fq2).

(C) ord(σ) = 2; σ is an elation with center P ∈ Hq(Fq2) and axis `P which is tangent
toHq at P , such that (P, `P ) is a pole-polar pair with respect to U .

(D) ord(σ) = 4; σ fixes a point P ∈ Hq(Fq2) and a line `P which is tangent to Hq at
P , such that (P, `P ) is a pole-polar pair with respect to U .

(E) ord(σ) = 2d where d is a nontrivial divisor of q+1; σ fixes two points P ∈ Hq(Fq2)
and Q ∈ PG(2, q2) \ Hq , the polar line PQ of P , and the polar line of Q which
passes through P .

For a detailed description of the elements and subgroups of G, both from an algebraic
and a geometric point of view, we refer to [11, 21, 22], on which our geometric arguments
are based.

Throughout the paper, a nontrivial element of G is said to be of type (A), (B), (B1),
(B2), (B3), (C), (D), or (E), as given in Lemma 2.4. Also, the polar line to Hq at P ∈
PG(2, q2) is denoted by `P . Note that, under our assumptions, any element of order 3 in G
is of type (B2). We will denote a cyclic group of order d by Cd and an elementary abelian
group of order d by Ed. The center Z(S2) of S2 is elementary abelian of order q, and any
element in S2 \ Z(S2) has order 4; see [11, Section 3].

3 Determination of µ(H) for any subgroupH ofG
Let n > 0, q = 22n

, G = PSU(3, q). This section is devoted to the proof of the following
theorem.
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Theorem 3.1. Let H be a proper subgroup of G. Then H is the intersection of maximal
subgroups of G if and only if H is one of the following groups:

S2 o Cq2−1, PSL(2, q)× Cq+1, Cq2−q+1 o C3,

(Cq+1 × Cq+1) o Sym(3), Eq o Cq2−1, (Cq+1 × Cq+1) o C2,

Cq+1 × Cq+1, Cq2−1, C2(q+1),

Cq+1 = Z(M2(P )) for some P, Eq, Sym(3),

C3, C2, {1}.

(3.1)

Given a type of groups in Equation (3.1), there is just one conjugacy class of subgroups of
G of that isomorphism type.

The normalizerNG(H) ofH inG for the groupsH in Equation (3.1) are, respectively:

H, H, H,

H, H, H,

H o Sym(3), H o C2, Eq × Cq+1,

PSL(2, q)×H, S2 o Cq2−1, H × Cq+1,

Cq2−1 o C2, S2 o Cq+1, G.

(3.2)

The values µ(H) for the groups H in Equation (3.1) are, respectively:

−1, −1, −1,

−1, 1, 1,

0, 0, 0,

0, 0, q + 1,

2(q2 − 1)

3
, −q

3(q + 1)

2
, 0.

(3.3)

The proof of Theorem 3.1 is divided into several propositions.

Proposition 3.2. The groupG contains exactly one conjugacy class for any group in Equa-
tion (3.1).

Proof. Case 1: The first four groups in Equation (3.1), i.e.,

S2 o Cq2−1, PSL(2, q)× Cq+1, Cq2−q+1 o C3, and (Cq+1 × Cq+1) o Sym(3),

are the maximal subgroups of G, for which there is just one conjugacy class by Theo-
rem 2.3.

Case 2: Let α1, α2 ∈ G have order 3, so that they are of type (B2) and αi fixes two distinct
points Pi, Qi ∈ Hq(Fq2). The group G is 2-transitive on Hq(Fq2), and the pointwise
stabilizer of {Pi, Qi} is cyclic of order q2 − 1. Hence, 〈α1〉 and 〈α2〉 are conjugated in G.

Case 3: Let α1, α2 ∈ G have order 2, so that they are of type (C) and αi fixes exactly
one point Pi on Hq(Fq2). Up to conjugation P1 = P2, as G is transitive on Hq(Fq2). The
involutions fixing P1 in G, together with the identity, form an elementary abelian group
Eq , which is normalized by a cyclic group Cq−1; no nontrivial element of Cq−1 commutes
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with any nontrivial element of Eq (see [11, Section 4]). Hence, α1 and α2 are conjugated
under an element of Cq−1.

Case 4: Let α1, α2, β1, β2 ∈ G satisfy o(αi) = 3, o(βi) = 2, and Hi := 〈αi, βi〉 ∼=
Sym(3). As shown in the previous point, we can assume α1 = α2 up to conjugation. Let
P,Q ∈ Hq(Fq2) andR ∈ PG(2, q2)\Hq be the fixed points of α1. Since βiα1β

−1
i = α−1

1 ,
we have that βi fixes R and interchanges P and Q; β is then uniquely determined from the
Fq2 -rational point of PQ fixed by β (namely, the intersection between PQ and the axis of
β). Since the pointwise stabilizer Cq2−1 of {P,Q} acts transitively on PQ(Fq2) \ Hq , β1

and β2 are conjugated, and the same holds for H1 and H2.

Case 5: Any two groups isomorphic to Cq2−1 are conjugated in G, because they are gen-
erated by elements of type (B2) and G is 2-transitive onHq(Fq2).

Case 6: Any two groups isomorphic to Eq are conjugated in G, because any such group
fixes exactly one point P ∈ Hq(Fq2), G is transitive on Hq(Fq2), and the stabilizer GP =
M1(P ) contains just one subgroup Eq .

Case 7: Any two groups H1, H2
∼= Eq o Cq2−1 are conjugated in G. In fact, their

Sylow 2-subgroups Eq coincide up to conjugation, as shown in the previous point. The
normalizer NG(Eq) fixes the fixed point P ∈ Hq(Fq2) of Eq , and hence NG(Eq) =
M1(P ) = S2 o Cq2−1. The complements Cq2−1 are conjugated by Schur-Zassenhaus
Theorem; hence, H1 and H2 are conjugated.

Case 8: Any two groups isomorphic to C2(q+1) are conjugated in G, because they are
generated by elements of type (E) and two elements α1, α2 of type (E) of the same order
are conjugated in G. In fact, αi is uniquely determined by its fixed points Pi ∈ Hq(Fq2)
and Qi ∈ `Pi(Fq2) \ Hq; here, `Pi is the polar line of Pi. Up to conjugation P1 = P2,
from the transitivity of G on Hq(Fq2). Also, S2 has order q3 and acts on the q2 points of
`Pi

(Fq2) \ Hq with kernel Eq , hence transitively. We can then assume Q1 = Q2.

Case 9: LetZPi be the center ofM2(Pi), i = 1, 2. As shown in [5, Section 4], ZPi
∼= Cq+1

and ZPi
is made by the homologies with center Pi, together with the identity. Since G is

transitive on PG(2, q2) \ Hq , we have up to conjugation that M2(P1) = M2(P2) and
ZP1

= ZP2
.

Case 10: Any two groups H1, H2
∼= Cq+1 × Cq+1 are conjugated in G. In fact, Hi is the

pointwise stabilizer of a self-polar triangle Ti = {Pi, Qi, Ri} ⊂ PG(2, q2) \ Hq (see [5,
Section 3]), and the stabilizers of T1 and T2 are conjugated by Theorem 2.3.

Case 11: Any two groups H1, H2
∼= (Cq+1 × Cq+1) o C2 are conjugated in G. In fact,

their subgroups Cq+1×Cq+1 coincide up to conjugation as shown above, and fix pointwise
a self-polar triangle T = {P,Q,R} ⊂ PG(2, q2)\Hq . Let βi ∈ Hi have order 2, i = 1, 2.
Then βi fixes one vertex of T and interchanges the other two vertexes. Up to conjugation in
M3(T ) we have β1(P ) = β2(P ) = P . ThenH1 = H2, as they coincide with the stabilizer
of P in M3(T ).

Proposition 3.3. The normalizers NG(H) of the groups H in Equation (3.1) are given in
Equation (3.2).

Proof. Case 1: ClearlyNG(H) = H for anyH from the first four groups of Equation (3.1)
as H is maximal in G.
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Case 2: Let H = Eq o Cq2−1. Then H ≤ M2(P ), where P is the unique fixed point of
Cq2−1 in PG(2, q2) \Hq . The group H has a unique cyclic subgroup Cq+1 of order q+ 1;
namely, Cq+1 is the center of M2(P ) and is made by the homologies with center P ; since
q is even, H is a split extension Cq+1 × (Eq o Cq−1). Hence, NG(H) ≤ NG(Cq+1) =
M2(P ). The group H/Cq+1

∼= Eq o Cq−1 is maximal and hence self-normalizing in
M2(P )/Cq+1 = PSL(2, q); thus, NG(Eq o Cq−1) = H and NG(H) = H .

Case 3: Let H = Cq+1 × Cq+1. Then NG(H) ≤ M3(T ), where T is the self-polar
triangle fixed pointwise by H . Since H is the kernel of M3(T ) in its action on T , we have
NG(H) = M3(T ) and |NG(H)| = 6|H|.

Case 4: Let H = (Cq+1 × Cq+1) o C2. Then Cq+1 × Cq+1 is normal in NG(H), being
the unique subgroup of index 2 in H . Hence NG(H) ≤ M3(T ), where T is the self-polar
triangle fixed pointwise by H . Also, NG(H) fixes the vertex P of T fixed by H , so that
NG(H) 6= M3(T ). This implies NG(H) = H .

Case 5: Let H = Cq2−1. Then H is generated by an element α of type (B2) with fixed
points P,Q ∈ Hq(Fq2) and R ∈ PG(2, q2) \ Hq . Let β be an involution satisfying
β(R) = R, β(P ) = Q, and β(Q) = P ; then β ∈ NG(H), because H coincides with
the pointwise stabilizer of {P,Q} in G. An explicit description is the following: givenHq
with equation (2.3), we can assume up to conjugation that α = diag(aq+1, a, 1) where a is
a generator if F∗q2 (see [11]); then take

β =

0 0 1
0 1 0
1 0 0

 . (3.4)

Since NG(H) acts on {P,Q} and β ∈ NG(H), the pointwise stabilizer H of {P,Q} has
index 2 in NG(H). This implies NG(H) = Cq2−1 o C2 and |NG(H)| = 2|H|.

Case 6: Let H = C2(q+1), so that H is generated by an element α of type (E) fixing
exactly two points P ∈ Hq(Fq2) and Q ∈ `P (Fq2) \ Hq . Then NG(H) fixes P and
Q. The subgroup Eq of M1(P ) commutes with H elementwise, while any 2-element in
M1(P )\Eq has order 4 and does not fixQ; hence, the Sylow 2-subgroup ofNG(H) is Eq .
Also, NG(H) = EqoCd, where Cd is a subgroup of Cq2−1 containing the subgroup Cq+1

of H . Let C2 be the subgroup of H of order 2; the quotient group (C2 o Cd)/Cq+1
∼=

C2 o C d
q+1

acts faithfully as a subgroup of PGL(2, q) on the q + 1 points of `Q ∩Hq . By
the classification of subgroups of PGL(2, q) ([7]; see [17, Hauptsatz 8.27]), this implies
d = 1; that is, NG(H) = Eq o Cq+1 and |NG(H)| = q

2 |H|.

Case 7: Let H = Cq+1 = Z(M2(P )). Since H is the center of M2(P ), M2(P ) ≤
NG(H). Conversely, H is made by homologies with center P , and hence NG(H) fixes P .
Thus, NG(H) = M2(P ) and |NG(H)| = q(q2 − 1)|H|.

Case 8: Let H = Eq . Since Eq has a unique fixed point P on Hq(Fq2) and Eq =
Z(M1(P )), we have NG(H) ≤M1(P ) and M1(P ) ≤ NG(H), so that NG(H) = M1(P )
and |NG(H)| = q2(q2 − 1)|H|.

Case 9: Let H = Sym(3) = 〈α, β〉, with o(α) = 3 and o(β) = 2. Let P,Q ∈ Hq(Fq2)
andR ∈ PG(2, q2)\Hq be the fixed points of α; β fixesR, interchanges P andQ, and fixes
another pointAβ on `R∩Hq . The groupNG(H) acts on {P,Q} and on {Aβ , Aαβ , Aα2β}.
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The pointwise stabilizerCq2−1 has a subgroupCq+1 which is the center ofM2(P ) and fixes
PQ pointwise, while any element in Cq2−1 \ Cq+1 acts semiregularly on PQ \ {P,Q};
hence,Cq2−1∩NG(H) = C3(q+1). If an element γ ∈ NG(H) fixes {P,Q} pointwise, then
γ fixes a point in {Aβ , Aαβ , Aα2β}, and hence γ ∈ {β, αβ, α2β}. Therefore, NG(H) =
C3(q+1) o C2 = H × Cq+1 and |NG(H)| = (q + 1)|H|.

Case 10: Let H = C3 and α be a generator of H , with fixed points P,Q ∈ Hq(Fq2) and
R ∈ PG(2, q2) \ Hq . The normalizer NG(H) fixes R and acts on {P,Q}. There exists an
involution β ∈ G normalizing H and interchanging P and Q (see Equation (3.4)). Then
the pointwise stabilizer of {P,Q} has index 2 in NG(H). Also, the pointwise stabilizer
of {P,Q} in G is cyclic of order q2 − 1. Then NG(H) = Cq2−1 o C2 and |NG(H)| =
2(q2−1)

3 |H|.

Case 11: Let H = C2 and α be a generator of H , with fixed point P ∈ Hq(Fq2). Then
NG(H) fixes P , i.e. NG(H) ≤ M1(P ) = S2 o Cq2−1. Since any involution of M1(P )
is in the center of S2, the Sylow 2-subgroup of NG(H) has order q3. Let β ∈ Cq2−1. If
o(β) | (q + 1), then β commutes with any involution of S2. If o(β) - (q + 1), then β
does not commute with any element of S2. This implies that NG(H) = S2 o Cq+1, and
|NG(H)| = q3(q+1)

2 |H|.

Lemma 3.4. Let α ∈ G be an involution, and hence an elation, with center P and axis `P .
Then there exist exactly q3/2 self-polar triangles Ti,j = {Pi, Qi,j , Ri,j}, i = 1, . . . , q2,
j = 1, . . . , q2 , such that α stabilizes Ti,j . Also, Pi ∈ `P and P ∈ Qi,jRi,j for any i and j.

Proof. The number of involutions in G is (q3 + 1)(q − 1), since for any of the q3 + 1
Fq2 -rational points P ofHq the involutions fixing P form a group Eq . The number of self-

polar triangles T ⊂ PG(2, q2) \ Hq is [G : M3(T )] = (q3+1)q3(q2−1)
6(q+1)2 . For any self-polar

triangle T = {A1, A2, A3} ⊂ PG(2, q2) \ Hq , the number of involutions in G stabilizing
T is 3(q + 1). In fact, for any of the 3 vertexes of T there are exactly q + 1 involutions
α1, . . . , αq+1 fixing that vertex, say A1, and interchanging A2 and A3; αi is uniquely
determined by its center A2A3 ∩Hq . Then, by double counting the size of

{(β, T ) | β ∈ G, o(β) = 2, T ⊂ PG(2, q2) \ Hq is a self-polar triangle,
β stabilizes T},

α stabilizes exactly q3

2 self-polar triangles T . For any such T , one vertex Pi of T lies
on the axis of α, because α is an elation, and the other two vertexes {Qi,j , Ri,j} of T
lie on the polar line `Pi of Pi. Since M1(P ) is transitive on the q2 points P1, . . . , Pq2 of
`P (Fq2) \ {P}, any point Pi is contained in the same number q2 of self-polar triangles Ti,j
stabilized by α.

Lemma 3.5. Let α ∈ G have order 3. Then there are exactly q2−1
3 self-polar triangles

Ti ⊂ PG(2, q2) \ Hq, i = 1, . . . , q
2−1
3 ,

which are stabilized by α. Also, there are exactly 2(q2−1)
3 triangles

T̃j = {Pj ,Φq2(Pj),Φ
2
q2(Pj)} ⊂ Hq(Fq6) \ Hq(Fq2), j = 1, . . . , 2(q2−1)

3 ,

which are stabilized by α.
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Proof. By Proposition 3.2, any two subgroups of G of order 3 are conjugated in G. Also,
any element of order 3 is conjugated to its inverse by an involution of G. Hence, any two
element of order 3 are conjugated in G.

Now the claim follows by double counting the size of

{(β, T ) | β ∈ G, o(β) = 3, T ⊂ PG(2, q2) \ Hq is a self-polar triangle,
β stabilizes T},

and

{(β, T̃ ) | β ∈ G, o(β) = 3, T̃ = {P,Φq2(P ),Φ2
q2(P )} with

P ∈ Hq(Fq6) \ Hq(Fq2), β stabilizes T̃},

using the following facts. The number of elements of order 3 in G is
(
q3+1

2

)
· 2. The

number of self-polar triangles T ⊂ PG(2, q2) \ Hq is [G : M3(T )]. The number of
elements of order 3 stabilizing a fixed self-polar triangle T is 2(q+1)2, because any element
acting as a 3-cycle on the vertexes of T has order 3 (see [5, Section 3]). The number of
triangles T̃ = {P,Φq2(P ),Φ2

q2(P )} ⊂ Hq(Fq6) \ Hq(Fq2) is [G : M4(T̃ )]. The number
of elements of order 3 stabilizing a fixed triangle T̃ is 2(q2 − q + 1), because any element
in M4(T̃ ) \ Cq2−q+1 has order 3 (see [4, Section 4]).

Lemma 3.6. LetH < G be isomorphic to Sym(3), H = 〈α〉o〈β〉. Then there are exactly
q + 1 self-polar triangles

Ti = {Pi, Qi, Ri} ⊂ PG(2, q2) \ Hq, i = 1, . . . , q + 1,

which are stabilized by H . Up to relabeling the vertexes, we have that P1, . . . , Pq+1 lie on
the axis of the elation β, Q1, . . . , Qq+1 lie on the axis of the elation αβ, and R1, . . . , Rq+1

lie on the axis of the elation α2β.

Proof. By Proposition 3.2, any two subgroups K1,K2 < G with Ki
∼= Sym(3) are con-

jugated, and |NG(Ki)| = 6(q + 1); hence, the number of subgroups of G isomorphic
to Sym(3) is [G : NG(Ki)] = (q3+1)q3(q−1)

6 . The number of self-polar triangles T is

[G : M3(T )] = (q2−q+1)q3(q−1)
6 . Then the claim on the number of self-polar triangles

follows by double counting the size of

{(K,T ) | K < G, K ∼= Sym(3), T ⊂ PG(2, q2) \ Hq is a self-polar triangle,
K stabilizes T},

once we show that, for any self-polar triangle T = {A,B,C}, there are in G exactly
(q + 1)2 subgroups isomorphic to Sym(3) which stabilize T .

Let K < M3(T ), K ∼= Sym(3), K = 〈α, β〉 with o(α) = 3, o(β) = 2. Let P,Q,R
be the fixed points of α, with P ∈ PG(2, q2) \ Hq , Q,R ∈ Hq(Fq2). By Proposition 3.3,
NG(K) = K × Cq+1 where Cq+1 is made by homologies with center P ; this implies
NG(K) ∩M3(T ) = K. Hence, there are at least [M3(T ) : Sym(3)] = (q + 1)2 distinct
groups Sym(3) stabilizing T , namely the conjugates of K through elements of M3(T ).
On the other side, M3(T ) contains exactly (q + 1)2 subgroups K of order 3, with fixed
points P ∈ PG(2, q2) \ Hq , Q,R ∈ Hq(Fq2). Any involution β of M3(T ) normalizing
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K is uniquely determined by the vertex of T that β fixes, because β(P ) = P , β(Q) = R,
and β(R) = Q. Thus, K is contained in exactly one subgroup of M3(T ) isomorphic
to Sym(3). Therefore the number of subgroups isomorphic to Sym(3) which stabilize T
is (q + 1)2.

Finally, the configuration of the vertexes of T1, . . . , Tq+1 on the axes of the involutions
of H follows from Lemma 2.4 and the fact that every involution fixes a different vertex
of Ti.

Proposition 3.7. Any group H in Equation (3.1) is the intersection of maximal subgroups
of G.

Proof. Case 1: The first four groups of Equation (3.1) are exactly the maximal subgroups
of G.

Case 2: Let H = Eq o Cq2−1. Let P ∈ Hq(Fq2) be the unique point of Hq fixed by
Eq; Eq fixes `P pointwise. Also, the fixed points of Cq2−1 are P,Q ∈ Hq(Fq2) and
R ∈ PG(2, q2) \ Hq , where R ∈ `P and PQ = `R. Then H ≤ M1(P ) ∩ M2(R).
Conversely, from M1(P ) ∩M2(R) ≤ M1(P ) follows M1(P ) ∩M2(R) = K o Cd with
K ≤ S2 and Cd ≤ Cq2−1. From M1(P ) ∩M2(R) ≤ M2(R) follows that K does not
contain any element of type (D), so that K ≤ Eq . Thus, M1(P ) ∩ M2(R) ≤ H , and
H = M1(P ) ∩M2(R).

Case 3: Let H = (Cq+1 × Cq+1) o C2. Let T = {P,Q,R} ⊂ PG(2, q2) \ Hq be the
self-polar triangle fixed pointwise by Cq+1 × Cq+1, and let P be the vertex of T fixed by
C2. Then H ≤M3(T ) ∩M2(P ). Conversely, since M3(T ) ∩M2(P ) fixes P and acts on
{Q,R}, the pointwise stabilizerCq+1×Cq+1 of T has index at most 2 inM3(T )∩M2(P ),
so that M3(T ) ∩M2(P ) ≤ H . Thus, H = M3(T ) ∩M2(P ).

Case 4: Let H = Cq+1 × Cq+1. Let T = {P,Q,R} ⊂ PG(2, q2) \ Hq be the self-polar
triangle fixed pointwise by Cq+1 × Cq+1. Since H is the whole pointwise stabilizer of T
in G, we have H = M2(P ) ∩M2(Q) ∩M2(R).

Case 5: Let H = Cq2−1 and let α be a generator of H , with fixed points P,Q ∈ Hq(Fq2)
and R ∈ PG(2, q2) \ Hq . The pointwise stabilizer of {P,Q} in G is exactly H; thus,
H = M1(P ) ∩M2(Q).

Case 6: Let H = C2(q+1) and let α be a generator of H , of type (E), with fixed points
P ∈ Hq(Fq2) and Q ∈ `P (Fq2) \ Hq . By Lemma 3.4 there are q

2 self-polar triangles
stabilized by the involution αq+1 having one vertex in Q and two vertexes on `Q; let T =
{Q,R1, R2} be one of these triangles. Then H ≤M1(P ) ∩M2(Q) ∩M3(T ).

Conversely, let σ ∈ (M1(P )∩M2(Q)∩M3(T )) \ {1}. If σ fixes {R1, R2} pointwise,
then from σ ∈ M1(P ) follows that σ is in the kernel Cq+1 ≤ H of the action of M2(Q)
on `Q. The quotient (M1(P ) ∩ M2(Q) ∩ M3(T ))/Cq+1 acts on `Q as a subgroup of
PSL(2, q) fixing P and interchanging R1 and R2. From [17, Hauptsatz 8.27] follows
(M1(P ) ∩M2(Q) ∩M3(T ))/Cq+1

∼= C2, and hence H = M1(P ) ∩M2(Q) ∩M3(T ).

Case 7: Let H = Cq+1 = Z(M2(P )). Then H is made by the homologies of G with
center P , together with the identity. Thus, H = M1(P1) ∩ M1(P2) ∩ M1(P3), where
P1, P2, P3 are distinct point in `P ∩Hq .
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Case 8: Let H = Eq and let P be the unique point of Hq(Fq2) fixed by any element
in H . Then H = M2(P1) ∩M2(P2) ∩M2(P3), where P1, P2, P3 are distinct points in
`P (Fq2) \ {P}.

Case 9: Let H = C2, α be a generator of H with fixed point P ∈ Hq(Fq2), and
P1, P2, P3 ∈ `P (Fq2) \ {P}. Let T = {P1, Q1,1, R1,1} be a self-polar triangle stabi-
lized by α. Then H ≤ M2(P1) ∩M2(P2) ∩M2(P3) ∩M3(T ). Since the elation α is
uniquely determined by the image of one point not on its axis `P , H ≤ M3(T ) implies
H = M2(P1) ∩M2(P2) ∩M2(P3) ∩M3(T ).

Case 10: Let H = C3. By Lemma 3.5, H stabilizes 2(q2−1)
3 triangles T̃ ⊂ Hq(Fq6) \

Hq(Fq2); let T̃1 and T̃2 be two of them. Then H ≤ M4(T̃1) ∩ M4(T̃2). If H <

M4(T̃1) ∩M4(T̃2), then there exist a nontrivial σ ∈ G stabilizing pointwise both T̃1 and
T̃2, a contradiction to Lemma 2.4. Thus, H = M4(T̃1) ∩M4(T̃2).

Case 11: Let H = Sym(3). By Lemma 3.6, H stabilizes q + 1 self-polar triangles
T1, . . . , Tq+1, so that H ≤ M3(T1) ∩ · · · ∩ M3(Tq+1). Suppose by contradiction that
H 6= M3(T1) ∩ · · · ∩M3(Tq+1). Then M3(T1) ∩ · · · ∩M3(Tq+1) contains a nontrivial
element σ fixing every triangle Ti pointwise. Since the triangles Ti’s do not have vertexes
in common, this is a contradiction to Lemma 2.4. Thus, H = M3(T1) ∩ · · · ∩M3(Tq+1).

Case 12: Let H = {1}. Since G is simple, H is the Frattini subgroup of G.

Proposition 3.8. If H < G is the intersection of maximal subgroups, then H is one of the
groups in Equation (3.1).

Proof. We proceed as follows: we take every subgroup K < G in Equation (3.1), starting
from the maximal subgroups Mi of G; we consider the intersections H = K ∩Mi of K
with the maximal subgroups ofG; here, we assume thatK 6≤Mi. We show thatH is again
one of the groups in Equation (3.1).

Case 1: Let K = S2 o Cq2−1 = M1(P ) for some P ∈ Hq(Fq2).
Let H = K ∩ M1(Q), Q 6= P . Then H is the pointwise stabilizer of {P,Q} ⊂

Hq(Fq2), which is cyclic of order q2 − 1, i.e. H = Cq2−1.
Let H = K ∩M2(Q). Suppose Q ∈ `P . Then H = Eq2 oCq2−1, where Eq2 is made

by the elations with axis PQ and Cq2−1 is generated by an element of type (B2) with fixed
points Q, P , and another point R ∈ `Q. Now suppose Q /∈ `P . Then H stabilizes `Q and
hence also the point R = `P ∩ `Q. Then H stabilizes QR and hence also the pole A of
QR; by reciprocity, A ∈ PQ. Thus, H fixes three collinear point A,P,Q, and hence every
point on AP . Then H = Cq+1 = Z(M2(R)).

Let H = K ∩M3(T ), T = {A,B,C}, with P on a side of T , say P ∈ AB. Then
H fixes C and acts on {A,B}. Thus, H is generated by an element of type (E) with fixed
points P,C and fixed lines PC,AB; hence, H = C2(q+1).

Let H = K ∩M3(T ), T = {A,B,C}, with P out of the sides of T . By reciprocity,
no vertex of T lies on `P . This implies that no elation acts on T , so that 2 - |H|; this also
implies that no homology in M3(T ) fixes P , so that H has no nontrivial elements fixing T
pointwise. Thus H ≤ C3.

Let H = K ∩M4(T ). By Lagrange’s theorem, H ≤ C3.

Case 2: Let K = PSL(2, q)× Cq+1 = M2(P ) for some P ∈ PG(2, q2) \ Hq .
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Let H = K ∩M2(Q), Q 6= P , and R be the pole of PQ. If R ∈ PQ, then H is the
pointwise stabilizer of PQ and is made by the elations with center R; thus, H = Eq . If
R /∈ PQ, then H is the pointwise stabilizer of T = {P,Q,R}; thus, H = Cq+1 × Cq+1.

Let H = K ∩M3(T ) with T = {A,B,C}. If P is a vertex of T , then H = (Cq+1 ×
Cq+1) o C2. If P is on a side of T but is not a vertex, say P ∈ AB, then H fixes the pole
D ∈ AB of C. Then H fixes pointwise T ′ = {P,C,D} and acts on {A,B}. This implies
that H fixes AB pointwise and H = Cq+1 = Z(M2(C)). If P is out of the sides of T ,
then no nontrivial element of H fixes T pointwise; thus, H ≤ Sym(3).

Let H = K ∩M4(T ). By Lagrange’s theorem, H ≤ C3.

Case 3: Let K = (Cq+1 × Cq+1) o Sym(3) = M3(T ) for some self-polar triangle
T = {A,B,C}.

Let H = K ∩M3(T ′) with T ′ = {A′, B′, C ′} 6= T . If T and T ′ have one vertex
A = A′ in common, thenH = C2(q+1) is generated by an element of type (E) fixingA and
a point D ∈ BC = B′C ′. If A′ ∈ AC \ {A,C}, then H stabilizes B′C ′, because B′C ′

is the only line containing 4 points of {A,B,C,A′, B′, C ′}. Then H fixes A′, A, and C;
hence also B. Since H acts on {B′, C ′}, H cannot be made by nontrivial homologies of
center B; thus, H = {1}.

Let H = K ∩M4(T ′). By Lagrange’s theorem, H ≤ C3.

Case 4: LetK = Cq2−q+1oC3 = M4(T ) for some T ⊂ Hq(Fq6). LetH = K∩M4(T ′)
with T ′ 6= T . Since 3 does not divide the order of the pointwise stabilized Cq2−q+1 of T ,
H contains no nontrivial elements fixing T or T ′ pointwise. Thus, H ≤ C3.

Case 5: Let K = Eq o Cq2−1 and P ∈ Hq(Fq2), Q ∈ `P \ {P} be the fixed points of K.
Let H = K ∩M1(R) with R 6= P . If R ∈ `Q, then H = Cq2−1. If R /∈ `Q, then

H fixes the pole S of PR; by reciprocity S ∈ PQ, so that H fixes PQ pointwise and also
R /∈ PQ. Thus, H = {1}.

Let H = K ∩M2(R) with R 6= Q. If R ∈ `P , then H is the pointwise stabilizer Eq
of PQ. If R /∈ `P , then H fixes pointwise the self-polar triangle {Q,R, S} where S is the
pole of QR. Hence, either H = Cq+1 = Z(M2(Q)) or H = {1} according to P ∈ RS or
P /∈ RS, respectively.

Let H = K ∩M3(T ) with T = {A,B,C}. If P is on a side of T , say P ∈ BC,
then either H = {1} or H = Cq+1 = Z(M2(A)). If P is out of the sides of T , then no
nontrivial element of H can fix T pointwise; thus, H ≤ Sym(3).

Let H = K ∩M4(T ). By Lagrange’s theorem, H ≤ C3.

Case 6: Let K = (Cq+1 × Cq+1) o C2 = M3(T ) ∩M2(A), where T = {A,B,C}.
Let H = K ∩M1(P ). If P ∈ BC, then H = C2(q+1) is generated by an element of

type (E). If P /∈ BC, then H = {1}.
Let H = K ∩M2(P ), P 6= A. If P ∈ {B,C}, then H is the pointwise stabilizer

Cq+1 × Cq+1 of T . If P ∈ AB \ {A,B} or P ∈ AC \ {A,C}, then H = Cq+1 =
Z(M2(C)) or H = Cq+1 = Z(M2(B)), respectively. If P ∈ BC \ {B,C}, then H fixes
A, P , the pole of AP , and acts on {B,C}; thus, H = Cq+1 = Z(M2(A)). If P is not on
the sides of T , then no nontrivial element of H can fix T pointwise; thus, H ≤ C2.

Let H = K ∩M3(T ′) with T ′ = {A′, B′, C ′} 6= T . Since 3 - |H|, H fixes a vertex of
T ′, say A′. If A′ = A, then H = C2(q+1). If A′ ∈ {B,C}, then H fixes T pointwise and
acts on {B′, C ′}; thus, H = Cq+1 = Z(M2(A′)). If A′ ∈ (AB ∪ AC) \ {A,B,C}, then
H fixes AB or AC pointwise and acts on {B′, C ′}; thus, H = {1}. If A′ ∈ BC, then H
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fixes A, A′, and the pole D of AA′; as H acts on {B,C}, this implies H = {1}. If A′ is
not on the sides of T , then no nontrivial element of H fixes T pointwise and H ≤ C2.

Let H = K ∩M4(T ′). By Lagrange’s theorem, H ≤ C3.

Case 7: Let K = Cq+1 × Cq+1 = M3(T ) ∩ M2(A) ∩ M2(B) ∩ M2(C) with T =
{A,B,C}.

LetH = K∩M1(P ) orH = K∩M2(P ). If P is not on the sides of T , thenH = {1};
if P is on a side of T , say P ∈ BC, then H = Cq+1 = Z(M2(A)).

LetH = K ∩M3(T ′) with T ′ = {A′, B′, C ′}. SinceK is not divisible by 2 or 3, H 6=
{1} only if H fixes T ′ pointwise. Up to relabeling, this implies A′ = A, B′, C ′ ∈ BC,
and H = Cq+1 = Z(M2(A)).

Let H = K ∩M4(T ′). By Lagrange’s theorem, H = {1}.

Case 8: Let K = Cq2−1 = 〈α〉, with α of type (B2) fixing the points P ∈ PG(2, q2) \Hq
and Q,R ∈ Hq(Fq2).

Let H = K ∩M1(A) or H = K ∩M2(A). Since the nontrivial elements of H are
either of type (B2) or of type (A) with axis QR, we have H = {1} unless A ∈ QR; in this
case, H = Cq+1 = Z(M2(P )).

Let H = K ∩M3(T ) or H = K ∩M4(T ). By Lagrange’s theorem, H ≤ C3.

Case 9: Let K = C2(q+1) = 〈α〉 with α of type (E) fixing the points P ∈ Hq(Fq2) and
Q ∈ PG(2, q2) \ Hq .

Let H = K ∩M1(R) or H = K ∩M2(R). If R ∈ `Q, then H = Cq+1 = Z(M2(Q)).
If R /∈ `Q, then H = {1}.

Let H = K ∩M3(T ); recall that H < K. If Q is a vertex of T , then H = Cq+1 =
Z(M2(Q)). If Q is not a vertex of T , then no homology in K acts on T ; hence, H ≤ C2.

Let H = K ∩M4(T ). By Lagrange’s theorem, H = {1}.

Case 10: Let K = Cq+1 = Z(M2(P )) for some P ∈ PG(2, q2) \ Hq and σ ∈ K \ {1}.
Then σ fixes no points out of {P} ∪ `P ; also, the triangles fixed by σ have one vertex in
P and two vertexes on `P . Thus, K ∩Mi = {1} for any maximal subgroup Mi of G not
containing K.

Case 11: Let K = Eq and σ ∈ Eq \ {1}. Recall that K fixes one point P ∈ Hq(Fq2) and
the line `P pointwise. Also, σ fixes no points out of `P . If σ fixes a triangle T = {A,B,C},
then one vertex of T lies on `P (Fq2), say A, and σ is uniquely determined by σ(B) = C.
Thus, K ∩M1(Q) = K ∩M2(Q) = K ∩M4(T ′) = {1} and K ∩M3(T ) ≤ C2.

Case 12: LetK ∈ {Sym(3), C3, C2, {1}}. Then every subgroup ofK is in Equation (3.1).

Proposition 3.9. The values µ(H) for the groups in Equation (3.1) are given in Equa-
tion (3.3).

Proof. Let H be one of the groups in Equation (3.1). By Lemma 2.1 and Proposition 3.8,
µ(H) only depends on the subgroupsK ofG such thatH < K andK is in Equation (3.1).

Case 1: If H is one of the first four groups in Equation (3.1), then H is maximal in G, and
hence µ(H) = −1.

Case 2: Let H = Eq o Cq2−1. Let P ∈ Hq(Fq2) and Q ∈ PG(2, q2) \ Hq be the fixed
points of H . Then H = M1(P ) ∩M2(Q) and H is not contained in any other maximal
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subgroup of G. Thus, µ(H) = −{µ(G) + µ(M1(P )) + µ(M2(Q))} = 1.

Case 3: Let H = (Cq+1 × Cq+1) o C2. Let T = {P,Q,R} be the self-polar triangle
stabilized by H , with H(P ) = P . No point different from P is fixed by H . Also, if a
triangle T ′ = {P ′, Q′} 6= T is fixed by H , then P is a vertex of T ′, say P = P ′, and
{Q′, R′} ⊂ QR; but Cq+1 × Cq+1 has orbits of length q + 1 > |{Q′, R′}|, so that H
cannot fix T ′. Then H = M2(P ) ∩M3(T ) and H is not contained in any other maximal
subgroup of G. Thus, µ(H) = 1.

Case 4: Let H = Cq+1 × Cq+1 and T = {P,Q,R} be the self-polar triangle fixed
pointwise by H . The vertexes of T are the unique fixed points of the elements of type (B1)
in H . Also, any triangle T ′ 6= T fixed by an element of type (A) in H has two vertexes on
a side ` of T ; but H has orbits of length q + 1 > 2 on `, so that H does not fix T ′. Then
H = M3(T ) ∩M2(P ) ∩M2(Q) ∩M2(R) and H is not contained in any other maximal
subgroup of G.

If K is one of the groups M3(T ) ∩M2(P ), M3(T ) ∩M2(P ), M3(T ) ∩M2(P ), then
K contains H properly, and µ(K) = 1 as shown in the previous point. The intersection of
three groups between M3(T ), M2(P ), M2(Q), and M2(R) is equal to H . Thus, by direct
computation, µ(H) = 0.

Case 5: Let H = Cq2−1 with fixed points P ∈ PG(2, q2) \ Hq and Q,R ∈ Hq(Fq2).
Then H = M1(Q)∩M1(R) = M1(Q)∩M1(R)∩M2(P ). We already know µ(M1(Q)∩
M2(P )) = µ(M1(R) ∩M2(P )) = 1. Moreover, Cq2−1 has no fixed triangles, by La-
grange’s theorem, and no other fixed points. Thus, by direct computation, µ(H) = 0.

Case 6: Let H = C2(q+1) = 〈α〉; α is of type (E), fixes the points P ∈ Hq(Fq2) and
Q ∈ PG(2, q2)\Hq , and fixes the lines `P and `Q. Since α2 is a homology with center Q,
the orbits on `Q of H coincide with the orbits on `Q of the elation αq+1. By Lemma 3.4,
the self-polar triangles Ti stabilized by H have a vertex in Q and two vertexes on `Q; there
are exactly q

2 such triangles T1, . . . , T q
2

. No other triangle and no other point different from
P and Q is fixed by H , so that H = M1(P ) ∩M2(Q) ∩M3(T1) ∩ · · · ∩M3(T q

2
) and H

is not contained in any other maximal subgroup of G.
IfK is the intersection ofM2(Q) with one of the groupsM1(P ),M3(T1), . . . ,M3(T q

2
),

then K = Eq o Cq2−1 or K = (Cq+1 × Cq+1) o C2; hence, K contains H prop-
erly and µ(K) = 1 as shown above. The intersection of K with a third maximal sub-
group of G containing H coincides with H . Finally, the intersection of any two groups
in {M1(P ),M3(T1), . . . ,M3(T q

2
)} coincides with H . Thus, by direct computation,

µ(H) = 0.

Case 7: Let H = Cq+1 = Z(M2(P )). Denote `P ∩ Hq = {P1, . . . , Pq+1} and `(Fq2) \
Hq = {Q1, . . . , Qq2−q} such that, for i = 1, . . . , q

2−q
2 , Ti = {P,Qi, Qi+ q2−q

2

} are the
self-polar triangles with a vertex in P . Then

H =

q+1⋂
i=1

M1(Pi) ∩M2(P ) ∩
q2−q⋂
i=1

M2(Qi) ∩
(q2−q)/2⋂
i=1

M3(Ti)

and H is not contained in any other maximal subgroup of G. By direct inspection, the
intersections K of some (at least two) maximal subgroups of G such that H < K < G are
exactly the following.
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(i) K = M1(Pi) ∩M1(Pj) for some i 6= j; in this case, K = Cq2−1 and µ(K) = 0.

(ii) K = M1(Pi) ∩M2(P ) with i ∈ {1, . . . , q + 1}; in this case, K = Eq o Cq2−1 and
µ(K) = 1. These q + 1 groups are pairwise distinct.

(iii) K = M1(Pi) ∩M3(Tj) for some i, j; in this case, K = C2(q+1) and µ(K) = 0.

(iv) K = M2(P ) ∩M2(Qi) for some i; in this case, K = Cq+1 × Cq+1 and µ(K) = 0.

(v) K = M2(P )∩M3(Ti) with i ∈ {1, . . . , q
2−q
2 }; in this case, K = (Cq+1×Cq+1)o

C2 and µ(K) = 1. These q2−q
2 groups are pairwise distinct.

(vi) K = M2(Qi) ∩M3(Ti) or K = M2(Q
i+ q2−q

2

) ∩M3(Ti), with i ∈ {1, . . . , q
2−q
2 };

in this case, K = (Cq+1 × Cq+1) o C2 and µ(K) = 0. These q2 − q groups are
pairwise distinct.

To sum up, the only subgroups K with H < K < G and µ(K) 6= 0 are the maximal
subgroups, q + 1 distinct groups of type Eq o Cq2−1, and 3(q2−q)

2 distinct groups of type
(Cq+1 × Cq+1) o C2. Thus, µ(H) = 0.

Case 8: Let H = Eq . Let P be the point of Hq(Fq2) fixed by H; H fixes `P pointwise.
We have H = M1(P ) ∩ M2(Q1) ∩ · · · ∩ M2(Qq2), where Q1, . . . , Qq2 are the Fq2 -
rational points of `P \ {P}; H is not contained in any other maximal subgroup of G.
The intersections K of at least two maximal subgroups of G such that H < K < G are
exactly the q2 groups M1(P ) ∩M2(Qi) = Eq o Cq2−1, with µ(K) = 1. Thus, by direct
computation, µ(H) = 0.

Case 9: Let H = Sym(3) = 〈α, β〉 with o(α) = 3 and o(β) = 2. Let P ∈ PG(2, q2)\Hq
and Q,R ∈ Hq be the fixed points of α, and A ∈ QR be the fixed point of β onHq , so that
β fixes `A = AP . By Lemma 3.6 and its proof, H = M2(P )∩M3(T1)∩ · · · ∩M3(Tq+1),
where Ti has one vertex on `A \ {P,A} and the other two vertexes are collinear with A; H
is not contained in any other maximal subgroup of G.

For any i, j ∈ {1, . . . , q + 1} with i 6= j, no vertex of Tj is on a side of Ti; hence,
no nontrivial element of M3(Ti) ∩ M3(Tj) fixes Ti pointwise. This implies M3(Ti) ∩
M3(Tj) = H . Analogously, no nontrivial element in M3(Ti)∩M2(P ) fixes Ti pointwise,
and this implies M3(Ti) ∩M2(P ) = H . Thus, by direct computation, µ(H) = q + 1.

Case 10: Let H = C3 = 〈α〉 with fixed points P ∈ PG(2, q2) \ Hq and Q,R ∈ Hq . By
Lemma 3.5,

H = M1(Q) ∩M1(R) ∩M2(P ) ∩
(q2−1)/3⋂
i=1

M3(Ti) ∩
2(q2−1)/3⋂

i=1

M4(T̃i)

and H is not contained in any other maximal subgroup of G. By direct inspection, the
intersections K of at least two maximal subgroups of G such that H < K < G are exactly
the following.

(i) K = M1(Q) ∩M2(P ) or K = M1(R) ∩M2(P ); in this case, K = Eq o Cq2−1

and µ(K) = 1.

(ii) K = M1(Q) ∩M1(R); in this case, K = Cq2−1 and µ(K) = 0.
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(iii) There are exactly q−1
3 groups K containing H with K ∼= Sym(3), and hence

µ(K) = q + 1. In fact, any involution β ∈ G satisfying 〈H,β〉 ∼= Sym(3) in-
terchanges Q and R and fixes a point of (QR∩Hq) \ {P,Q}; conversely, any of the
q−1 pointsA1, . . . , Aq−1 of (QR∩Hq)\{P,Q} determines uniquely the involution
βi ∈ G such that β(Ai), βi(Q) = R, βi(R) = Q, and hence 〈H,βi〉 ∼= Sym(3).
The involutions βi, αβi, and α2βi, together with H , generate the same group; thus,
there are exactly q−1

3 groups Sym(3) containing H .

Thus, by direct computation, µ(H) = 2(q2−1)
3 .

Case 11: Let H = C2 = 〈α〉, where α has center P . Let `P (Fq2) \ {P} = {P1, . . . , Pq2}.
By Lemma 3.4,

H = M1(P ) ∩
q2⋂
i=1

M2(Pi) ∩
q2⋂
i=1

q/2⋂
j=1

M3(Ti,j),

where the triangles Ti,j are described in Lemma 3.4; H is not contained in any other
maximal subgroup of G. By direct inspection, the intersections K of at least two maximal
subgroups of G such that H < K < G are exactly the following.

(i) K = M1(P ) ∩ M2(Pi) for i = 1, . . . , q2; in this case, K = Eq o Cq2−1 and
µ(K) = 0.

(ii) K = M2(Pi) ∩M2(Pj) with i 6= j; in this case, K = Eq and µ(K) = 0.

(iii) K = M1(P ) ∩M3(Ti,j); in this case, K = Eq o C2(q+1) and µ(K) = 0.

(iv) K = M2(Qi)∩M3(Ti,j) with i ∈ {1, . . . , q2} and j ∈ {1, . . . , q2}; these q3

2 distinct
groups are of type (Cq+1 × Cq+1) o C2, so that µ(K) = 1.

(v) There are exactly N = q3

2 groups K containing H such that K ∼= Sym(3), and
hence µ(K) = q + 1. This follows by double counting the size of

I = {(H,K) | H,K < G, H ∼= C2, K ∼= Sym(3), H < K}.

Arguing as in the proof of Lemma 3.4, |I| = (q3 + 1)(q − 1)N ; arguing as in the
proof of Lemma 3.6, |I| = q3(q3+1)(q−1)

6 · 3. Hence, N = q3

2 .

Thus, by direct computation, µ(H) = − q
3(q+1)

2 .

Case 12: Let H = {1}. Then µ(H) = −
∑
{1}<K≤G µ(K,G). By the values µ(K)

computed in the previous cases, Propositions 3.2, and Proposition 3.3, only the following
groups K have to be considered:

(i) 1 group G;

(ii) q3 + 1 groups S2 o Cq2−1;

(iii) q2(q2 − q + 1) groups PSL(2, q)× Cq+1;

(iv) q3(q−1)(q2−q+1)
6 groups (Cq+1 × Cq+1) o Sym(3);

(v) q3(q+1)2(q−1)
3 groups Cq2−q+1 o C3;

(vi) (q3 + 1)q2 groups Eq o Cq2−1;
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(vii) q3(q−1)(q2−q+1)
2 groups (Cq+1 × Cq+1) o C2;

(viii) q3(q3+1)(q−1)
6 groups Sym(3);

(ix) q3(q3+1)
2 groups C3;

(x) (q3 + 1)(q − 1) groups C2.

Thus, by direct computation, µ(H) = 0.

4 Determination of λ(H) for any subgroupH ofG
Let n > 0, q = 22n

, G = PSU(3, q). This section is devoted to the proof of the following
theorem.

Theorem 4.1. Let H be a proper subgroup of G. Then λ(H) 6= 0 if and only H is one of
the following groups:

Eq o Cq2−1, (Cq+1 × Cq+1) o C2, Sym(3),

C3, S2 o Cq2−1, PSL(2, q)× Cq+1,

(Cq+1 × Cq+1) o Sym(3), Cq2−q+1 o C3, C2.

(4.1)

For any isomorphism type in Equation (4.1) there is just one conjugacy class of subgroups
of G.

If H is in the first row of Equation (4.1), then λ(H) = −1; if H is in the second row of
Equation (4.1), then λ(H) = 1.

Proof. By Proposition 3.2, for any isomorphism type in Equation (4.1) there is just one
conjugacy class of subgroups of G of that type. Hence, we can use the notation [M1],
[M2], [M3] and [M4] for the conjugacy classes of M1(P ), M2(P ), M3(T ) and M4(T ),
respectively. If H = G, then λ(H) = 1; if H is one of the groups in the second row of
Equation (4.1) and H 6= C2, then λ(H) = −1 as H is maximal in G.

Case 1: Firstly, we assume that H is not a subgroup of Sym(3), and that H is not a group
of homologies, i.e. H 6≤ Cq+1 = Z(M2(Q)) for any point Q.

(i) Let H < M4(T ) for some T . From H 6= C3 follows that some nontrivial element in
H fixes T pointwise; hence, H is not contained in any maximal subgroup of G other
than M4(T ). Thus, inductively, λ(H) = −{λ(G) + λ(M4(T ))} = 0.

(ii) Let H < M1(P ) for some P ; we assume in addition that gcd(|H|, q−1) > 1. Here,
the assumption H 6≤ Sym(3) reads H /∈ {{1}, C2, C3}. If H contains an element of
order 4, then H is not contained in any maximal subgroup of G other than M1(P ).
Thus, inductively, λ(H) = 0.

We can then assume that the 2-elements of H are involutions, so that H = E2r oCd
with 0 ≤ r ≤ 2n and d | (q2 − 1) (see [15, Theorem 11.49]). This implies that
H ≤ M1(P ) ∩ M2(Q) for some Q ∈ `P ; the eventual nontrivial elements in H
whose order divides q + 1 are homologies with center Q. Then we have [H] ≤
[M1], [H] ≤ [M2]; by Lagrange’s theorem, [H] 6≤ [M4]. From the assumptions
gcd(|H|, q − 1) > 1 and H 6≤ Sym(3) follows [H] 6≤ [M3].

If H = Eq o Cq2−1, then no proper subgroup of M1(P ) or M2(Q) contains H
properly; thus, λ(H) = 1. If H 6= Eq oCq2−1, then H < Eq oCq2−1 = M1(P )∩
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M2(Q) up to conjugation. Thus, inductively, the only classes [K] with [H] ≤ [K]
and λ(K) 6= 0 are [K] ∈ {[G], [M1], [M2], [Eq o Cq2−1]}. This implies λ(H) = 0.

(iii) Let H < M2(Q) for some Q, and assume also H 6≤M1(P ) for any P . As H 6≤ C3,
we have [H] 6≤ [M4]. The group H̄ := H/(H ∩ Z(M2(Q))) acts as a subgroup of
PSL(2, q) on `Q∩Hq; we assume in this point that H is one of the following groups
(see [17, Hauptsatz 8.27]): PSL(2, 22h

) with 0 < h ≤ n; a dihedral group of order
2d where d is a divisor of q−1 greater than 3; Alt(5). Then, by Lagrange’s theorem,
[H] 6≤ [M3]. Thus, inductively, G and M2(Q) are the only groups K with H < K
and λ(K) 6= 0, so that λ(H) = 0.

Note that, since we are under the assumptionsH 6≤M1(P ) for any P ,H 6≤ Sym(3),
and H 6≤ Cq+1 = Z(M2(Q)), we have that the only subgroups H̄ of PSL(2, q) for
which λ(H) still has not been computed are the cyclic or dihedral groups of order d
or 2d (respectively), where d is a nontrivial divisor of q + 1.

(iv) Let H < M3(T ) for some T , and assume also H 6≤M1(P ) for any P . As H 6≤ C3,
we have [H] 6≤ [M4]. Here, the assumptionH 6≤ Sym(3) means that some nontrivial
element of H fixes T pointwise. Hence, the assumption H 6≤ Cq+1 = Z(M2(Q))
for any vertex Q of T , together with H 6≤ M1(P ), implies that H contains some
element of type (B1). WriteH = LoK, withK ≤ Sym(3) and L < Cq+1×Cq+1.

If K = C3 or K = Sym(3), then [H] 6≤ [M2]; thus, inductively, G and M3(T ) are
the only groups K with H < K and λ(K) 6= 0, so that λ(H) = 0.

If K = C2 and L = Cq+1 × Cq+1, then H ≤ M2(Q) for some vertex Q of T .
Since H̄ := H/(H ∩ Z(M2(Q))) is dihedral of order 2(q + 1), [17, Haptsatz 8.27]
implies the non-existence of groups K with H < K < M2(Q) (except for q = 4
and K̄ = Alt(5); in this case, λ(K) = 0 by the previous point). Thus, λ(H) =
−{λ(G) + λ(M2(Q)) + λ(M3(T ))} = 1.

If K = C2 and L < Cq+1 × Cq+1, then again H ≤ M2(Q) with Q vertex of T .
The group H̄ is dihedral of order 2d, where d | (q + 1); d > 1 because L contains
elements of type (B1). By the previous point and [17, Hauptsatz 8.27], the only
groups K with H < K < M2(Q) are such that K̄ is dihedral of order dividing
q + 1. Thus, inductively, λ(H) = 0.

If K = {1}, then H ∈M2(Q) for any vertex Q of T . The group H̄ < PSL(2, q) on
the line `Q ∩Hq is cyclic of order d | (q+ 1); d > 1 because H has elements of type
(B1). By [17, Hauptsatz 8.27], the groups K with H < K < M2(Q) are such that
either K̄ is cyclic of order dividing q+ 1, or we have already proved that λ(K) = 0.
Thus, inductively, λ(K) = 0.

(v) Let H < M2(Q) for some Q. Let H̄ 6= {1} be the induced subgroup of PSL(2, q)
acting on `Q ∩ Hq . If H̄ is cyclic or dihedral of order d or 2d (respectively) with
d | (q + 1), then H ≤ M3(T ) for some T . Hence, λ(H) = 0, as already computed
in the previous point in the case K = {1} if H̄ is cyclic, or in the case K = C2 if H
is dihedral.

(vi) Under the assumptions that H 6≤ Sym(3) and H is not a group of homologies, the
only remaining case is H < M1(P ) for some P with gcd(|H|, q − 1) = 1. In this
caseH = E2r×Cd, whereCd is cyclic of order d | (q+1) and made by homologies,
whose axis passes through P and whose centerQ lies on `P . We have r > 0, because
H 6≤ Z(M2(Q)).
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If r = 1, then H is cyclic of order 2d generated by an element of type (E). By
Lemma 3.4, H ≤ M3(T ), where T has a vertex in Q and two vertexes on `Q.
Hence, [H] ≤ [M1], [H] ≤ [M2], [H] ≤ [M3], and [H] 6≤ [M4]. Let K be such
that H < K ≤ G and K is not of the same type of H , i.e. K is not cyclic of
order 2d′ with d′ | (q + 1). As shown in the previous points, λ(K) 6= 0 if and
only if [K] ∈ {[G], [M1], [M2], [M3], [Eq oCq2−1], [(Cq+1 ×Cq+1) oC2]}. Thus,
inductively, λ(H) = 0.

Case 2: Let H ≤ Cq+1 = Z(M2(Q)) for some Q and K be a subgroup of G properly
containing H . As shown above, λ(K) 6= 0 if and only if

[K] ∈ {[G], [M1], [M2], [M3], [Eq o Cq2−1], [(Cq+1 × Cq+1) o C2]}.

Thus λ(Z(M2(Q))) = 0 and, inductively, λ(H) = 0.

Case 3: Let H = Sym(3) = 〈α〉o 〈β〉 with o(α) = 3 and o(β) = 2. Let P ∈ PG(2, q2)\
Hq and Q,R ∈ Hq(Fq2) be the fixed point of α, so that β fixes P and interchanges Q and
R. This implies [H] ≤ [M2]. By Lemma 3.6, [H] ≤ [M3]. From the computations above
and Lagrange’s theorem, no class [K] with K ≤ G other than [G], [M2] and [M3] satisfies
[H] ≤ [K] and λ(H) 6= 0. Thus, λ(H) = 1.

Case 4: Let H = C3. By Lagrange’s theorem and Proposition 3.2, H < K ≤ G and
λ(K) 6= 0 if and only if

[K] ∈ {[G], [M1], [M2], [M3], [M4], [Eq o Cq2−1], [Sym(3)]}.

Thus, λ(H) = 1.

Case 5: Let H = C2. By Lagrange’s theorem and Proposition 3.2, H < K ≤ G and
λ(K) 6= 0 if and only if

[K] ∈ {[G], [M1], [M2], [M3], [Eq o Cq2−1], [(Cq+1 × Cq+1) o C2], [Sym(3)]}.

Thus, λ(H) = −1.

Case 6: Let H = {1}. Collecting all the classes [K] with λ(K) 6= 0, we have by direct
computation λ(H) = 0.

5 Determination of χ(∆(Lp \ {1})) for any prime p
Let n > 0, q = 22n

, G = PSU(3, q). If p is a prime number, we denote by Lp the poset
of p-subgroups of G ordered by inclusion, by Lp \ {1} its subposet of proper p-subgroups
of G, and by ∆(Lp \ {1}) the order complex of Lp \ {1}. In this section we determine the
Euler characteristic χ(∆(Lp \ {1})) of ∆(Lp \ {1}) for any prime p, using Equation (2.1)
and Lemma 2.2. The results are stated in Theorem 5.1 and in Table 2.

Theorem 5.1. For any prime number p one of the following cases holds:

(i) p - |G| and χ(∆(Lp \ {1})) = 0;

(ii) p = 2 and χ(∆(L2 \ {1})) = q3 + 1;

(iii) p | (q + 1) and χ(∆(Lp \ {1})) = − q
6−2q5−q4+2q3−3q2

3 ;
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(iv) p | (q − 1) and χ(∆(Lp \ {1})) = − q
6+q3

2 ;

(v) p | (q2 − q + 1) and χ(∆(Lp \ {1})) = − q
6+q5−q4−q3

3 .

Proof. Since |G| = q3(q + 1)2(q − 1)(q2 − q + 1), q is even, and 3 | (q − 1), the cases
p - |G|, p = 2, p | (q + 1), p | (q − 1), and p | (q2 − q + 1) are exhaustive and pairwise
incompatible. We denote by Sp a Sylow p-subgroup of G.

Case 1: Let p - |G|. Then ∆(Lp \ {1}) = ∅, and hence χ(∆(Lp \ {1})) = χ(∅) = 0.

Case 2: Let p = 2. The group G has q3 + 1 Sylow 2-subgroups, and any two of them
intersect trivially; see [15, Theorem 11.133]. Any nontrivial element σ of S2 fixes exactly
one point P on Hq(Fq2) which is the same for any σ ∈ S2; S2 is uniquely determined
among the Sylow 2-subgroups of G by P . Hence, Equation (2.1) reads

χ(∆(L2 \ {1})) = −(q3 + 1)
∑

H∈L2\{1}, H(P )=P

µL2
({1}, H),

where P is a given point of Hq(Fq2). By Lemma 2.2, we only consider those 2-groups in
M1(P ) which are elementary abelian. Then we consider all nontrivial subgroups H of an
elementary abelian 2-group Eq of order q. For any such group H = E2r of order 2r, with
1 ≤ r ≤ 2n, we have µL2({1}, H) = (−1)r · 2(r

2) by Lemma 2.2. Thus,

χ(∆(L2 \ {1})) = −(q3 + 1)

2n∑
r=1

(−1)r 2(r
2)
(

2n

r

)
2

where the Gaussian coefficient
(

2n

r

)
2

counts the subgroups of Eq of order 2r. Using the
property (

2n

r

)
2

=

(
2n − 1

r − 1

)
2

+ 2r
(

2n − 1

r

)
2

we obtain
2n∑
r=1

(−1)r 2(r
2)
(

2n

r

)
2

=

2n∑
r=1

(−1)r 2(r
2)
(

2n − 1

r − 1

)
2

+

2n∑
r=1

(−1)r 2(r
2)+r

(
2n − 1

r

)
2

=

2n−1∑
r=0

(−1)r+1 2(r+1
2 )
(

2n − 1

r

)
2

+

2n∑
r=1

(−1)r 2(r+1
2 )
(

2n − 1

r

)
2

= (−1)0 2(1
2)
(

2n − 1

0

)
2

+ (−1)2n

2(2n+1
2 )

(
2n − 1

2n

)
2

= −1.

Thus, χ(∆(L2 \ {1})) = q3 + 1.

Case 3: Let p | (q+ 1). Then Sp ≤ Cq+1 ×Cq+1, and hence Sp ∼= Cps ×Cps , where ps |
(q + 1) and ps+1 - (q + 1). Let H be a subgroup of Sp. By Lemma 2.2, µLp({1}, H) 6= 0
only if H is elementary abelian of order p or p2; in this cases, µLp

({1}, Cp) = −1 and
µLp

({1}, Cp × Cp) = r. Now we count the number of elementary abelian subgroups of
order p or p2 in G.
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(i) A subgroup Ep2 of G of type Cp × Cp is uniquely determined by the maximal sub-
group M3(T ) such that Ep2 is the Sylow p-subgroup of M3(T ). Hence, G contains

exactly [G : NG(M3(T ))] = q3(q2−q+1)(q−1)
6 elementary abelian subgroups of or-

der p2.

(ii) A subgroup Cp made by homologies is uniquely determined by its center P ∈
PG(2, q2) \ Hq of homology, because the group of homologies with center P is
cyclic. Hence, G contains exactly |PG(2, q2) \ Hq| = q2(q2 − q + 1) cyclic sub-
groups of order p made by homologies.

(iii) A subgroup Cp which is not made by homologies is made by elements of type (B1),
and fixes pointwise a unique self-polar triangle T . The Sylow p-subgroup Cp × Cp
of M3(T ) contains exactly 3 subgroups Cp made by homologies, namely the groups
of homologies with center one of the vertexes of T . Since Cp × Cp contains p + 1
subgroups Cp altogether, Cp × Cp contains exactly p − 2 subgroups Cp not made
by homologies. Thus, the number of subgroups Cp of G not made by homologies is
(p− 2) · [G : NG(M3(T ))] = q3(q2−q+1)(q−1)(p−2)

6 .

Thus, by direct computation,

χ(∆(Lp \ {1}))

= −
{q3(q2 − q + 1)(q − 1)(p− 2)

6
· r

+
[
q2(q2 − q + 1) +

q3(q2 − q + 1)(q − 1)(p− 2)

6

]
· (−1)

}
= − q6 − 2q5 − q4 + 2q3 − 3q2

3
.

Case 4: Let p | (q − 1). By Lemma 2.4, Sp is a subgroup of the cyclic group Cq2−1 fixing
two points P,Q on Hq(Fq2); then a proper p-subgroup H of G satisfies µLp({1}) 6= 0 if
and only if H has order p; in this case, µLp

({1}, H) = −1. Also, by Lemma 2.4, any two
Sylow p-subgroups of G have trivial intersection. Then the number of subgroups Cp of G
is equal to the number

(
q3+1

1

)
of couples of points in Hq(Fq2); equivalently, this number

is equal to [G : NG(Cq2)], where |NG(Cq2−1)| = 2(q2 − 1) by Proposition 3.3. Thus,
χ(∆(Lp \ {1})) = − q

6+q3

2 .

Case 5: Let p | (q2− q+ 1). Then Sp ≤ Cq2−q+1, and hence a proper p-subgroup H of G
satisfies µLp({1}, H) 6= 0 if and only if H has order p; in this case, µLp({1}, H) = −1.
The number of subgroupsCp ofG is equal to the number of subgroupsCq2−q+1, and hence

to the number [G : NG(M4(T̃ ))] = q3(q+1)2(q−1)
3 of maximal subgroups of type M4(T̃ )

in G. Thus, χ(∆(Lp \ {1})) = − q
3(q+1)2(q−1)

3 = − q
6+q5−q4−q3

3 .
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lar objects, in: J. Širáň and R. Jajcay (eds.), Symmetries in Graphs, Maps, and Polytopes,
Springer, Cham, volume 159 of Springer Proceedings in Mathematics & Statistics, pp. 97–
127, 2016, doi:10.1007/978-3-319-30451-9 5, papers from the 5th SIGMAP Workshop held
in West Malvern, July 7–11, 2014.

[10] D. H. Dung and A. Lucchini, Rationality of the probabilistic zeta functions of finitely generated
profinite groups, J. Group Theory 17 (2014), 317–335, doi:10.1515/jgt-2013-0037.

[11] A. Garcia, H. Stichtenoth and C.-P. Xing, On subfields of the Hermitian function field, Com-
positio Math. 120 (2000), 137–170, doi:10.1023/a:1001736016924.

[12] P. Hall, The Eulerian functions of a group, Q. J. Math. (Oxford Series) 7 (1936), 134–151,
doi:10.1093/qmath/os-7.1.134.

[13] R. W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the
GF(2n), Ann. Math. 27 (1925), 140–158, doi:10.2307/1967970.
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[24] E. Pierro, The Möbius function of the small Ree groups, Australas. J. Combin. 66 (2016),
142–176, https://ajc.maths.uq.edu.au/pdf/66/ajc_v66_p142.pdf.

[25] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math.
28 (1978), 101–128, doi:10.1016/0001-8708(78)90058-0.
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Abstract

The existence of a regular, self-dual and self-Petrie-dual map of any given even valency
has been proved by D. Archdeacon, M. Conder and J. Širáň (2014). In this paper we extend
this result to any odd valency ≥ 5. This is done using algebraic number theory and maps
defined on the groups PSL(2, p) in the case of odd prime valency ≥ 5 and valency 9, and
using coverings for the remaining odd valencies.

Keywords: Regular map, automorphism group, self-dual map, self-Petrie-dual map.
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1 Introduction
In this paper we consider regular maps (that is, cellular embeddings of graphs on closed
surfaces) with the highest ‘level of symmetry’, which are, in addition, invariant under the
operators of duality and Petrie duality. Regular maps have been addressed in a number of
papers and we refer here to the latest survey [11] for a large number of details; here we just
sum up the essentials needed for our purposes.
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From an algebraic point of view, a regular mapM can be identified with a finite groupG
with three distinguished involutory generators x, y, z and relators (yz)k, (zx)` and (xy)2 so
that x and y commute; we will formally writeM = (G;x, y, z) to encapsulate the situation.
The pair (k, `) is the type of M , and we will assume throughout that k, ` ≥ 3; the type is
hyperbolic if 1/k + 1/` < 1/2. Geometrically and topologically, elements of G may be
identified with flags (which correspond to mutually incident vertex-edge-face triples) and
left cosets of the subgroups 〈x, y〉, 〈y, z〉 and 〈z, x〉 represent edges, vertices and faces of
the embedded graph, with incidence given by non-empty intersection of cosets. Moreover,
left multiplication by elements of G on the cosets induce map automorphisms of M and,
in fact, G is isomorphic to the (full) automorphism group Aut(M) of M . Conjugates of
x, y and z, respectively, induce automorphisms that locally act on M as reflections along
some edge, in some edge, and in an axis of some corner of M . Similarly, conjugates of
r = yz and s = zx represent rotations about vertices and face centres of the map; in
particular, every vertex has valency k and every face is bounded by a closed walk of length
`. The map M is orientable (meaning that its underlying surface is orientable) if and only
if G+ = 〈r, s〉 is a subgroup of G of index two, and non-orientable otherwise. Thus, in the
non-orientable case, the entire group G can be generated by the two rotations r and s only,
and the involutions x, y, z are then expressible in terms of r and s; in such a situation we
also write M = (G; r, s).

Every automorphism of a map, regarded as a permutation of flags that preserves inci-
dence along and across edges and within corners, is completely determined by its action
on a single flag. If the automorphism group is transitive (and hence regular) on flags, one
may identify the group with the flag set and arrive at the description outlined above. But
even then a map may still exhibit ‘external symmetries’ induced by invariance under the
operators of duality and Petrie-duality. The two operators are well known; informally, du-
ality interchanges the roles of vertices and faces, and the Petrie dual of a map is formed by
re-embedding its underlying graph so that the new faces are the left-right (‘zig-zag’) closed
walks in the original map. A map is self-dual or self-Petrie-dual if it is isomorphic to its
dual or Petrie dual, respectively. In the case of a regular map M = (G;x, y, z) as above,
it is also well known (cf. [11]) that M is self-dual if and only if the group G admits an
automorphism interchanging x with y and fixing z, and M is self-Petrie-dual if G has an
automorphism interchanging x with xy and fixing y and z. In [1], regular maps that are
both self-dual and self-Petrie-dual have been said to have trinity symmetry.

The natural question regarding the existence of regular maps with trinity symmetry for
any valency was raised more than four decades ago. In [15] it was suggested that the map
M = (G;x, y, z) for the group G = 〈x, y, z;x2, y2, z2, (xy)2, (yz)2n, (zx)2n, (xyz)2n,
(xzyzxyz)2〉 is a regular map with trinity symmetry, of valency 2n for every n ≥ 1. This
was eventually proved in [1] in a much more general form, including also invariance under
the so-called hole operators that represent additional levels of ‘external symmetries’ not
discussed here. However, the question remained almost completely open for odd-valent
regular maps with trinity symmetry, as pointed out by the third author at the 2017 BIRS
Workshop ‘Symmetries of Surfaces, Maps and Dessins’ [4, Part 4.7]. Note that such a map
must necessarily be non-orientable because of self-Petrie-duality with Petrie walks of odd
length. There is no such map of valency 3 since the only regular map of type (3, 3) is the
2-skeleton of a tetrahedron. At the time of publication of the report [4] the only two sets of
known examples of regular maps with trinity symmetry of odd valency k ≥ 5 were those
discovered computationally by M. Conder for 5 ≤ k ≤ 19 and the ones resulting from
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the work of G. Jones [7]. The method of Jones actually has potential to produce examples
for infinitely many odd values of k but in [7] explicit examples have been given only for
k = 15 (found also in [1] by a different method) and k = 455.

Here we completely settle the problem by showing that for every odd k ≥ 5 there exists
a regular, self-dual and self-Petrie-dual map of valency k. Our strategy is to establish this
result first for every prime k ≥ 5 and for k = 9 by algebraic methods motivated by those
used in [8], and applied to more detailed results of [6] on regular maps defined on linear
fractional groups. We then extend this to non-prime odd values of k ≥ 5 by an analogue
of a covering tool from [1]. The paper is organised accordingly: in Sections 2 and 3 we
review results on regular self-dual and self-Petrie-dual maps on linear fractional groups
and develop the algebraic methods needed for our purposes, and in Section 4 we prove our
general result and make a few concluding remarks.

2 Regular maps on linear fractional groups
Classification of all orientably-regular maps with orientation-preserving automorphism
group isomorphic to PSL(2, q) or PGL(2, q) follows from [9] and can be found in a some-
what more explicit form in [10]; the latter was re-interpreted and extended to regular maps
(orientable or not) in [5]. Since we will be interested only in the special case of odd valency
and face length, we just reproduce the corresponding part of the classification result here
(the cases when one of the entries in the type of the map is even are more involved and we
refer to [8] for details).

Proposition 2.1. Let (k, `) 6= (5, 5) be a hyperbolic pair with both entries odd and let p
be an odd prime dividing neither k nor `. Let e = e(k, `) be the smallest positive integer
j such that 2n | (pj − εn) for each n ∈ {k, `} and some εn ∈ {+1,−1}, and let ξn be a
primitive 2n-th root of unity in GF(pe) if εn = 1 or in GF(p2e) if εn = −1. Further, let
D = ξ2k + ξ−2k + ξ2` + ξ−2` 6= 0 and let

R = ±
[
ξk 0
0 ξ−1k

]
and S = ±(ξk − ξ−1k )−1

[
−(ξ` + ξ−1` )ξ−1k −D

1 (ξ` + ξ−1` )ξk

]
be elements of PSL(2, pe) if εk = 1 and of PSL(2, p2e) otherwise. Then,

(a) the group Gk,` = 〈R,S〉 is isomorphic to PSL(2, pe), with R of order k and S of
order `;

(c) M = (Gk,`;R,S) is a regular map of type (k, `), which is non-orientable if and only
if −D is a square in GF(pe).

We note that if pe ≡ ±1 (mod 10), the group PSL(2, pe) contains (up to conjugacy)
two exceptional pairs R,S as above for (k, `) = (5, 5) with the property that 〈R,S〉 ∼= A5;
this case (omitted from [8, Theorem 2.2]) is addressed in [6]. However, this situation does
not apply in what follows.

Necessary and sufficient conditions for self-duality and self-Petrie-duality of the maps
M = (Gk,`;R,S) from Proposition 2.1 were established in [6]. As they are also quite
complex we present here only a simple sufficient condition appearing as Corollary 4.3 in
[6] which (in terms and notation of Proposition 2.1) can be re-stated as follows.

Proposition 2.2. Let k ≥ 5 be odd, and let p ≥ 5 be a prime not dividing k. Further, let
` = k and let ξ = ξk = ξ` be a primitive 2k-th root of unity in GF(pe) or in GF(p2e)
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for e = e(k, `) such that 3(ξ2 + ξ−2) + 2 = 0. Then, M = (Gk,`;R,S) is a (non-
orientable) self-dual and self-Petrie-dual regular map of valency k, with automorphism
group isomorphic to PSL(2, pe).

The condition 3(ξ2+ξ−2)+2 = 0 is equivalent to 3(ξ+ξ−1)2 = 4 and for its fulfilment
it is necessary that 3 be a square in GF(pe), p ≥ 5. For e = 1, this holds if and only if
p ≡ ±1 (mod 12), and it is always the case if e ≥ 2. But we can say more. Namely,
the element ζ = ξ2 in Proposition 2.2 is a primitive k-th root of unity in F = GF(pe)
or F = GF(p2e), and the condition 3(ζ + ζ−1) + 2 = 0 represents a quadratic equation
in the prime field Fp of F ; it also says that ζ + ζ−1 ∈ Fp. The last fact is equivalent to
(ζ + ζ−1)p = ζ + ζ−1, which reduces to (ζp−1 − 1)(ζp+1 − 1) = 0 in F . It follows that
either ζ ∈ Fp and p ≡ 1 (mod 2k), or ζ lies in a quadratic extension of Fp and p ≡ −1
(mod 2k), and in both cases we have e = 1 (recall that k is assumed to be odd). The bulk
of Proposition 2.2 may now be restated in a form more suitable for our future use.

Corollary 2.3. Let k ≥ 5 be odd. Assume that there exists a prime p ≥ 5 such that
p ≡ ±1 (mod 2k) and p ≡ ±1 (mod 12), and a primitive k-th root of unity ζ in a finite
field of order p or p2 with the property that 3(ζ + ζ−1) + 2 = 0. Then, there exists a
non-orientable self-dual and self-Petrie-dual regular map of valency k with automorphism
group PSL(2, p).

3 Algebraic preliminaries
For any k ≥ 3, let α be a primitive complex k-th root of unity; its minimal polynomial
is the k-th cyclotomic polynomial. Let h = α + α−1 and let K = Q(h) be the field
obtained by adjoining h to the rationals. It is known [13, Proposition 2.16] that the ring O
of algebraic integers of K is Z(h). We will focus on the algebraic integer g = 3h+ 2 ∈ O.
Observe that g 6= 0, for otherwise α would be a root of a quadratic polynomial over Z,
contrary to k ≥ 3.

Recall that the norm N(y) of an element y ∈ O is defined as the product
∏
t σt(y),

where σt denotes the injective homomorphism O → C into the field of complex numbers,
uniquely determined by σt(α) = αt, and t ranges over all integers between 1 and (k−1)/2
that are relatively prime to k. It is well known thatN(y) is an integer for any y ∈ O, which
is a consequence of the invariance of N(y) under the endomorphisms σt.

For the norm of our element g ∈ O we thus have N(g) =
∏
t(3σt(h) + 2), the product

being taken over all t between 1 and (k − 1)/2, coprime to k. The ϕ(k)/2 images σt(h)
appearing in this product are precisely the roots of the minimal polynomial Ψ(x) of degree
ϕ(k)/2 for h = α+ α−1, see e.g. [8]. So, if Ψ(x) =

∏
t(x− σt(h)) =

∑
j ajx

j where j
ranges from 0 to ϕ(k)/2, then the integral coefficients aj will also appear in the expansion
of the above product. More precisely, letting r = ϕ(k)/2 and u = −2/3, one has

N(g) =
∏
t

(3σt(h) + 2) = (−3)r
∏
t

(u− σt(h))

= (−3)r
r∑
j=0

aju
j =

r∑
j=0

(−3)r−j2jaj .
(3.1)

Let us consider what happens when we look at (3.1) modulo 9. Up to the last two terms
all the remaining ones are a multiple of 9 and so, noting that ar = 1, we have

N(g) ≡ 2r − 3 · 2r−1ar−1 (mod 9). (3.2)
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We will show that if k ≥ 5 and k is a prime, then the norm N(g) is not equal to ±1,
which means that g is then not a unit of the ring O. Indeed, let k ≥ 5 be a prime, so that
r = ϕ(k)/2 = (k − 1)/2. By [12] we then also have ar−1 = 1, and the congruence (3.2)
becomes

N(g) ≡ 2(k−1)/2 − 3 · 2(k−3)/2 ≡ −2(k−3)/2 (mod 9).

It is easy to check that 2j ≡ ±1 (mod 9) for a positive integer j if and only if j is a multiple
of 3. This means that if k is prime, the norm N(g) can be congruent to ±1 (mod 9) only
if (k− 3)/2 is a multiple of 3, giving a contradiction if k ≥ 5. Further, from (3.1) with the
help of ar = 1 and a0 = ±1 [12] it follows that if k ≥ 5 is a prime, then N(g) is divisible
neither by 2 nor by 3. We thus have:

Lemma 3.1. If k ≥ 5 is a prime, then N(g) 6= ±1; in particular, the non-zero element
g ∈ O is not a unit of the ring O. Moreover, for every prime factor p of N(g) one has
p ≥ 5. 2

Consider now the field K ′ = Q(α), an extension of K of degree two. Let O′ be the
ring of algebraic integers of K ′; it is well known [13, Theorem 2.6] that O′ = Z(α), and,
of course, [O′ : O] = 2. The (integral) norm N ′(z) of any z ∈ O′ is now the product∏
t σt(z) taken over all injective homomorphism σt : O′ → C given by σt(α) = αt for t

between 1 and k − 1 coprime to k, and again one has N ′(z) ∈ Z. The two norms, N on O
and N ′ on O′, are related by N ′(y) = (N(y))2 for each y ∈ O.

We will keep assuming that k ≥ 5 is an odd prime, and we let p ≥ 5 be an arbitrary
prime divisor of N(g), which exists by Lemma 3.1. We continue by considering the ideal
〈g, p〉 of O′ = Z(α) generated by the elements g and p.

Lemma 3.2. If k ≥ 5 is a prime and if p ≥ 5 is a prime divisor of N(g), the ideal 〈g, p〉 is
proper in the ring O′.

Proof. Suppose that 〈g, p〉 = O′, which means that 1 = Ag + Bp for some A,B ∈ O′.
Clearly A 6= 0, for otherwise 1 = N ′(B)N ′(p) = N ′(B)pk−1 and so N ′(B) would not
be an integer. Now, 1 = N ′(1) = N ′(Ag +Bp) =

∏
σ σ(Ag +Bp), where the product is

being taken over all the ϕ(k) = k − 1 embeddings σ : O′ → C. Expansion of this product
gives N ′(Ag + Bp) = N ′(A)N ′(g) + cp for some c ∈ O′. Thus, cp ∈ Z and so either
c ∈ Z or c = ±1/p. As p is a divisor ofN ′(g) = (N(g))2 andN ′(A) is a non-zero integer,
in either case it follows that N ′(Ag +Bp) 6= 1, a contradiction.

By Lemma 3.2, the ideal 〈g, p〉 is contained in some maximal ideal J = Jp of the
ring O′. Since O′ is a Dedekind domain, the ideal J has finite index in O′ and so O′/J
is a finite field F of characteristic p, that is, F ∼= GF(pm) for some m ≥ 1. Recalling
our assumption of primality of k we show that the (multiplicative) order of the element
α = α + J in the field F = O′/J is equal to k. Indeed, suppose this is not the case.
Then, because of primality of k, the order of α in F would have to be one, meaning that
α = 1 in F . But then, since the element g = g + J is equal to zero in F , we would have
0 = g = 3(α + α −1) + 2 = 8 in F , a contradiction as p is odd. Observe also that k 6= p
since no element in F has multiplicative order p.

This way we have constructed a finite field F of characteristic p containing a primitive
k-th root α of unity such that 3(α+α −1)+2 = 0. We now invoke the analysis immediately
preceding Corollary 2.3 in Section 2, which fully applies to our situation. As the result we
conclude that F is the prime field Fp if and only if α ∈ Fp for p ≡ 1 (mod 2k); otherwise
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F is a quadratic extension of Fp for p ≡ −1 (mod 2k). In both cases we have p ≡ ±1
(mod 12) because 3 has to be a square in Fp. Summing up, we have proved:

Proposition 3.3. Let k ≥ 5 be an odd prime and let α be a primitive complex k-th root
of unity. Further, let g = 3(α + α−1) + 2 and let N(g) be the norm of g in the ring
Z(α). Then, N(g) /∈ {0,±1}, every prime divisor p of N(g) satisfies p ≥ 5, and p ≡ ±1
(mod 2k) and p ≡ ±1 (mod 12), and for every such p there is a finite field F of order p
or p2 containing a primitive k-th root α of 1 such that g = 3(α+ α −1) + 2 = 0 in F . 2

4 The main result
To obtain a restricted version of our main result for prime valencies at least five we just
need to put the pieces together. Indeed, taking ζ = α in Proposition 3.3 and combining it
with Proposition 2.2 and Corollary 2.3 immediately gives:

Theorem 4.1. For every odd prime k ≥ 5 there exists a prime p ≡ ±1 (mod 2k) and
p ≡ ±1 (mod 12) such that PSL(2, p) is the automorphism group of a (non-orientable)
regular, self-dual and self-Petrie-dual map of valency k. 2

We know that there is no 3-valent regular map with trinity symmetry, but there is one of
valency 32 that can be constructed by the machinery of Section 2 as follows. The element
2 is a primitive 9-th root of unity mod 73, and so is ζ = 24 and its multiplicative inverse
ζ−1 = 25, with ζ and ζ−1 satisfying the condition 3(ζ + ζ−1) + 2 = 0 (mod 73). By
Proposition 2.2 the group PSL(2, 73) carries a self-dual and self-Petrie-dual regular map
of valency 9.

Based on Theorem 4.1 and the above remark we are now in position to prove a full
version of our main result. As alluded to in the Introduction (Section 1), this will be done
with the help of coverings, and more specifically using a non-orientable analogue of Theo-
rem 2.1 of [1]. We state it here in a restricted version sufficient for our purpose.

Theorem 4.2. If there is a non-orientable regular map of odd valency d ≥ 5 with trinity
symmetry and with automorphism group G, then for any odd integer n ≥ 3 there is a
non-orientable regular map of degree nd with trinity symmetry and automorphism group
isomorphic to (Zn)1+|G|/4 oG.

Sketch of a proof. As indicated, this result was proved in [1, Theorem 2.1] for orientable
maps (and, in this category, in a much more general setting that included also external
symmetries induced by hole operators). The parts of the proof in [1] that refer to regularity,
self-duality and self-Petrie-duality apply almost word-by-word to the non-orientable case
and we thus give only a sketch of the arguments here. We will assume familiarity with the
theory of lifts of maps by corner voltage assignments as explained e.g. in [1, 2, 3]; a corner
of a regular map M = (G;x, y, z) is any 2-subset of the form {g, gz} for g ∈ G.

Now let M = (G;x, y, z) be a regular map as in the statement. For odd n ≥ 3 let
H = Z|G|/2n be the space of all |G|/2-tuples with entries from Zn and let E be the set
of unit vectors (those with exactly one non-zero coordinate, equal to 1) in H . Define
a corner voltage assignment σ on flags of M – that is, on the elements of G – in the
group H by assigning the |G|/2 two-element subsets {ε,−ε} for ε ∈ E to the |G|/2
corners {g, gz} for g ∈ G in an arbitrary one-to-one fashion. By arguments in the proof
of Theorem 2.1 in [1] that do not depend on orientability, the lift of the map M of type
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(d, d) by the voltage assignment σ has n−1+|G|/4 components, each isomorphic to a regular
map Mσ = (Gσ;xσ, yσ, zσ) of type (nd, nd) for the group Gσ = (Zn)1+|G|/4 o G and
suitable involutory generators xσ, yσ, zσ of Gσ . Moreover, by the reasoning in the same
proof (again applying also to non-orientable maps), trinity symmetry of M implies trinity
symmetry of Mσ . Note that both M and Mσ are non-orientable as their Petrie walks (of
length d and nd) have odd length.

Collecting our findings we arrive at the main result of this paper as a consequence of
Theorem 4.1 and the remark following it, both in combination with Theorem 4.2.

Theorem 4.3. For every odd d ≥ 5 there exists a regular, self-dual and self-Petrie-dual
map of valency d. 2

A few remarks are in order. The reader may have observed that if the conclusion of
Proposition 3.3 in Section 3 was valid for all odd k ≥ 5 (and not just for prime k ≥ 5),
we would have a proof of our main result that would be independent on coverings and the
resulting regular maps with trinity symmetry would have automorphism group isomorphic
to PSL(2, p) for suitable primes depending on k. Research in this direction is currently
being undertaken by the first two authors of this paper. Here we include a table of the
first few values of N(g) for odd k between 5 and 29, with Φ(n) standing for the prime
factorisation of n; observe that all the primes p in the prime factorization of |N(g)| satisfy
p ≡ ±1 (mod 2k) and p ≡ ±1 (mod 12):

k N(g) Φ(|N(g)|)
5 −11 prime
7 −13 prime
9 −73 prime

11 +263 prime
13 −131 prime
15 −239 prime
17 −4079 prime
19 +15503 37× 419

21 +5209 prime
23 −4093 prime
25 +56149 prime
27 −16417 prime
29 +3161869 59× 53591

As noted earlier, existence of the regular maps for the first eight entries in this table was
discovered by M. Conder, who also found such maps of valency 7 and 17 for the Janko
simple groups J2 and J3.

We conclude by noting that a strategy for proving Theorem 4.3 was also outlined by
S. Wilson [14] by reducing the problem to a number-theoretic question related to Cheby-
shev polynomials over finite fields.
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Abstract

We propose a generalization of the parallelogram identity in any dimension N ≥ 2,
establishing the ratio of the quadratic mean of the diagonals to the quadratic mean of the
faces of a parallelotope. The proof makes use of simple properties of the exterior product
of vectors.
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1 Introduction and statement of the result
The well known parallelogram law states:

For any parallelogram, the sum of the squares of the lengths of its two diago-
nals is equal to the sum of the squares of the lengths of its four sides.

Figure 1: The two diagonals of a parallelogram.
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Equivalently: given two vectors a and b, one has

‖a+ b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2) .

This identity holds in any inner product space, but, since the two vectors belong to the
same plane, we can see it as being of a two-dimensional nature. The aim of this paper is to
provide a generalization to higher dimensions.

The parallelogram law has a natural geometric interpretation, involving the areas of the
squares constructed on the sides and on the diagonals of the parallelogram. In particular,
when ‖a + b‖ = ‖a − b‖, it reduces to the Pythagorean theorem. In this paper, however,
we will look at the parallelogram law from a rather unusual point of view: writing it as

‖a+ b‖2 + ‖a− b‖2

2
= 2
‖a‖2 + ‖b‖2 + ‖a‖2 + ‖b‖2

4
,

and taking the square roots, we can state it in the following equivalent form.

For any parallelogram, the ratio of the quadratic mean of the lengths of its
diagonals to the quadratic mean of the lengths of its sides is equal to

√
2 .

Now, instead of a parallelogram, we will consider an N -dimensional parallelotope,
and our goal will be to prove that the same type of proposition holds in this general case.
Indeed, our result can be stated as follows.

Theorem 1.1. For any N -dimensional parallelotope, the ratio of the quadratic mean of
the (N − 1)-dimensional measures of its diagonals to the quadratic mean of the (N − 1)-
dimensional measures of its faces is equal to

√
2.

For N = 2, the 1-dimensional measure is the length, and we recover the parallelogram
law. In the general case, we first need to specify what a diagonal should be, and indeed
this will be clarified in the following sections. For example, if N = 3, the diagonals of a
parallelepiped are precisely the parallelograms obtained joining the opposite edges of the
parallelepiped (see Figure 2 below), so that the 2-dimensional measures of the diagonals
are the areas of these parallelograms.

Notice that our definition of a diagonal is not the same as the one given in [1, 2],
where a different generalization of the parallelogram law has been proposed; in the three-
dimensional case, e.g., their diagonals are triangles. We believe that our definition is some-
what more natural, since here the diagonals share the same geometrical shape of the faces.

We provide the proof of our main theorem in Section 3. However, for the reader’s
convenience, we thought it useful to first explain its proof in detail in the more familiar
three-dimensional case. This is what we are going to do next.

2 The three-dimensional case
To start with, let us consider a three-dimensional parallelepiped P , and see how to extend
the parallelogram law to this case. Instead of the lengths of the four sides of the parallel-
ogram, we would like to take the areas of the six faces of the parallelepiped. On the other
hand, the lengths of the two diagonals of the parallelogram should naturally be replaced
by the areas of the six diagonals of the parallelepiped, i.e., the six parallelograms obtained
joining the opposite edges of the parallelepiped. In this case, Theorem 1.1 can be rephrased
as follows.
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For any three-dimensional parallelepiped, the sum of the squares of the areas
of its six diagonals is equal to twice the sum of the squares of the areas of its
six faces.

Figure 2: One of the six diagonals of a parallelepiped.

In order to prove this statement, assume the parallelepiped to be generated by the fol-
lowing three vectors:

a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3).

By this we mean that P is the set of points obtained as linear combinations of these three
vectors, with coefficients in the interval [0, 1]:

P = {αa+ βb+ γc : α, β, γ ∈ [0, 1]}.

The six faces of P are defined as

F−1 = {αa+ βb+ γc ∈ P : α = 0},
F+

1 = {αa+ βb+ γc ∈ P : α = 1},
F−2 = {αa+ βb+ γc ∈ P : β = 0},
F+

2 = {αa+ βb+ γc ∈ P : β = 1},
F−3 = {αa+ βb+ γc ∈ P : γ = 0},
F+

3 = {αa+ βb+ γc ∈ P : γ = 1}.

So,

F−1 is generated by b and c,

F−2 is generated by a and c,

F−3 is generated by a and b,

while F+
k is congruent to F−k , for each k = 1, 2, 3.
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The six diagonals of P are defined as

D1
1,2 = {αa+ βb+ γc ∈ P : α = β},
D2

1,2 = {αa+ βb+ γc ∈ P : α+ β = 1},
D1

1,3 = {αa+ βb+ γc ∈ P : α = γ},
D2

1,3 = {αa+ βb+ γc ∈ P : α+ γ = 1},
D1

2,3 = {αa+ βb+ γc ∈ P : β = γ},
D2

2,3 = {αa+ βb+ γc ∈ P : β + γ = 1}.

So,

D1
1,2 is generated by a+ b and c,

D1
1,3 is generated by a+ c and b,

D1
2,3 is generated by b+ c and a,

while

D2
1,2 is congruent to the set generated by a− b and c,

D2
1,3 is congruent to the set generated by a− c and b,

D2
2,3 is congruent to the set generated by b− c and a.

Our proposition is thus translated into the following identity:

‖(a+ b)× c‖2 + ‖(a− b)× c‖2

+ ‖(a+ c)× b‖2 + ‖(a− c)× b‖2

+ ‖(b+ c)× a‖2 + ‖(b− c)× a‖2 = 4(‖b× c‖2 + ‖a× c‖2 + ‖a× b‖2).

Here, we have used the vector product, so that, e.g.,

‖a× b‖2 =

∣∣∣∣a2 a3
b2 b3

∣∣∣∣2 + ∣∣∣∣a3 a1
b3 b1

∣∣∣∣2 + ∣∣∣∣a1 a2
b1 b2

∣∣∣∣2
= (a2b3 − b2a3)2 + (a3b1 − b3a1)2 + (a1b2 − b1a2)2.

In order to prove the above identity, we just notice that, by the parallelogram law,

‖(a+ b)× c‖2 + ‖(a− b)× c‖2 =

= ‖(a× c) + (b× c)‖2 + ‖(a× c)− (b× c)‖2

= 2(‖a× c‖2 + ‖b× c‖2),

and similarly

‖(a+ c)× b‖2 + ‖(a− c)× b‖2 = 2(‖a× b‖2 + ‖c× b‖2),
‖(b+ c)× a‖2 + ‖(b− c)× a‖2 = 2(‖b× a‖2 + ‖c× a‖2).

Summing up the three formulas, our identity is proved.
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Remark 2.1. There surely are several ways to extend the parallelogram law to higher
dimensions. Just to mention one of these, in the three-dimensional case we have

‖a+ b+ c‖2 + ‖a+ b− c‖2

+ ‖a− b+ c‖2 + ‖a− b− c‖2 = 4(‖a‖2 + ‖b‖2 + ‖c‖2).

We acknowledge the referee for pointing out this identity. It is proved directly (by the use
of the classical parallelogram law) and can be easily extended to any dimension.

3 Proof of the main theorem
We now provide a proof for the general N -dimensional case. Let P be the parallelotope
generated by the vectors a1, . . . ,aN , i.e.,

P =

{
N∑

k=1

ckak : ck ∈ [0, 1], for k = 1, . . . , N

}
.

Its 2N faces are defined by

F−n =

{
N∑

k=1

ckak ∈ P : cn = 0

}
, F+

n =

{
N∑

k=1

ckak ∈ P : cn = 1

}
,

with n = 1, . . . , N . Each F−n is generated by the vectors a1, . . . , ân, . . . ,aN , where,
as usual, ân means that an is missing, while F+

n is a translation of F−n , for every n =
1, . . . , N .

Concerning the diagonals, they are defined as

D1
i,j =

{
N∑

k=1

ckak ∈ P : ci = cj

}
, D2

i,j =

{
N∑

k=1

ckak ∈ P : ci + cj = 1

}
,

with indices i < j varying from 1 to N . There are N(N −1) of them. Hence, we have that

D1
i,j is generated by ai + aj and a1, . . . , âi, . . . , âj , . . . ,aN ,

while

D2
i,j is a translation of the set generated by ai − aj and a1, . . . , âi, . . . , âj , . . . ,aN .

In order to compute the (N−1)-dimensional measures of the faces and the diagonals of
our parallelotope, we make use of the following proposition involving the exterior product
of vectors in RN . (See, e.g., [3] for the definition and the main properties of the exterior
product.)

Proposition 3.1. The M -dimensional measure of a parallelotope generated by M vectors
v1, . . . ,vM in RN , with 1 ≤M ≤ N , is given by ‖v1 ∧ · · · ∧ vM‖.

Proof. If v1, . . . ,vM are linearly dependent, the M -dimensional measure of the parallelo-
tope generated by v1, . . . ,vM is equal to zero, hence coincides with ‖v1 ∧ · · · ∧ vM‖.
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Assume now that the vectors v1, . . . ,vM are linearly independent, and let V be the sub-
space generated by them. Choose an orthonormal basis e1, . . . , eM of V , and write

v1 = v11e1 + · · ·+ v1MeM ,

...
vM = vM1e1 + · · ·+ vMMeM .

Then,

v1 ∧ · · · ∧ vM = det

 v11 · · · v1M
...

...
vM1 · · · vMM

 e1 ∧ · · · ∧ eM ,

so that

‖v1 ∧ · · · ∧ vM‖ =

∣∣∣∣∣∣∣det
 v11 · · · v1M

...
...

vM1 · · · vMM


∣∣∣∣∣∣∣ ,

which is indeed the M -dimensional measure of the parallelotope generated by the vectors
v1, . . . ,vM .

Hence, the (N − 1)-dimensional measures of the faces F±n are given by

‖a1 ∧ · · · ∧ ân ∧ · · · ∧ aN‖,

while the (N − 1)-dimensional measures of the diagonals D1
i,j are equal to

‖(ai + aj) ∧
∧

k 6=i,j ak‖,

and those of the diagonals D2
i,j are equal to

‖(ai − aj) ∧
∧

k 6=i,j ak‖.

Choosing any couple i < j, by the parallelogram law we have that

‖(ai + aj) ∧
∧

k 6=i,j ak‖2 + ‖(ai − aj) ∧
∧

k 6=i,j ak‖2 =

= 2
(
‖a1 ∧ · · · ∧ âj ∧ · · · ∧ aN‖2 + ‖a1 ∧ · · · ∧ âi ∧ · · · ∧ aN‖2

)
.

We now want to take the sum of all these equalities, with i < j varying form 1 to N . We
claim that, for any n = 1, . . . , N , when performing such a sum, in the right hand side,

the term 2‖a1 ∧ · · · ∧ ân ∧ · · · ∧ aN‖2 will appear N − 1 times.

Indeed, this term may appear with j = n, while i varies from 1 to n − 1, or with i = n,
while j varies from n + 1 to N , and there are exactly N − 1 of such possibilities. Hence,
summing all the equalities, we have that∑

i<j

(
‖(ai + aj) ∧

∧
k 6=i,j ak‖2 + ‖(ai − aj) ∧

∧
k 6=i,j ak‖2

)
=

= (N − 1)

N∑
n=1

2‖a1 ∧ · · · ∧ ân ∧ · · · ∧ aN‖2.

So, we have proved the following.
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For any N -dimensional parallelotope, the sum of the squares of the (N − 1)-
dimensional measures of its N(N − 1) diagonals is equal to N − 1 times the
sum of the squares of the (N − 1)-dimensional measures of its 2N faces.

The proof of the theorem is now easily completed, dividing each of the two sums by
the number of their addends and taking the square roots.

Remark 3.2. Since our result is valid in any dimension N , it would be interesting to
investigate whether it could be extended also to some infinite-dimensional vector spaces.
This seems to be a remarkable problem which could lead to further insight on the nature of
these identities.
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Abstract

The aim of this paper is the study and classification of spherical f-tilings by scalene
triangles T and isosceles triangles T ′. Due to the complexity of this wide class of tilings, we
consider a subclass performed by the adjacency of the shortest side of T and the longest side
of T ′. It consists of seven families of f-tilings (four families with one discrete parameter
and one continuous parameter, two families with one discrete parameter and one sporadic
f-tiling). We also analyze the combinatorial structure of all these families of f-tilings, as
well as the group of symmetries of each tiling and the transitivity classes of isohedrality
and isogonality.

Keywords: Dihedral f-tilings, combinatorial properties, spherical trigonometry, symmetry groups.

Math. Subj. Class.: 52C20, 52B05, 20B35

1 Introduction
A folding tessellation or folding tiling (f-tiling, for short) of the sphere S2 is an edge-to-
edge finite polygonal tiling τ of S2 such that all vertices of τ satisfy the angle-folding
relation, i.e., each vertex is of even valency and the sums of alternate angles around each
vertex are equal to π.
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F-tilings are intrinsically related to the theory of isometric foldings of Riemannian man-
ifolds, introduced by Robertson [8] in 1977. In some situations (beyond the scope of this
paper), the edge-complex associated to a spherical f-tiling is the set of singularities of some
spherical isometric folding.

The classification of f-tilings was initiated by Breda [1], with a complete classification
of all spherical monohedral (triangular) f-tilings. Afterwards, in 2002, Ueno and Agaoka
[9] have established the complete classification of all triangular monohedral tilings of the
sphere (without any restrictions on angles). Curiously, the triangular tilings of even valency
at any vertex are necessarily f-tilings. Dawson has also been interested in special classes of
spherical tilings, see [3, 4, 5], for instance. Spherical f-filings by two noncongruent classes
of isosceles triangles have recently obtained [2, 7].

From now on,

(i) T denotes a spherical scalene triangle with internal angles α > β > γ and side
lengths a > b > c;

(ii) T ′ denotes a spherical isosceles triangle with internal angles (δ, δ, ε), δ 6= ε, and side
lengths (d, d, e),

as illustrated in Figure 1.

d

e

e

T

g

b

c a

b

T

‘

a

d

d

d

Figure 1: A spherical scalene triangle, T , and a spherical isosceles triangle, T ′.

Taking into account the area of the prototiles T and T ′, we have

α+ β + γ > π and 2δ + ε > π.

As α > β > γ, we also have α > π
3 . In [6] it was established that any f-tiling by T and T ′

has necessarily vertices of valency four.
We begin by pointing out that any f-tiling by T and T ′, in which the shortest side of T

is equal to the longest side of T ′, has at least two cells congruent to T and T ′, respectively,
such that they are in adjacent positions and in one and only one of the situations illustrated
in Figure 2. Our aim in this paper is to classify f-tilings in the first case of adjacency
(Figure 2-Case I).

Next section contains the main results of this paper. In Subsection 2.1 we describe
six families of spherical f-tilings and one single f-tiling that we may obtain in this case
of adjacency. The combinatorial structure of these f-tilings and the classification of the
group of symmetries and also the transitivity classes of isogonality and isohedrality are
presented in Subsection 2.2. The proof of the main result consists in a long and exhaustive
methodology and it is presented in Section 3.
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1

T

I.

T

‘

2

T

I.

T

‘d c d c

Case I: δ > ε

T

II

T

‘e c

Case II: δ < ε

Figure 2: Distinct cases of adjacency.

2 Main result
2.1 f-tilings in the adjacency case I

Theorem 2.1. Let T and T ′ be a spherical scalene triangle and a spherical isosceles
triangle, respectively, such that they are in one of the adjacent positions illustrated in Fig-
ure 2-Case I. Then, from this we obtain six families of spherical f-tilings and one isolated
f-tiling,

Dkδ (k ≥ 3), Gk (k ≥ 4), Ḡk (k ≥ 4), H,
Fkβ (k ≥ 4), Ikβ (k ≥ 3), J kβ (k ≥ 4),

that satisfy, respectively:

(i) α+ δ = π, δ + β + ε = π, kγ = π, ε = εk(δ), δ ∈
(
δkmin,

π
2

)
, k ≥ 3, where

εk(δ) = 2 arccot
(

2 cos
π

k
csc 2δ − cot δ

)
and

δkmin = arccos

√
1 + 8 cos πk − 1

4
;

(ii) α+ δ = π, α+ β + ε = π, δ + β + γ = π, kγ = π, δ = δk, k ≥ 4, where

δk = arccot

(
1

2
tan

π

2k

(
2− sec2

π

2k

))
;

(iii) α + δ = π, α + β + ε = π, δ + β + γ = π, 2β + γ + ε = π, kγ = π, δ = δk,
k ≥ 4;

(iv) α+ δ = π, α+ γ + γ = π, 3β + ε = π, 5γ = π, where

β = β0 = 4 arctan

√
3 + 4

√
5− 2

√
22 + 6

√
5;

(v) α + δ = π, 2β + γ + ε = π, kγ = π, α = α1
k(β), β ∈

(
β1k
min, β

1k
max

)
, k ≥ 4,

where

α1
k(β) = arccos

(
− cos

π

k
sec

π

2k
cos
(
β +

π

2k

))
,

β1k
min = max

{
π

k
, arccos

(
1

2
sec

π

2k

)
− π

2k

}
and

β1k
max =

(k − 1)π

2k
;
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(vi) α+ δ = π, 2β + ε = π, kγ = π, α = α2
k(β), β ∈

(
β2k
min,

π
2

)
, k ≥ 3, where

α2
k(β) = arccos

(
− cos

π

k
cosβ

)
and

β2k
min = max

{
π

k
, arccos

√
cos2 πk + 8− cos πk

4

}
;

(vii) α+ ε = π, β + 2δ = π, kγ = π, α = α3
k(β), β ∈

(
π
k , β

3k
max

)
, k ≥ 4, where

α3
k(β) = arccos

(
2 sin2 β

2
− cos

π

k

)
and

β3k
max = 2 arcsin

√
1 + 8 cos πk − 1

4
.

For each family of f-tilings we present the distinct classes of congruent vertices in
Figure 3 (including the respective number of vertices in each tiling).
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Figure 3: Distinct classes of congruent vertices.

Particularizing suitable values for the parameters involved in each case, the correspond-
ing 3D representations of these families of f-tilings are given in Figures 4 – 10.
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(a) D3
δ (b) D4

δ (c) D5
δ

Figure 4: f-tilings in the adjacency case I; the Dkδ family.

(d) G4 (e) G5 (f) G6

Figure 5: f-tilings in the adjacency case I; the Gk family.

(g) Ḡ4 (h) Ḡ5 (i) Ḡ6

Figure 6: f-tilings in the adjacency case I; the Ḡk family.
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(j)H

Figure 7: f-tilings in the adjacency case I; the isolated f-tiling.

(k) F4
β (l) F5

β (m) F6
β

Figure 8: f-tilings in the adjacency case I; the Fkβ family.

(n) I3β (o) I4β (p) I5β

Figure 9: f-tilings in the adjacency case I; the Ikβ family.



C. P. Avelino and A. F. Santos: S2 coverings by isosceles and scalene triangles . . . 425

(q) J 4
β (r) J 5

β (s) J 6
β

Figure 10: f-tilings in the adjacency case I; the J kβ family.

2.2 Symmetry groups and combinatorial structure

In this subsection we present the group of symmetries of each spherical f-tiling mentioned
in Theorem 2.1. The number of transitivity classes of tiles and vertices of each tiling is
indicated in Table 1.

Any symmetry of Dkδ , k ≥ 3, fixes the north pole N = (0, 0, 1) (and consequently the
south pole S = −N ) or maps N into S (and consequently S into N ). The symmetries that
fix N are generated, for instance, by the rotation Rz2π

k

(of an angle 2π
k around the z axis)

and the reflection ρyz (on the coordinate plane y ◦ z) giving rise to a subgroup of G(Dkδ )
isomorphic to Dk, the dihedral group of order 2k. Now, the map

φ = Rzπ
k
◦ ρxy = ρxy ◦Rzπ

k

is a symmetry ofDkδ that changesN and S. One has φ2k−1 ◦ρyz = ρyz ◦φ and φ has order
2k. It follows that φ and ρyz generate G(Dkδ ), and so it is isomorphic to D2k. Moreover,
Dkδ is 2-tile-transitive and 3-vertex-transitive with respect to this group.

The analysis considered to the combinatorial structure of Dkδ also applies to the family
of f-tilings Gk, k ≥ 4. And so G(Gk) = D2k. Gk is 3-isohedral and 4-isogonal.

Concerning the family of f-tilings Ḡk, k ≥ 4, we have that G(Ḡk) = Dk, since in this
case there is no symmetry sending the north pole into the south pole. Moreover, Ḡk has 6
transitivity classes of tiles, and so it is 6-isohedral. The vertices of Ḡk form 8 transitivity
classes.

Regarding the symmetry group of H, the symmetries that fix N are generated by the
rotation Rz2π

5

and the reflection ρyz on the plane x = 0. On the other hand,

φ = Rzπ
5
◦ ρxy

is also a symmetry of H that sends N into S. Thus, we conclude that G(H) is isomorphic
to D10, the dihedral group of order 20. H is 4-tile-transitive and 5-vertex-transitive.

Any symmetry of Ikβ , k ≥ 3, fixes N or maps N into S. The symmetries that fix N are
generated, for instance, by the rotation Rz2π

k

of order k and the reflection ρyz , giving rise

to a subgroup S of G(Ikβ) isomorphic to Dk. To obtain the symmetries that send N into
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S it is enough to compose each element of S with ρxy . Since ρxy commutes with Rzπ
k

and
ρyz , we may conclude that G(Ikβ) is isomorphic to C2 ×Dk. Ikβ has 2 transitivity classes
of tiles with respect to the group of symmetries and 3 transitivity classes of vertices.

Similarly to previous cases, we have G(Fkβ ) = G(J kβ ) = D2k. Fkβ is 3-isohedral and
4-isogonal and J kβ is 2-isohedral and 3-isogonal.

The combinatorial structure of the class of spherical f-tilings described in the previous
subsection, including the symmetry groups, is summarized in Table 1. Our notation is as
follows:

• |V | is the number of distinct classes of congruent vertices;

• N1 and N2 are, respectively, the number of triangles congruent to T and T ′, respec-
tively;

• G(τ) is the symmetry group of each tiling τ and the indices of isohedrality and
isogonality for the symmetry group are denoted, respectively, by #isoh. and #isog.

3 Proof of Theorem 2.1
In the case of adjacency I, any f-tiling by T and T ′ has at least two cells congruent to
T and T ′, respectively, such that they are in adjacent positions and in one and only one
of the situations illustrated in Figure 2. After certain initial assumptions are made, it is
usually possible to deduce sequentially the nature and orientation of most of the other
tiles. Eventually, either a complete tiling or an impossible configuration proving that the
hypothetical tiling fails to exist is reached. In the diagrams that follow, the order in which
these deductions can be made is indicated by the numbering of the tiles. For j ≥ 2, the
location of tiling j can be deduced directly from the configurations of tiles (1, 2, . . . , j−1)
and from the hypothesis that the configuration is part of a complete f-tiling, except where
otherwise indicated.

Observe that we have δ > π
3 . Also, as d = c and using spherical trigonometric formu-

las, we get
cos γ + cosα cosβ

sinα sinβ
= cot δ cot

ε

2
. (3.1)

Proof of Theorem 2.1. We consider separately the subcases illustrated in Figure 2-Case I.

Case I.1: With the labeling of Figure 11(a), at vertex v1 we must have

α+ δ < π or α+ δ = π.

Case I.1.1: Suppose firstly that α + δ < π. If α < δ, we must have α + δ + kε = π,
with k ≥ 1. Due to the existence of vertices of valency four, it follows that δ = π

2 , and
consequently, by Equation (3.1), cos γ+cosα cosβ = 0. Nevertheless, this is not possible,
since cos γ > cosβ > cosα > 0. Therefore, α ≥ δ. It follows that α > β > δ > ε > γ
and α + δ + kγ = π, with k ≥ 1; see Figure 11(b). Note that θ1 = γ, otherwise at vertex
v2 we get α+ β = π = γ + ε, which is an impossibility. Now, we have

θ2 = γ, θ2 = δ or θ2 = ε.

Case I.1.1.1: If θ2 = γ, we obtain the configuration illustrated in Figure 12(a). Due to the
edge lengths, at vertex v3 we must have θ3 +β+ρ ≤ π, with ρ ≥ ε, which implies θ3 = ε.
At vertex v4 we reach a contradiction, as α+ δ + ρ > π, for all ρ ∈ {α, β, δ, ε}.
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Figure 11: Local configurations.
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Figure 12: Local configurations.

Case I.1.1.2: If θ2 = δ (Figure 12(b)), we reach an impossibility at vertex v4, since
δ + δ + ρ > π, for all ρ ∈ {α, β, δ, ε}. Note that θ3 cannot be γ (tile 11), as it implies a
sum of alternate angles at vertex v3 including the angles β, ρ1 and ρ2, with ρ1 ∈ {α, β}
and ρ2 ∈ {α, β, δ, ε}, which is not possible due to the dimensions of the involved angles.

Case I.1.1.3: Finally we consider θ2 = ε (Figure 13(a)). At vertex v3 we must have
δ + β + k̄γ = π, k̄ > k. Nevertheless, an incompatibility between sides at this vertex
cannot be avoided.

Case I.1.2: Suppose now that α + δ = π (consequently β + γ > δ > π
3 ). If α = δ = π

2 ,
we also get γ = π

2 , which is not possible. On the other hand, if δ > π
2 > α (> β > γ), we

obtain cot δ < 0, thereby making Equation (3.1) infeasible. Thus, α > π
2 > δ. With the
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Figure 13: Local configurations.

labeling of Figure 13(b), we have

θ1 = δ, θ1 = ε, θ1 = β or θ1 = α.

Case I.1.2.1: If θ1 = δ, we get the configuration illustrated in Figure 14(a). Note that, at
vertex v2, it is not possible to have δ + δ + kγ = π, with k ≥ 1, and δ + δ + β + γ > π.
At vertex v3 we must have α + β + kε = π, with k ≥ 1. Nevertheless, at this vertex we
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reach a contradiction, since (δ+ δ+ β) + (α+ β+ ε) > (δ+ δ+ ε) + (α+ β+ γ) > 2π.

Case I.1.2.2: If θ1 = ε, we obtain the configuration of Figure 14(b). Note that if θ2 = γ,
we would get the angles (δ, ε, γ, β, . . .) in one of the sum of alternate angles at vertex v2;
but (δ+ ε+ γ+β) + (α+ δ) = (δ+ δ+ ε) + (α+β+ γ) > 2π, which is not possible; at
tile 11, it is easy to observe that θ3 6= α, γ, δ; on the other hand, θ3 cannot be ε, otherwise,
at vertex v3, we get δ + δ + β = π, but (α+ δ) + (δ + δ + β) + (ε+ δ + β + ε+ · · · ) >
2(δ + δ + ε) + (α+ β + γ) > 3π, which is a contradiction; a similar reasoning applies to
the choice of θ4 and the fact that k̄ = 1 in the sum δ+β+ k̄ε = π, at vertex v2. We denote
the continuous family of f-tilings illustrated in Figure 14(b) by Dkδ , where

α+ δ = π, δ + β + ε = π and kγ = π, with k ≥ 3.

As 0 < ε < δ < π
2 , using Equation (3.1) we get

cos πk + cos δ cos(δ + ε)

sin(δ + ε)
=

cos δ cos ε2
sin ε

2

⇐⇒ cos
π

k
sin

ε

2
= cos δ sin

(
δ +

ε

2

)
⇐⇒ cos

π

k
= cos δ sin δ cot

ε

2
+ cos2 δ

⇐⇒ cot
ε

2
= 2 cos

π

k
csc 2δ − cot δ.

Therefore,
ε = εk(δ) = 2 arccot

(
2 cos

π

k
csc 2δ − cot δ

)
, k ≥ 3,

with δ ∈
(
δkmin,

π
2

)
, where

δkmin = arccos

√
1 + 8 cos πk − 1

4
>
π

3

is obtained when ε = δ. The graph of this function for δkmin < δ < π
2 is outlined in

Figure 15, for different values of k. 3D representations of D3
δ , D4

δ and D5
δ are given in

Figures 4(a) – 4(c).

Case I.1.2.3: Consider θ1 = β (Figure 16(a)). At vertex v1 we cannot have α+ β = π =
ε + γ, as α > δ > ε and β > γ. Thus, α > π

2 > δ > β > γ > ε and α + β + kε = π,
k ≥ 1. It is easy to observe that k = 1, as k > 1 lead to a vertex with a sum of alternate
angles including the angles δ, δ and ρ, with ρ ∈ {α, β, δ, ε}, which is not possible due to
the dimensions of the involved angles. The last configuration extends to the one illustrated
in Figure 16(b). At vertex v2 we have necessarily one of the following situations:

(i) δ + β + β = π;

(ii) δ + β + γ = π.

Note that δ + β + kε = π, k > 1 lead to a vertex with a sum of alternate angles including
the angles δ, δ and ρ, with ρ ∈ {α, β, δ, ε}.

(i) If δ + β + β = π, we obtain the configuration illustrated in Figure 17(a). Note that,
at vertex v3, we cannot have α+γ+γ+kρ = π, with ρ ∈ {γ, ε} and k ≥ 1, otherwise we
get (α+γ+γ+kρ)+(α+δ)+(δ+β+β) ≥ (α+β+γ)+(α+β+γ)+(δ+δ+ε) > 3π,
which is not possible.
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Figure 16: Local configurations.

At vertex v4 we must have kγ = π, with k ≥ 4. As δ = 2γ and π < δ+δ+ε = 4γ+ε,
we conclude that k = 4, which is not possible as δ < π

2 .
(ii) If δ + β + γ = π, the last configuration gives rise to the one illustrated in Fig-

ure 17(b), where θ2 can be ε or δ. According to the selection for θ2, we obtain the planar
representations illustrated in Figures 18(a) and 18(b), respectively. In the first case we have

α+ δ = π, α+ β + ε = π, δ + β + γ = π, kγ = π, with k ≥ 4,

and

δ = δk = arccot

(
1

2
tan

π

2k

(
2− sec2

π

2k

))
.
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Figure 17: Local configurations.

Note that by Equation (3.1) we have

cos πk + cos δ cos(δ + π
k )

sin(δ + π
k )

= −
cos δ sin

(
δ + π

2k

)
cos
(
δ + π

2k

)
⇐⇒ cos

π

k
cos
(
δ +

π

2k

)
+ cos δ cos

π

2k
= 0

⇐⇒ 2 cos δ cos3
π

2k
− sin δ cos

π

k
sin

π

2k
= 0

⇐⇒ cot δ = tan
π

2k
− 1

2
tan

π

2k
sec2

π

2k
.

We denote this family of f-tilings by Gk, k ≥ 4. 3D representations of Gk, k = 4, 5, 6,
are presented in Figures 5(d) – 5(f).

In the second case we have

α+ δ = π, α+ β + ε = π, δ + β + γ = π, 2β + γ + ε = π,

kγ = π, with k ≥ 4, and δ = δk;

we denote this family of f-tilings by Ḡk. 3D representations, for k = 4, 5, 6, are presented
in Figures 6(g) – 6(i).

Case I.1.2.4: If θ1 = α (Figure 19(a)), we must have β < δ, otherwise there is no way to
satisfy the angle-folding relation around vertex v1. Then, α > π

2 > δ > β > γ and δ > ε.
Now, we have

θ2 = β, θ2 = γ or θ2 = ε.

Note that θ2 cannot be δ, as δ + β + ε+ ρ > π, for all ρ ∈ {β, γ}.
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Figure 19: Local configurations.

Case I.1.2.4.1: If θ2 = β, we get the configuration illustrated in Figure 19(b), where
α + 2γ = π and, at vertex v1, 3β + kε = π, k ≥ 1. As k > 1 implies the existence of a
vertex with a sum of alternate angles containing δ + δ + β, and (3β + kε) + (2δ + β) +
(α + δ) ≥ (α + β + γ) + 2(2δ + ε) > 3π, we conclude that k = 1. Now, θ3 ∈ {ε, γ}.
If θ3 = ε (Figure 20(a)), at vertex v2 we reach a contradiction, as for ρ ∈ {β, γ}, we get
δ + β + ε + ρ ≥ δ + β + ε + γ > 2δ + ε > π. On the other hand, if θ3 = γ, the last
configuration extends to the one illustrated in Figure 20(b).

If θ4 = ε (Figure 21(a)), at vertex v3 we must have δ+ 2β = π, as δ+ 2β+ ρ > π, for
all ρ ∈ {α, β, γ, δ, ε} (note that α + β + ε = 3β + ε = π, implying γ > ε; consequently
α > π

2 > δ > β > γ > ε). As kγ = π, 4γ = δ+ 2γ < α+ 2γ = π and 6γ = 3δ > π, we
conclude that k = 5. Jointly with the remaining conditions, we obtain α = 3π

5 , β = 3π
10 ,

γ = π
5 , δ = 2π

5 and ε = π
10 . Nevertheless, under these conditions, Equation (3.1) is

impossible. On the other hand, if θ4 = δ, we obtain the planar representation illustrated in
Figure 21(b). We have

α =
3π

5
, β = 4 arctan

√
3 + 4

√
5− 2

√
22 + 6

√
5,

γ =
π

5
, δ =

2π

5
, and ε = π − 3β.

We denote this f-tiling byH, whose 3D representation is presented in Figure 7(j).

Case I.1.2.4.2: If θ2 = γ, we obtain the configuration illustrated in Figure 22(a). Note
that, at vertex v1, all the alternate angle sums containing β+β+γ+ρ, with ρ ∈ {α, β, γ, δ},
exceed π, and so β + β + γ + kε = π, with k = 1 (k ≥ 1 implies the existence of a vertex
with alternate sum δ + δ + β = π and ε > β).
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Figure 20: Local configurations.

Now, θ3 must be β or γ.
In the first case (Figure 22(b)), we observe that at vertex v3 we must have δ+δ+β = π,

implying at vertex v4 the existence of an alternate angle sum containing α + β + γ > π,
which is an impossibility.

On the other hand, if θ3 = γ, the last configuration extends to the one illustrated in
Figure 23. We denote this family of f-tilings by Fkβ , where

α+ δ = π, 2β + γ + ε = π and kγ = π, with k ≥ 4.

As γ = π
k < β < δ, β + γ > δ, using Equation (3.1) we get

cos πk + cosα cosβ

sinβ
=
− cosα sin

(
β + π

2k

)
cos
(
β + π

2k

)
⇐⇒ cos

π

k
cos
(
β +

π

2k

)
+ cosα cos

π

2k
= 0

⇐⇒ cosα = − cos
π

k
+ sec

π

2k
cos
(
β +

π

2k

)
.

Therefore,

α = α1
k(β) = arccos

(
− cos

π

k
sec

π

2k
cos
(
β +

π

2k

))
, k ≥ 4,
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with β ∈
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The graph of α = α1
k(β), for β1k

min < β < β1k
max, is outlined in Figure 24, for different

values of k. Note that the condition ε < δ is equivalent to α < 2β + π
k .
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Figure 24: α = α1
k(β), with β1k

min < β < β1k
max, and for and for k = 4, 5, 6, . . . ,∞.

3D representations of F4
β , F5

β and F6
β are given in Figures 8(k) – 8(m).

Case I.1.2.4.3: If θ2 = ε (Figure 19(a)), at vertex v1 we must have

(i) β + β + kε = π, k ≥ 1,

(ii) β + β + β + kε = π, k ≥ 1 or

(iii) β + β + γ + kε = π, k ≥ 1.
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Note that in all these cases k must be one, otherwise we reach a vertex with alternate sum
δ + δ + β = π and other vertex surrounded in cyclic order by (α, ε, β, . . .), which is not
possible.

In case (i), β+β+ ε = π, we obtain the planar representation of Figure 25. We denote
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Figure 25: Planar representation of Ikβ .

this family of f-tilings by Ikβ , where α + δ = π, 2β + ε = π and kγ = π, with k ≥ 3.
Using Equation (3.1), we get

α = α2
k(β) = arccos

(
− cos

π

k
cosβ

)
, k ≥ 3,

with

max

{
π

k
, arccos

√
cos2 πk + 8− cos πk

4

}
< β <

π

2
,

where the lower and upper bounds are obtained, respectively, when ε = γ or ε = δ and
α = δ. The graph of this function is outlined in Figure 26, for different values of k. Note
that the condition ε < δ is equivalent to α < 2β.

3D representations of Ikβ , for k = 3, 4, 5, are illustrated in Figures 9(n) – 9(p).
In case (ii), β + β + β + ε = π, using similar arguments applied before, the local

configuration extends to the f-tilingH, obtained in Case I.1.2.4.1.
In the last case, by symmetry we obtain the families of f-tilings Fkβ and Ḡk, k ≥ 4, of

Cases I.1.2.4.2 and I.1.2.3(ii), respectively.

Case I.2: With the labeling of Figure 27(a), at vertex v1 we must have

β + δ = π or β + δ < π.

Case I.2.1: Suppose firstly that β+δ = π. As δ = β = π
2 implies γ = π

2 , we have δ 6= β.
If δ > β, by Equation (3.1), we conclude that α > π

2 , preventing a feasible assignment
for θ1 and θ2. In turn, if δ < β, we obtain a vertex (v2) surrounded by four angles δ. As
2δ < β+δ = π, we would have 2δ+ρ ≤ π, with ρ ∈ {α, β, γ, δ, ε}, which is not possible.
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Case I.2.2: Suppose now that β + δ < π. As in Case I.2.1, if δ ≥ π
2 , we obtain

α > π
2 and no assignment for θ1 and θ2 is possible. Thus, δ < π

2 and, as any tiling has
necessarily vertices of valency four, we have α ≥ π

2 . Now, observing Figure 27(a), we
have θ1 ∈ {δ, ε, β}.

Case I.2.2.1: If θ1 = δ, we obtain the configuration illustrated in Figure 27(b). Vertex v3
must have valency three, but in this case we get α + β + δ = π = δ + ε + γ, implying
ε > α, which is not possible.

Case I.2.2.2: If θ1 = ε, the last configuration extends uniquely to the one illustrated in
Figure 28. Note that at vertex v4, θ2 must be β and the vertex must have valency three
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(2β > β+γ > δ). We denote this family of f-tilings by J kβ , where α+ ε = π, 2δ+β = π
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and kγ = π, with k ≥ 4. Using Equation (3.1) we get

cos πk + cosα cosβ

2 sin β
2

= sin
β

2
(1− cosα)

⇐⇒ cos
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Therefore,

α = α3
k(β) = arccos

(
2 sin2 β

2
− cos

π

k

)
, k ≥ 4,

with
π

k
< β < 2 arcsin

√
1 + 8 cos πk − 1

4
,

where the lower and upper bounds are obtained, respectively, when β = γ and ε = δ. The
graph of this function is outlined in Figure 29, for different values of k.

3D representations of J kβ , for k = 4, 5, 6, are illustrated in Figures 10(q) – 10(s).

Case I.2.2.3: Finally, if θ1 = β, at vertex v3 (see Figure 27(a)) we have α + β ≤ π.
α + β = π = ε + γ implies ε > α > π

2 > δ, which is a contradiction. As any tiling
has necessarily vertices of valency four, we conclude that α + β + kε = π, k ≥ 1, and
α + δ = π at vertex v2, as illustrated in Figure 30, configuration coincident with the one
presented in Figure 16(b), which leads to the families of f-tilings Gk and Ḡk (Case I.1).
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Abstract

We define a bijection between permutations and valued Dyck paths, namely, Dyck
paths whose odd vertices are labelled with an integer that does not exceed their height.
This map allows us to characterize the set of permutations avoiding the pattern 132 as
the preimage of the set of Dyck paths with minimal labeling. Moreover, exploiting this
bijection we associate to the set of n-permutations a polynomial that generalizes at the
same time Eulerian polynomials, Motzkin numbers, super-Catalan numbers, little Schröder
numbers, and other combinatorial sequences. Lastly, we determine the Hankel transform
of the sequence of such polynomials.

Keywords: Permutation, Dyck path, pattern avoidance, Hankel transform.
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1 Introduction
Many bijections are present in the literature between the symmetric group Sn and the set of
Dyck paths of semilength n with some kind of labeling on their steps (see e.g. [3, 8, 18]).
In this paper, inspired by [3], we define a bijection Γ between permutations and valued
Dyck paths, namely, Dyck paths whose odd vertices are labelled with an integer that does
not exceed their height.

More precisely, we write a permutation π as the juxtaposition of ascending runs, and
associate to every integer i from 1 to n a pair of consecutive steps in the path according
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to the fact that i is the unique element of an ascending run (a head-tail) in π or the initial
(head), final (tail) or middle element (boarder) of an ascending run of length greater or
equal to two. Every pair of consecutive steps is labelled with an integer that depends on the
respective position of the ascending runs in π.

Observe that a similar construction was described in [11] in terms of peaks, valleys,
double descents and double rises of the permutation. Given a permutation π = π1π2 . . . πn,
it turns out that for i 6= 1, n the entry πi is

(i) a head if and only if it is a valley;

(ii) a tail if an only if it is a peak;

(iii) a head-tail if and only if it is double descent;

(iv) a boarder if and only if it is a double rise.

However, π1 and πn may play different roles in the two environments, and this fact
leads to different results. The present construction seems to shed new light on combinato-
rial properties of permutations. In particular the results of Section 5 seem to be difficult to
obtain with the construction in [11].

The map Γ allows us to characterize the set of permutations avoiding the pattern 132
(213, resp.) as the preimage of the set of Dyck paths with minimal (maximal, respec-
tively) labeling. In these particular cases it is possible to translate the ascending runs of
the permutation directly in terms of tunnels of the Dyck path. As a consequence we get a
bijection between the permutations avoiding 132 and those avoiding 213 that is new, up to
our knowledge.

If a permutation avoids 132 its ascending runs are the blocks of a non-crossing partition.
Hence our map provides also a bijection between Dyck paths and non-crossing partitions,
that turns out to be the same as the bijection introduced in [24].

In Section 5 we consider monomials in the variables H,S,B associated with each per-
mutation according to the number of heads, head-tails and boarders. In this way we con-
struct a polynomial Fn(H,S,B) as the sum of such monomials over all the permutations
of length n. These polynomials generalize at the same time Eulerian numbers, factorials
and many other sequences. We exploit the results of the previous sections to deduce a re-
currence relation for these polynomials and a functional equation for their generating func-
tion. We also determine the Hankel transform of the sequence (Fn)n≥0, hence obtaining
both new and known results about the Hankel transform of various specializations of these
polynomials. Finally, we consider the sequence of polynomials F̂n(H,S,B), defined as the
sum of the monomials that correspond to permutations avoiding 132. These polynomials
specialize in many well-known sequences related to Catalan and Motzkin numbers.

2 The bijection
A Dyck path of semilength n is a lattice path contained in N×N, starting in (0, 0), ending
in (2n, 0), consisting of unitary north-east steps of the form (1, 1) and of unitary south-east
steps of the form (1,−1) and lying above the x-axis. The north-east steps are called up
steps (denoted by U ) and the south-east steps are called down steps (denoted by D).

As usual, a Dyck path can be identified with a word w = S1S2 . . . S2n of length 2n
in the alphabet {U,D} with the constraint that the number of occurrences of the letter
U is equal to the number of occurrences of the letter D and, for every i, the number of
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occurrences of U in the subword S1S2 . . . Si is not smaller than the number of occurrences
of D. The word w is called a Dyck word. In the following we will not distinguish between
a Dyck path and the corresponding word.

We denote by Dn the set of Dyck path of semilength n.
Given a Dyck path d ∈ Dn, decompose it into 2-step subpaths d = d1d2 . . . dn. The

subpaths di will be called dimers and the decomposition d = d1 . . . dn will be called the
dimer decomposition of d. For every i = 1, . . . , n, let ki be the y-coordinate of the middle
point of the dimer di. We associate to d the n-tuple m(d) = (m1,m2, . . . ,mn), where
mi = ki−1

2 . We will call the integer mi the height of the dimer di, and the n-tuple m(d)
the height list of d.

Example 2.1. Consider the Dyck path d = UU |UU |DD|UD|DD in Figure 1. Then

d5

d4d3d2

d1

Figure 1: The Dyck path d = UU |UU |DD|UD|DD.

m(d) = (0, 1, 1, 1, 0).

Let π = π1π2 . . . πn be a permutation in Sn written in one-line notation.
An ascending run in π is a maximal increasing subsequence of π. For example, the

ascending runs of 346512 are w1 = 346, w2 = 5 and w3 = 12. Write π as

π = w1w2 . . . wk,

where the wi’s are the ascending runs in π. Let hi and ti be the first and the last element of
wi. Note that hi and ti can coincide. We call hi and ti the head and the tail of wi. Clearly
ti > hi+1 for 1 ≤ i ≤ k − 1.

Now we associate to every permutation of length n a Dyck path d of semilength n
defined as follows. For i = 1, . . . , n,

(i) if i is both a head and a tail, set di = UD;

(ii) if i is a head but not a tail, set di = UU ;

(iii) if i is a tail but not a head, set di = DD;

(iv) if i is neither a head nor a tail, set di = DU .

Then d = d1d2 . . . dn.
Obviously the correspondence γ : π → d is far from being injective. For example, both

the permutations 3124 and 1243 in S4 correspond to the Dyck path UUDUUDDD.
In order to get a bijection, we associate to the permutation π a valued Dyck path, namely

a pair (d, l), where d is the Dyck path defined above and l = (l1, l2, . . . , ln) is the sequence
of non-negative integers given by

li = |{j | hj < i < tj , tj precedes i in π}|.
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Example 2.2. Consider the permutation π = 1254367. The ascending runs of π are
w1 = 125, w2 = 4 and w3 = 367. The heads and the tails of π are h1 = 1, h2 = 4,
h3 = 3, t1 = 5, t2 = 4, and t3 = 7. The Dyck path associated with π is d =
UU |DU |UU |UD|DD|DU |DD (in Figure 2). and the list l associated with the permu-

Figure 2: The Dyck path d = UU |DU |UU |UD|DD|DU |DD.

tation π is (0, 0, 1, 1, 0, 0, 0).

We denote by Γ(π) the valued Dyck path associated with the permutation π. The next
proposition describes the connection between the list l associated with π and the height
list m(d).

Proposition 2.3. Let π be a permutation in Sn. Set Γ(π) = (d, l), with l = (l1, . . . , ln).
Let m(d) = (m1, . . . ,mn) be the height list of d. Then, for all 1 ≤ i ≤ n,

li ≤ mi.

Proof. Let i be an integer such that 1 ≤ i ≤ n. If d = d1d2 . . . dn is the dimer decomposi-
tion of d, the integer mi can be written as

mi = |{j | dj = UU, 0 < j < i}| − |{j | dj = DD, 0 < j < i}| − ε

where

ε =

{
0 if the first step of di is an up step;

1 if the first step of di is a down step.

We notice that, denoting by hj and tj the j-th head and tail of π, respectively, the
integer |{j | dj = UU, 0 < j < i}| is the number of heads hj such that hj < i, while
|{j | dj = DD, 0 < j < i}| is the number of tails tj such that tj < i. Hence

mi = |{j | hj < i}| − |{j | tj < i}| − ε
= |{j | hj < i ≤ tj}| − ε
= |{j | hj ≤ i ≤ tj}| − 1.

The assertion now follows immediately from the definition of li.

The above proposition shows that the image of the map Γ is contained in the set of all
pairs (d, l), where d is a Dyck path of semilength n and l = (l1, . . . , ln) is a sequence of
positive integers such that, for all 1 ≤ i ≤ n, li ≤ mi, the i-th element of the height list
of d. We denote by DLn the set of such pairs. Our next goal is to prove that the map Γ is
actually a bijection between Sn and DLn.
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To this aim we describe a procedure whose iteration will be proved to provide the
inverse of Γ. In order to describe such a procedure we need the notion of tagged Dyck
path.

A tagged Dyck path is a pair [d, λ] where d is a Dyck path of semilength n and λ =
(λ1, λ2, . . . , λn) is an increasing sequence of positive integers. Intuitively, we think of the
tag λi, 1 ≤ i ≤ n, as attached to the dimer di.

Example 2.4. See Figure 3.

d5

d4d3d2

d1

1 3 4 7 8

Figure 3: A tagged Dyck path with tags λ = (1, 3, 4, 7, 8).

Now we describe a procedure P whose input is a triple (d, λ, l) where [d, λ] is a tagged
Dyck path of semilength r and (d, l) ∈ DLr. P produces another triple (d′, λ′, l′) with the
same properties, with d′ a Dyck path of smaller semilength.

Let d = d1d2 . . . dr be the dimer decomposition of d. Set l = (l1, l2, . . . , lr) and
λ = (λ1, . . . , λr).

(I) If d is the empty path, end.

(II) Else, find the smallest index i such that li = mi and the second step of di is a down
step (such an i exists since the integer r satisfies the conditions above).

(II.a) If the first step of di is an up step, the output of P is the triple (d′, λ′, l′), where

• d′ is obtained from d by removing di,
• l′ is obtained from l by removing li,
• λ′ is obtained from λ by removing λi.

Note that m(d′) is obtained from m(d) by removing mi, so, for all i, the i-th
element of l′ is not greater than the i-th element ofm′, hence (d′, l′) ∈ DLr−1.

(II.b) Otherwise, follow the path d backwards, starting from di, until you find a dimer
dj , j < i, such that dj = UU and lj = mj . Let {j1, j2, . . . , jk} be the set of
indices jq such that j < jq < i and ljq = mjq . Then, the output of P is the
triple (d′, λ′, l′), where

• d′ is obtained from d by removing the dimers dj , dj1 , . . . , djk , di,
• l′ is obtained from l by removing the entries lj , lj1 , . . . , ljk , li,
• λ′ is obtained from λ by removing the entries λj , λj1 , . . . , λjk , λi.

It is easily seen that for all i, the i-th element of l′ is not greater than the i-th
element of m(d′), hence (d′, l′) ∈ DLr−k−2.

Let now (d, l) ∈ DLn. We apply t times, say, the procedure P starting from the triple
(d, (1, . . . , n), l), until we get the empty path. At the i-th step, denote by wi the list of
symbols which have been removed from the set of tags, written in increasing order.
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Let Λ(d, l) be the permutation π obtained by juxtaposing the lists wtwt−1 . . . w1. It
remains to show that wt, . . . , w1 are precisely the ascending runs of the permutation π,
namely, that the last element of wi+1 is greater than the first element of wi. For the sake of
simplicity, we prove this fact for w1 and w2. Denote by k1 the first element of w1, k2 the
last element of w1 (i.e., the first and the last tag removed at step 1) and h the last element
of w2 (i.e., the last tag removed in step 2). Note that lh = mh. Since the index h has not
been chosen at step 1, we must have h > k2 > k1. A similar argument can be used for the
general case.

Example 2.5. Consider the path d = UU |UD|UU |DD|DU |DD|UU |DD (see Figure 4).
Then, m(d) = (0, 1, 1, 1, 0, 0, 0, 0). In order to construct Λ(d, (0, 0, 0, 1, 0, 0, 0, 0)), we
apply the procedure P iteratively, starting with the triple

(d, (1, 2, 3, 4, 5, 6, 7, 8), (0, 0, 0, 1, 0, 0, 0, 0)).

We represent the triple (d, λ, l) as a Dyck path with the tags written below the path, while
each integer li is placed close to the respective dimer di. A dashed line is drawn for every
height mi. The white dots represent the vertices involved in the application of P .

0000

100

0
0

1

2
m

1 2 3 4 5 6 7 8

Figure 4: The Dyck path d = UU |UD|UU |DD|DU |DD|UU |DD.

At the first application of P we have i = 4, d4 = DD, j = 1, k = 0, λ1 = 1 and
λ4 = 4. The last ascending run of the permutation π is w1 = 14 and we get the new triple
(see Figure 5):

(UDUUDUDDUUDD, (2, 3, 5, 6, 7, 8), (0, 0, 0, 0, 0, 0)).

000000
0

1
m

2 3 5 6 7 8

Figure 5: Output of the first application of P .
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At the second application of P , i = 1, d1 = UD, and λ1 = 2, hence the permutation π
ends now by w2w1 = 214. The output is now the triple (see Figure 6):

(UUDUDDUUDD, (3, 5, 6, 7, 8), (0, 0, 0, 0, 0)).

00000
0

1
m

3 5 6 7 8

Figure 6: Output of the second application of P .

At the third step, i = 3, d3 = DD, j = 1, k = 1, j1 = 2, λ1 = 3, λ2 = 5, λ3 = 6, so
the permutation π ends now byw3w2w1 = 356214 and we get the new triple (see Figure 7):

(UUDD, (7, 8), (0, 0)).

00
0

1
m

7 8

Figure 7: Output of the third application of P .

At this step we have i = 2, d2 = DD, j = 1, k = 0, λ1 = 7, λ2 = 8. Since the
application of P produces now the empty triple, the permutation Λ(d, l) is

π = 78356214.

The following result assures that the maps Γ and Λ are inverse of each other. The proof
is based on an alternative description of the map Γ. Although this description is more
complicated than the previous one, it is the most suitable for that purpose.

Theorem 2.6. Let π be a permutation of length n. Then

Λ(Γ(π)) = π.

Moreover, let (d, l) be an element of DLn. Then

Γ(Λ(d, l)) = (d, l).
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Proof. The map Γ can be described as the result of the iteration of the following proce-
dure Q.

The procedure Q takes as input a triple (d, λ, l) and an increasing sequence of numbers
w where, as usual, [d, λ] is a tagged Dyck path of semilength r, (d, l) ∈ DLr and the
elements of w are different from the elements of λ. Q produces a triple (d′, λ′, l′) with the
same properties, with d′ a Dyck path of greater semilength.

Set λ = (λ1, . . . , λr), l = (l1, . . . , lr), w = x1 . . . xk, and let d = d1 . . . dr, be the
dimer decomposition of d. Hence, λi is the tag of di. Then

(I) The new list of tags λ′ is the union of λ with the elements of w.

(II) For i = 1, . . . , k define a new dimer d̂i as follows.

d̂i =


UD if i = 1 = k

UU if i = 1 < k

DU if 1 < i < k

DD if 1 < i = k.

Tag the dimer d̂i with the symbol xi. Set

{e1, e2, . . . , ek+r} = {d1, . . . , dr} ∪ {d̂1, . . . , d̂k}.

Then the path d′ is ei1ei2 . . . eik+r , written in increasing order of the corresponding
tags.

Roughly speaking, the new path is obtained by interlacing the new dimers with the
dimers of d, following the increasing order of the tags in λ′.

(III) Set m(d′) = (m′1,m
′
2, . . . ,m

′
r+k). The sequence l′ is (l′1, . . . , l

′
r+k), where l′i =

lti if i is an index corresponding to a symbol in λ, and l′i = m′i if i is an index
corresponding to a symbol in w.

For every permutation π ∈ Sn, let π = w1 . . . wk be the decomposition of π into
ascending runs. The pair Γ(π) is obtained by applying k times the procedure Q, starting
from the empty triple, and using the increasing sequence wi at the i-th application of Q,
1 ≤ i ≤ k.

It is easily seen that the procedures P and Q are inverse of each other.

As a consequence of the preceding theorem we have that the map Γ is a bijection
between the set of permutations of length n and the set DLn. Hence

|DLn| = n!.

3 Properties of the map Γ

Given a permutation σ ∈ Sn, one can partition the set {1, 2, . . . , n} into intervalsA1, . . . , At
so that σ(Ai) = Ai for every i. The restrictions of σ to the intervals in the finest of
these decompositions are called connected components of σ. A permutation σ with a
single connected component is called connected. The right connected components of
σ = σ1σ2 . . . σn are the connected components of the reverse R(σ) = σnσn−1 . . . σ1
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of σ. A permutation is said to be right connected if R(σ) is connected. As an exam-
ple, the right connected components of the permutation 45132 are 45 and 132 while the
permutation 2314 is right connected.

The function Γ maps right connected permutations to irreducible Dyck paths.
We recall that a return of a Dyck path d is a down step whose ending point lies on the

x-axis. An irreducible Dyck path is a Dyck path whose only return is its last step. Every
Dyck path d can be uniquely written as d = p1p2 . . . pk, where each pi is an irreducible
Dyck path.

Proposition 3.1. Let π be a permutation in Sn and let π = u1u2 . . . uk be the decompo-
sition of π into right connected components. Let Γ(π) = (d, l). Then d decomposes into
irreducible components dk . . . d1, where di is the path corresponding to the normalization
of ui.

Proof. The assertion follows immediately from the definition of the map Γ.

Example 3.2. Consider the same pair (d, l) ∈ DL8 as in Example 2.5 and the corre-
sponding permutation π = 78356214. We have that the right-connected components
of π are 78 and 356214. The Dyck path corresponding to the permutation 356214 is
UUUDUUDDDUDD, the Dyck path corresponding to the normalization of 78, i.e., to
the permutation 12, is UUDD, and these are precisely the irreducible components of the
Dyck path d.

Denote by RC (π) the reverse-complement of the permutation π, namely, if π =
π1π2 . . . πn, then RC (π) = (n+ 1− πn)(n+ 1− πn−1) . . . (n+ 1− π1).

The following assertion relates the images of the permutations π and RC (π) under the
map Γ.

Proposition 3.3. Let π a permutation and let Γ(π) = (d, l). Then Γ(RC (π)) = (d′, l′)
where d′ is the path obtained from d by reflecting the path d along a vertical line, and
l′i = mn+1−i − ln+1−i , 1 ≤ i ≤ n.

Proof. Let w1 . . . wk be the decomposition of π ∈ Sn into ascending runs with wi =
xi,1 . . . xi,li . For all i, set yi,j = n+1−xi,li+1−j . Then the decomposition into ascending
runs of RC (π) is ŵk . . . ŵ1 with ŵi = yi,1 . . . yi,li .

The assertion follows now immediately from the definition of the map Γ.

Example 3.4. Consider the permutation π = 78356214 of Example 2.5. Hence RC (π) =
58734612. We have Γ(π) = (d, l), where

d = UUUDUUDDDUDDUUDD and
l = (0, 0, 0, 1, 0, 0, 0, 0).

The height list of d is m(d) = (0, 1, 1, 1, 0, 0, 0, 0). Then Γ(RC (π)) = (d′, l′) with

d′ = UUDDUUDUUUDDUDDD and
l′ = (0, 0, 0, 0, 0, 1, 1, 0).

Now we define a map Φ: Sn → Sn. Let π ∈ Sn and w1 . . . wk its decomposition into
ascending runs. Given two consecutive ascending runs wi and wi+1, we say that they are
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contigue if wi+1wi is an increasing sequence of integers or, equivalently, if the tail of wi+1

is smaller than the head of wi. Then we consider the decomposition of π = B1 . . . Bh
where the Bi’s are maximal sequences of contigue ascending runs. We define the image of
π under the map Φ as follows:

Φ(π) = Bh . . . B1.

For example, if π = 5623147, then B1 = 5623, B2 = 147 and Φ(π) = 1475623.
Note that Φ is an involution, namely, Φ2 is the identity over Sn.

Theorem 3.5. Let π ∈ Sn. Then

Γ(π) = (d, l) if and only if Γ(Φ(π)) = (d,m(d)− l).

Proof. Let Γ(π) = (d, l) and Γ(Φ(π)) = (d′, l′). Since permutation Φ(π) has the same
heads and tails as π, d = d′. Moreover the definition of the map Φ implies immediately
that l′ = m(d)− l.

It follows from Proposition 3.3 and Theorem 3.5 that

Φ ◦ RC = RC ◦Φ.

4 Pattern avoiding permutations
Let π ∈ Sn and τ ∈ Sm. We say that π = π1 . . . πn contains the pattern τ = τ1 . . . τm if
there exists an index subsequence 1 ≤ i1 < i2 < . . . < im ≤ n such that πij < πik iff
τj < τk for 1 ≤ j, k ≤ m. Otherwise, π avoids the pattern τ . The set of permutations of
length n that avoid the pattern τ is denoted by Sn(τ).

In this section we study the behavior of the map Γ when restricted to some subsets of
pattern-avoiding permutations.

4.1 Permutations avoiding 132

The following proposition shows that the set Sn(132) corresponds to a particular subset
of DLn.

Proposition 4.1. Let π ∈ Sn and let Γ(π) = (d, l). Then

π ∈ Sn(132) if and only if l = (0, . . . , 0).

Proof. Set l = (l1, . . . , ln). We recall that

li = |{j | hj < i < tj , tj precedes i in π}|.

Suppose that there exists an index i such that li > 0. Then there are at least a head hj
and a tail tj with hj < i < tj such that tj precedes i in π. As a consequence, hjtji is an
occurrence of 132 in π.

This suffices to conclude the proof, since both the cardinalities of Sn(132) and Dn are
given by the n-th Catalan number (see [21] and [23], respectively).

Many bijections between 132-avoiding permutations and Dyck paths are present in the
literature (see [12, Chapter 4] for an exhaustive description). The preceding proposition im-
plies that the map Γ, when restricted to the set Sn(132), provides yet another one bijection
between this set and Dn, whose inverse has an easy description in terms of multitunnels.
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Given a Dyck path d, a multitunnel in d is a maximal horizontal segment between two
lattice points of d lying always below d (see [9]). A multitunnel can consist of a single
point. For our purpose we will be interested in odd multitunnels, namely, multitunnels
whose points have odd y-coordinate.

For example, the three odd multitunnels of the path in Figure 8 are the dashed segments
(one of them reduces to a point).

Figure 8: A Dyck path with three odd multitunnels (denoted with dashed segments).

Proposition 4.2. Let d be a Dyck path and π be the corresponding permutation in Sn(132),
namely π = Λ(d, (0, . . . , 0)). Consider the tagged Dyck path [d, (1, . . . , n)]. Every as-
cending run of π is given by the tags of the points of d lying on the same odd multitunnel.
Moreover, the sequence of the heads of π is a decreasing sequence.

Proof. At the first application of the procedure P the first chosen dimer is the dimer con-
taining the first return of d, and the removed tags correspond to the dimers at height 0 in
the leftmost irreducible component of d, whose middle points are precisely the points of
the leftmost and lowest odd multitunnel. The same argument can be used for the following
steps.

Example 4.3. Consider the Dyck path d in Figure 9. The three multitunnels of d contain the

1 2 3 4 5 6

Figure 9: A Dyck path with three multitunnels.

points whose tags are {1, 4, 6}, {2, 3}, {5}, and the corresponding permutation in S6(132)
is 523146.

We recall that a descent of a permutation π is an index i, 1 ≤ i ≤ n − 1, such that
πi > πi+1. If π = w1 . . . wk is the decomposition of π into ascending runs, a descent of π
occurs at the end of each ascending run, except the last one: Hence, the descents of π are
given by the positions of the first k − 1 tails.

Since it is well known (see e.g. [4]) that the number of permutations in Sn(132) with h
descents is the Narayana number

N(n, h+ 1) =
1

n

(
n

h+ 1

)(
n

h

)
,
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we get that the Dyck paths of semilength n with h odd multitunnels are counted by the
Narayana number N(n, h).

4.2 Non-crossing partitions

The set of 132-avoiding permutations of length n corresponds bijectively to the set of non-
crossing partitions of {1, 2, . . . , n}. Such partitions were introduced by Kreweras in [15]
and extensively studied by many authors in recent years (see [1, 17, 19, 22], to name but
a few).

A partition of the set {1, 2, . . . , n} is said to be non-crossing if, whenever four elements
a, b, c, d ∈ {1, . . . , n} with a < b < c < d are such that a, c are in the same block and
b, d are in the same block, then the two blocks coincide. We denote by NC(n) the set of
non-crossing partitions of {1, . . . , n}.

As usual (see e.g. [19]) we represent non-crossing partitions graphically by plotting n
points on the real line labelled with 1, 2, . . . , n and joining points corresponding to succes-
sive elements of the same block by arcs. Since we consider a non-crossing partition, the
arcs of this diagram do not intersect in points different from 1, 2, . . . , n.

For example, the non-crossing partition whose blocks are {1, 5}, {2, 3}, {4}, {6, 7, 8}
is graphically represented in Figure 10.

1 2 3 4 5 6 7 8

Figure 10: The non-crossing partition with blocks {1, 5}, {2, 3}, {4}, {6, 7, 8}.

Many bijections between Sn(132) and NC(n) are available in the literature (see
e.g. [19, 24]).

The following proposition provides another bijection between these two sets.

Proposition 4.4. The permutation π ∈ Sn avoids 132 if and only if

(a) the heads of π are in decreasing order and

(b) the partition of n given by the ascending runs of π is a non-crossing partition.

Proof. Proposition 4.2 implies immediately that if the permutation π avoids 132 conditions
(a) and (b) are fulfilled.

Conversely, let π be a permutation containing an occurrence of 132. Let πiπjπk be this
occurrence. Without loss of generality, suppose that πi is the head of an ascending run. If
πj is in the same ascending run, πk is surely in a different ascending run whose head we
denote by h. If h > πi, condition (a) is not satisfied. If h is smaller than π, the quadruple
h, πi, πk, πj does not satisfy condition (b). If πj and πk are in different ascending runs,
denote by ĥ the head of the ascending run containing πk. If ĥ > πi, condition (a) is not
satisfied. If ĥ < πi, the triple ĥ, πj , πk is an occurrence of 132 with ĥ and πj in the same
ascending run. This completes the proof.

The result of the previous proposition induces a bijection between non-crossing parti-
tions and Dyck paths. The same bijection can be found in [24, Proposition 2.1].
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4.3 Permutations avoiding 213

We now turn our attention to the pattern 213. We recall that, since RC (132) = 213,
we have π ∈ Sn(132) whenever RC (π) ∈ Sn(213). Hence, Proposition 3.3 implies
immediately the following results:

Proposition 4.5. Let π ∈ Sn and let Γ(π) = (d, l). Then

π ∈ Sn(213) if and only if l = m(d).

Proposition 4.6. Let d be a Dyck path and π be the corresponding permutation in Sn(213),
namely, π = Λ(d,m(d)). Consider the tagged Dyck path [d, (1, . . . , n)]. Every ascending
run of π is given by the tags of the points of d which lie on the same odd multitunnel. The
sequence of the tails of π is a decreasing sequence.

The preceding results imply that the map Φ, when restricted to Sn(132), becomes a
bijection onto Sn(213) that can be described as follows.

Proposition 4.7. Consider a permutation π ∈ Sn(132) whose decomposition into as-
cending runs is π = w1 . . . wk. The corresponding permutation Φ(π) in Sn(213) is the
permutation with the same ascending runs rearranged so that the tails are in decreasing
order.

For example, if π = 56 23 147 then Φ(π) = 147 56 23.
To the best of our knowledge, this map is new.
Let π ∈ Sn. A left-to-right (LR) minimum of π is an element πi of π such that πi < πj

for all j < i. Similarly, a right-to-left (RL) maximum is an element πi such that πj < πi
for all j > i. The next proposition describes the behavior of the map Φ with respect to the
statistics “number of LR minima”, “number of RL maxima”, and “number of descents”.

Proposition 4.8. Let π be a permutation in Sn(132). Then the permutations π and Φ(π)
have the same number of descents. Moreover, the number of LR minima of π equals the
number of RL maxima of Φ(π).

Proof. Since π ∈ Sn(132), the heads of its ascending runs are in decreasing order, hence
they are precisely the LR minima of π. Similarly, the tails of Φ(π) are its RL maxima.
Finally, we recall that a permutation with k ascending runs has k − 1 descents. The proof
now follows immediately by Proposition 4.7.

5 Polynomials associated with permutations and their Hankel trans-
form

Now we associate with a permutation π ∈ Sn the monomial θ(π) = H |Hπ|S|HTπ|B|Bπ|

(tails are not considered because they are always in bijection with heads). Note that if
γ(π) = γ(σ), namely, π and σ correspond to the same Dyck path, then θ(π) = θ(σ).

Set
Fn(H,S,B) =

∑
π∈Sn

θ(π) =
∑

h,s,b≥0

ah,s,b,nH
hSsBb,

where ah,s,b,n is the number of permutations of Sn with h proper heads, s head-tails, and
b boarders. Note that ah,s,b,n = 0 when 2h+ s+ b 6= n.
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We want to study the generating function

F (H,S,B,X) =
∑
n≥0

FnX
n =

∑
h,s,b,n≥0

ah,s,b,nH
hSsBbXn.

We recall that every permutation in Sn can be obtained from a permutation in Sn−1 by
adding the symbol n in any position. Table 1 shows how each insertion of the element n
between the entries a and b into a permutation π ∈ Sn−1 modifies the number of proper
heads, proper tails, head-tails and boarders (in this table, ε denotes the empty word).

Table 1: The insertion of n between two symbols a and b of σ ∈ Sn−1.

a b becomes a n b

h t → h t ht
h b → h t h
ht h → h t h
ht ht → h t ht
b b → b t h
b t → b t ht
t h → b t h
t ht → b t ht
ε h → ε ht h
ε ht → ε ht ht
t ε → b t ε
ht ε → h t ε

We have the following mutually exclusive options:

(i) n is placed immediately after a tail. In this case, the number of boarders increases
by one.

(ii) n is placed immediately before a tail. In this case, the number of head-tail increases
by one.

(iii) n is placed immediately before a boarder. In this case, the number of boarders de-
creases by one while the number of heads and tails increases by one.

(iv) n is placed immediately after a head-tail. In this case, the number of head-tails
decreases by one while the number of heads and tails increases by one.

(v) n is placed at the first position. In this case, the number of head-tail increases by one.

As a consequence we have

ah,s,b,n = h ah,s,b−1,n−1 + h ah,s−1,b,n−1

+ b ah−1,s,b+1,n−1 + s ah−1,s+1,b,n−1 + ah,s−1,b,n−1,
(5.1)

with the obvious boundary conditions.
This recurrence relation shows that the polynomials Fn(H,S,B) satisfy

Fn =

[
(HB +HS)

∂Fn−1
∂H

+H

(
∂Fn−1
∂B

+
∂Fn−1
∂S

)
+ S · Fn−1

]
∀n ≥ 1,
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with F0 = 1.
As a consequence we get the following functional equation for the generating function

F (H,S,B,X):

F = 1 +X

[
(HB +HS)

∂F

∂H
+H

(
∂F

∂B
+
∂F

∂S

)
+ S · F

]
.

We recall that the Hankel matrix Hn of order n + 1 of a sequence (an)n∈N is the
(n + 1) × (n + 1) matrix whose (i, j)-th entry is ai+j where the indices range between 0
and n. The Hankel transform of the sequence (an) is the sequence (bn)n∈N where

bn = detHn = det


a0 a1 . . . an
a1 a2 . . . an+1

...
...

. . .
...

an an+1 . . . a2n

 .
The problem of determining an explicit expression for the Hankel transform of com-

binatorial sequences is an active area in combinatorics. An exhaustive review of different
methods for determinant evaluations, including Hankel determinants, is given by Kratten-
thaler in [13, 14].

The main result of this section is the following theorem which gives an explicit formula
for the Hankel transform of the polynomial sequence (Fn).

Theorem 5.1. The Hankel transform of the sequence (Fn(H,S,B))n≥0 is given by(
Hm(m+1)/2 ·

m∏
i=0

(i!)2

)
m≥0

.

Proof. To prove the result we use the Gessel-Viennot lemma (see e.g. [2, p. 217]).
Consider in the lattice plane the two sets of points {A0, A1, . . . , Am} and {B0, B1, . . . ,

Bm}withAi = (−2i, 0) andBj = (2j, 0). For every permutation ρ of the set {0, 1, . . . ,m}
consider a set p0, p1, . . . , pm of m+ 1 valued Dyck paths such that pi starts at Ai and ends
at Bρ(i).

Each valued Dyck path with initial point Ai and ending point Bj corresponds to a
permutation in Si+j , by the results of Section 2. As we noticed above, for any Dyck path d,
all the permutations σ such that γ(σ) = d share the same monomial θ(σ). For this reason,
this monomial will be denoted by θ(d).

Associate with the (m + 1)-tuple p0, p1, . . . , pm, where pi = (di, l
(i)), the monomial∏m

i=0 θ(di). This monomial will be called the weight of the (m+ 1)-tuple.
Consider the set of points Ck = (0, 2k), with 0 ≤ k ≤ m. Notice that every path

d0, d1, . . . , dm contains exactly a point Ck. There are only two possibilities:

(i) there are at least two paths among d0, . . . , dm that intersect in one of the points Ck,
0 ≤ k ≤ m− 1;

(ii) ρ is the identity permutation and di = U2iD2i, i = 0, . . . ,m. We will call this
configuration the trivial (m+ 1)-tuple.
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We define a weight-preserving involution over the set of non trivial (m + 1)-tuples of
valued Dyck paths. This involution changes the sign of the corresponding permutation of
{0, 1, . . . ,m}. Given a (m+ 1)-tuple p0, p1, . . . , pm, with pi = (di, l

(i)), find the greatest
value of k such that there exist at least two paths intersecting at Ck, 0 ≤ k ≤ m− 1. Take
the two paths di and dj that intersect in Ck with minimal indices. Then associate with the
(m+ 1)-tuple p0, p1, . . . , pm a new (m+ 1)-tuple q0, q1, . . . , qm as follows:

(i) if s 6= i, j, qs = ps;

(ii) qi goes from Ai to Ck along pi and along pj from Ck to Bρ(j). Similarly, qj goes
from Aj to Ck along pj and along pi from Ck to Bρ(i). The tags of the new paths
are defined accordingly.

By the construction of the map Γ and its inverse Λ, we have that∑
(d,l)∈DLn

θ(d) = Fn(H,S,B),

hence, the polynomial associated to the valued Dyck paths fromAi toBj is precisely Fi+j .
As a consequence, by the Gessel-Viennot lemma, the determinant of the m-th Hankel

matrix of the sequence (Fn(H,S,B))n≥0 is equal to the product of the monomials corre-
sponding to non-intersecting valued Dyck paths, precisely, valued Dyck paths starting at
Ai and ending at Bi, of the form U2iD2i, for all 0 ≤ i ≤ m. Note that there are ((i)!)2

such valued Dyck paths, each of which has monomial Hi. This completes the proof.

Here we mention some specializations of the polynomials Fn. The preceding theorem
allows us to compute the Hankel transform of all the following sequences, specializing the
variable H accordingly. The first one of these Hankel transforms was previously obtained
(see [6]). The other three are new, to the best of our knowledge.

1. Recalling that 2h+ b+ s = n,

âm,n :=
∑

h+s=m
h,s≥0
s+2h≤n

ah,s,n−2h−s,n

is precisely the number of permutations of length n with m ascending runs, i.e., the
(m,n)-th Eulerian number (see e.g. [7] for the definition and main properties of these
numbers) and Equation (5.1) reduces to the well-known recurrence for the Eulerian
numbers

âm,n = mâm,n−1 + (n− (m− 1)) âm−1,n−1.

Hence, under the identification B = 1, H = S = t, the polynomial Fn(H,S,B)
reduces to the n-th Eulerian polynomial Fn(t) (see [7]).

2. Under the identificationB = t,H = S = 1, the coefficient of tk in Fn(t) turns out to
be the cardinality of the set of n-permutations with k boarders, i.e., permutations with
k occurrences of the consecutive pattern 123 (see [12]). An explicit expression for
the exponential generating function of the polynomials Fn(t) can be found in [10].

3. If we set H = 1 and B = S = 0, we get the number of n-permutations without
boarders and head-tails, i.e., down-up permutations. As a consequence Fn is the
n-th unsigned secant number (sequence A122045 in [20]).
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4. If H = 2, B = S = 1, (Fn) is the sequence of Springer numbers (sequence
A001586 in [20]). In fact, these numbers count down-up signed permutations,
the equivalent of down-up permutations in the hyperoctaedral group. As an exam-
ple (3,−4,−2,−5, 1,−6) is a down-up signed permutation of the hyperoctaedral
group B6.

There is an obvious bijection between permutations of Sn with two-colored heads
and down-up signed permutations. Let π ∈ Sn and let π = w1w2 . . . wk be its de-
composition into ascending runs. Consider the reverse of π,R(π). If we want to con-
struct a signed permutation whose corresponding unsigned permutation is R(π) we
have two possible choices for the sign of every head of π and only one choice for any
other element. As an example consider π = 81235467 ∈ S8. The heads are 1 and
4. The four possible down-up signed permutations whose unsigned elements form
R(π) = 76453218 are (7,−6, 4,−5, 3,−2, 1,−8), (7,−6,−4,−5, 3,−2, 1,−8),
(7,−6, 4,−5, 3,−2,−1,−8), and (7,−6,−4,−5, 3,−2,−1,−8). This is clearly a
bijective correspondence.

Now we consider the polynomials

F̂n(H,S,B) =
∑

π∈Sn(132)

θ(π).

Theorem 5.2. The Hankel transform of the sequence (F̂n(H,S,B))n≥0 is given by(
Hm(m+1)/2

)
m≥0

.

Proof. The proof is similar to the previous one, keeping in mind that permutations avoid-
ing the pattern 132 correspond bijectively to valued Dyck paths where the sequence l is
identically zero.

Also in this case suitable specializations yield well-known results.

1. SpecializingB = 1 andH = S = t the polynomials F̂n turns out to be the Narayana
polynomials (see e.g. [16]).

2. If B = t and H = S = 1, F̂n(t) is the generating function of the set of
n-permutations that avoid the pattern 132 where the variable t takes into account
the occurrences of the consecutive pattern 123. An explicit formula for the gener-
ating function

∑
n≥0 F̂n can be found in [5]. In particular, when t = 0, Fn is the

n-th Motzkin number. Theorem 5.2 implies that this sequence is among the many
sequences whose Hankel transform is the constant sequence (1)n≥0.

3. When H = B = 2, S = 1, (Fn) is the sequence of super-Catalan numbers or
little Schroeder numbers (sequence A001003 in [20]). These numbers are known to
count Motzkin paths of length n − 1 where every up step has two colors and every
horizontal step has three colors. It is easy to find a bijection between this set and the
set of Dyck path of semilength n where the diods UU and DU have two colors.

4. IfH = t andB = S = 1, where t is a positive integer, Fn turns out to be the number
of lattice paths from (0, 0) to (2n, 0) composed by steps of the form U = (1, 1),
D = (1,−1) and L = (3, 1),where the L steps have t−1 colors. In fact it is possible
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to find a bijection between this last set and the set of Dyck paths of semilength n
where diods UU have t colors. To define such a bijection consider a Dyck path of
semilength n where each diod UU has t colors. Replace each diod UU labelled with
the color k, 1 ≤ k ≤ t − 1 with an L step with the same color and replace the
corresponding diod DD with a step D. If a diod UU is labelled with the color t,
leave it and the corresponding DD unchanged. Leave also the diods UD and DU
unchanged. This is the required bijection. Note that this last case reduces to sequence
A052709 in [20] when t = 2 and to sequence A129147 when t = 3.

Theorem 5.2, applied to the particular cases above, shows that the Hankel transform of
all the previous sequences is given by(

Hn(n+1)/2
)
n≥0

specializing H accordingly.
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Abstract

Finite horizon optimal stopping problems for Markov chains are a well researched
topic. Frequently they are phrased in terms of cost or return because many financial mod-
els are based on Markov chains. In this paper we will apply optimal stopping to certain
random walks on binary trees motivated by insurance considerations. The results are direct
extensions of known results but the implications for insurance are of interest.
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1 Introduction
Modern insurance regulation requires companies to apply market valuation to assets and
liabilities. The value of assets can be determined directly from market prices, or through
appropriate approximations using fair value methodology. For insurance liabilities, how-
ever, there is no regulated market to determine their value. The particular case that we
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will be considering here are equity-linked life policies with guarantees. The policyholder
invests her premium in an underlying fund managed by the insurance company. A typical
example are long term pension saving products. In recent years there has been a tendency to
attach guarantees such as a minimum return or a minimum death benefit guarantee to these
investments which gives rise to new liabilities. In many cases guarantees can be interpreted
as contingent claims on the underlying fund, for example guarantees in equity-linked prod-
ucts or complementary health policies with equalization schemes, see [10].

Nonnenmacher was one of the first authors to interpret guarantees as put options on
the value on the underlying fund, [8] and [7]. Once a stochastic model for the dynamics
of the fund value is formulated, the liabilities arising from guarantees can be valued using
the methods to value derivative securities. Paper [6] considers equity-linked products as
contingent claims on the value of the underlying asset but introduces mortality as an inde-
pendent additional source of randomness. The assumption of independence is often made,
see [5] for some implications. With this addition the model is no longer complete and the
paper considers optimal hedging strategies that minimize the expected cost for the insurer.

In this paper we will present some extensions of optimal stopping rules motivated by
financial questions in insurance. The proofs follow the steps of classical proofs but the
formulation of the problems is slightly different. These results will then be applied to
investigate relative merits of different ways an insurance company can hedge its liabilities.
The models are simplified versions of reality but can shed some light on what strategies
may lead to best results.

2 Variations of optimal stopping rules
The classical finite horizon optimal stopping problem for a general finite length inhomoge-
neous Markov chainX0, X1, . . . , XN and general state space is to minimize the expression

E

g(Xν) +

ν−1∑
j=1

c(Xj)

 (2.1)

where ν runs over all stopping times with respect to the filtration of the Markov chain, and
g and c are given functions. For the sake of simplicity it will be assumed that g and c are
bounded. For Markov chains it is enough to solve the problem assuming that X0 = x for
x in the state space. Denote the value function vN by

vN (x) = inf
{ν:P (ν≤N)=1}

E

g(Xν) +

ν−1∑
j=1

c(Xj)|X0 = x

 (2.2)

The dynamic programming equations for this problem are defined recursively as

VN (x) := g(x)

Vn(x) := min
{
g(x), c(x) + E [Vn+1 (Xn+1) |Xn = x]

} (2.3)

for n = 0, 1, . . . , N − 1. The solution to the stopping problem is given by

Theorem 2.1. The value function is given by vN (x) = V0(x), and the optimal stopping
time is given by

ν = inf {j ≥ 0 : Vj(Xj) = g(Xj)} . (2.4)
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See [9] for proofs.
The above stopping problem has many possible extensions and generalizations. For the

financial application in this paper we will minimize the expression

E

gν(X1, . . . , Xν) +

ν−1∑
j=1

cj(X1, . . . , Xj)

 (2.5)

for all stopping times ν ≤ N for given functions c1, . . . , cN and g1, . . . , gN . The dynamic
programming equations in this more general setup are

VN (x0, . . . , xN ) := gN (x0, . . . , xN ) (2.6)

Vn(x0, . . . , xn) := min
{
gn(x0, . . . , xn), (2.7)

cn(x0, . . . , xn) + E [Vn+1 (x0, . . . , xn, Xn+1) |Xn = xn]
}

The optimal time is given by

νN = inf {j ≥ 0 : Vj(X0, . . . , Xj) = gj(X0, . . . , Xj)} . (2.8)

For the sake of completness we give the proof of this more general theorem. Define

Zn =

n−1∑
j=0

cj(X0, . . . , Xj) + Vn(X0, . . . , Xn) (2.9)

for j = 0, 1, . . . , N . With this definition we have

Theorem 2.2. The process (Zn)0≤n≤N is a submartingale with respect to the filtration of
the Markov chain.

Proof. Denote Fn = σ(X0, . . . , Xn) for 1 ≤ n ≤ N . We compute

E [Zn+1|Fn] =
n∑
j=0

cj(X0, . . . , Xj) + E [Vn+1(X0, . . . , Xn+1)|Fn]

≥
n−1∑
j=0

cj(X0, . . . , Xj) + Vn(X0, . . . , Xn)

= Zn.

Theorem 2.3. For the time νN defined in (2.6) the expression (2.5) attains its minimum
which equals E(V0(X0)).

Proof. By Theorem 2.2
E [Zν ] ≥ E [Z0] = E [V0(X0)] (2.10)

for all stopping times ν. By definition we have

E [V0(X0)] ≤ E [Zν ] ≤ E

ν−1∑
j=0

cj(X0, . . . , Xj) + gν(X0, . . . , Xν)

 . (2.11)
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Replacing ν by νN we have

E
[
ZνN∧(n+1)|Fn

]
= 1(νN ≤ n)ZνN + 1(νN ≥ n+ 1)E [Zn+1|Fn]
= 1(νN ≤ n)ZνN

+ 1(νN ≥ n+ 1)

 n∑
j=1

cj(X0, . . . , Xj) + E [Vn+1(X0, . . . , Xn+1|X0, . . . , Xn]


= 1(νN ≤ n)ZνN + 1(νN ≥ n+ 1)

n−1∑
j=1

cj(X0, . . . , Xj) + Vn(X0, . . . , Xn)


= 1(νN ≤ n)ZνN + 1(νN ≥ n+ 1)Zn

= ZνN∧n.

It follows that
E [V0(X0)] = E [ZνN∧1] = · · · = E [ZνN∧N ] . (2.12)

By (2.10) – (2.12) the minimum E [V0(X0)] of (2.5) is attained at ν = νN .

3 Application to insurance
Assume that the net premium of the m policyholders is invested in an equity-linked fund
whose price follows the dynamics of the Cox-Ross-Rubinstein model, see [4]. Denote the
prices by S0, S1, . . . , SN . At time j = 0 the total investment of the policyholders is mS0.
In the next time instant the price of the fund is multiplied by u or d with probabilities p and
q = 1−p respectively with the usual assumptions d < 1 < 1+r < u. Many guarantees can
be interpreted as contingent claims on the underlying fund. The minimum yield guarantee,
to give the simplest example, stipulates that the payment to the policyholder at time N will
be equal to at least

G = (1 + r)NS0 (3.1)

for some interest rate agreed to in the contract, which we assume to be constant throughout
the lifetime of policies. Other types of guarantees can be included as well. If at the expi-
ration the price of the fund reduced by possible fees exceeds G the policyholder gets the
bigger of the two sums. If at time j = 0 the insurer buys m put options on the fund price
with strike price k = (1 + r)NS0 and expiration N that completely offsets the financial
risk due to fund price fluctuations. But such a strategy does not take mortality into account.
The strategy we will investigate will be a combination of charging fees towards the fund
and at an optimal time buy options that at least partially offset financial risks. Paper [2]
considers fund linked products with guarantees and an optimal fee structure which means
that the insurance company charges a fee towards the underlying fund in an optimal way so
that the expected discounted loss for the company is zero. In this paper we will consider a
mixed approach. The company will set aside a portion of the fund value as a reserve possi-
bly subject to some conditions. At any time the company can decide to switch to hedging
future liabilities with derivatives based on the fund value and the number of surviving poli-
cyholders. The fees accumulated will partially offset the cost of the options. We will derive
the optimal time to switch which will minimize the expected loss for the company.
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Assume that them policyholders are of the same age x. Denote the number of surviving
policyholders at times j = 0, 1, . . . , N by α0, α1, . . . , αN . We will assume that mortality is
independent of the movement of the fund value. For the sake of simplicity we will consider
contracts with no guaranteed minimum death benefit. Note that the sequence α0, . . . , αN
is an inhomogeneous Markov chain due to ageing with P (αj+1 = i − k|αj = i) =(
i
k

)
qkx+jp

i−k
x+j for k = 0, 1, . . . , i in the usual actuarial notation. For mortality simulation

we use [1].
We will apply the theory developed in Section 2 to the Markov chain (Sj , αj)0≤j≤N

and the functions cj and gj that we now proceed to identify. We consider the following
strategy: The company at each time j either sets aside the difference between the fund
price Sj and the accumulated value S0(1 + r)j if this difference is positive and 0 else, or
the company buys a number of put options on the fund at strike price k = S0(1 + r)N .
The number of options to be bought will be determined below in two cases. The options
will offset some of the financial risk due to fund price fluctuation but the cost of buying the
options will be incurred. In the notation of Section 2 what we set aside will reduce the loss
and we define

cj(S0, S1, . . . , Sj) = −mmax
(
Sj − S0(1 + r)j , 0

)
.

Let the price of the put option on the price of the fund at strike price k = S0(1 + r)N at
time j be denoted by πj(Sj , k,N) determined in the standard way for the binomial model,
see [3]. In our scenario two possible numbers of put options can be considered: the first is
to buy αj put options at time j which means that the financial risk is eliminated because
the options cover any possible shortfall of the fund price. The insurer will be able to cover
liabilities towards surviving policyholders but will incur a cost that will contribute towards
the loss. In our notation we put

gj(S0, . . . , Sj , α0, . . . , αj) = αjπj(Sj , k,N). (3.2)

The second possibility is to buy E(αN |αj) options. This only partially offsets the risk of
shortfall because there may be more surviving policyhoders than expected. In this case
define for j < N

gj(S0, . . . , Sj , α0, . . . , αj) = E(αN |αj)πj(Sj , k,N) (3.3)

and
gN (S0, . . . , SN , α0, . . . , αN ) = αN · πN (SN , k,N). (3.4)

In both cases the expression

Lj = (1 + r)−jgj(S0, . . . , Sj , α0, . . . , αj) +

j−1∑
i=1

(1 + r)−ici(S0, . . . , Si) (3.5)

will be the discounted loss for the company if the option is bought at time j. We choose
the stopping rule ν in such a way that the expected loss

E(Lν) (3.6)

will be minimized. Note that the optimality depends on the probabilities p in the underlying
model for the fund price. The solution is provided by Theorem 2.3. Note also that ν = N
means that the insurer does not buy options but covers any shortfall from own funds.



470 Ars Math. Contemp. 16 (2019) 465–472

Explicit calculations are not possible so we present two simulations to illustrate the
results. The table below defines the parameters used in the simulations:

S0 1
u 1.04
d 0.98
r 0.01
N 5
m 1000
x 30
z 5000

where z denotes the number of simulations. Table 1 summarizes some statistics for the
final loss LN for different p when the insurer buys αν options.

Table 1: A few selected descriptive statistics of the final loss distribution when αν options
are bought.

p E(LN ) SD(LN ) 90th percentile E(ν) SD(ν)

0.51 −32.45 135.55 87.54 4.71 0.69
0.50 −21.08 122.52 60.58 3.70 1.57
0.49 −20.45 123.41 42.08 2.85 1.77
0.48 −17.62 117.49 41.72 2.63 1.74

Let us now look at results of simulations when the insurer at time j considers buying
E(αN |αj) options (Table 2).

Table 2: A few selected descriptive statistics of the final loss distribution when options
cover the expected number of surviving policyholders.

p E(LN ) SD(LN ) 90th percentile E(ν) SD(ν)

0.51 0.69 165.27 195.57 3.45 1.60
0.50 9.42 160.78 197.46 3.22 1.64
0.49 11.45 158.66 196.50 3.05 1.63
0.48 18.36 152.96 197.24 2.75 1.64

In the first case the loss is negative and the financial risk is completely offset. It is true
that such a strategy depends on assumptions about availability of derivatives but in more
realistic settings it can still be used to reduce the cost of guarantees. In the second case
note that the loss due to αT exceeding the expected number of survivors needs to be taken
into account because it contributes to the overall loss.

For the case p = 0.48 the distribution of final loss LN and optimal stopping time ν are
shown in Figure 1 for both numbers of options.

4 Conclusions
We propose a strategy of hedging liabilities arising from equity-linked products with mini-
mum guarantees with financial derivatives. Simulations show that there is an optimal time
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Figure 1: The distribution of final loss and optimal time ν.

to switch from charging a fee towards the fund to buying a put option that will offset the
financial risk. The cases considered are simplified but may be an indication that strategies
for more realistic settings are possible.
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Abstract

In this paper, we describe subspaces of generalized Hessenberg matrices where the
determinant is convertible into the permanent by affixing ± signs. These subspaces can
arise from different numberings of the vertices of a graph. With this numbering process,
we obtain some well-known sequences of integers. For instance, in the case of a path of
length n, we prove that the number of these subspaces is the (n+ 1)th Fibonacci number.

Keywords: Determinant, permanent, Hessenberg matrix.

Math. Subj. Class.: 15A15, 05C05, 05C30

1 Introduction
Let Mn(C) be the linear space of all n-square matrices over the complex field C, and let
Sn be the symmetric group of degree n. For A = [aij ] ∈ Mn(C), the permanent function
is defined as

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i).

In a very similar way, the determinant function is defined as

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i),
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where sgn is the sign function.
The determinant is undoubtedly one of the most well-known functions in mathematics

with applications in many areas. The permanent function is also a well-studied function,
since it has many applications in combinatorics, but while the determinant can be easily
computed, no efficient algorithm for computing the permanent is known. This difficulty
leads to the idea of trying to compute it by using determinants. This idea dates back to
1913 in a work of Pólya [6], and it has been under intensive investigation since then. Pólya
observed that the permanent of a 2 by 2 matrix

A =

[
a11 a12
a21 a22

]
is equal to the determinant of the related matrix

B =

[
a11 −a12
a21 a22

]
.

However, Szegö [8] proved that if n ≥ 3, then there is no way to generalize this formula,
i.e., there is no uniform way of changing the signs of the entries of a matrix A ∈Mn(C) in
order to obtain a matrix B satisfying

det(B) = per(A). (1.1)

Szegö’s result didn’t put an end to this question. In fact, the possibility that the per-
manent can be converted into the determinant by affixing ± signs is a research topic that
remains active until today (see [1, 2] or [5] for recent works on this subject). In 1969, Gib-
son [3] proved that the linear space of lower Hessenberg matrices is a convertible subspace.
That is, it is possible to change in a uniform way the signs of the entries of a matrix A in
this subspace in order to obtain a matrix B satisfying (1.1).

More recently, C. Fonseca presented a new class of convertible subspaces. These sub-
spaces are constructed using simple graphs as follows:

Definition 1.1 ([2]). Given a simple graph G with n vertices, numbered by the integers
in {1, . . . , n}, a G-lower Hessenberg matrix A = [aij ] is an n-square matrix such that
aij = 0 whenever i < j and {i, j} is not an edge of G.

If, in addition, aij 6= 0 whenever i ≥ j or {i, j} is an edge of G, then we say that A
is a full G-lower Hessenberg matrix. Obviously, two numberings of the vertices of a graph
are the same if the sets of edges are equal.

C. Fonseca [2] proved that if G is a generalized double star (the tree resulting from
joining the central vertices of two stars by a path) whose vertices are numbered in a natural
way (consecutive integers from left to right), the linear space of these G-lower Hessenberg
matrices is a convertible subspace.

Let G be a simple graph with n vertices numbered with 1, . . . , n. We say that G is
well-numbered if the linear space of all G-lower Hessenberg matrices that arise from this
numbering of the vertices of G is convertible. As we will see in the third section, not all
graphs admit a well-numbering of its vertices. The characterization of the connected graphs
for which such a numbering exist is our first main result.

Theorem 1.2. A connected graph G admits a well numbering of its vertices if and only if
G is a caterpillar.
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Recall that a caterpillar is a tree in which all vertices are within distance 1 of a central
path. The interior vertices of the path are called nodes. Every caterpillar results from a
sequence of stars (R1, R2, . . . , Rt), such that the central vertex ofRi is linked to the central
vertex of Ri−1, i = 2, . . . , t, by a single edge. If a caterpillar results from a sequence of
stars with an equal number r of vertices, then we will denote this type of caterpillars by
Ct[r], where t is the number of the stars involved. So, Ct[1] is a path with t vertices, and
C1[r] is a star with r vertices.

Example 1.3. The caterpillar C3[4] is shown in Figure 1(a). The caterpillar C4[2] is shown
in Figure 1(b).

(a)C3[4] (b)C4[2]

Figure 1: Two examples of caterpillars.

Theorem 1.2 states that the vertices of a caterpillar G can be numbered in a way such
that the subspace of all G-lower Hessenberg matrices arising from that numbering is con-
vertible. A natural question is to know if all numberings of the vertices of a caterpillar
produce a convertible subspace. The answer is negative, and a simple example can be pro-
vided with a path. Let G be a path with n vertices. If the vertices of G are numbered in
a natural way (consecutive integers from left to right), then from Definition 1.1, we obtain
the linear space of classical lower Hessenberg matrices, which Gibson [3] proved to be a
convertible subspace. However, if we enumerate the vertices of G in a different way, the
subspace of all G-lower Hessenberg matrices arising from that numbering of the vertices
of G may no longer be convertible.

Example 1.4. Consider the path of length four numbered as in Figure 2.r
1

r
4

r
2

r
3

Figure 2: A numbered path on 4 vertices.

The subspace of the C4[1]-lower Hessenberg matrices with maximal dimension con-
structed from this numbered path is the subspace


a11 0 0 a14
a21 a22 a23 a24
a31 a32 a33 0
a41 a42 a43 a44

 : aij ∈ C, i, j = 1, . . . , 4

 ,

which is not convertible as we will see in the next section.

Thus, it is pertinent to ask how many different convertible subspaces, with maximal
dimension, arise from different numberings of the vertices of a caterpillar. We restrict our
study to caterpillars of the form Ct[r]. The answer is given in the next theorem which is
our second main result:
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Theorem 1.5. Let r be a fixed integer, and G = Ct[r]. Assume that G has at least three
vertices. The number of different convertible subspaces, with maximal dimension, that
arise from the different numberings of the vertices of G is the (t+ 1)th term of the sequence

an =


0, if n = 0;

1, if n = 1;

ran−1 + an−2, if n ≥ 2.

Example 1.6. In this example, we apply Theorem 1.5 to some caterpillars. Below each
representation of the caterpillar (in Figures 3, 4 and 5), we give the number of convertible
subspaces of G-lower Hessenberg matrices, with maximal dimension, that arise from dif-
ferent numberings of the vertices of that caterpillar. As we are going to see some of the
sequences are well known.

1. For a path with three, four and five vertices see Figure 3.

(a) 3 (b) 5 (c) 8

Figure 3: The number of convertible subspaces arising from Ct[1] for t = 3, 4, 5.

In general, the number of convertible subspaces arising from Ct[1], t ≥ 3 is the
(t + 1)th term of the OEIS [7] sequence A000045, the sequence of the Fibonacci
numbers.

2. If G = Ct[2], then for t = 2, 3, 4 see Figure 4.

(a) 5 (b) 12 (c) 29

Figure 4: The number of convertible subspaces arising from Ct[2] for t = 2, 3, 4.

In general, the number of convertible subspaces arising from Ct[2], t ≥ 2 is the
(t + 1)th term of the OEIS sequence A000129, the sequence of the Pell numbers,
also known as lambda numbers.

3. If G = Ct[3], then for t = 1, 2, 3, 4 see Figure 5.

(a) 3 (b) 10 (c) 33 (d) 109

Figure 5: The number of convertible subspaces arising from Ct[3] for t = 1, 2, 3, 4.
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In general, the number of convertible subspaces arising from Ct[3], t ≥ 1, is the
(t+ 1)th term of the OEIS sequence A006190.

This paper is organized as follows. In the next section, we present a simple criterium
to decide when a subspace of G-lower Hessenberg matrices with maximum dimension is
convertible. As we are going to see the convertibility of such subspace can be decided from
the convertibility of a matrix of zeros and ones. In the third section, we prove our first main
result, and describe how vertices numbering should be in order G be well-numbered. The
characterization of such numberings allows proving Theorem 1.5.

2 Preliminary results
An n-square (0, 1)-matrix is a square matrix whose entries are just zeros and ones. Simi-
larly, for an n-square (−1, 1)-matrix.

Let S = [si,j ] be an n-square (0, 1)-matrix. For each i ∈ {1, . . . , n} let

ri =

n∑
k=1

si,k, and ci =

n∑
k=1

sk,i.

The sequence R = (r1, . . . , rn) is the row-sum sequence of S and the sequence C =
(c1, . . . , cn) is the column-sum sequence of S.

Definition 2.1. Two matrices A and B are permutation equivalent, if there exist permuta-
tion matrices P and Q of suitable sizes such that B = PAQ.

An n-square (0, 1)-matrix S defines a coordinate subspace

Mn(S) = {S ? X : X ∈Mn(C)},

where ? denotes the Hadamard product. We say that Mn(S) is convertible if there exists
an n-square (−1, 1)-matrix C, such that

det(C ? X) = per(X),

for all X ∈Mn(S).
Let Tn = [ti,j ] be an n-square (0, 1)-matrix such that

ti,j = 0 if and only if i < j + 1.

The coordinate subspace Mn(Tn) is the subspace of the lower Hessenberg matrices. Gib-
son [3] proved that if C = [ci,j ] is the n-square (−1, 1)-matrix such that

ci,j = −1 if and only if j = i+ 1,

then
det(C ? X) = per(X),

for all X ∈Mn(Tn).
Another important result due to Gibson states the maximum number of nonzero entries

in a convertible matrix.
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Theorem 2.2 ([4]). Let A = [aij ] be an n-square (0, 1)-matrix such that per(A) > 0, and
the permanent of A can be converted into a determinant by affixing± signs to the elements
of A. Then A has at most Ωn = 1

2 (n2 + 3n− 2) positive entries, with equality if and only
if A is permutation equivalent to Tn.

Observe that the row- and column-sum sequences of Tn are, respectively,

R = (2, 3, . . . , n− 1, n, n) and C = (n, n, n− 1, , . . . , 3, 2).

So, Theorem 2.2 gives a simple criterium to decide when an n-square (0, 1)-matrix S, with
Ωn nonzero entries satisfying per(S) > 0 is convertible.

Proposition 2.3. Let S be an n-square (0, 1)-matrix with Ωn nonzero entries satisfying
per(S) > 0. Then S is convertible if and only if S is permutation equivalent to a (0, 1)-
matrix whose row-sum sequence is R = (2, 3, . . . , n − 1, n, n), and the column-sum se-
quence is C = (n, n, n− 1, . . . , 3, 2).

Proof. (⇐): The Hessenberg matrix Tn has row- and column-sum sequences R = (2, 3,
. . . , n − 1, n, n) and C = (n, n, n − 1, . . . , 3, 2), respectively. By hypothesis, and by
transitivity, S is permutation equivalent to Tn. Hence, by Theorem 2.2, S is convertible.

(⇒): If S is convertible, then S is permutation equivalent to Tn, and Tn has row-
sum sequence R = (2, 3, . . . , n − 1, n, n), and column-sum sequence C = (n, n, n − 1,
. . . , 3, 2).

Example 2.4. Consider the following matrices

S1 =


1 1 0 0 0
1 1 0 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 and S2 =


1 0 1 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 1 1 1 1

 .

Then, S1 is not convertible because the row sum sequence of (2, 3, 5, 5, 5), but S2 is con-
vertible because we can reorder the rows and the columns S2 in order to obtain a matrix
whose row-sum sequence and column-sum sequence are (2, 3, 4, 5, 5) and (5, 5, 4, 3, 2),
respectively.

The next result states that the convertibility of a coordinate subspace Mn(S) can be
decided by the convertibility of S.

Proposition 2.5. Let S be an n-square (0, 1)-matrix with Ωn nonzero entries, and

per(S) > 0.

Then, Mn(S) is a convertible subspace if and only if S is convertible.

Proof. If Mn(S) is a convertible subspace, then S is convertible.
Assume that S is convertible. Then, there exists an n-square (−1, 1)-matrix C such

that det(C ? S) = per(S).
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Let S′n be the set of permutations σ ∈ Sn such that
∏n
i=1 siσ(i) 6= 0. Since per(S) > 0,

S′n 6= ∅. We have

det(C ? S) =
∑
σ∈S′n

sgn(σ)

n∏
i=1

ciσ(i)siσ(i)

=
∑
σ∈S′n

sgn(σ)

n∏
i=1

ciσ(i)

n∏
i=1

siσ(i),

where we conclude that sgn(σ)
∏n
i=1 ciσ(i) = 1 for all σ ∈ S′n.

For any matrix A ∈Mn(S), we have

det(C ? A) =
∑
σ∈S′n

sgn(σ)

n∏
i=1

ciσ(i)aiσ(i)

=
∑
σ∈S′n

sgn(σ)

n∏
i=1

ciσ(i)

n∏
i=1

aiσ(i)

=
∑
σ∈S′n

n∏
i=1

aiσ(i)

= per(A),

hence, A is convertible. Since A is arbitrary, we conclude that Mn(S) is a convertible
subspace.

Let A = [aij ] be an n-square matrix. We denote by A(i; j) the (n − 1)-square
submatrix obtained from A after removing the ith row and the jth column. Generaliz-
ing, A(i1, . . . , ik; j1, . . . , jk) denotes the square submatrix of A after removing the rows
i1, . . . , ik and the columns j1, . . . , jk.

Gibson proved the following result.

Lemma 2.6 ([3]). Let S = [sij ] be a convertible matrix. If srs = 1, then S(r; s) is also
convertible.

A subspace version of this Lemma is as follows.

Proposition 2.7. If Mn(S) is a convertible subspace, and sij = 1, then Mn−1(S(i; j)) is
also a convertible subspace.

Proof. It follows easy from Lemma 2.6, and Proposition 2.5.

Corollary 2.8. If Mn(S) is a convertible subspace and si1,j1 , . . . , sik,jk are k nonzero
elements of S, then Mn−k(S(i1, . . . , ik; j1, . . . , jk)) is also a convertible subspace.

Proof. Trivial by induction.
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3 Proofs of the main results
We start this section with a result that comes easily from Proposition 2.5.

Proposition 3.1. A connected graph G is well-numbered if and only if the correspondent
full G-lower Hessenberg matrix of 0’s and 1’s is convertible.

Let Ln be the anti-identity matrix of order n. This matrix has in position (i, j) the
element 1, if i + j = n + 1, and 0 otherwise. Let A be an n-square matrix. We denote by
Aat the matrix Aat := LnA

tLn, where At is the transpose of A. The matrix Aat is the
anti-transpose of A.

Remark 3.2. Let A = [aij ] be an n-square matrix, and let Aat = [aatij ]. Then

1. aatij = an−j+1,n−i+1, for all i, j = 1, . . . , n;

2. (Aat)at = A.

The next result allows simplifying some of the proofs.

Lemma 3.3. Let G be a graph with n vertices. If G is well-numbered, then G is also
well-numbered replacing vertex i by vertex n− i+ 1, for all i = 1, . . . , n.

Proof. LetG be a well-numbered graph with n vertices, and let S be the correspondent full
G-lower Hessenberg matrix of 0’s and 1’s. Since G is well-numbered, by Proposition 2.3,
S is permutation equivalent to a matrix whose row sum sequence is R = (2, 3, . . . , n− 1,
n, n), and the column sum sequence is C = (n, n, n − 1, . . . , 3, 2). By definition Sat is
also permutation equivalent to a matrix whose row and column sum sequences are equal
to R and C respectively, and for all i, j ∈ {1, . . . , n} such that i ≥ j, satij = 1. Consider
the new enumeration of the vertices of G where the vertex i is replaced by n − i + 1,
for all i = 1, . . . , n, and let S′ = [s′i,j ] be the correspondent full G-lower Hessenberg
matrix of 0’s and 1’s. Let i, j ∈ {1, . . . , n} such that i < j, and i is adjacent to j in
the initial enumeration of the vertices of G. Since n − j + 1 < n − i + 1 we conclude
that s′n−j+1,n−i+1 = 1 = si,j . Therefore (S′)at = S, that is S′ = Sat, and the result
follows.

Let G be a well-numbered connected simple graph with n vertices, and let S = [sij ]
be the correspondent full G-lower Hessenberg matrix of 0’s and 1’s. Since G is connected,
and sij = 1 whenever i ≥ j we conclude, by Theorem 2.2, that S has exact Ωn nonzero
entries, n− 1 of them above the main diagonal. By Definition 1.1 we conclude that G is a
connected graph with n vertices and n− 1 edges, that is G is a tree. However, not all trees
can be well-numbered.

Proof of Theorem 1.2. By Proposition 2.5 we only have to consider (0, 1)-matrices.
(⇐): SupposeG is a caterpillar with numbering as shown in Figure 6. We will prove by

induction on the number of nodes that such numbering produces a convertible full G-lower
Hessenberg matrix.

If we have only one node (see Figure 7) the correspondent full G-lower Hessenberg
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`1 − 1

`1

1

2
`1 + `2

`1 + 1 `1 + `2 − 1

n =
k∑

i=1
`i

k−1∑
i=1

`i + 1

n− 1

Figure 6: Numbering of the caterpillar G.

n− 1

n

1

2

Figure 7: Special case with only one node.

matrix is

L1 =



1 0 0 . . . 0 0 1
1 1 0 . . . 0 0 1
1 1 1 . . . 0 0 1
...

...
...

. . .
...

...
...

1 1 1 . . . 1 0 1
1 1 1 . . . 1 1 1
1 1 1 . . . 1 1 1


.

This matrix is convertible by Proposition 2.3.
Let’s suppose that the enumeration is valid for caterpillars with k − 1 nodes, and that

A is the correspondent full G-lower Hessenberg matrix. For a caterpillar with k nodes (see
Figure 8) the correspondent full G-lower Hessenberg matrix is

S =


A 0

0 . . . 0 1

1 Lk


,

where 1 is a matrix whose entries are all 1’s, the line above Lk corresponds to the edge
between the last two nodes, and Lk is the full G-lower Hessenberg matrix arising from the
last node and has structure as L1.

By induction hypothesis A is convertible. Thus, by Proposition 2.3, A is permutation
equivalent to a matrix with row- and column-sum sequence

(
2, 3, . . . ,

∑k−1
i=1 `i,

∑k−1
i=1 `i

)
.

It is straightforward to see that S is permutation equivalent to a matrix with row- and
column-sum sequence

(
2, 3, . . . ,

∑k
i=1 `i,

∑k
i=1 `i

)
. Hence, there exists at least one enu-

meration for the caterpillars that produces a convertible full G-lower Hessenberg matrix.
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`1 − 1

`1

1

2
`1 + `2

`1 + 1 `1 + `2 − 1

k−1∑
i=1

`i

k−2∑
i=1

`i + 1
k−1∑
i=1

`i − 1

n =
k∑

i=1
`i

k−1∑
i=1

`i + 1

n− 1

Figure 8: A caterpillar with k nodes.

(⇒): We will prove by contradiction.
Every tree that is not a caterpillar has at least one node connected with three other

nodes. Therefore every tree which is not a caterpillar contains the graph in Figure 9 as

v1 v2 v3

v6

v7

v4 v5

Figure 9: The subgraph of a tree which is not a caterpillar.

an induced subgraph. Let G be this graph and S be the full G-lower Hessenberg matrix
of zeros and ones arising from an enumeration of the vertices of G. By Corollary 2.8, it
is enough to prove that G cannot be well enumerated, that is, for every numbering of the
vertices ofG the rows or the columns of the correspondent fullG-lower Hessenberg matrix
of zeros and ones cannot be reordered to obtain (2, 3, 4, 5, 6, 7, 7). By Proposition 3.3, we
only have to consider the numberings where v3 ∈ {1, 2, 3, 4}.

If v3 = 1, then no row of S sums two.
If v3 = 2, then the first row of S is the only one that the sum equals two. Thus,

the vertex numbered with 1 must be a terminal and the second row of S sums 5. To be
convertible, the third row of S is the only one whose sum equals three. So, we have the
subgraph in Figure 10. Therefore, no row of S has four ones.

r
2

v3 r
3

r
1

Figure 10: The subgraph in case of v3 = 2.

If v3 = 3, then to have row-sums equal to two and three, and two column-sums equal to
seven, vertices numbered with 1 and 2 must be adjacent. Similarly, to have two row-sums
equal to seven vertices numbered with 6 and 7 are adjacent. Thus, no row has four ones.

If v3 = 4, then vertices numbered with 1 and 2 cannot be simultaneously adjacent
to v3 (otherwise, no row of S has two ones). The vertices numbered with 1 and 2 must
be adjacent otherwise S doesn’t have two column-sums equal to seven. By Lemma 3.3,
vertices numbered with 6 and 7 must also be adjacent. Hence, if a row sums to four then
no column can sum to four, and vice-versa.
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Definition 3.4. Let T be a tree, and let R be a star with central vertex x. We say that R is
a pendant star of T if:

1. R is an induced subgraph of T ;

2. If we remove all the vertices of R, then we obtain a tree denoted by T/R;

3. x is adjacent to a single vertex of T/R.

Remark 3.5. Note that every caterpillar with at least one edge has exactly two pendant
stars.

For proving Theorem 1.5, some lemmas are needed:

Lemma 3.6. Let G = Ct[r] with n = tr vertices. If G is well-numbered, then the vertices
numbered with 1, 2, . . . , r−1, must be in the same pendant star, and the vertices numbered
with n, n− 1, . . . , n− r + 1 must be in the other pendant star.

Proof. We only need to prove that the vertices ofG numbered with 1, 2, . . . , r−1, must be
in the same pendant star, because by Lemma 3.3 we conclude that n, n− 1, . . . , n− r + 1
must be in the other pendant star. If G is well-numbered, then the correspondent full
G-lower Hessenberg matrix S of 0’s and 1’s is convertible. Therefore S is permutation
equivalent to a matrix whose row-sum sequence isR = (2, 3, . . . , n−1, n, n), and column-
sum sequence is C = (n, n, n − 1, . . . , 3, 2). An ith column of S has n 1’s if and only if
the vertices numbered with 1, . . . , i − 1 are adjacent to the vertex numbered with i. Since
G = Ct[r], the maximum degree of a vertex in G is r + 1, and then the two columns
of S with n 1’s must be in the first r + 2 columns. Taking into account that caterpillars
are sequences of stars connected by central vertices, we start showing that the vertices
numbered with 1, . . . , r − 1 must be one of these stars, that is, the induced subgraph of
G = Ct[r] that is the one of the stars involved in the construction of G. After that, we
prove that this star is a pendant one.

Assume that the vertices numbered with 1, . . . , r − 1 are not in the same star. Denote
by R the star containing 1, and let j be the least integer less that r not in R. Denote by R′

the star containing j. Several cases are needed to consider.

Case 1: If 1, . . . , j−1, j are pendant vertices, then having in mind the previous discussion,
there are no two columns of S with n 1’s, which is a contradiction.

Case 2: If ` ∈ {1, . . . , j − 1} is the central vertex, and j is a pendant vertex, then the `th

column of S has n 1’s. If 1 ≤ i ≤ ` − 1, then the ith row sums i + 1, the `th row sums at
least `+ (r − 1)− (`− 1) + 1 = r + 1, and the ith row, `+ 1 ≤ i ≤ j − 1, sums i. Since
j is a pendant vertex of R′, we conclude that no row of S sums j, which is a contradiction.

Case 3: If the vertices 1, . . . , j − 1 are pendant vertices, and j is the central vertex of R′,
then ith row sums to i+ 1, for all 1 ≤ i ≤ j − 1, and the jth row sums j + (r − 1) + 1 or
j + (r − 1) + 2. Since the only row that can sum j + 1 is the row j + 1, the vertex j + 1
must be a pendant one of R′. Hence, S does not have two columns with n 1’s, which is a
contradiction.

Case 4: If ` ∈ {1, . . . , j−1} is the central vertex ofR, and j is the central vertex ofR′, then
the ith row of S, 1 ≤ i ≤ `−1, sums i+1, the `th row sums at least `+(r−1)−(`−1)+1 =
r + 1, and the ith row of S, ` + 1 ≤ i ≤ j − 1, sums i. Since j is a central vertex, no row
of S sums j, which is a contradiction.
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We have proved that the vertices of G numbered with 1, . . . , r− 1 must be in the same
star R. Now we will prove that R is pendant.

Suppose that this is not the case. Let `, 1 ≤ ` ≤ r − 1 be the central vertex of R. Then
the ith row of S, 1 ≤ i ≤ `−1, sums i+1, the `th row sums `+(r−1)−(`−1)+2 = r+2,
because R is not pendant, and the ith row, ` + 1 ≤ i ≤ j − 1, sums i. Since the `th row
sums r+ 2, the (r+ 1)th row must sum r+ 1 and the rth row must sum r. Then the vertices
r and r + 1 must be pendant vertices of R, which is a impossible.

If 1, . . . , r−1 are pendant vertices ofR, the central vertex of this star must be numbered
with r, r + 1 or r + 2, otherwise there are no two columns of S with n 1’s.

• For r, since R is not pendant, there are no row of S with r + 1 1’s.

• For r+ 1, the vertex r must be adjacent to r+ 1, otherwise there are no two columns
of S with n 1’s. Then r is the central vertex of another star. Then, the rth row of S
sums at least r + (r − 1) + 1 = 2r, the (r + 1)th row sums at least r + 2. Then S
does not have a row with r + 1 1’s.

• Finally, for r+ 2, by a similar procedure, we conclude that there is no row of S with
r + 1 1’s.

Lemma 3.7. Let G = Ct[r]. If G is well-numbered, then the vertices of one of the pendant
stars R are numbered with 1 up to r+ 1. If r+ 1 is a vertex of R, then r+ 1 is central, and
r is adjacent to r+ 1. If r is a vertex of R, then the central vertex can be any `, 1 ≤ ` ≤ r.

Proof. In the previous Lemma, we proved that 1, . . . , r − 1 must lay all in a pendant star.
We only have to prove that the remaining vertex must be numbered with r or r + 1. We
have to consider two cases:

Case 1: If the pendant vertices ofR are numbered with 1, . . . , r−1, then the central vertex
can only be numbered with r or r+ 1. Otherwise, S does not have two columns with n 1’s.
By the same reason, if r + 1 is central, then r must be adjacent.

Case 2: If the central vertex of R is `, 1 ≤ ` ≤ r − 1, then there remains a pendant vertex.
Suppose that this pendant vertex is j ≥ r + 1. In this case, the row r sums at least r + 1,
and no row sums r. Hence, R is numbered with 1, . . . , r.

If r is a vertex of R, and `, 1 ≤ ` ≤ r, is the central vertex, then the correspondent full
G-lower Hessenberg matrix of 0’ s and 1’ s satisfies the condition of Proposition 2.3.

Corollary 3.8. Let G = Ct[r]. If G is well-numbered, then the vertices of one of the
pendant stars R are numbered with n = tr down to n − 1 − r. If n − 1 − r is a vertex of
R, then n− r − 1 is central and n− r is adjacent to n− 1− r. If n− r is a vertex of R,
then the central vertex can be any `, n− r ≤ ` ≤ n.

Proof. It follows directly from Lemmas 3.3 and 3.7.

We are now in condition to prove our second main result:

Proof of Theorem 1.5. The proof is by induction on t, the number of stars in a caterpillar.
If t = 1, then r ≥ 3. By Lemma 3.7, the central vertex of G can be numbered with any

` ∈ {1, . . . , r}. So, the number of different convertible subspaces is a2 = r.
If t = 2, then G has n = 2r, r ≥ 2, vertices. By Lemma 3.7, each star has r differ-

ent ways to be well numbered by consecutive numbers. Therefore, this gives r2 different
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well numberings for G with each star having consecutive numbers. Besides these, by the
same Lemma, it is possible to interchange vertices r and r + 1, giving another convertible
subspace. So the total number of different convertible subspaces is a3 = r2 + 1.

Let t > 2, and assume that the theorem holds for all j ≤ t. Let G = Ct+1[r]. By
hypothesis there are at+1 convertible subspaces that arise from the different numberings of
the caterpillar Ct[r]. The caterpillar G is obtained from Ct[r] by augmenting with a star
with r vertices. By induction hypothesis and Corollary 3.8, there are rat+1 convertible
subspaces that arise from a numbering of G, where the vertices of the new pendant star are
numbered consecutively with tr + 1, . . . , (t + 1)r. There are also convertible subspaces
that arise from a numbering ofG, where the central vertex of new pendant star is numbered
with tr. By induction hypothesis, this number is at. Then the total number of convertible
subspaces that arise from the different numberings of the vertices of G is rat+1 + at =
at+2.

As we already saw, the number of well numberings of the vertices of a path with t
vertices is the (t+ 1)th Fibonacci number. In Table 1, we present all well-numbered paths
of lengths 3, 4, and 5.

Table 1: All well-numbered paths with 3, 4, and 5 vertices.

n = 3 1 2 3 2 1 3 1 3 2

n = 4 1 2 3 4 2 1 3 4 1 3 2 4

1 2 4 3 2 1 4 3

n = 5 1 2 3 4 5 2 1 3 4 5 1 3 2 4 5

1 2 4 3 5 2 1 4 3 5 1 3 2 5 4

1 2 3 5 4 2 1 3 5 4
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Abstract

A connected dominating set in a graph is a dominating set of vertices that induces a
connected subgraph. Following analogous studies in the literature related to independent
sets, dominating sets, and total dominating sets, we study in this paper the class of graphs
in which the connected dominating sets can be separated from the other vertex subsets
by a linear weight function. More precisely, we say that a graph is connected-domishold
if it admits non-negative real weights associated to its vertices such that a set of
vertices is a connected dominating set if and only if the sum of the corresponding weights
exceeds a certain threshold. We characterize the graphs in this non-hereditary class in
terms of a property of the set of minimal cutsets of the graph. We give several char-
acterizations for the hereditary case, that is, when each connected induced subgraph is
required to be connected-domishold. The characterization by forbidden induced subgraphs
implies that the class properly generalizes two well known classes of chordal graphs,
the block graphs and the trivially perfect graphs. Finally, we study certain algorithmic
aspects of connected-domishold graphs. Building on connections with minimal cutsets and
properties of the derived hypergraphs and Boolean functions, we show that our
approach leads to new polynomially solvable cases of the weighted connected dominating
set problem.
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1 Introduction
1.1 Background

Threshold concepts have been a subject of investigation for various discrete structures,
including graphs [18,20,48], Boolean functions [19,22,29,32,53,55], and hypergraphs [34,
58]. A common theme of these studies is a quest for necessary and sufficient conditions
for the property that a given combinatorial structure defined over some finite ground set
U admits non-negative real weights associated to elements of U such that a subset of U
satisfies a certain property, say π, if and only if the sum of the corresponding weights
exceeds a certain threshold. A more general framework has also been proposed, where
the requirement is that a subset of U satisfies property π if and only if the sum of the
corresponding weights belongs to a set T of thresholds given by a membership oracle [50].

Having the set U equipped with weights as above can have useful algorithmic impli-
cations. Consider for example the optimization problem of finding a subset of U with
property π that has either maximum or minimum cost (according to a given linear cost
function on the elements of the ground set). It was shown in [50] that if the weights as
above are known and integer, then the problem can be solved by a dynamic programming
approach in time O(|U |M) and with M calls of the membership oracle, where M is a
given upper bound for T . The pseudo-polynomial running time should be expected, since
the problem is very general and captures also the well-known knapsack problem [41]. Note,
however, that the problem admits a much simpler, polynomial-time solution in the special
case when the costs are unit and if we assume the monotone framework, where a set satisfies
property π as soon as its total weight exceeds a certain threshold. Under these assumptions,
a minimum-sized subset of U satisfying property π can be found by a simple greedy algo-
rithm starting with the empty set and adding the elements in order of non-increasing weight
until the threshold is exceeded.

Many interesting graph classes can be defined within the above framework, including
threshold graphs [20, 42, 48], domishold graphs [1], total domishold graphs [16, 18], equi-
stable graphs [54], and equidominating graphs [54]. In general, the properties of the result-
ing graph classes depend both on the choice of property π and on the constraints imposed
on the structure of the set T of thresholds. For example, if U is the vertex set of a graph,
property π denotes the property of being an independent (stable) set in a graph, and T is
restricted to be an interval unbounded from below, we obtain the class of threshold graphs,
which is a very well understood class of graphs, admitting many characterizations and
linear-time algorithms for recognition and various optimization problems (see, e.g., [48]).
If π denotes the property of being a dominating set and T is an interval unbounded from
above, we obtain the class of domishold graphs, which enjoys similar properties as the class
of threshold graphs. On the other hand, if π is the property of being a maximal stable set
and T is restricted to consist of a single number, we obtain the class of equistable graphs,
for which the recognition complexity is open (see, e.g., [47]), no structural characterization
is known, and several NP-hard optimization problems remain intractable [50].

Notions and results from the theory of Boolean functions [22] and hypergraphs [2] can

E-mail addresses: nina.chiarelli@famnit.upr.si (Nina Chiarelli), martin.milanic@upr.si (Martin Milanič)
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be useful for the study of graph classes defined within the above framework. For instance,
the characterization of hereditarily total domishold graphs in terms of forbidden induced
subgraphs given in [18] is based on the facts that every threshold Boolean function is
2-asummable [19] and that every dually Sperner hypergraph is threshold [16].1 Moreover,
the fact that threshold Boolean functions are closed under dualization and (when given by
their complete DNF) can be recognized in polynomial time [55] leads to efficient algo-
rithms for recognizing total domishold graphs and for finding a minimum total dominating
set in a given total domishold graph [16]. The relationship also goes the other way around.
For instance, total domishold graphs can be used to characterize threshold hypergraphs and
threshold Boolean functions [18].

1.2 Aims and motivation

The aim of this paper is to further explore and exploit this fruitful interplay between
threshold concepts in graphs, hypergraphs, and Boolean functions. We do this by studying
the class of connected-domishold graphs, a new class of graphs that can be defined in the
above framework, as follows. A connected dominating set (CD set for short) in a connected
graph G is a set S of vertices of G that is dominating, that is, every vertex of G is either
in S or has a neighbor in S, and connected, that is, the subgraph of G induced by S is
connected. The ground set U is the vertex set of a connected graphG = (V,E), property π
is the property of being a connected dominating set in G, and T is any interval unbounded
from above.

Our motivations for studying the notion of connected domination in the above threshold
framework are twofold. First, connected domination is one of the most basic of the many
variants of domination, with applications in modeling wireless networks, see, e.g., [6, 11,
12, 26, 27, 31, 35, 36, 60–62, 66]. The connected dominating set problem is the problem
of finding a minimum connected dominating set in a given connected graph. This prob-
lem is NP-hard (and hard to approximate) for general graphs and remains intractable even
under significant restrictions, for instance, for the class of split graphs (see Section 6.2).
On the other hand, as outlined above, the problem is polynomially solvable in the class
of connected-domishold graphs equipped with weights as in the definition. This moti-
vates the study of connected-domishold graphs. In particular, identification of subclasses
of connected-domishold graphs might lead to new classes of graphs where the connected
dominating set problem (or its weighted version) is polynomially solvable.

Second, despite the increasingly large variety of graph domination concepts studied
in the literature (see, e.g., [35, 36]), so far a relatively small number of “threshold-like”
graph classes was studied with respect to notions of domination: the classes of domishold
and equidominating graphs (corresponding to the usual domination), the class of equistable
graphs (corresponding to independent domination), and the class of total domishold graphs
(corresponding to total domination). These graph classes differ significantly with respect
to their structural and algorithmic properties. For instance, while the class of domishold
graphs is a highly structured hereditary subclass of cographs, the classes of equistable and
of total domishold graphs are not contained in any nontrivial hereditary class of graphs and
are not structurally understood.2 In particular, the class of total domishold graphs is as rich
in its combinatorial structure as the class of threshold hypergraphs [18], for which (despite

1In [16,18], the hereditarily total domishold graphs were named hereditary total domishold graphs. We prefer
to adopt the grammatically correct term “hereditarily total domishold”.

2A class of graphs is said to be hereditary if it is closed under vertex deletion.
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being recognizable in polynomial time via linear programming [22, 55]) the existence of
a “purely combinatorial” polynomial-time recognition algorithm is an open problem [22].
These results, differences, and challenges provide further motivation for the study of struc-
tural and algorithmic properties of connected-domishold graphs.

1.3 The definition

Since a disconnected graphG does not have any connected dominating sets, we restrict our
attention to connected graphs in the following definition.

Definition 1.1. A connected graph G = (V,E) is said to be connected-domishold (CD for
short) if there exists a pair (w, t) where w : V → R+ is a weight function and t ∈ R+ is
a threshold such that for every subset S ⊆ V , w(S) :=

∑
x∈S w(x) ≥ t if and only if S

is a connected dominating set in G. Such a pair (w, t) will be referred to as a connected-
domishold (CD) structure of G.

We emphasize that the class of connected-domishold graphs is not the intersection of
the classes of connected and domishold graphs. In fact, the two classes are incomparable:
the 4-vertex cycle is connected and domishold [1] but not connected-domishold, see Exam-
ple 1.3 below; the 4-vertex path is connected-domishold but not domishold. The hyphen in
the name is meant to indicate this fact.

Example 1.2. The complete graph of order n is connected-domishold. Indeed, any non-
empty subset S ⊆ V (Kn) is a connected dominating set of Kn, and the pair (w, 1) where
w(x) = 1 for all x ∈ V (Kn) is a CD structure of Kn.

Example 1.3. The 4-cycle C4 is not connected-domishold. Denoting its vertices by v1, v2,
v3, v4 in a cyclic order, we see that a subset S ⊆ V (C4) is CD if and only if it contains
an edge. Therefore, if (w, t) is a CD structure of C4, then w(vi) + w(vi+1) ≥ t for all
i ∈ {1, 2, 3, 4} (indices modulo 4), which implies w(V (C4)) ≥ 2t. On the other hand,
w(v1) + w(v3) < t and w(v2) + w(v4) < t, implying w(V (C4)) < 2t.

1.4 Overview of results

Our results can be divided into four interrelated parts and can be summarized as follows:

1) Characterizations in terms of derived hypergraphs (resp., derived Boolean func-
tions); a necessary and a sufficient condition.
In a previous work [18, Proposition 4.1 and Theorem 4.5], total domishold graphs were
characterized in terms of thresholdness of a derived hypergraph and a derived Boolean
function. We give similar characterizations of connected-domishold graphs (Proposi-
tion 3.4). The characterizations lead to a necessary and a sufficient condition for a
graph to be connected-domishold, respectively, expressed in terms of properties of the
derived hypergraph (equivalently: of the derived Boolean function; Corollary 3.5).

2) The case of split graphs. A characterization of threshold hypergraphs.
While the classes of connected-domishold and total domishold graphs are in general
incomparable, we show that they coincide within the class of connected split graphs
(Theorem 4.3). Building on this equivalence, we characterize threshold hypergraphs in
terms of the connected-domisholdness property of a derived split graph (Theorem 4.4).
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We also give examples of connected split graphs showing that neither of the two condi-
tions for a graph to be connected-domishold mentioned above (one necessary and one
sufficient) characterizes this property.

3) The hereditary case.
We observe that, contrary to the classes of threshold and domishold graphs, the class
of connected-domishold graphs is not hereditary. This motivates the study of so-called
hereditarily connected-domishold graphs, defined as graphs every connected induced
subgraph of which is connected-domishold. As our main result (Theorem 5.4), we
give several characterizations of the class of hereditarily connected-domishold graphs.
The characterizations in terms of forbidden induced subgraphs implies that the class
of hereditarily connected-domishold graphs is a subclass of the class of chordal graphs
properly containing two well known classes of chordal graphs, the class of block graphs
and the class of trivially perfect graphs.

4) Algorithmic aspects via vertex separators.
Finally, we build on all these results, together with some known results from the liter-
ature on connected dominating sets and minimal vertex separators in graphs, to study
certain algorithmic aspects of the class of connected-domishold graphs and their heredi-
tary variant. We identify a sufficient condition, capturing a large number of known graph
classes, under which the CD property can be recognized efficiently (Theorem 6.1). We
also show that the same condition, when applied to classes of connected-domishold
graphs, results in classes of graphs for which the weighted connected dominating set
problem (which is NP-hard even on split graphs) is polynomial-time solvable (The-
orem 6.5). This includes the classes of hereditarily connected-domishold graphs and
F2-free split graphs (see Figure 1), leading to new polynomially solvable cases of the
problem.

Figure 1: Graph F2.

Structure of the paper. In Section 2, we state the necessary definitions and preliminary
results on graphs, hypergraphs, and Boolean functions. In Section 3, we give characteri-
zations of connected-domishold graphs in terms of thresholdness of derived hypergraphs
and Boolean functions. Connected-domishold split graphs are studied in Section 4, where
their relation to threshold hypergraphs is also observed. The main result of the paper, The-
orem 5.4, is stated in Section 5, where some of its consequences are also derived. Section 6
discusses some algorithmic aspects of connected-domishold graphs. Our proof of Theo-
rem 5.4 relies on a technical lemma, which is proved in Section 7.

2 Preliminaries
2.1 Graphs

All graphs in this paper will be finite, simple and undirected. The (open) neighborhood of
a vertex v is the set of vertices in a graph G adjacent to v, denoted by NG(v) (or simply
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N(v) if the graph is clear from the context); the closed neighborhood of v is denoted by
NG[v] and defined as NG(v)∪{v}. The degree of a vertex v in a graph G is the cardinality
of its neighborhood. The complete graph, the path and the cycle of order n are denoted by
Kn, Pn and Cn, respectively. A clique in a graph is a subset of pairwise adjacent vertices,
and an independent (or stable) set is a subset of pairwise non-adjacent vertices. A universal
vertex in a graph G is a vertex adjacent to all other vertices. For a set S of vertices in a
graphG, we denote byG[S] the subgraph ofG induced by S. For a setF of graphs, we say
that a graph is F-free if it does not contain any induced subgraph isomorphic to a member
of F . Given a graph G, a vertex v ∈ V (G), and a set U ⊆ V (G) \ {v}, we say that v
dominates U if v is adjacent to every vertex in U .

The main notion that will provide the link between threshold Boolean functions and
hypergraphs is that of cutsets in graphs. A cutset in a graph G is a set S ⊆ V (G) such that
G − S is disconnected. A cutset is minimal if it does not contain any other cutset. For a
pair of disjoint vertex sets A and B in a graph G such that no vertex in A has a neighbor
in B, an A,B-separator is a set of vertices S ⊆ V (G) \ (A ∪ B) such that A and B are
in different components of G − S. An A,B-separator is said to be minimal if it does not
contain any other A,B-separator. When sets A and B are singletons, say A = {u} and
B = {v}, we will refer to a (minimal)A,B-separator simply as a (minimal) u, v-separator.
A minimal vertex separator in G is a minimal u, v-separator for some non-adjacent vertex
pair u, v. Note that every minimal cutset of G is a minimal vertex separator, but not vice
versa. The minimal cutsets are exactly the minimal u, v-separators that do not contain any
other x, y-separator. The connection between the CD graphs and the derived hypergraphs
and Boolean functions will be developed in Section 3 using the following characterization
of CD sets due to Kanté et al. [38].

Proposition 2.1 (Kanté et al. [38]). In every connected graph G that is not complete, a
subset D ⊆ V (G) is a CD set if and only if D ∩ S 6= ∅ for every minimal cutset S in G.

In other words, unless a connected graph G is complete, its CD sets are exactly the
transversals of the cutset hypergraph ofG (see Section 2.3 and Definition 3.2 for definitions
of these notions).

A graphG is chordal if it does not contain any induced cycle of order at least 4, and split
if it has a split partition, that is, a partition of its vertex set into a clique and an independent
set. One of our proofs (the proof of Theorem 5.4) will rely on the following property of
chordal graphs.

Lemma 2.2 (Kumar and Veni Madhavan [45]). If S is a minimal cutset of a chordal graph
G, then each connected component of G−S has a vertex that is adjacent to all the vertices
of S.

For graph theoretic notions not defined above, see, e.g., [65].

2.2 Boolean functions

Let n be a positive integer. Given two vectors x, y ∈ {0, 1}n, we write x ≤ y if xi ≤ yi
for all i ∈ [n] := {1, . . . , n}. A Boolean function f : {0, 1}n → {0, 1} is positive (or:
monotone) if f(x) ≤ f(y) holds for every two vectors x, y ∈ {0, 1}n such that x ≤ y.
A literal of f is either a variable, xi, or the negation of a variable, denoted by xi. An
elementary conjunction is an expression of the form C =

(∧
i∈A xi

)
∧
(∧

j∈B xj
)

where
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A ∩ B = ∅. An implicant of a Boolean function f is an elementary conjunction C such
that f(x) = 1 for all x ∈ {0, 1}n for which C takes value 1 (we also say that C implies f ).
An implicant is said to be prime if it is not implied by any other implicant. If f is positive,
then none of the variables appearing in any of its prime implicants appears negated. Every
n-variable positive Boolean function f can be expressed with its complete DNF (disjunctive
normal form), defined as the disjunction of all prime implicants of f .

A positive Boolean function f is said to be threshold if there exist non-negative real
weights w = (w1, . . . , wn) and a non-negative real number t such that for every
x ∈ {0, 1}n, f(x) = 0 if and only if

∑n
i=1 wixi ≤ t. Such a pair (w, t) is called a

separating structure of f . Every threshold Boolean function admits an integral separating
structure (see [22, Theorem 9.5]). A positive Boolean function f(x1, . . . , xn) is threshold
if and only if its dual function fd(x) = f(x) is threshold [22]; moreover, if (w1, . . . , wn, t)
is an integral separating structure of f , then (w1, . . . , wn,

∑n
i=1 wi− t− 1) is a separating

structure of fd.
Threshold Boolean functions have been characterized in [19] and [29], as follows. A

false point of f is an input vector x ∈ {0, 1}n such that f(x) = 0; a true point is de-
fined analogously. For k ≥ 2, a positive Boolean function f : {0, 1}n → {0, 1} is said
to be k-summable if, for some r ∈ {2, . . . , k}, there exist r (not necessarily distinct)
false points of f , say, x1, x2, . . . , xr, and r (not necessarily distinct) true points of f , say
y1, y2, . . . , yr, such that

∑r
i=1 x

i =
∑r

i=1 y
i (note that the sums are in Zn and not in Zn

2 ,
the n-dimensional vector space over GF(2)). Function f is said to be k-asummable if it is
not k-summable, and it is asummable if it is k-asummable for all k ≥ 2.

Theorem 2.3 (Chow [19], Elgot [29], see also [22, Theorem 9.14]). A positive Boolean
function f is threshold if and only if it is asummable.

The problem of determining whether a positive Boolean function given by its complete
DNF is threshold is solvable in polynomial time, using dualization and linear programming
(see [55] and [22, Theorem 9.16]). The algorithm tests if a polynomially sized derived
linear program has a feasible solution, and in case of a yes instance, the solution found
yields a separating structure of the given function. Using, e.g., Karmarkar’s interior point
method for linear programming [39], one can assure that a rational solution is found. This
results in a rational separating structure, which can be easily turned into an integral one.
We summarize this result as follows.

Theorem 2.4. There exists a polynomial-time algorithm for recognizing threshold Boolean
functions given by the complete DNF. In case of a yes instance, the algorithm also computes
an integral separating structure of the given function.

Remark 2.5. The existence of a “purely combinatorial” polynomial-time recognition al-
gorithm for threshold Boolean functions (that is, one not relying on solving an auxiliary
linear program) is an open problem [22].

A similar approach as the one outlined above shows that every connected-domishold
graph has an integral CD structure; we will often use this fact in the paper. For further
background on Boolean functions, we refer to the comprehensive monograph by Crama
and Hammer [22].
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2.3 Hypergraphs

A hypergraph is a pair H = (V,E) where V is a finite set of vertices and E is a set of
subsets of V , called hyperedges [2]. When the vertex set or the hyperedge set ofH will not
be explicitly given, we will refer to them by V (H) and E(H), respectively. A transversal
(or: hitting set) of H is a set S ⊆ V such that S ∩ e 6= ∅ for all e ∈ E. A hypergraph
H = (V,E) is threshold if there exist a weight function w : V → R+ and a threshold
t ∈ R+ such that for all subsets X ⊆ V , it holds that w(X) ≤ t if and only if X contains
no hyperedge ofH [34]. Such a pair (w, t) is said to be a separating structure ofH.

To every hypergraph H = (V,E), we can naturally associate a positive Boolean func-
tion fH : {0, 1}V → {0, 1}, defined by the positive DNF expression

fH(x) =
∨
e∈E

∧
u∈e

xu

for all x ∈ {0, 1}V . Conversely, to every positive Boolean function f : {0, 1}n → {0, 1}
given by a positive DNF φ =

∨m
j=1

∧
i∈Cj

xi, we can associate a hypergraph H(φ) =

(V,E) as follows: V = [n] andE = {C1, . . . , Cm}. It follows directly from the definitions
that the thresholdness of hypergraphs and of Boolean functions are related as follows.

Proposition 2.6. A hypergraphH = (V,E) is threshold if and only if the positive Boolean
function fH is threshold. A positive Boolean function given by a positive DNF
φ =

∨m
j=1

∧
i∈Cj

xi is threshold if and only if the hypergraphH(φ) is threshold.

Applying Theorem 2.3 to the language of hypergraphs gives the following character-
ization of threshold hypergraphs. For k ≥ 2, a hypergraph H = (V,E) is said to be
k-summable if, for some r ∈ {2, . . . , k}, there exist r (not necessarily distinct) subsets
A1, . . . , Ar of V such that each Ai contains a hyperedge of H, and r (not necessarily dis-
tinct) subsets B1, . . . , Br of V such that each Bi does not contain a hyperedge of H and
such that for every vertex v ∈ V , we have:

|{i : v ∈ Ai}| = |{i : v ∈ Bi}|. (2.1)

We say that a hypergraphH is k-asummable if it is not k-summable and it is asummable if
it is k-asummable for all k ≥ 2.

Corollary 2.7. A hypergraphH is threshold if and only if it is asummable.

A hypergraph H = (V,E) is said to be Sperner (or: a clutter) if no hyperedge of H
contains another hyperedge, that is, if for every two distinct hyperedges e and f of H, it
holds that min{|e \ f |, |f \ e|} ≥ 1 . Chiarelli and Milanič defined in [16, 18] the notion
of dually Sperner hypergraphs as the hypergraphs such that the inequality
min{|e \ f |, |f \ e|} ≤ 1 holds for every pair of distinct hyperedges e and f of H. It
was proved in [16, 18] that dually Sperner hypergraphs are threshold; they were applied
in the characterizations of total domishold graphs and their hereditary variant. Boros et
al. introduced in [8] the following restriction of dually Sperner hypergraphs.

Definition 2.8 (Boros et al. [8]). A hypergraph H = (V,E) is said to be 1-Sperner if for
every two distinct hyperedges e and f ofH, it holds that min{|e \ f |, |f \ e|} = 1.
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Note that a hypergraph is 1-Sperner if and only if it is both Sperner and dually Sperner.
In particular, for Sperner hypergraphs the notions of dually Sperner and 1-Sperner hyper-
graphs coincide. Since a hypergraph H is threshold if and only if the Sperner hypergraph
obtained from H by keeping only its inclusion-wise minimal hyperedges is threshold, the
fact that dually Sperner hypergraphs are threshold is equivalent to the following fact, proved
constructively by Boros et al. in [8] using a composition result for 1-Sperner hypergraphs
developed therein.

Theorem 2.9 (Chiarelli and Milanič [18], Boros et al. [8]). Every 1-Sperner hypergraph is
threshold.

3 Connected-domishold graphs via hypergraphs and Boolean func-
tions

In a previous work [18, Proposition 4.1 and Theorem 4.5], total domishold graphs were
characterized in terms of thresholdness of a derived hypergraph and a derived Boolean
function. In this section we give similar characterizations of connected-domishold graphs.

We first recall some relevant definitions and a result from [18]. A total dominating set
in a graph G is a set S ⊆ V (G) such that every vertex of G has a neighbor in S. Note that
only graphs without isolated vertices have total dominating sets. A graph G = (V,E) is
said to be total domishold (TD for short) if there exists a pair (w, t) where w : V → R+

is a weight function and t ∈ R+ is a threshold such that for every subset S ⊆ V ,
w(S) :=

∑
x∈S w(x) ≥ t if and only if S is a total dominating set in G. A pair (w, t)

as above will be referred to as a total domishold (TD) structure of G. The neighborhood
hypergraph of a graph G is the hypergraph denoted by N (G) and defined as follows: the
vertex set ofN (G) is V (G) and the hyperedge set consists precisely of the minimal neigh-
borhoods in G, that is, of the inclusion-wise minimal sets in the family of neighborhoods
{N(v) : v ∈ V (G)}.3 Note that a set S ⊆ V (G) is a total dominating set in G if and only
if it is a transversal of N (G).

Proposition 3.1 (Chiarelli and Milanič [18]). For a graph G = (V,E), the following are
equivalent:

1. G is total domishold.

2. Its neighborhood hypergraph N (G) is threshold.

The constructions of the derived hypergraph and the derived Boolean function used in
our characterizations of connected-domishold graphs in terms of their thresholdness are
specified by Definitions 3.2 and 3.3.

Definition 3.2. Given a graph G, the cutset hypergraph of G is the hypergraph C(G) with
vertex set V (G) whose hyperedges are precisely the minimal cutsets in G.

Given a finite non-empty set V , we denote by {0, 1}V the set of all binary vectors with
coordinates indexed by V . Given a graph G = (V,E) and a binary vector x ∈ {0, 1}V ,
its support set is the set denoted by S(x) and defined by S(x) = {v ∈ V : xv = 1}. In

3In [18], the neighborhood hypergraph of G was named reduced neighborhood hypergraph (of G) and denoted
by RN (G). We changed the terminology in analogy with the term “cutset hypergraph”, which will be introduced
shortly.
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the following definition, we associate a Boolean function to a given n-vertex graph G. In
order to avoid fixing a bijection between its vertex set and the set [n], we will consider the
corresponding Boolean function as being defined on the set {0, 1}V , where V = V (G).
Accordingly, a separating structure of such a Boolean function can be seen as a pair (w, t)
where w : V → R+ and t ∈ R+ such that for every x ∈ {0, 1}V , we have f(x) = 0 if and
only if

∑
v∈S(x) w(v) ≤ t.

Definition 3.3. Given a graph G = (V,E), its cutset function is the positive Boolean
function f cut

G : {0, 1}V → {0, 1} that takes value 1 precisely on vectors x ∈ {0, 1}V whose
support set contains some minimal cutset of G.

The announced characterizations of connected-domishold graphs in terms of their cut-
set hypergraphs and cutset functions are given in the following proposition. The proof
is based on two ingredients: the characterization of the connected dominating sets of a
given connected (non-complete) graph given by Proposition 2.1 and the fact that threshold
Boolean functions are closed under dualization.

Proposition 3.4. For a connected graph G = (V,E), the following are equivalent:

1. G is connected-domishold.

2. Its cutset hypergraph C(G) is threshold.

3. Its cutset function f cut
G is threshold.

Moreover, ifG is not a complete graph and (w, t) is an integral separating structure of f cut
G

or of C(G), then (w,w(V )− t) is a CD structure of G.

Proof. We consider two cases, depending on whether G is a complete graph or not.

Case 1: G is complete.
In this case all the three statements hold. Recall that every complete graph is CD

(see Example 1.2). Since complete graphs have no cutsets, the set of hyperedges of the
cutset hypergraph C(G) is empty. Hence the hypergraph C(G) is threshold. The absence
of (minimal) cutsets also implies that the cutset function f cut

G is constantly equal to 0 and
hence threshold.

Case 2: G is not complete.
First we will show the equivalence between statements 1 and 3. Since a positive

Boolean function f is threshold if and only if its dual function fd(x) = f(x) is threshold,
it suffices to argue that G is connected-domishold if and only if (f cut

G )d is threshold.
We claim that for every x ∈ {0, 1}V , we have (f cut

G )d(x) = 1 if and only if S(x), the
support set of x, is a connected dominating set of G. Let x ∈ {0, 1}V and let S be the
support set of x. By definition, (f cut

G )d(x) = 1 if and only if f cut
G (x) = 0, which is the case

if and only if V \ S does not contain any minimal cutset of G. This is in turn equivalent to
the condition that S is a transversal of the cutset hypergraph of G, and, by Proposition 2.1,
to the condition that S is a connected dominating set of G. Therefore, (f cut

G )d(x) = 1 if
and only if S is a connected dominating set of G, as claimed.

Now, if G is connected-domishold, then it has an integral connected-domishold struc-
ture, say (w, t), and (w, t− 1) is a separating structure of the dual function (f cut

G )d, which
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implies that (f cut
G )d is threshold. Conversely, if the dual function is threshold, with an in-

tegral separating structure (w, t), then (w, t+ 1) is a connected-domishold structure of G.
This establishes the equivalence between statements 1 and 3.

Next, we show the equivalence between statements 2 and 3. Note that the complete
DNF of f cut

G , the cutset function of G, is given by the expression
∨

S∈C(G)

∧
u∈S xu. It

now follows directly from the definitions of threshold Boolean functions and threshold
hypergraphs that function f cut

G (x) is threshold if and only if cutset hypergraph C(G) is
threshold.

Finally, if (w, t) is an integral separating structure of f cut
G , then (w,w(V )− t− 1) is a

separating structure of (f cut
G )d and hence (w,w(V )− t) is a connected-domishold structure

of G.

Recall that every 1-Sperner hypergraph is threshold (Theorem 2.9) and every threshold
hypergraph is asummable (Corollary 2.7). Thus, in particular, every threshold hypergraph
is 2-asummable. Applying these relations to the specific case of the minimal cutset hyper-
graphs, Proposition 3.4 leads to the following.

Corollary 3.5. For every connected graph G, the following holds:

1. If the cutset hypergraph C(G) is 1-Sperner, then G is connected-domishold.

2. If G is connected-domishold, then its cutset hypergraph C(G) is 2-asummable.

We will show in Section 4.1 that neither of the two statements in Corollary 3.5 can be
reversed. On the other hand, in Section 5 we will prove that all the three properties become
equivalent in the hereditary setting.

4 Connected-domishold split graphs
The following examples show that for general connected graphs, the CD and TD properties
are incomparable:

• The path P6 is connected-domishold (it has a unique minimal connected dominating
set, formed by its internal vertices) but it is not total domishold (see, e.g., [18]).

• The graph in Figure 2 is TD but not CD.

v1 v2 v3

v6v7v8

v4

v5

Figure 2: A TD graph that is not CD.

The graph is total domishold: it has a unique minimal total dominating set, namely
{v1, v4, v5, v8}. On the other hand, the graph is not connected-domishold. This can
be shown by observing that its cutset hypergraph is not 2-asummable and applying
Corollary 3.5. To see that the cutset hypergraph of G is 2-summable, note that con-
dition (2.1) is satisfied if we take k = r = 2 and A1 = {v2, v7}, A2 = {v3, v6},
B1 = {v2, v3}, and B2 = {v6, v7}.
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Interestingly, we will show in Section 5 that if the CD and TD properties are required
also for all connected induced subgraphs, then the corresponding graph classes become
comparable (see Corollary 5.9). In the rest of this section, we will prove that the two
properties coincide in the class of connected split graphs and examine some consequences
of this result. Recall that a graph is split if and only if its vertex set has a partition into a
clique and an independent set. Foldes and Hammer characterized split graphs as exactly
the graphs that are {2K2, C4, C5}-free [30]. In particular, this implies that a split graph
can be disconnected only if it has an isolated vertex.

Lemma 4.1. Let G be a connected graph and let G′ be the graph obtained from G by
adding to it a universal vertex. Then, G is connected-domishold if and only if G′ is
connected-domishold.

Proof. Let V (G′) = V (G) ∪ {u}, where u is the added vertex. Suppose that G is
connected-domishold and let (w, t) be a CD structure of G. Since the set of connected
dominating sets of G′ consists of all connected dominating sets of G together with all sub-
sets of V (G′) containing u, we can obtain a CD structure, say (w′, t′), of G′ by setting
w′(x) = w(x) for all x ∈ V (G), w′(u) = t, and t′ = t. Therefore, G′ is connected-
domishold.

Conversely, if (w′, t′) is a CD structure of G′, then (w, t) where t = t′ and w is the
restriction of w′ to V (G) is a CD structure of G. This is because a set X ⊆ V (G) is
a connected dominating set of G if and only if it is a connected dominating set of G′.
Therefore, if G′ is connected-domishold then so is G.

Recall that given a connected graph G, we denote by C(G) (resp., N (G)) its cutset
(resp., neighborhood) hypergraph.

Lemma 4.2. Let G be a connected split graph without universal vertices. Then

C(G) = N (G).

Proof. Fix a split partition of V (G), say V (G) = K ∪ I where K is a clique, I is an
independent set, and K ∩ I = ∅. Clearly, the hypergraphs C(G) and N (G) have the same
vertex set. We show that the hyperedge sets are also the same in two steps.

First, we show that E(C(G)) ⊆ E(N (G)), that is, that every minimal cutset is a
minimal neighborhood. To this end, it suffices to show that every minimal cutset S in
G is a neighborhood, that is, a set of the form S = N(v) for some v ∈ V (G). This is
indeed enough, because if a minimal cutset S inG satisfies S = N(v) for some v ∈ V (G),
but N(v) properly contains some other neighborhood, say N(u), then the fact that N(u) is
a cutset inG (for instance, it is a u, v-separator) would imply that S is not a minimal cutset.

Let S be a minimal cutset in G. Then, S is a minimal u, v-separator for some non-
adjacent vertex pair u, v; in particular, S ⊆ V (G) \ {u, v}. We claim that N(u) ⊆ S or
N(v) ⊆ S. Suppose that this is not the case. Then, there exist a neighbor of u, say u′, such
that u′ 6∈ S, and a neighbor of v, say v′, such that v′ 6∈ S. Since {u, v, u′, v′} ⊆ V (G) \ S
and u and v are in different components of G− S, vertices u′ and v′ are distinct and non-
adjacent. Thus, at least one of u′ and v′, say u′, is in I . This implies that u ∈ K and
therefore v ∈ I , which implies that v′ ∈ K and hence (u, v′, v) is a u, v-path in G − S,
a contradiction. This shows that N(u) ⊆ S or N(v) ⊆ S, as claimed. Since each of
N(u) and N(v) is a u, v-separator, the fact that S is a minimal u, v-separator implies that
S ∈ {N(u), N(v)}. This completes the proof of the inclusion E(C(G)) ⊆ E(N (G)).
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It remains to show that E(N (G)) ⊆ E(C(G)). Let S be a minimal neighborhood in
G. Then S = N(v) for some v ∈ V (G). Since v is not universal, the set V (G) \ N [v]
is non-empty. Therefore S is a v, w-separator for any w ∈ V (G) \ N [v]; in particular, S
is a cutset in G. Suppose for a contradiction that S is not a minimal cutset in G. Then S
properly contains some minimal cutset, say S′, in G. By the first part of the proof, S′ is of
the form S′ = N(z) for some z ∈ V (G). However, sinceN(z) is a neighborhood properly
contained in S = N(v), this contradicts the fact that S is a minimal neighborhood.

Theorem 4.3. A connected split graph is connected-domishold if and only if it is total
domishold.

Proof. If G is complete, then G is both connected-domishold and total domishold. So we
may assume that G is not complete. More generally, we show next that we may assume
that G does not have any universal vertices. Suppose that G has a universal vertex, say u,
and let G′ = G − u. By [18, Proposition 3.3], G is TD if and only if G′ is TD. If G′ is
not connected, then {u} is the only minimal connected dominating set of G and hence G
is connected-domishold in this case. Furthermore, G is also total domishold: since G′ is a
disconnected 2K2-free graph, G′ has an isolated vertex. Therefore, by [18], G′ is TD, and
hence so is G. If G′ is connected, then by Lemma 4.1, G is CD if and only if G′ is CD.
Therefore, the problem of verifying whether the CD and the TD properties are equivalent
for G reduces to the same problem for G′. An iterative application of the above argument
eventually reduces the graph to either a graph where both properties hold or to a connected
graph without universal vertices.

Now, let G be a connected split graph without universal vertices. By Proposition 3.4,
G is connected-domishold if and only if its cutset hypergraph C(G) is threshold. By
Proposition 3.1, G is total domishold if and only if its neighborhood hypergraph N (G)
is threshold. Therefore, to prove the theorem it suffices to show that C(G) = N (G). But
this was established in Lemma 4.2.

Theorem 4.3 implies another relation between connected-domishold (split) graphs and
threshold hypergraphs, one that in a sense reverses the one stated in Proposition 3.4. Given
a hypergraphH = (V,E), the split-incidence graph ofH (see, e.g., [38]) is the split graph
G such that V (G) = V ∪ E, V is a clique, E is an independent set, and v ∈ V is adjacent
to e ∈ E if and only if v ∈ e.

Theorem 4.4. Let H = (V,E) be a hypergraph with ∅ 6∈ E. Then H is threshold if and
only if its split-incidence graph is connected-domishold.

Proof. Since ∅ 6∈ E, the split-incidence graph ofH is connected. It was shown in [18] that
a hypergraph is threshold if and only if its split-incidence graph is total domishold. The
statement of the theorem now follows from Theorem 4.3.

It might be worth pointing out that in view of Remark 2.5 and Theorem 4.4, it is an
open problem of whether there is a “purely combinatorial” polynomial-time algorithm for
recognizing connected-domishold split graphs. Further issues regarding the recognition
problem of CD graphs will be discussed in Section 6.1.
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4.1 Examples related to Corollary 3.5

We now show that neither of the two statements in Corollary 3.5 can be reversed. First we
exhibit an infinite family of CD split graphs whose cutset hypergraphs are not 1-Sperner.

Example 4.5. Let n ≥ 4 and let G = K∗n be the graph obtained from the complete graph
Kn by gluing a triangle on every edge. Formally,

V (G) = {u1, . . . , un} ∪ {vij : 1 ≤ i < j ≤ n} and
E(G) = {uiuj : 1 ≤ i < j ≤ n} ∪ {uivjk : 1 ≤ j < k ≤ n and i ∈ {j, k}}.

The graph G is a CD graph: setting

w(x) =

{
1, if x ∈ {u1, . . . , un};
0, otherwise.

and t = n − 1 results in a CD structure of G. On the other hand, the cutset hypergraph
of G is not 1-Sperner. Since every pair of the form {ui, uj} with 1 ≤ i < j ≤ n is a
minimal cutset of G, the cutset hypergraph contains {u1, u2} and {u3, u4} as hyperedges
and is therefore not 1-Sperner.

Next, we argue that there exists a split graphGwhose cutset hypergraph is 2-asummable
but G is not CD. As observed already in [18], the fact that not every 2-asummable positive
Boolean function is threshold can be used to construct split graphs G such that N (G) is
2-asummable and G is not total domishold. The existence of split graphs with claimed
properties now follows from Theorem 4.3 and its proof. For the sake of self-containment,
we describe an example of such a construction in Appendix A.

5 The hereditary case
In this section we present the main result of this paper, Theorem 5.4, which gives several
characterizations of graphs all connected induced subgraphs of which are CD, and derive
some of its consequences. The proof of Theorem 5.4 relies on a technical lemma about
chordal graphs, which will be proved in Section 7.

We start with an example showing that, contrary to the classes of threshold and
domishold graphs, the class of connected-domishold graphs is not hereditary. We assume
notation from Example 1.3.

Example 5.1. The graph G obtained from C4 by adding to it a new vertex, say v5, and
making it adjacent exactly to one vertex of the C4, say to v4, is CD: the (inclusion-wise)
minimal CD sets of G are {v1, v4} and {v3, v4}, hence a CD structure of G is given by
w(v2) = w(v5) = 0, w(v1) = w(v3) = 1, w(v4) = 2, and t = 3.

This motivates the following definition.

Definition 5.2. A graph G is said to be hereditarily connected-domishold (hereditarily CD
for short) if every connected induced subgraph of G is connected-domishold.

In general, for a property Π of connected graphs, a graph is said to be hereditarily Π if
every connected induced subgraph of it satisfies Π. Characterizations of classes of heredi-
tarily Π graphs where Π denotes the property that the graph has a connected dominating set
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inducing a graph with a certain property Π′ were given, for various choices of property Π′,
by Michalak in [49]. In [57], Pržulj et al. gave characterizations of hereditarily Π graphs
where Π denotes the property that the graph has a dominating pair of vertices (that is, a
pair of vertices such that every path between them is dominating). The class of hereditar-
ily connected-domishold graphs corresponds to the case when Π is the property of being
connected-domishold.

In order to state the technical lemma to be used in the proof of Theorem 5.4, we need
some terminology. A diamond is a graph obtained from K4 by deleting an edge. Given a
diamondD, we will refer to its vertices of degree two as its tips and denote them as t and t′,
and to its vertices of degree three as its centers and denote them as c and c′. The respective
vertex sets will be denoted by T and C. Similar notation will be used for diamonds denoted
by D1 or D2.

Lemma 5.3 (Diamond Lemma). Let G be a connected chordal graph. Suppose that G
contains two induced diamonds D1 = (V1, E1) and D2 = (V2, E2) such that:

(i) C1 ∩ C2 = ∅.

(ii) If no vertex in C1 is adjacent to a vertex in C2, then there exists a C1, C2-separator
in G of size one.

(iii) For each j ∈ {1, 2} the tips (i.e., tj , t′j) of Dj belong to different components of
G− Cj .

(iv) For j ∈ {1, 2} every component of G− Cj has a vertex that dominates Cj .

Then G has an induced subgraph isomorphic to F1, F2, or Hi for some i ≥ 1, where the
graphs F1, F2, and a general member of the family {Hi} are depicted in Figure 3.

F2F1 Hi (i ≥ 1)

1 2 i3

Figure 3: Graphs F1, F2, and Hi.

The proof of Lemma 5.3 is postponed to Section 7.

Theorem 5.4. For every graph G, the following are equivalent:

1. G is hereditarily connected-domishold.

2. The cutset hypergraph of every connected induced subgraph of G is 1-Sperner.

3. The cutset hypergraph of every connected induced subgraph of G is threshold.

4. The cutset hypergraph of every connected induced subgraph of G is 2-asummable.

5. G is an {F1, F2, H1, H2, . . .}-free chordal graph.
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Proof. The equivalence between items 1 and 3 follows from Proposition 3.4.
The implications 2⇒ 1⇒ 4 follow from Corollary 3.5.
For the implication 4 ⇒ 5, we only need to verify that the cutset hypergraph of none

of the graphs in the set F := {Ck : k ≥ 4} ∪ {F1, F2} ∪ {Hi : i ≥ 1} is 2-asummable.
Let F ∈ F . Suppose first that F is a cycle Ck for some k ≥ 4, let u1, u2, u3, u4 be four
consecutive vertices on the cycle. Let A1 = {u1, u3}, A2 = {u2, u4}, B1 = {u1, u2}
and B2 = {u3, u4}. Then, A1 and A2 are minimal cutsets of F and thus hyperedges
of the hypergraph C(F ), while B1 and B2 do not contain any minimal cutset of F and
are consequently independent sets in the hypergraph C(F ). Since the sets A1, A2, B1 and
B2 satisfy condition (2.1), this implies that the hypergraph C(F ) is 2-summable. If F ∈
{F1, F2} ∪ {Hi : i ≥ 1}, then let a and b be the two vertices of degree 2 in F , let
N(a) = {a1, a2}, N(b) = {b1, b2}, let A1 = N(a), A2 = N(b), B1 = {a1, b1} and
B2 = {a2, b2}. The rest of the proof is the same as above.

It remains to show the implication 5 ⇒ 2. Suppose that the implication fails and
let G be a minimal counterexample. That is, G is an {F1, F2, H1, H2, . . .}-free chordal
graph such that its cutset hypergraph is not 1-Sperner, but the cutset hypergraph of every
{F1, F2, H1, H2, . . .}-free chordal graph with fewer vertices than G is 1-Sperner. Since
C(G) is not 1-Sperner, G has two minimal cutsets, say S and S′, such that
min{|S \ S′|, |S′ \ S|} ≥ 2. The minimality of G implies that the empty set is not a
minimal cutset, hence G is connected. Furthermore, the minimality ensures that S and S′

are disjoint sets (otherwise one can remove S∩S′ fromG and have a smaller counterexam-
ple). Thus, min{|S|, |S′|} ≥ 2. The minimality also ensures that |S| = |S′| = 2. Indeed,
removing a third vertex z, if present, from S does not affect the minimal cutset status of
S. Since every minimal cutset in a chordal graph is a clique [25], removing a third vertex
z, if present, from S will also not affect the minimal cutset status of S′ since the entire S
(which is a clique) is present in one component of G− S′.

The minimality also ensures that if there are no edges between S and S′, then every
minimal S, S′-separator T is of size one. Indeed, if this is not the case, then |T | ≥ 2 since
G is connected. Let X be a component of G − S containing S′ and let Y be any other
component of G − S. The fact that T separates S from S′ implies that T contains all
vertices in N(S)∩ V (X), which is a non-empty set due to the minimality of S. Since T is
a minimal cutset in a chordal graph, it is a clique; in particular, it is fully contained in X .
However, this implies that the sets S′ and T are minimal cutsets in the graph G − V (Y )
such that min{|S′ \ T |, |T \ S′|} ≥ 2, contrary to the minimality of G.

Let X , Y be two distinct components of G− S and X ′, Y ′ two distinct components of
G − S′. By Lemma 2.2, there exist vertices x ∈ X and y ∈ Y such that each of x and y
dominates S and x′ ∈ X ′ and y′ ∈ Y ′ such that each of x′ and y′ dominates S′. Let D1

be the subgraph of G induced by S ∪ {x, y} and let D2 be the subgraph of G induced by
S′ ∪ {x′, y′}. The definitions of D1 and D2 and Lemma 2.2 imply that D1 and D2 are two
induced diamonds in G satisfying the hypotheses of the Diamond Lemma (Lemma 5.3).
Consequently, G has an induced subgraph isomorphic to F1, F2, or Hi for some i ≥ 1, a
contradiction. This completes the proof of the theorem.

Remark 5.5. The cutset hypergraph of a disconnected graph H is equal to (V (H), {∅})
and is clearly 1-Sperner (and therefore also threshold and 2-asummable). It follows that
conditions from items 2–4 in Theorem 5.4 are equivalent to the analogous conditions in
which the respective properties are imposed on cutset hypergraphs of all induced subgraphs
of G (and not only of connected ones).
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In the rest of this section, we examine some of the consequences of the forbidden
induced subgraph characterization of hereditarily CD graphs given by Theorem 5.4. The
kite (also known as the co-fork or the co-chair) is the graph depicted in Figure 4.

Figure 4: The kite.

The equivalence between items 1 and 5 in Theorem 5.4 implies that the class of hered-
itarily CD graphs is a proper generalization of the class of kite-free chordal graphs.

Corollary 5.6. Every kite-free chordal graph is hereditarily CD.

Corollary 5.6 further implies that the class of hereditarily CD graphs generalizes two
well known classes of chordal graphs, the class of block graphs and the class of trivially
perfect graphs. A graph is said to be a block graph if every block (maximal connected
subgraph without cut vertices) of it is complete. The block graphs are well known to
coincide with the diamond-free chordal graphs. A graphG is said to be trivially perfect [33]
if for every induced subgraph H of G, it holds α(H) = |K(H)|, where α(H) denotes the
independence number of H (that is, the maximum size of an independent set in H) and
K(H) denotes the set of all maximal cliques of H . Trivially perfect graphs coincide with
the so-called quasi-threshold graphs [67], and are exactly the {P4, C4}-free graphs [33].

Corollary 5.7. Every block graph is hereditarily CD. Every trivially perfect graph is hered-
itarily CD.

Another class of graphs contained in the class of hereditarily CD graphs is the class
of graphs defined similarly as the hereditarily CD graphs but with respect to total domi-
nating sets. These so-called hereditarily total domishold graphs (abbreviated hereditarily
TD graphs) were studied in [18], where characterizations analogous to those given by The-
orem 5.4 were obtained, including the following characterization in terms of forbidden
induced subgraphs.

Theorem 5.8 (Chiarelli and Milanič [18]). For every graph G, the following are equiva-
lent:

1. G is hereditarily total domishold.

2. No induced subgraph of G is isomorphic to a graph in Figure 5.

Theorems 5.4 and 5.8 imply the following.

Corollary 5.9. Every hereditarily TD graph is hereditarily CD.

Proof. It suffices to verify that each of the forbidden induced subgraphs for the class of
hereditarily connected-domishold graphs contains one of the graphs from Figure 5 as in-
duced subgraph. A cycle Ck with k ≥ 4 contains (or is equal to) one of C4, C5, C6, P6.
The graphs F1 and F2 are contained in both sets of forbidden induced subgraphs. Finally,
each graph of the form Hi where i ≥ 1 contains 2K3 as induced subgraph.
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C4 C5 C6 P6 F1 F2 2K3

F3 F4 F5 F6 F7 F8

Figure 5: The set of forbidden induced subgraphs for the class of hereditarily total
domishold graphs.

Since a graph is split if and only if it is {2K2, C4, C5}-free and each of the forbid-
den induced subgraphs for the class of hereditarily total domishold graphs other than F2

contains either 2K2, C4, or C5 as induced subgraph, Corollary 5.9 implies the following.

Corollary 5.10. Every F2-free split graph is hereditarily CD.

Figure 6 shows a Hasse diagram depicting the inclusion relations among the class of
hereditarily connected-domishold graphs and several other, well studied graph classes. All
definitions of graph classes depicted in Figure 6 and the relations between them can be
found in [23], with the exception of hereditarily CD and hereditarily TD graphs. The fact
that every co-domishold graph is hereditarily TD and that every hereditarily TD graph
is (1, 2)-polar chordal was proved in [18]. The remaining inclusion and non-inclusion
relations can be easily verified using the forbidden induced subgraph characterizations of
the depicted graph classes, see [10, 23, 34].

6 Algorithmic aspects via vertex separators
In this section, we build on the above results, together with some known results from the
literature on connected dominating sets and minimal vertex separators in graphs, to study
certain algorithmic aspects of the class of connected-domishold graphs and its hereditary
variant.

6.1 The recognition problems

We start with computational complexity aspects of the problems of recognizing whether a
given graph is CD, resp. hereditarily CD. For general graphs, the computational complexity
of recognizing connected-domishold graphs is not known. However, we will now show that
the hypergraph approach outlined in Section 3 leads to a sufficient condition for the problem
to be polynomially solvable, capturing a large number of graph classes. The condition is
expressed using the notion of minimal vertex separators. Recall that a u, v-separator (for
a pair of non-adjacent vertices u, v) is a set S ⊆ V (G) \ {u, v} such that u and v are in
different components of G − S and that a u, v-separator is minimal if it does not contain
any other u, v-separator. Recall also that a minimal vertex separator in G is a minimal
u, v-separator for some non-adjacent vertex pair u, v.
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perfect

bipartite chordal
(1,2)-polar

domishold

(1,2)-polar chordal

split

block

forests
trivially perfect

co-domishold

cographs

weakly chordal

hereditarily CD

hereditarily TD

threshold

Figure 6: A Hasse diagram depicting the inclusion relations within several families of
perfect graphs, focused around the class of hereditarily connected-domishold graphs.
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A sufficient condition for the polynomial-time solvability of the recognition problem
for CD graphs in a class of graphs G is that there exists a polynomial p such that every
connected graph G ∈ G has at most p(|V (G)|) minimal vertex separators. This is the case
for chordal graphs, which have at most |V (G)| minimal vertex separators [59], as well
as for many other classes of graphs, including permutation graphs, circle graphs, circular-
arc graphs, chordal bipartite graphs, trapezoid graphs, cocomparability graphs of bounded
dimension, distance-hereditary graphs, and weakly chordal graphs (see, e.g., [9, 43, 51]).
For a polynomial p, let Gp be the class of graphs with at most p(|V (G)|) minimal vertex
separators. Since every minimal cutset is a minimal vertex separator, every connected graph
G ∈ Gp has at most p(|V (G)|) minimal cutsets.

It is known that the set of all minimal vertex separators of a given connected n-vertex
graph can be enumerated in output-polynomial time. More precisely, Berry et al. [3] have
developed an algorithm solving this problem in time O(n3|Σ|) where Σ is the set of all
minimal vertex separators of G, improving on earlier (independently achieved) running
times ofO(n5|Σ|) due to Shen and Liang [63] and Kloks and Kratsch [44]. Based on these
results, we derive the following.

Theorem 6.1. For every polynomial p there is a polynomial-time algorithm to determine
whether a given connected graph G ∈ Gp is connected-domishold. In case of a yes in-
stance, the algorithm also computes an integral CD structure of G.

Proof. Let G = (V,E) ∈ Gp be a connected graph that is the input to the algorithm.
The algorithm proceeds as follows. If G is complete, then G is connected-domishold

and an integral CD structure of G is returned, say (w, t) with w(x) = 1 for all x ∈ V (G)
and t = 1. Assume now that G is not complete. First, using the algorithm of Berry et
al. [3], we compute in time O(|V (G)|3p(|V (G)|)) the set Σ of all minimal vertex sepa-
rators of G. Next, the cutset hypergraph, C(G), is computed by comparing each pair of
sets in Σ and discarding the non-minimal ones. Since C(G) is Sperner, there is a bijective
correspondence between the hyperedges of C(G) and the prime implicants of the cutset
function f cut

G ; this yields the complete DNF of f cut
G . Finally, we run the algorithm given by

Theorem 2.4 on the complete DNF of f cut
G . If f cut

G is not threshold, then we conclude that
G is not connected-domishold. Otherwise, the algorithm returned an integral separating
structure, say (w, t), of f cut

G . In this case we return (w,w(V )− t) as a CD structure of G.
It is clear that the algorithm runs in polynomial time. Its correctness follows from

Proposition 3.4.

Let G̃ be the largest hereditary graph class such that a connected graph G ∈ G̃ is
connected-domishold if and only if it is total domishold. By Theorem 4.3, class G̃ is a
generalization of the class of split graphs. Since there is a polynomial-time algorithm
for recognizing total domishold graphs [16, 18], there is a polynomial-time algorithm to
determine whether a given connected graphG ∈ G̃ is connected-domishold. This motivates
the following question (which we leave open).

Question. What is the largest hereditary graph class G̃ such that a connected graphG ∈ G̃
is connected-domishold if and only if it is total domishold?

A polynomial-time recognition algorithm for the class of hereditarily CD graphs can be
derived from the characterization of hereditarily CD graphs in terms of forbidden induced
subgraphs given by Theorem 5.4.
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Proposition 6.2. There exists a polynomial-time algorithm to determine whether a given
graph G is hereditarily CD. In the case of a yes instance, an integral CD structure of G
can be computed in polynomial time.

Proof. One can verify in linear time that G is chordal [34] and verifying that G is also
{F1, F2, H1, H2}-free can be done in time O(|V (G)|8). Therefore, we only have to show
that we can check in polynomial time that G does not contain an induced subgraph of the
form Hi for each i > 2. Observe that for all i > 2 the graph Hi contains an induced
subgraph isomorphic to 2D, the union of two diamonds (see Figure 3 and Figure 4). In
O(|V (G)8|) time, we can enumerate all induced subgraphs F of G isomorphic to 2D. For
each such subgraph F we have to verify whether it can be extended to an induced subgraph
of the form Hi, for some i > 2. We do this as follows. Let D1 and D2 be the connected
components (diamonds) of F . Furthermore, let u1, u2 be the two vertices of degree 2 inD1

and similarly let v1, v2 be the two vertices of degree 2 in D2. Now we can verify that F is
not contained in any induced subgraph ofG isomorphic toHi (for some i > 2) by checking
for each pair ui, vj , with i, j ∈ {1, 2}, that ui and vj belong to different components of
G − (NG−ui [V (D1) \ {ui}] ∪ NG−vj [V (D2) \ {vj}]). This can be done in polynomial
time and consequently the recognition of hereditarily CD graphs is a polynomially solvable
problem.

The second part of the theorem follows from Theorem 6.1, since every hereditarily CD
graph is chordal and chordal graphs are a subclass of Gp for the polynomial
p(n) = n [59].

It might seem conceivable that a similar approach as the one used in Theorem 6.1 could
be used to develop an efficient algorithm for recognizing connected-domishold graphs in
classes of graphs with only polynomially many minimal connected dominating sets. How-
ever, it is not known whether there exists an output-polynomial-time algorithm for the
problem of enumerating minimal connected dominating sets. In fact, as shown by Kanté et
al. [38], even when restricted to split graphs, this problem is equivalent to the well-known
TRANS-ENUM problem in hypergraphs, the problem of enumerating the inclusion-minimal
transversals of a given hypergraph. The TRANS-ENUM problem has been intensively stud-
ied but it is still open whether there exists an output-polynomial-time algorithm for the
problem (see, e.g., the survey [28]).

6.2 The weighted connected dominating set problem

The WEIGHTED CONNECTED DOMINATING SET (WCDS) problem takes as input a con-
nected graph G together with a cost function c : V (G) → R+, and the task is to compute
a connected dominating set of minimum total cost, where the cost of a set S ⊆ V (G) is
defined, as usual, as c(S) =

∑
v∈S c(v). The WCDS problem has been studied exten-

sively due to its many applications in networking (see, e.g., [6, 26, 66]). The problem is
NP-hard not only for general graphs [36] but also for split graphs [46], chordal bipartite
graphs [52], circle graphs [40], and cocomparability graphs [14]. Polynomial-time algo-
rithms for the problem were developed for interval graphs [15] and more generally for
trapezoid graphs [64] and circular-arc graphs [15, 37], as well as for distance-hereditary
graphs [68].

In this section, we will identify further graph classes where the WCDS problem is
polynomially solvable, including the class of F2-free split graphs (see Figure 1). This result
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is interesting in view of the fact that for split graphs, the WCDS problem is not only NP-
hard but also hard to approximate, even in the unweighted case. This can be seen as follows:
Let H = (V,E) be a Sperner hypergraph with ∅, V /∈ E and let G be its split-incidence
graph. Then G is a connected split graph without universal vertices, hence C(G) = N (G)
by Lemma 4.2. It can be seen that the hyperedge set of N (G) is exactly E, and therefore
Proposition 2.1 implies that the problem of finding a minimum connected dominating set
in G is equivalent to the HITTING SET problem in hypergraphs, the problem of finding a
minimum transversal of a given hypergraph. This latter problem is known to be equivalent
to the well-known SET COVER problem and hence inapproximable in polynomial time to
within a factor of (1 − ε) log |V |, for any ε > 0, unless P = NP [24]. It follows that the
WCDS problem is hard to approximate to within a factor of (1− ε) log |V (G)| in the class
of split graphs.

We will show that the WCDS problem is polynomially solvable in the class of
hereditarily CD graphs; the result for F2-free split graphs will then follow. Our approach
is based on connections with vertex separators and Boolean functions. First, we recall the
following known results about: (i) the relation between the numbers of prime implicants
of a threshold Boolean function and its dual, and (ii) the complexity of dualizing thresh-
old Boolean functions. These results were proved in the more general context of regular
Boolean functions (as well as for other generalizations, see, e.g., [7]).

Theorem 6.3. Let f be an n-variable threshold Boolean function having exactly q prime
implicants. Then:

1. (Bertolazzi and Sassano [5], Crama [21], see also [22, Theorem 8.29]) The dual
function fd has at mostN prime implicants, whereN is the total number of variables
in the complete DNF of f .

2. (Crama and Hammer [22, Theorem 8.28] and Peled and Simeone [56]) There is an
algorithm running in time O(n2q) that, given the complete DNF of f , computes the
complete DNF of the dual function fd.

The algorithm by Crama and Hammer [22] is already presented as having time com-
plexity O(n2q), while the one by Peled and Simeone [56] is claimed to run in time O(nq).
However, since fd can have O(nq) prime implicants, the total size of the output is of the
order O(n2q). The time complexity O(nq) of the algorithm by Peled and Simeone relies
on the assumption that the algorithm outputs the prime implicants of the dual function one
by one, each time overwriting the previous prime implicant (with a constant number of
operations per implicant on average).

The relation between the numbers of prime implicants of a threshold Boolean function
and its dual given by Theorem 6.3 implies that classes of connected-domishold graphs with
only polynomially many minimal cutsets are exactly the same as the classes of connected-
domishold graphs with only polynomially many minimal connected dominating sets. More
precisely:

Lemma 6.4. Let G = (V,E) be an n-vertex connected-domishold graph that is not com-
plete. Let νc (resp. νs) denote the number of minimal connected dominating sets (resp. of
minimal cutsets) of G. Then νs ≤ (n− 2)νc and νc ≤ (n− 2)νs.

Proof. By Proposition 3.4, the cutset function f cut
G is threshold. Function f cut

G is an n-
variable function with exactly νs prime implicants in its complete DNF. Recall from the
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proof of Proposition 3.4 that the dual function (f cut
G )d takes value 1 precisely on the vectors

x ∈ {0, 1}V whose support is a connected dominating set of G. Therefore, the prime im-
plicants of (f cut

G )d are in bijective correspondence with the minimal connected dominating
sets of G and the number of prime implicants of (f cut

G )d is exactly νc. Since every minimal
cutset ofG has at most n−2 vertices, Theorem 6.3 implies that νc ≤ (n−2)νs, as claimed.

Conversely, since f cut
G = ((f cut

G )d)d, the inequality νs ≤ (n − 2)νc can be proved by a
similar approach, provided we show that every minimal connected dominating set of G has
at most n−2 vertices. But this is true since if D is a connected dominating set of G with at
least n− 1 vertices, with V (G) \ {u} ⊆ D for some u ∈ V (G), then a smaller connected
dominating set D′ of G could be obtained by fixing an arbitrary spanning tree T of G[D]
and deleting from D an arbitrary leaf v of T such that NG(u) 6= {v}. (Note that since G is
connected but not complete, it has at least three vertices, hence T has at least two leaves.)
This completes the proof.

We now have everything ready to derive the main result of this section. Recall that for a
polynomial p, we denote by Gp the class of graphs with at most p(|V (G)|) minimal vertex
separators.

Theorem 6.5. For every nonzero polynomial p, the set of minimal connected dominating
sets of an n-vertex connected-domishold graph from Gp has size at most O(n · p(n)) and
can be computed in time O(n · p(n) · (n2 + p(n))). In particular, the WCDS problem is
solvable in polynomial time in the class of connected-domishold graphs from Gp.

Proof. Let p and G be as in the statement of the theorem and let CD(G) be the set of
minimal connected dominating sets of G. If G is complete, then

CD(G) = {{v} : v ∈ V (G)}

and thus |CD(G)| = n = O(n · p(n)) (since the polynomial is nonzero). Otherwise, we
can apply Lemma 6.4 to derive |CD(G)| ≤ (n− 2) · p(n).

A polynomial-time algorithm to solve the WCDS problem for a given connected-
domishold graph G ∈ Gp with respect to a cost function c : V (G) → R+ can be obtained
as follows. First, we may assume that G is not complete, since otherwise we can return
a set {v} where v is a vertex minimizing c(v). We use a similar approach as in the proof
of Theorem 6.1. Using the algorithm of Berry et al. [3], we compute in time O(n3p(n))
the set Σ of all minimal vertex separators of G. We can assume that each minimal vertex
separator has its elements listed according to some fixed order of V (G) (otherwise, we can
sort them in time O(n · p(n)) using, e.g., bucket sort). The cutset hypergraph, C(G), is
then computed by comparing each pair of sets in Σ and discarding the non-minimal ones;
this can be done in time O(n · (p(n))2). The cutset hypergraph directly corresponds to the
complete DNF of the cutset function f cut

G .
The next step is to compute the complete DNF of the dual function (f cut

G )d. By The-
orem 6.3, this can be done in time O(n2 · p(n)). Since each term of the DNF is a prime
implicant of (f cut

G )d and the prime implicants of (f cut
G )d are in bijective correspondence

with the minimal connected dominating sets of G, we can read off from the DNF all the
minimal connected dominating sets of G. The claimed time complexity follows.

Once the list of all minimal connected dominating sets is available, a polynomial-time
algorithm for the WCDS problem on (G, c) follows immediately.
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In the case of chordal graphs, we can improve the running time by using one of the
known linear-time algorithms for listing the minimal vertex separators of a given chordal
graph due to Kumar and Veni Madhavan [45], Chandran and Grandoni [13], and Berry and
Pogorelcnik [4].

Theorem 6.6. Every n-vertex connected-domishold chordal graph has at most O(n2)
minimal connected dominating sets, which can be enumerated in time O(n3). In par-
ticular, the WCDS problem is solvable in time O(n3) in the class of connected-domishold
chordal graphs.

Proof. Let G be an n-vertex connected-domishold chordal graph. The theorem clearly
holds for complete graphs, so we may assume that G is not complete. Since G is chordal,
it has at most n minimal vertex separators [59]; consequently, G has at most n minimal
cutsets. Since G is connected-domishold, it has at most n(n − 2) minimal connected
dominating sets, by Lemma 6.4.

The minimal connected dominating sets of G can be enumerated as follows. First,
we compute all the O(n) minimal vertex separators of G in time O(n + m) (where
m = |E(G)|) using one of the known algorithms for this problem on chordal graphs [4,13,
45]. Assuming again that each minimal vertex separator has its elements listed according
to some fixed order of V (G), we then eliminate those that are not minimal cutsets in time
O(n3), by directly comparing each of the O(n2) pairs for inclusion.

The list ofO(n) minimal cutsets ofG yields its cutset function, fms
G . The list of minimal

connected dominating sets of G can be obtained in time O(n3) by dualizing fms
G using one

of the algorithms given by Theorem 6.3. The WCDS problem can now be solved in time
O(n3) by evaluating the cost of each of theO(n2) minimal connected dominating sets and
outputting one of minimum cost.

From Theorem 6.6 we derive two new polynomially solvable cases of the WCDS prob-
lem. Recall that the graphs F1, F2, and a general member of the family {Hi} are depicted
in Figure 3.

Corollary 6.7. The WCDS problem is solvable in time O(n3) in the class of {F1, F2, H1,
H2, . . .}-free chordal graphs and in particular in the class of F2-free split graphs.

Proof. By Theorem 5.4, every {F1, F2, H1, H2, . . .}-free chordal graphs is (hereditarily)
CD so Theorem 6.6 applies. The statement for F2-free split graphs follows from Corol-
lary 5.10.

We conclude this section with two remarks, one related to Theorem 6.6 and one related
to Theorems 6.1 and 6.5.

Remark 6.8. The boundO(n2) given by Theorem 6.6 on the number of minimal connected
dominating sets in an n-vertex connected-domishold chordal graph is sharp. There exist
n-vertex connected-domishold chordal graphs with Θ(n2) minimal connected dominating
sets. For instance, let Sn be the split graph with V (Sn) = K ∪ I where K = {u1, . . . , un}
is a clique, I = {v1, . . . , vn} is an independent set, K ∩ I = ∅, and for each i ∈ [n],
vertex ui is adjacent to all vertices of I except vi. Since every vertex in I has a unique
non-neighbor in K, we infer that Sn is F2-free. Therefore, by Corollary 5.10 graph Sn is a
(hereditarily) connected-domishold graph. Note that every set of the form {ui, uj} where
1 ≤ i < j ≤ n is a minimal connected dominating set of Sn. It follows that Sn has at least(
n
2

)
= Θ(|V (Sn)|2) minimal connected dominating sets.
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Remark 6.9. Theorems 6.1 and 6.5 motivate the question of whether there is a polynomial
p such that every connected CD graph G has at most p(|V (G)|) minimal vertex separators.
As shown by the following family of graphs, this is not the case. For n ≥ 2, let Gn be
the graph obtained from the disjoint union of n copies of the P4, say (xi, ai, bi, yi) for
i = 1, . . . , n, by identifying all vertices xi into a single vertex x, all vertices yi into a
single vertex y, and for each vertex z other than x or y, adding a new vertex z′ and making
it adjacent only to z. It is not difficult to see that Gn has exactly two minimal CD sets,
namely {a1, . . . , an} ∪ {b1, . . . , bn} ∪ {v} for v ∈ {x, y}. A CD structure of Gn is given
by (w, t) where t = 4n+ 1, w(x) = w(y) = 1, w(ai) = w(bi) = 2 for all i ∈ {1, . . . , n}
and w(z) = 0 for all other vertices z. Therefore, Gn is CD. However, Gn has 4n + 2
vertices and 2n minimal x, y-separators, namely all sets of the form {c1, . . . , cn} where
ci ∈ {ai, bi} for all i.

7 Proof of Lemma 5.3 (Diamond Lemma)
In the proof of the Diamond Lemma, we use the following notation. We write u ∼ v
(resp. u � v) to denote the fact that two vertices u and v are adjacent (resp. non-adjacent).
Given two vertex sets A and B in a graph G, we denote by e(A,B) the number of edges
with one endpoint in A and one endpoint in B. A pattern is a triple (V,E, F ) where
G = (V,E) is a graph and F is a subset of non-adjacent vertex pairs of G. We say that a
graph G′ realizes a pattern (V,E, F ) if V (G′) = V and E ⊆ E(G′) ⊆ E ∪ F .

t1

t′1

c′1 c1

c2

c′2

t′2

t1

t′1

c′1 c1

t2

t′2

c2
c′2

(a) (b)

Figure 7: Two patterns (V,E, F ) used in the proofs. Graphs (V,E) are depicted with solid
lines. Possible additional edges (elements of F ) are depicted with dotted lines.

We start with a lemma.

Lemma 7.1. Let G be a connected chordal graph and let H be an induced subgraph of G
that realizes the pattern in Figure 7(a). Moreover, suppose that:

(1) vertices t1 and t′1 are in different components of G− {c1, c′1}, and

(2) the component ofG−{c1, c′1} containing {c2, c′2, t′2} has a vertex dominating {c1, c′1}.

Then G contains F1 or F2 as an induced subgraph.

Proof. By contradiction. Suppose that G and H satisfy the assumptions of the lemma, but
G is {F1, F2}-free. We first show that none of the dotted edges can be present in H . We
infer that c′1 � c2 and c′1 � c′2, for otherwise an induced F1 or F2 arises on the vertex set
V (H) \ {t1}, depending on whether one or both edges are present. Next, t1 � t′2, since
otherwise a 4-cycle arises on the vertex set {t1, c1, c′2, t′2} (if t1 � c′2) or an induced F1
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arises on the vertex set V (H)\{c2} (otherwise). Finally, we infer that t1 � c2 and t1 � c′2,
for otherwise an induced F1 or F2 arises on the vertex set V (H)\{t′1}, depending whether
one or both edges are present.

Let K be the component of G − {c1, c′1} such that V ′2 = {c2, c′2, t′2} ⊆ V (K), and
let w ∈ V (K) be a vertex dominating {c1, c′1} that is closest to V ′2 in K. The preceding
paragraph implies that w /∈ V ′2 . We will now show that w � v for any v ∈ V ′2 . Suppose
for a contradiction that w ∼ v for some v ∈ V ′2 . Note that w /∈ {t1, t′1} since there are no
edges between the sets {t1, t′1} and V ′2 . Furthermore, property (1) implies that there exists
some t ∈ {t1, t′1} such that w � t. Suppose that w ∼ t′2. Then w ∼ c2, since otherwise a
4-cycle arises on the vertex set {w, c1, c2, t′2}. But now the vertex set {t′2, c2, w, c1, c′1, t}
induces a copy of F1 in G. Therefore w � t′2, and an induced F1 or F2 arises on the vertex
set V ′2 ∪{w, c1, c′1}, depending on whether w is adjacent to one or both vertices in {c2, c′2}.
This contradiction shows that w has no neighbor in V ′2 .

Let P = (w = w1, . . . , wk) with wk ∈ V ′2 be a shortest w, V ′2 -path in K. Note
that k ≥ 3 and the choice of P implies that for all i ∈ {1, . . . , k − 2} vertex wi is not
adjacent to any vertex in V ′2 . In order to avoid an induced cycle of length at least 4 within
V (P ) ∪ V ′2 ∪ {c1}, we infer that vertex c1 must be adjacent to all the internal vertices of
P (that is, to w2, . . . , wk−1). Next we infer that wk−1 ∼ t′2, since otherwise the vertex
set V ′2 ∪ {c1, wk−1, wk−2} induces a copy of F1 or F2 (depending on the number of edges
between wk−1 and {c2, c′2}). Moreover, to avoid an induced 4-cycle on the vertex set
{t′2, wk−1, c1, c2}, we infer thatwk−1 ∼ c2. But now an induced F1 arises on the vertex set
{t′2, c2, c1, wk−1, wk−2, wk−3} (where if k = 3 we definew0 = c′1). This last contradiction
completes the proof of Lemma 7.1.

Let us now recall Lemma 5.3.

Lemma 5.3 (Diamond Lemma). Let G be a connected chordal graph. Suppose that G
contains two induced diamonds D1 = (V1, E1) and D2 = (V2, E2) such that:

(i) C1 ∩ C2 = ∅.

(ii) If no vertex in C1 is adjacent to a vertex in C2, then there exists a C1, C2-separator
in G of size one.

(iii) For each j ∈ {1, 2} the tips (i.e., tj , t′j) of Dj belong to different components of
G− Cj .

(iv) For j ∈ {1, 2} every component of G− Cj has a vertex that dominates Cj .

Then G has an induced subgraph isomorphic to F1, F2, or Hi for some i ≥ 1, where the
graphs F1, F2, and a general member of the family {Hi} are depicted in Figure 3.

Proof. We will prove the Diamond Lemma by contradiction through a series of claims.
Let G be a connected chordal graph and let D1 and D2 be two induced diamonds with
properties (i) – (iv) in G. Suppose for a contradiction that G is {F1, F2, H1, H2, . . . }-free.

Claim 1. For each j ∈ {1, 2}, there exists some t ∈ Tj such that N [t] ∩ C3−j = ∅ (that
is, each diamond has a tip that is not adjacent to any center of the other diamond).

Proof. Suppose that each tip of Dj is adjacent to at least one vertex in C3−j . Then Tj
belongs to one component of G− Cj , contradicting property (iii).
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Claim 2. If there exists some t ∈ T1 ∩ T2, then T1 ∩ T2 = {t} and Tj ∩ C3−j = ∅ for
j ∈ {1, 2}.

Proof. Follows immediately from Claim 1 and property (iii).

Claim 3. |V1 ∩ V2| ≤ 1.

Proof. First note that we have |T1 ∩ V2| ≤ 1, since otherwise T1 = T2, contradicting
property (iii). Observe also that by property (i) we have C1 ∩ V2 ⊆ C1 ∩ T2, implying that
|C1 ∩ V2| ≤ 1. Consequently |V1 ∩ V2| ≤ 2.

Now suppose for a contradiction that |V1 ∩ V2| = 2. By property (i) and Claim 2 we
may assume without loss of generality that c1 = t2 and t′1 = c′2. To avoid an induced
4-cycle on the set T1 ∪ T2 we infer that t1 � t′2. Furthermore, property (iii) implies that
c′1 � t′2 and c2 � t1. But now the set V1 ∪ V2 induces a copy of F1 (if c′1 � c2) or a copy
of F2 (otherwise).

Claim 4. If V1 ∩ V2 = {v} then v ∈ T1 ∩ T2.

Proof. Suppose for a contradiction that V1 ∩ V2 = {v}, and v /∈ T1 ∩ T2. Property (i)
implies that v ∈ Tj ∩ C3−j for some j ∈ {1, 2}, say v = c1 = t2. Claim 1 implies
(without loss of generality) that t′1 � c2 and t′1 � c′2. Property (iii) implies that c′1 � t′2.
Note that t′1 � t′2, for otherwise a 4-cycle arises on the vertex set {t′1, c1, c2, t′2}. Now the
subgraph ofG induced by V1∪V2 realizes the pattern depicted in Figure 7(a) and we apply
Lemma 7.1 to derive a contradiction.

Claim 5. V1 ∩ V2 = ∅.

Proof. Suppose for a contradiction that V1 ∩ V2 6= ∅. Claim 3 implies that V1 ∩ V2 = {v}
and by Claim 4, v ∈ T1 ∩ T2. Without loss of generality we may assume that t1 = t2.
Claim 1 implies that there is no edge between t′1 and C2 and between t′2 and C1. Further-
more, we must have t′1 � t′2 since otherwise G contains an induced 4-cycle on the vertex
set {t′1, c1, c2, t′2} (if c1 ∼ c2) or an induced 5-cycle on the vertex set {t′1, c1, t1, c2, t′2}
(otherwise).

It remains to analyze the edges betweenC1 andC2. Clearly, e(C1, C2) ∈ {0, 1, . . . , 4}.
Notice that

e(C1, C2) =


0 implies an induced H1 on the set V1 ∪ V2;

1 implies an induced F1 on the vertex set (V1 ∪ V2) \ {t′1};
3 implies an induced F1 on the vertex set (V1 ∪ V2) \ {t1};
4 implies an induced F2 on the vertex set (V1 ∪ V2) \ {t1}.

Consequently e(C1, C2) = 2, and without loss of generality, to avoid an induced 4-cycle,
we may assume that c1 ∼ c2 and c1 ∼ c′2. But now an induced F2 arises on the vertex set
(V1 ∪ V2) \ {t′1}.

In the rest of the proof of the Diamond Lemma we consider the edges between V1 and
V2. By Claim 1 and property (iii) we may assume without loss of generality the following.

Assumption 1. e({t′1}, V2) = e({t′2}, V1) = 0.
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Therefore, it remains to consider only the (non-)edges between {t1} and C2, between
{t2} and C1, between C1 and C2, and between {t1} and {t2}.

Claim 6. e(C1, C2) ≤ 1.

Proof. Clearly, e(C1, C2) ≤ 4. Note that if e(C1, C2) ∈ {3, 4}, then the vertex set
(V1 ∪ V2) \ {t1, t2} induces either a copy of F1 or a copy of F2. Furthermore, if
e(C1, C2) = 2, then, to avoid an induced 4-cycle, we may assume without loss of generality
that c1 ∼ c2 and c1 ∼ c′2. Now the subgraph of G induced by (V1 ∪ V2) \ {t2} realizes the
pattern depicted in Figure 7(a) and we apply Lemma 7.1 to derive a contradiction.

By Claim 6 we may assume without loss of generality the following.

Assumption 2. c′1 � c2, c′1 � c′2, and c1 � c′2.

Claim 7. e({tj}, C3−j) ≤ 1 for j ∈ {1, 2}.

Proof. Suppose for a contradiction that e(tj , C3−j) = 2. To avoid an induced H1 on the
vertex set (V1 ∪ V2) \ {t3−j}, we must have an edge between C1 and C2. By Claim 6
and Assumption 2, we have c1 ∼ c2, but now an induced F1 arises on the vertex set
Vj ∪ C3−j .

Claim 8. We may assume without loss of generality that tj � c′3−j for j ∈ {1, 2}.

Proof. Let j ∈ {1, 2}. By Claim 7, we have that either tj � c3−j or tj � c′3−j . If both
edges are missing, then there is nothing to show. Suppose now that e(tj , C3−j) = 1. To
see that we may assume that tj ∼ c3−j , note that this can be achieved by swapping c3−j
and c′3−j (if necessary) when c1 � c2, while if c1 ∼ c2, then tj ∼ c3−j , since otherwise
the vertex set {tj , c1, c2, c′3−j} induces a 4-cycle in G.

Claim 8 yields the following.

Assumption 3. t1 � c′2 and t2 � c′1.

Claim 9. t1 � t2.

Proof. Suppose for a contradiction that t1 ∼ t2. First we will show that c1 ∼ t2 or c2 ∼ t1.
Suppose for a contradiction that c1 � t2, and c2 � t1. Then an induced H2 arises on the
set V1 ∪ V2 (if c1 � c2) or an induced 4-cycle on the vertex set {c1, t1, t2, c2} (otherwise).

Without loss of generality we may assume that c1 ∼ t2. By Assumption 3 we have
t2 � c′1, and to avoid an induced H1 on the vertex set (V1 ∪ V2) \ {t′1}, we must have an
edge between t1 and C2 or c1 ∼ c2. If t1 ∼ c2, then the vertex set C1 ∪ C2 ∪ {t1, t2}
induces a copy of F1 or F2 (depending on whether c1 ∼ c2 or not). Consequently t1 � c2.
Therefore the only edge we can have is c1 ∼ c2, but now an induced F1 arises on the vertex
set C1 ∪ C2 ∪ {t1, t2}.

Claim 10. t1 � c2 and t2 � c1.
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Proof. By symmetry, it suffices to show that c1 � t2. Suppose for a contradiction that
c1 ∼ t2. Claim 9 implies that t1 � t2. Recall that by Assumption 1 we have t2 � t′1.
Furthermore e({t1}, C2) = 0, since otherwise t1 ∼ c2 (by Assumption 3) and either the
vertex set {t1, c1, t2, c2} induces a 4-cycle (if c1 � c2) or the vertex set C1 ∪C2 ∪ {t1, t2}
induces an F1 (otherwise).

Let K be the component of G − C1 such that V2 ⊆ V (K). By property (iv) there
exists a vertex in V (K) that dominates C1. Let w ∈ V (K) be a vertex that dominates C1

and is closest to V2 in K. Clearly, w /∈ V2. Property (iii) implies that there exists some
t ∈ T1 such that w 6= t and w � t. Note that c1 � c2, since otherwise the subgraph of G
induced by C1 ∪ C2 ∪ {w, t, t2} realizes the pattern depicted in Figure 7(a) and we apply
Lemma 7.1 to derive a contradiction. Furthermore,w � t′2, since otherwise t2 and t′2 would
belong to the same component of G− C2, contradicting property (iii). Next, we have that
w � c2, since otherwise either the vertex set {w, c1, t2, c2} induces a 4-cycle (if w � t2)
or the vertex set C1 ∪ {t, w, t2, c2} induces an F1 (otherwise). By symmetry, w � c′2.
Consequently, w � t2, for otherwise a copy of H1 arises on the vertex set C1 ∪ V2 ∪ {w}.

Let P = (w = w1, . . . , wk) with wk ∈ V2 be a shortest w, V2-path in K. Note that
k ≥ 3 and that the choice of P implies that for all i ∈ {1, . . . , k − 2} vertex wi is not
adjacent to any vertex in V2. Furthermore, wk−1 � t′2, since otherwise t2 and t′2 would
belong to the same component of G−C2, contradicting property (iii). In order to avoid an
induced cycle of length at least 4 within V (P ) ∪ V2 ∪ {c1}, we infer that vertex c1 must
be adjacent to all the internal vertices of P (that is, w2, . . . , wk−1). If wk−1 � t2, then
wk ∈ C2, which yields an induced 4-cycle on the vertex set {c1, t2, wk, wk−1}. Therefore,
wk−1 ∼ t2. But now either an induced H1 arises on the vertex set V2 ∪ {wk−1, wk−2, c1}
(if e({wk−1}, C2) = 0) or an induced F1 or F2 arises on the vertex set V2 ∪ {wk−1, c1}
(otherwise).

Assumptions 1 – 3 and Claims 7, 9, and 10 imply the following.

Claim 11. The only possible edge between V1 and V2 is the edge c1c2.

Let H be the subgraph of G induced by V1 ∪ V2. By Claim 11, H realizes the pattern
in Figure 7(b). Let K−12 be the component of G − C1 containing V2 and let U−1 be the
set of vertices in K−12 that dominate C1. By property (iv), set U−1 is non-empty. Let u−1

be a vertex in U−1 that is closest in K−12 to C2. Graph K−21 and vertex u−2 are defined
analogously.

By property (iii) we may assume without loss of generality the following.

Assumption 4. t′1 /∈ V (K−12 ) and t′2 /∈ V (K−21 ).

Claim 12. {u−1, u−2} ∩ {t′1, t′2} = ∅ and e({u−1, u−2}, {t′1, t′2}) = 0.

Proof. Since u−1 ∈ V (K−12 ) and t′1 /∈ V (K−12 ), the definition of K−12 implies that
u−1 6= t′1 and u−1 � t′1. By symmetry, we also have u−2 6= t′2 and u−2 � t′2.

We next show that u−1 6= t′2 and u−1 � t′2 (and then the remaining inequality u−2 6= t′1
and non-adjacency u−2 � t′1 will follow by symmetry). First note that u−1 6= t′2 since u−1

dominates C1 and e({t′2}, C1) = 0 by Assumption 1. Suppose for a contradiction that
u−1 ∼ t′2. This implies that u−1 � t2, since otherwise t2 and t′2 would belong to the
same component of G − C2, contradicting property (iii). But now, either an induced H2

arises on the vertex set V2∪C1∪{u−1, t′1} (if e({u−1}, C2) = 0), or an induced H1 arises
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either on the vertex set C1 ∪ C2 ∪ {u−1, t′1, t′2} (if e({u−1}, C2) = 1) or on the vertex set
C1 ∪ C2 ∪ {u−1, t′1, t2} (otherwise).

Claim 13. Vertices u−1 and u−2 are distinct and non-adjacent, and at least one of the sets
N(u−1) ∩ V2, N(u−2) ∩ V1 is empty.

Proof. First we prove that u−1 � c2 or u−1 � c′2. Suppose for a contradiction that
e({u−1}, C2) = 2. Then either an induced F1 arises on the vertex set C1 ∪C2 ∪ {u−1, t′2}
(if c1 ∼ c2) or an induced H1 arises on the vertex set C1 ∪ C2 ∪ {u−1, t′1, t′2} (otherwise).
Therefore, u−1 � c2 or u−1 � c′2, as claimed.

Since u−2 dominates C2 but u−1 does not, we infer that u−1 6= u−2.
Next we prove that u−1 � u−2. Suppose for a contradiction that u−1 ∼ u−2. We claim

that u−1 ∼ c2 or u−2 ∼ c1. Suppose to the contrary that u−1 � c2 and u−2 � c1. Then
c1 � c2, since otherwise an induced 4-cycle arises on the vertex set {c1, c2, u−2, u−1}.
Furthermore, u−1 ∼ c′2 or u−2 ∼ c′1, since otherwise an induced H2 arises on the vertex
set C1 ∪ C2 ∪ {t′1, u−1, u−2, t′2}. If only one of the edges u−1c′2 and u−2c′1 is present,
say u−1c′2, then an induced H1 arises on the vertex set C1 ∪ C2 ∪ {t′1, u−1, u−2}. If
both edges u−1c′2 and u−2c′1 are present, then an induced F1 arises on the vertex set
C1 ∪ C2 ∪ {u−1, u−2}. Both cases lead to a contradiction, thus u−1 ∼ c2 or u−2 ∼ c1,
as claimed. We may assume without loss of generality that u−1 ∼ c2. Now we must
have c1 � c2 and c1 � u−2, since otherwise an induced F1 or F2 arises on the vertex set
C1 ∪ C2 ∪ {u−1, u−2}, depending on whether one or both edges are present. But now an
induced H1 arises on the vertex set C1 ∪ C2 ∪ {t′1, u−1, u−2}, a contradiction.

To complete the proof, we consider the two cases depending on whether c1 is adjacent
to c2 or not. Suppose first that c1 ∼ c2. Then u−1 � c′2, for otherwise u−1 � c2 and
G contains an induced 4-cycle on the vertex set {u−1, c′2, c2, c1}. By symmetry, we also
have u−2 � c′1. If u−1 ∼ c2 and u−2 ∼ c1, then an induced F1 arises on the vertex set
C1 ∪ C2 ∪ {u−1, u−2}. It follows that H contains at most one of the edges u−1c2 and
u−2c1. By symmetry, we may assume without loss of generality that u−1 � c2. We infer
that u−1 � t2, since otherwiseG contains an inducedC4 on the vertex set {u−1, c1, c2, t2}.
It follows that the set N(u−1) ∩ V2 is empty.

Finally, suppose that c1 � c2. Then either e({u−1}, C2) = 0 or e({u−2}, C1) = 0,
for otherwise G contains an induced 4-cycle on the vertex set {u−1, x, u−2, y} where
x ∈ N(u−1) ∩ C2 and y ∈ N(u−2) ∩ C1. By symmetry, we may assume without loss of
generality that e({u−1}, C2) = 0. We infer that u−1 � t2, since otherwise G contains an
induced H2 on the vertex set C1 ∪ V2 ∪ {u−1, t′1}. It follows that the set N(u−1) ∩ V2 is
empty.

By Claim 13 we may assume without loss of generality the following.

Assumption 5. e({u−1}, V2) = 0.

Claim 14. c1 � c2.

Proof. Suppose for a contradiction that c1 ∼ c2 and consider K−12 , u−1, K−21 , and u−2.
Clearly, u−1 6∈ C1 ∪ C2 ∪ {t′2}. Moreover, by Claim 12 we have we have u−1 6= t′1
and u−1 � t′1. Also, by symmetry, u−2 6∈ C1 ∪ C2 ∪ {t′1}, u−2 6= t′2 and u−2 � t′2.
Furthermore, by Assumption 5 we have N(u−1) ∩ V2 = ∅.

Let P−1 = (u−1 = u1, u2, . . . , uk), with uk ∈ V ′2 = C2 ∪ {t′2} be a shortest
u−1, V ′2 -path in K−12 , and similarly, let P−2 = (u−2 = v1, v2, . . . , v`), with v` ∈ V ′1 =
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C1 ∪ {u−1, t′1} be a shortest u−2, V ′1 -path in V (K−21 ). The fact that N(u−1) ∩ V2 = ∅
implies that k ≥ 3. Furthermore, Claims 11 and 13 imply that u−2 6∈ V1 ∪ {u−1}. There-
fore, ` ≥ 2.

Since u−1 � c2, we infer that vertex c1 must be adjacent to all the internal vertices of
P−1, for otherwise G would contain an induced cycle of length at least 4. Consequently,
the definition of u−1 implies that uj � c′1 for all j ∈ {2, . . . , k − 1}.

Suppose that uk−1 ∼ c′2. To avoid an induced 4-cycle on the vertex set
{c1, c′2, c2, uk−1}, we infer that uk−1 ∼ c2. We must have k = 3 since if k ≥ 4, then
the vertex set C2 ∪ {c1, uk−1, uk−2, uk−3} induces a copy of F1. But now, since c′1 � u2,
an induced copy of F1 arises on the vertex set C1 ∪C2 ∪ {u1, u2}, a contradiction. There-
fore, uk−1 � c′2.

Suppose that uk−1 ∼ t′2. To avoid an induced 4-cycle on the vertex set
{c1, c2, t′2, uk−1}, we must have uk−1 ∼ c2. But now, the vertex set V ′2 ∪{uk−1, uk−2, c1}
induces a copy of F1, a contradiction. Therefore, uk−1 � t′2. Consequently, uk = c2.

Suppose that u−2 ∼ c1. If in addition u−2 � uk−1, then also u−2 � uk−2 (since
otherwise the vertex set {uk−2, uk−1, c2, u−2} would induce a 4-cycle), but now, the
vertex set {uk−2, uk−1, c1, c2, c′2, u−2} induces a copy of F1, a contradiction. Therefore,
u−2 ∼ uk−1. Let ui be the neighbor of u−2 on P−1 minimizing i. Since u1 � u−2, we
have i ≥ 2. Moreover, since u−2 ∼ uk−1, we have i ≤ k − 1. But now, the vertex set
C2 ∪ {ui−1, c1, ui, u−2} induces either a copy of F1 (if ui � c2) or of F2 (otherwise), a
contradiction. Therefore, u−2 � c1.

Note that N(u−2) ∩ V1 = ∅, for otherwise if there is a vertex x ∈ N(u−2) ∩ V1, then
x 6= c1 and G contains an induced 4-cycle on the vertex set {u−2, c2, c1, x}, a contradic-
tion. Since N(u−2) ∩ V1 = ∅, we can now apply symmetric arguments as for P−1 to
deduce that ` ≥ 3, vertex c2 is adjacent to all the internal vertices of P−2, and v` = c1.

Suppose first that V (P−1) ∩ V (P−2) = ∅. To avoid an induced 4-cycle on the vertex
set {uk−2, c2, c1, v`−2}, we infer that uk−2 � v`−2. Suppose that uk−1 � v`−1. Then
also uk−1 � v`−2 (since otherwise we would have an induced 4-cycle on the vertex set
{uk−1, v`−2, v`−1, c1}) and by a symmetric argument also uk−2 � v`−1. But now, we
have an induced F1 on the vertex set {uk−2, c1, uk−1, c2, v`−1, v`−2}. Thus, uk−1 ∼ v`−1.
Moreover, we have either uk−2 ∼ v`−1 or v`−2 ∼ uk−1, since otherwise an induced F2

arises on the vertex set {c1, v`−1, v`−2, c2, uk−1, uk−2}. Without loss of generality, assume
that uk−2 ∼ v`−1. But now, setting v0 = c′2 if ` = 3, either an induced 4-cycle arises on the
vertex set {uk−2, v`−1, v`−2, v`−3} (if uk−2 ∼ v`−3) or an induced copy of F1 arises on
the vertex set {uk−2, c1, v`−1, v`−2, c2, v`−3} (otherwise). This contradiction shows that
V (P−1) ∩ V (P−2) 6= ∅.

Since v` = c1 and due to the minimality of P−2, we have N(c1)∩V (P−2) = {v`−1}.
On the other hand, since c1 dominates P−1, we have N(c1)∩V (P−1) = V (P−1). There-
fore

∅ 6= V (P−2) ∩ V (P−1) = V (P−2) ∩
(
N(c1) ∩ V (P−1)

)
=
(
N(c1) ∩ V (P−2)

)
∩ V (P−1) = {v`−1} ∩ V (P−1) ⊆ {v`−1},

which yields V (P−1) ∩ V (P−2) = {v`−1}. A symmetric argument implies that
V (P−1)∩V (P−2) = {uk−1}; in particular, v`−1 = uk−1. To avoid an induced 4-cycle on
the vertex set {uk−2, c1, c2, v`−2}, we infer that uk−2 � v`−2. But now, an induced copy
of F1 arises on the vertex set {uk−3, uk−2, c1, uk−1, c2, v`−2} (where if k = 3 we define
u0 = c′1). This contradiction completes the proof of Claim 14.
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By Claim 5, we have V1 ∩ V2 = ∅. By Assumptions 1 and 2 and Claims 9, 10, and 14
we have e(V1, V2) = 0. However, since G is connected, there exists a path connecting the
two diamonds D1 and D2. In particular, we will again consider K−12 , u−1, K−21 , and u−2,
and analyze the possible interrelations between two particular paths to produce a forbidden
induced subgraph.

Recall that by Assumption 4 we have t′1 /∈ V (K−12 ) and t′2 /∈ V (K−21 ). Furthermore,
since e(V1, V2) = 0, we have u−1 6∈ V2 and u−2 6∈ V1. Recall also that Claim 13 implies
that u−1 6= u−2, u−1 � u−2.

Let P−1 = (u−1 = u1, u2, . . . , uk), with uk ∈ C2, be a shortest u−1, C2-path inK−12 ,
and let P−2 = (u−2 = v1, v2, . . . , v`), with v` ∈ C1, be a shortest u−2, C1-path in K−21 .
We may assume that uk = c2 and v` = c1. The fact that N(u−1) ∩ V2 = ∅ implies that
k ≥ 3 and since u−2 6∈ C1, we have ` ≥ 2.

Claim 15. ` ≥ 3.

Proof. Suppose that ` = 2. Then, u−2 ∼ c1. Moreover, we have that u−2 � c′1 since
otherwise u−2 would be a vertex inU−1 closer inK−12 toC2 than u−1, which is impossible
due to the definition of u−1.

We first show that u−2 6= uk−1. Suppose that u−2 = uk−1. Then uk−1 ∼ c1
and uk−1 ∼ c′2. Hence, in order to avoid an induced cycle of length at least 4 within
V (P−1)∪{c1}, we infer that vertex c1 must be adjacent to all the internal vertices of P−1.
By Assumption 4, vertex t′2 has no neighbors in the set V (K−21 ); in particular, t′2 has no
neighbors in the set V (P−1) ∪ C1. Therefore, G contains an induced H1 on the vertex set
C2 ∪ {t′2, c1, uk−1, uk−2, uk−3} (where if k = 3 we define u0 = c′1), a contradiction.

Suppose that uk−1 ∼ c1. In particular, uk−1 6= t′2. To avoid an induced 4-cycle on
the vertex set {c1, uk−1, c2, u−2}, we infer that uk−1 ∼ u−2. Moreover, uk−1 ∼ t′2 since
otherwise the vertex setC2∪{t′2, u−2, uk−1, c1} induces a copy of either F1 (if uk−1 � c′2)
or F2 (otherwise). But now u−2 and t′2 are in the same component ofG−C2, contradicting
the fact that u−2 ∈ V (K−21 ) and t′2 /∈ V (K−21 ). This contradiction implies that uk−1 � c1.

Let j ∈ {1, . . . , k} be the maximum index such that c1 ∼ uj . Then j ≤ k−2. To avoid
a long induced cycle, we infer that c1 ∼ uj′ for all j′ ∈ {1, . . . , j}. Let i ∈ {1, . . . , k} be
the minimum index such that u−2 ∼ ui. Note that i > 1 since u1 = u−1 � u−2. To avoid
a long induced cycle, we infer that i ≤ j and that u−2 ∼ ui′ for all i′ ∈ {i, . . . , k}. Note
that if i < j, then (u−1 = u1, u2, . . . , ui, u

−2, uk = c2) is a u−1, V ′2 -path in K−12 strictly
shorter than P−1, contradicting the minimality of P−1. Therefore, i = j. But now, the
vertex set {uj−1, uj , uj+1, uj+2, u

−2, c1} induces a copy of F1. This contradiction implies
that ` ≥ 3.

Claim 16. uk−1 6= v1 and v`−1 6= u1.

Proof. Suppose for a contradiction that uk−1 = v1. Recall that v1 = u−2. By the minimal-
ity of P−1, we have c2 � uj and c′2 � uj for every j ∈ {1, . . . , k−2}. Furthermore, since
u1 = u−1 � u−2 = uk−1, we have k ≥ 4. Since u−2 and t′2 are in different components
of G− C2, we infer that t′2 � uj for all j ∈ {1, . . . , k − 2}. If c1 ∼ u3, then we obtain an
induced copy of Hi for some i ≥ 1 on the vertex set

C2 ∪ {t′2, v1 = uk−1, uk−2, . . . , uj , uj−1, uj−2, c1},

where j ∈ {3, . . . , k} is the maximum index such that c1 ∼ uj . (Note that j ≤ k− 2 since
c1 � c2 = uk and c1 = v` � v1 = uk−1 by Claim 15.)
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Therefore, c1 � u3, and to avoid a long induced cycle, also c1 � uj for j ≥ 4. A
similar argument shows that c′1 � uj for j ≥ 3. If c1 � u2 and c′1 � u2, then we obtain
an induced copy of some Hi on the vertex set V (P−1) ∪ C1 ∪ C2 ∪ {t′1, t′2}. If c1 ∼ u2
and c′1 � u2 (or vice-versa), then an induced copy of some Hi arises on the vertex set
V (P−1) ∪C1 ∪C2 ∪ {t′2}, and if c1 ∼ u2 and c′1 ∼ u2, then an induced copy of some Hi

arises on the vertex set (V (P−1) \ {u1}) ∪ C1 ∪ C2 ∪ {t′1, t′2}. This contradiction shows
that uk−1 6= v1.

Similar arguments as above imply that v`−1 6= u1.

Property (ii) in the statement of the Diamond Lemma implies the following.

Claim 17. V (P−1) ∩ V (P−2) 6= ∅.

We are now ready to complete the proof of the Diamond Lemma. Let r ∈ {1, . . . , k}
be the minimum index such that ur ∈ V (P−2). Note that r < k, since uk ∈ C2 and
C2 ∩ V (P−2) = ∅. Let s ∈ {1, . . . , `} be the index such that ur = vs. If r = 1, then
u1 = v`−1, contradicting Claim 16. Therefore, r ≥ 2. Similarly, if s = 1, then v1 = uk−1,
again contradicting Claim 16. Therefore, s ≥ 2.

Consider the path Q = (u1, . . . , ur = vs, vs−1, . . . , v1). Let D and D′ be the sub-
graphs of G induced by {t′1, c1, c′1, u1} and {t′2, c2, c′2, v1}, respectively. Notice that D
and D′ are diamonds. We will refer to tips u1 and v1 as the roots of D and D′, respec-
tively. Then, Q is a path connecting the two roots. Moreover, by Assumption 4 we have
t′1 /∈ V (K−12 ) and V (Q) ⊆ V (K−12 ), we infer that t′1 has no neighbors on Q. Similarly, t′2
has no neighbors on Q.

We may also assume that Q is an induced path; otherwise, we replace Q with a shortest
u1, v1-path in G[V (Q)]. To complete the proof, we will show that G is not {F1, F2, H1,
H2, . . . }-free. We say that an induced subgraph H of G is a weakly induced Hn if H has a
spanning subgraph Hn with n ≥ 1 consisting of two diamonds and a path connecting them
such that, assuming notation from Figure 8, the following holds:

(i) each of the two diamonds is induced in G,

(ii) there are no edges in G connecting a vertex from one diamond with a vertex from
another diamond, except perhaps edges incident with their roots (if n = 1) or the
unique edge on the path connecting the two roots (if n = 2),

(iii) the path connecting the two diamonds is induced in G, and

(iv) vertices x1 and z1 do not have any neighbors on the path.

y1 yny2
x1

x2

x3

z1

z2

z3

rootroot

Figure 8: A weakly induced Hn.

Note, in particular, that for n ∈ {1, 2} every weakly induced Hn is isomorphic to Hn.
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The above considerations show that the subgraph of G induced by

V (D) ∪ V (D′) ∪ V (Q)

contains a weakly induced Hn. Choose one such induced subgraph, say H , with minimum
value of n, and let F be the corresponding spanning subgraph of H isomorphic to Hn. To
complete the proof, we will now show that either H equals F or G contains an induced F1

or F2. Suppose that this is not the case. The only possible edges that can be present in H
but not in F are those connecting one of the vertices x2, x3, z2, z3 with one of the vertices
in the set {y2, . . . , yn−1}.

Let us first show that for each i ∈ {2, . . . , n− 1}, at most one of x2 and x3 is adjacent
to yi. Suppose that x2 ∼ yi and x3 ∼ yi for some i ∈ {2, . . . , n − 1}. Then yi ∼ z2 or
yi ∼ z3, since otherwise the subgraph of G induced by {x1, x2, x3, yi, . . . , yn, z1, z2, z3}
would be a weakly induced Hn−i+1, contradicting the minimality of H . If yi ∼ z2 and
yi ∼ z3, then the vertex set {x1, x2, x3, yi, z1, z2, z3} induces an H1 in G. We may
thus assume that yi is adjacent only to one of z2, z3, say to z3. If i = n − 1, then
the vertex set {x1, x2, x3, yn−1, yn, z2, z3} induces an H1 in G. If i ≤ n − 2, then the
fact that G is chordal implies that z3 ∼ yj for all j ∈ {i, . . . , n}, and the vertex set
{x1, x2, x3, yi, yi+1, yi+2, z3} induces an H1 in G. This contradiction shows that for each
i ∈ {2, . . . , n− 1}, at most one of x2 and x3 is adjacent to yi.

Next, we argue that at least one of x2 and x3 is not adjacent to any vertex yi with
i ∈ {2, . . . , n − 1}. Indeed, if x2 ∼ yr and x3 ∼ ys, with 2 ≤ r ≤ s ≤ n − 1 (say), then
r < s and the fact that G is chordal implies that x3 ∼ yj for all j ∈ {2, . . . , s}, contra-
dicting the fact that at most one of x2 and x3 is adjacent to yr. Therefore, we may assume
without loss of generality that x2 has no neighbors in the set {y2, . . . , yn−1}. Similarly, we
may assume that z2 has no neighbors in the set {y2, . . . , yn−1}.

Let r ∈ {1, . . . , n − 1} be the maximum index such that x3 ∼ yr. Similarly, let
s ∈ {2, . . . , n} be the minimum index such that z3 ∼ ys. If r = 1 and s = n, then H = F
and we are done. Thus, we may assume without loss of generality that r ≥ 2. In particular,
this implies that x3 ∼ y2 (since G is chordal). If y2 � z3, then the subgraph of G induced
by {x2, x3, y1, . . . , yn, z1, z2, z3} is a weakly induced Hn−1, contradicting the minimality
of n. Therefore, y2 ∼ z3, or, equivalently, s = 2. A similar argument shows that r = n−1.
Now, if n = 3, then the vertex set {x2, x3, y1, y2, y3, z2, z3} induces an H1 in G, and if
n ≥ 4, then the vertex set {x2, x3, y1, y2, y3, z3} induces an F1 in G. This contradiction
completes the proof of the Diamond Lemma.
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[9] V. Bouchitté and I. Todinca, Treewidth and minimum fill-in: grouping the minimal separators,
SIAM J. Comput. 31 (2001), 212–232, doi:10.1137/s0097539799359683.
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[57] N. Pržulj, D. G. Corneil and E. Köhler, Hereditary dominating pair graphs, Discrete Appl.
Math. 134 (2004), 239–261, doi:10.1016/s0166-218x(03)00304-4.
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Appendix A A non-connected-domishold split graph whose cutset
hypergraph is 2-asummable

Based on an example due to Gabelman [32], Crama and Hammer proposed in the proof
of [22, Theorem 9.15] an example of a 9-variable 2-asummable positive Boolean function
f that is not threshold. From this function we can derive a split graph G = (V,E) on 71
vertices, as follows. Let V = K∪I whereK = {v1, . . . , v9} is a clique and I = V (G)−K
is an independent set. To define the edges between K and I , we first associate a non-
negative integer weight to each vertex, as follows: w(v1) = 14, w(v2) = 18, w(v3) = 24,
w(v4) = 26, w(v5) = 27, w(v6) = 30, w(v7) = 31, w(v8) = 36, w(v9) = 37, and
w(v) = 0 for all v ∈ I . Let S be the set of all subsets S of K such that w(S) ≥ 82 and
let S1 = {v1, v6, v9}, S2 = {v2, v5, v8}, and S3 = {v3, v4, v7}. (Note that w(Si) = 81
for all i ∈ [3].) Let H be the hypergraph with vertex set K and hyperedge set given by
the inclusion-wise minimal sets in S ∪ {S1, S2, S3}. It can be verified thatH has precisely
62 hyperedges (including S1, S2, and S3).4 The edges of G between vertices of I and K
are defined so that set of the neighborhoods of the 62 vertices of I is exactly the set of
hyperedges ofH.

To show that G is not CD, it suffices, by Proposition 3.4, to show that the cutset
hypergraph is not threshold. In the proof of Theorem 9.15 in [22] it is shown that the
function f is not threshold, by showing that f is 3-summable. This corresponds to the
fact that the cutset hypergraph of G is 3-summable, as can be observed by noticing that
condition (2.1) is satisfied for k = r = 3 and for the sets Ai = Si for all i ∈ [3] and
B1 = {v1, v7, v8}, B2 = {v2, v4, v9}, and B3 = {v3, v5, v6}. On the other hand, the fact
that f is 2-asummable implies that the cutset hypergraph of G is 2-asummable.

4The following is the list of sets (omitting commas and brackets) of indices of the elements of the 62 inclusion-
wise minimal hyperedges of H: 169, 179, 189, 258, 259, 268, 269, 278, 279, 289, 347, 348, 349, 357, 358, 359,
367, 368, 369, 378, 379, 389, 456, 457, 458, 459, 467, 468, 469, 478, 479, 489, 567, 568, 569, 578, 579, 589,
678, 679, 689, 789, 1234, 1235, 1236, 1237, 1238, 1239, 1245, 1246, 1247, 1248, 1249, 1256, 1257, 1267, 1345,
1346, 1356, 2345, 2346, 2356.
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1 Introduction
Throughout the paper all groups considered are finite, unless stated otherwise. A skew
morphism ϕ of a finite group A is a bijection on the underlying set of A fixing the identity
element of A and for which there exists an integer-valued function π : A → Z such that
ϕ(ab) = ϕ(a)ϕπ(a)(b), for all a, b ∈ A. Note that π is not uniquely determined by ϕ,
however, as a permutation if ϕ has order n, then π can be viewed as a function π : A→ Zn.
In this sense the function π is uniquely determined by ϕ, and it will be called the power
function of ϕ.

Jajcay and Širáň introduced the concept of skew morphism as an algebraic tool to in-
vestigate regular Cayley maps [10]. Conder, Jajcay and Tucker have shown in [5] that skew
morphisms are also closely related to group factorisations with a cyclic complement. Thus
the study of skew morphisms is important for both combinatorics and algebra.

LetX be a generating set of a groupA such that 1 /∈ X andX = X−1, let P be a cyclic
permutation of X . A Cayley map M = CM(A,X,P ) is a 2-cell embedding of the Cayley
graph Cay(A,X) into an orientable closed surface such that the local cyclic orientation of
the arcs (g, x) emanating from any vertex g induced by the orientation of the supporting
surface agrees with the prescribed cyclic permutation P ofX . An automorphism ofM is an
automorphism of the underlying Cayley graph which extends to an orientation-preserving
self-homeomorphism of the supporting surface. It is well known that the automorphism
group Aut(M) of M acts semi-regularly on the arcs of M . In the case where this action is
transitive, and hence regular, the map M is called a regular Cayley map. The left regular
representation of A induces a subgroup of map automorphisms which acts transitively on
the vertices of M . It follows that M is regular if and only if M admits an automorphism
which fixes a vertex, say the identity vertex 1, and maps the arc (1, x) to (1, P (x)). It is a
nontrivial result proved by Jajcay and Širáň that a Cayley map CM(A,X,P ) is regular if
and only if there is a skew morphism ϕ ofA such that the restriction ϕ �X of ϕ toX is equal
to P [10, Theorem 1]. A skew morphism of A will be called a Cayley skew morphism if it
has an inverse-closed generating orbit. Thus the study of regular Cayley maps of a group
A is equivalent to the study of Cayley skew morphisms of A.

Among the variety of problems considered with regard to skew morphisms the most
important seems to be the classification of regular Cayley maps for given families of groups.
This problem is completely settled for cyclic groups [6], and only partial results are known
for other abelian groups [4, 5, 23]. For dihedral groups Dn of order 2n, if n is odd this
problem was solved in [14], whereas if n is even only partial classification is at hand [11, 12,
17, 21, 24, 25]. For other non-abelian groups the interested reader is referred to [18, 20, 21].

Although skew morphisms are usually investigated along with regular Cayley maps,
they also deserve to be studied independently in a purely algebraic setting. Let G = AC
be a group factorisation, where A and C are subgroups of G with A ∩ C = 1. If C = 〈c〉
is cyclic, then the commuting rule ca = ϕ(a)cπ(a), for all a ∈ A, determines a skew
morphism ϕ of A with the associated power function π. Conversely, each skew morphism
ϕ of A determines a group factorisation LA〈ϕ〉 with LA ∩ 〈ϕ〉 = 1, where LA denotes
the left regular representation of A [5, Proposition 3.1]. Thus, there is a correspondence
between skew morphisms and group factorisations with cyclic complements.

Let ϕ be a skew morphism of a group A. A subgroup N of A is ϕ-invariant if
ϕ(N) = N . Note that the restriction of ϕ to N is a skew morphism of N , so it is
important to study ϕ-invariant subgroups. The first important ϕ-invariant subgroup is
Fixϕ, the subgroup consisting of fixed points of ϕ [10]. Later, Zhang discovered in [25]
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another important ϕ-invariant subgroup, called the core of ϕ and denoted by Coreϕ.
This is a normal subgroup of A, so ϕ induces a skew morphism ϕ̄ of the quotient group
Ā := A/Coreϕ in a natural way. As a consequence, we obtain a new ϕ-invariant sub-
group Smoothϕ = {a ∈ A | ā ∈ Fix ϕ̄} by means of coverings of skew morphisms; see
Section 3.

Section 4 is devoted to a study of the extremal case where Smoothϕ = A. In this case
the skew morphism ϕ is termed smooth. We prove that a skew morphism ϕ of A is smooth
if and only if π(ϕ(a)) = π(a) for all a ∈ A. It follows that the power function of a smooth
skew morphism takes constant value on orbits of ϕ, so smooth skew morphisms may be
viewed as a generalization of t-balanced Cayley skew morphisms studied in [4]. Note that
for abelian groups smooth skew morphisms are identical with the coset-preserving skew
morphisms studied by Bachratý and Jajcay in [1]. We establish in Theorems 4.5 and 4.9
an unexpected relationship between smooth skew morphisms and kernel-preserving skew
morphisms. Note that a skew morphism ϕ of A is kernel-preserving if its kernel Kerϕ is a
ϕ-invariant subgroup of A.

Kovács and Kwon [13] have recently announced a complete classification of regular
Cayley maps of dihedral groups. Thus, to complete the classification of skew morphisms
of dihedral groups, it remains to determine the non-Cayley skew morphisms. As shown
in [8], every non-Cayley skew morphism of dihedral groups is smooth. Our last aim of
this paper is to employ the newly-developed theory to give a classification of smooth skew
morphisms of the dihedral groups, see Section 5.

2 Preliminaries
In this section we summarize some basic results concerning skew morphisms which will
be used throughout the paper.

Let ϕ be a skew morphism of a group A, let π be the power function of ϕ, and let n be
the order of ϕ. As already mentioned above, the sets

Kerϕ = {a ∈ A | π(a) = 1}, Fixϕ = {a ∈ A | ϕ(a) = a}

and

Coreϕ =

n⋂
i=1

ϕi(Kerϕ)

form subgroups of A. Note that, for any two elements a, b ∈ A, π(a) = π(b) if and only
if ab−1 ∈ Kerϕ. Thus, the index |A : Kerϕ| is equal to the number of distinct values of
the power function. This number is called the skew type of ϕ, and it is strictly less than n
if ϕ is not trivial. Clearly, ϕ is an automorphism of A if and only if it has skew type 1. If
ϕ is not an automorphism, then it will be termed proper. On the other hand, Coreϕ is the
largest ϕ-invariant subgroup contained in Kerϕ, and in particular, it is normal in A [25].

Lemma 2.1 ([10]). Let ϕ be a skew morphism of a group A, let π be the power function of
ϕ, and let n be the order of ϕ. Then, for any a, b ∈ A,

ϕk(ab) = ϕk(a)ϕσ(a,k)(b) and π(ab) ≡ σ(b, π(a)) (mod n),

where k is an arbitrary positive integer and σ(a, k) =
k∑
i=1

π(ϕi−1(a)).
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Lemma 2.2 ([7]). Let ϕ be a skew morphism of a group A, let π be the power function of
ϕ. Then for any automorphism γ of A, ψ = γ−1ϕγ is a skew morphism of A with power
function πψ = πγ. Moreover, Kerψ = γ−1(Kerϕ) and Coreψ = γ−1(Coreϕ).

Proof. Since γ is an automorphism of A, for any a, b ∈ A, we have

ψ(ab) = γ−1ϕγ(ab) = γ−1ϕ(γ(a)γ(b)) = γ−1
(
ϕ(γ(a))ϕπγ(a)(γ(b))

)
= γ−1ϕγ(a)γ−1ϕπγ(a)γ(b) = ψ(a)ψπγ(a)(b).

Thus, ψ is a skew morphism of A with power function πψ = πγ. Since |ψ| = |ϕ|, we have

a ∈ Kerψ ⇐⇒ πψ(a) ≡ 1 (mod |ψ|) ⇐⇒
πγ(a) ≡ 1 (mod |ϕ|) ⇐⇒ a ∈ γ−1(Kerϕ).

Therefore, Kerψ = γ−1(Kerϕ). Similarly, Coreψ = γ−1(Coreϕ).

Lemma 2.3 ([1, 5]). Let ϕ be a skew morphism of a groupA, let π be the power function of
ϕ, and let n be the order of ϕ. Then for any positive integer k, µ = ϕk is a skew morphism
of A if and only if the congruences

kx ≡ σ(a, k) (mod n) (2.1)

are solvable for all a ∈ A. Moreover, if µ is a skew morphism of A, then it has order
m = n/ gcd(n, k) and for each a ∈ A, πµ(a) is the solution of the equation (2.1) in Zm.

Lemma 2.4 ([5]). Letϕ be a skew morphism of a groupA. IfA is nontrivial, then |ϕ| ≤ |A|
and |Kerϕ| > 1.

Lemma 2.5 ([9]). Let ϕ be a skew morphism of a group A, and let Oa denote the orbit
of ϕ containing the element a ∈ A. Then for each a ∈ A, Oa−1 = O−1

a , where O−1
a =

{g−1 | g ∈ Oa}.

The following result was partially obtained for Cayley skew morphisms in [4].

Lemma 2.6 ([7]). Let ϕ be a skew morphism of a group A, and let π the power function of
ϕ, and let n be the order of ϕ. Then for any a ∈ A,

σ(a,m) ≡ 0 (mod m),

where m = |Oa| is length of the orbit Oa containing a. Moreover, σ(a, n) ≡ 0 (mod n).

Proof. By Lemma 2.1, we have

1 = ϕm(aa−1) = ϕm(a)ϕσ(a,m)(a−1) = aϕσ(a,m)(a−1),

so ϕσ(a,m)(a−1) = a−1. By Lemma 2.5, m = |Oa−1 |. Thus, σ(a,m) ≡ 0 (mod m).
Since m divides n, we obtain

σ(a, n) =

n∑
i=1

π(ϕi−1(a)) =
n

m
σ(a,m) ≡ 0 (mod n),

as required.
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Lemma 2.7 ([7]). Let ϕ be a skew morphism of a group A. Then for any a, b ∈ A, |Oab|
divides lcm(|Oa|, |Ob|).

Proof. Denote c = |Oa|, d = |Ob| and ` = lcm(|Oa|, |Ob|). Then ` = cp = dq for some
positive integers p, q. By Lemma 2.1, we have ϕ`(ab) = ϕ`(a)ϕσ(a,`)(b) = aϕσ(a,`)(b).
By Lemma 2.6,

σ(a, `) =
∑̀
i=1

π(ϕi−1(a)) = p
c∑
i=1

π(ϕi−1(a)) = pσ(a, c) ≡ 0 (mod `).

Thus, ϕ`(ab) = ab, and consequently, |Oab| divides `.

Lemma 2.8. Let ϕ be a skew morphism of a group A, and let π the power function of
ϕ, and let n be the order of ϕ. If A = 〈a1, . . . , ar〉, then n = lcm(|Oa1 |, . . . , |Oar |).
Moreover, for any g ∈ A, ϕ(g) and π(g) are completely determined by the action of ϕ and
the values of π on the generating orbits Oa1 , . . . , Oar .

Proof. The first part was first proved in [26, Lemma 3.1]. The reader is invited to give an
alternative proof using Lemma 2.7 (and induction on the length of words in the generators).

To prove the second part we use induction on the length k of g in the generators. If
k = 1 then g is a generator of A, the assertion is trivially true. Assume that the assertion is
true for words of length k. Then, for a word g of length k+ 1, we have g = ha, where h is
a word of length k and a ∈ {a1, . . . , ar}. By Lemma 2.1, we have

ϕ(g) = ϕ(ha) = ϕ(h)ϕπ(h)(a) and π(g) ≡ π(ha) ≡
π(h)∑
i=1

π(ϕi−1(a)) (mod n).

Since ϕ(h) and π(h) are completely determined by the action of ϕ and the values of π on
the generating orbits, so are ϕ(g) and π(g), as required.

Lemma 2.9. Let ϕ be a skew morphism of a group A, let π the power function of ϕ, and
let n be the order of ϕ. If N is a ϕ-invariant normal subgroup of A, then

(a) ϕ induces a skew morphism ϕ̄ of Ā = A/N by defining ϕ̄ as ϕ̄(ā) = ϕ(a) and
the power function π̄ : Ā → Zm associated with ϕ̄ is determined by π̄(ā) ≡ π(a)
(mod m) where m = |ϕ̄|,

(b) KerϕN/N ≤ Ker ϕ̄, CoreϕN/N ≤ Core ϕ̄ and FixϕN/N ≤ Fix ϕ̄.

Proof. The proof of (a) can be found in [26, Lemma 3.3] while (b) is obvious.

3 Invariant subgroups
In this section, we introduce covering techniques to the study of skew morphisms and define
several new invariant subgroups.

Proposition 3.1. Let ϕ be a skew morphism of a group A. If M and N are ϕ-invariant
subsets of A, so are M ∩N and MN .
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Proof. For any y ∈ ϕ(M ∩N), there exists x ∈M ∩N such that y = ϕ(x). Since M and
N are both ϕ-invariant, ϕ(x) ∈ M and ϕ(x) ∈ N , so y ∈ M ∩N , whence ϕ(M ∩N) =
M ∩ N . Therefore M ∩ N is also ϕ-invariant. Similarly for any y ∈ ϕ(MN), there
exist u ∈ M and v ∈ N such that y = ϕ(uv). We have y = ϕ(uv) = ϕ(u)ϕπ(u)(v) ∈
ϕ(M)ϕ(N) = MN , so ϕ(MN) = MN , whence MN is also ϕ-invariant.

Let Π be a finite set of primes, a positive integer k will be called a Π-number if all
prime factors of k belong to Π. For instance, if Π = {2, 3}, then 2, 6, 9 are Π-numbers,
whereas 5, 10, 30 are not. We define 1 to be a Π-number for any set Π of primes.

Now let ϕ be a skew morphism of a group A. An orbit of ϕ will be called a Π-orbit if
its length is a Π-number. Define OrbitΠ ϕ to be the union of all Π-orbits of ϕ, namely,

OrbitΠ ϕ = {a ∈ A | |Oa| is a Π-number}.

Proposition 3.2. Let ϕ be a skew morphism of A, and let Π be a finite set of primes, then
OrbitΠ ϕ is a ϕ-invariant subgroup of A containing Fixϕ.

Proof. By definition, all fixed points of ϕ belong to OrbitΠ ϕ, so OrbitΠ ϕ is not empty.
Moreover, for any a, b ∈ OrbitΠ ϕ, |Oa| and |Ob| are Π-numbers, so lcm(|Ox|, |Oy|) is
also a Π-number. By Lemma 2.7, |Oab| divides lcm(|Oa|, |Ob|). It follows that |Oab| is
also a Π-number. Hence, ab ∈ OrbitΠ ϕ. Therefore, OrbitΠ ϕ is a subgroup of A, which
is clearly ϕ-invariant.

Example 3.3. Consider the skew morphism of the cyclic group Z21 defined by

ϕ = (0) (1, 2, 4, 8, 16, 11) (3, 6, 12) (5, 10, 20, 19, 17, 13) (7, 14) (9, 18, 15).

This is an automorphism of Z21. We have

Orbit{2} ϕ = 〈7〉, Orbit{3} ϕ = 〈3〉, Orbit{5} ϕ = 〈0〉, and Orbit{2,3} ϕ = Z21.

Now we introduce covering techniques to the study of skew morphisms.

Definition 3.4. Let ϕi be skew morphisms of finite groups Ai, i = 1, 2. If there is an
epimorphism θ : A1 → A2 such that the identity

θϕ1(a) = ϕ2θ(a)

holds for all a ∈ A1, then ϕ1 will be called a covering (or a lift) of ϕ2, and ϕ2 will be
called a projection (or a quotient) of ϕ1. The covering will be denoted by ϕ1 → ϕ2, and
the epimorphism θ : A1 → A2 will be said to be associated with the covering.

Lemma 3.5. Let ϕ1 → ϕ2 be a covering between skew morphisms ϕi of groups Ai, i =
1, 2, and let θ : A1 → A2 be the associated epimorphism. Then

(a) every ϕ1-invariant subgroup M of A1 projects to a ϕ2-invariant subgroup θ(M)
of A2,

(b) every ϕ2-invariant subgroupN ofA2 lifts to a ϕ1-invariant subgroup θ−1(N) ofA1.

Proof. (a): For any y ∈ θ(M), y = θ(x) for some x ∈ M . Since M is ϕ1-invariant,
ϕ1(x) ∈M , so ϕ2(y) = ϕ2θ(x) = θϕ1(x) ∈ θ(M), whence θ(M) is ϕ1-invariant.

(b): For any x ∈ θ−1(N), y = θ(x) ∈ N . Since N is ϕ2-invariant, ϕ2(y) ∈ N , so
θϕ1(x) = ϕ2θ(x) = ϕ2(y) ∈ N . Hence ϕ1(x) ∈ θ−1(N).
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Since {1}, Fixϕ2 and Coreϕ2 are all ϕ2-invariant subgroups of A2, by Lemma 3.5,
Ker θ = θ−1(1), θ−1(Fixϕ2) and θ−1(Coreϕ2) are all ϕ1-invariant subgroups of A1. In
particular, both Ker θ and θ−1(Coreϕ2) are normal in A1.

Now we are ready to introduce another new ϕ-invariant subgroup for skew morphisms.
Let ϕ be a skew morphism of a group A, and let π be the power function of ϕ. Recall that
Coreϕ is a normal ϕ-invariant subgroup of A. Let Smoothϕ be a subset of A defined by

Smoothϕ = {a ∈ A | ϕ(a) ≡ a (mod Coreϕ)}.

Proposition 3.6. Let ϕ be a skew morphism of a group A, let π be the power function of
ϕ, and let ϕ̄ be the ϕ-induced skew morphism of Ā = A/Coreϕ. Then, for any a ∈ A, the
following are equivalent:

(a) a ∈ Smoothϕ,

(b) π(ϕi(a)) = π(a) for all positive integers i,

(c) ā ∈ Fix ϕ̄.

Proof. (a) =⇒ (b): Since a ∈ Smoothϕ, by definition, ϕ(a) = ua for some u ∈ Coreϕ,
and so ϕi(a) = ϕi−1(u) · · ·ϕ(u)ua for all positive integers i. Since Coreϕ is a ϕ-invariant
subgroup, we have ϕi−1(u) · · ·ϕ(u)u ∈ Coreϕ. Therefore, π(ϕi(a)) = π(a).

(b) =⇒ (c): Since π(ϕ(a)) = π(a), we have ϕ(a) = ua for some u ∈ Kerϕ and then
ϕ2(a) = ϕ(ua) = ϕ(u)ϕ(a) = ϕ(u)ua. Since π(ϕ2(a)) = π(a), we get ϕ(u)u ∈ Kerϕ
and hence ϕ(u) ∈ Kerϕ. Repeating the above process, we get ϕi(u) ∈ Kerϕ for all
positive integers i. Consequently, u ∈ Coreϕ and hence ϕ̄(ā) = ā, that is, ā ∈ Fix ϕ̄.

(c) =⇒ (a): Since ā ∈ Fix ϕ̄, we have ϕ̄(ā) = ā and so ϕ(a) = ua for some u ∈
Coreϕ. Since CoreϕEA, we obtain a ∈ Smoothϕ.

The following result is a direct corollary of Proposition 3.6.

Corollary 3.7. Suppose that ϕ, A, ϕ̄ and Ā are defined as Proposition 3.6. Then

Fixϕ = Smoothϕ

and Smoothϕ is a ϕ-invariant subgroup of A. In particular,

(a) Smoothϕ = Coreϕ if and only if Fix ϕ̄ = 1̄,

(b) Smoothϕ = A if and only if Fix ϕ̄ = Ā, and

(c) Smoothϕ = Fixϕ if Coreϕ = 1.

Example 3.8 ([22]). Consider a skew morphism of the cyclic group Z18 defined by

ϕ = (0) (1, 15, 17, 7, 3, 5, 13, 9, 11) (2, 14, 8) (4, 10, 16) (6) (12),

π = [ 1 ] [ 2, 5, 8, 2, 5, 8, 2, 5, 8 ] [ 7, 7, 7 ] [ 4, 4, 4 ] [ 1 ] [ 1 ].

Then Coreϕ = Kerϕ = 〈6〉, so ϕ̄ = (0̄) (1̄, 3̄, 5̄) (2̄) (4̄) and Smoothϕ = 〈2〉.

The following example is due to Conder, as mentioned in [1],
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Example 3.9. Consider a skew morphism

ϕ = (1) (a, a2) (b, bc, c) (ab, a2bc, ac, a2b, abc, a2c),

π = [ 1 ] [ 1, 1 ] [ 1, 4, 4 ] [ 1, 4, 4, 1, 4, 4 ]

of the non-abelian group A = D3 × C2, where

D3 = 〈a, b | a3 = b2 = (ab)2 = 1〉 and C2 = 〈c | c2 = 1〉.

We have Kerϕ = 〈a, b〉 and Coreϕ = 〈a〉. Thus, ϕ̄ = (1̄) (b̄, b̄c̄, c̄), and hence

Smoothϕ = Coreϕ.

4 Smooth skew morphisms
In this section we establish a relationship between kernel-preserving skew morphisms and
smooth skew morphisms.

In general, the kernel Kerϕ of a skew morphism ϕ does not have to be a ϕ-invariant
subgroup. However, as we already mentioned above, a skew morphism ϕ will be called
kernel-preserving if Kerϕ is ϕ-invariant. Clearly, ϕ is kernel-preserving if and only if
Coreϕ = Kerϕ. It is well known that every skew morphism ϕ of an abelian group is
kernel-preserving [4, Lemma 5.1]. For non-abelian groups, there do exist skew morphisms
which are not kernel-preserving, see Example 3.9.

Kernel-preserving skew morphisms have many interesting properties.

Lemma 4.1. Let ϕ be a skew morphism of a group A, π be the power function of ϕ, and
let n be the order of ϕ. If ϕ is kernel-preserving, then

(a) Kerϕ is a normal subgroup of A, and ϕ restricted to Kerϕ is an automorphism
of Kerϕ,

(b) for some positive integer k, if µ = ϕk is a skew morphism ofA, then Kerϕ ≤ Kerµ,

(c) for any automorphism γ of A, γ−1ϕγ is a kernel-preserving skew morphism of A,

(d) for any pair of elements a ∈ A and u ∈ Kerϕ there is a unique element v ∈ Kerϕ
such that au = va and ϕ(a)ϕπ(a)(u) = ϕ(v)ϕ(a). In particular, ifA is abelian then
π(a) ≡ 1 (mod m) where m is the order of the restriction of ϕ to Kerϕ.

Proof. (a): Since ϕ is kernel-preserving, Kerϕ = Coreϕ, which is a normal subgroup of
A. Moreover, for all a, b ∈ Kerϕ, we have ϕ(ab) = ϕ(a)ϕ(b), so ϕ restricted to Kerϕ is
an automorphism of Kerϕ.

(b): For any a ∈ Kerϕ = Coreϕ, π(ϕi−1(a)) = 1, i = 1, 2, . . . , n. By Lemma 2.3,
the power function πµ of µ is determined by the the congruence kπµ(a) ≡ σ(a, k) = k
(mod n), so πµ(a) ≡ 1 (mod n/ gcd(n, k)), which implies that a ∈ Kerµ.

(c): This is an immediate consequence of Lemma 2.2.
(d): Since KerϕE A, for any pair (a, u) of elements a ∈ A and u ∈ Kerϕ, there is a

unique element v ∈ Kerϕ such that au = va. Then ϕ(a)ϕπ(a)(u) = ϕ(au) = ϕ(va) =
ϕ(v)ϕ(a). In particular, ifA is abelian, then u = v and ϕπ(a)(u) = ϕ(u) for all u ∈ Kerϕ,
so π(a) ≡ 1 (mod m), where m is the order of the restriction of ϕ to Kerϕ.

Proposition 4.2. Every kernel-preserving skew morphism of a non-abelian simple group
A is an automorphism of A.
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Proof. If ϕ is not an automorphism of A, then 1 < Kerϕ < A by Lemma 2.4. Since ϕ is
kernel-preserving, by Lemma 4.1(a) KerϕEA, a contradiction.

Let ϕ be a skew morphism of a group A. Recall that Smoothϕ consists of elements
a ∈ A such that ϕ(a) ≡ a (mod Coreϕ). If Smoothϕ = A, then ϕ will be called a
smooth skew morphism. The concept of smooth skew morphism was first introduced by
Hu in the unpublished manuscript [7]. Bachratý and Jajcay rediscovered it under the name
of coset-preserving skew morphisms [1].

Lemma 4.3. Let ϕ be a skew morphism of a group A. If ϕ is smooth, then every subgroup
of A containing Coreϕ is ϕ-invariant; in particular, ϕ is kernel-preserving.

Proof. Suppose that ϕ is a smooth skew morphism of A. By Proposition 3.6, the induced
skew morphism ϕ̄ of Ā = A/Coreϕ is the identity permutation on Ā, so every subgroup
of Ā is ϕ̄-invariant. Therefore, by Lemma 3.5, every subgroup of A containing Coreϕ is
ϕ-invariant. In particular, since Coreϕ ≤ Kerϕ, ϕ(Kerϕ) = Kerϕ.

The following lemma characterizes smooth skew morphisms in terms of their power
functions.

Lemma 4.4. Let ϕ be a skew morphism of a group A, and let π be the power function of
ϕ. Then ϕ is smooth if and only if π(ϕ(a)) = π(a), for all a ∈ A.

Proof. Ifϕ is smooth, then, by Proposition 3.6, π(ϕ(a)) = π(a), for all a ∈ A. Conversely,
suppose that, for any a ∈ A, π(ϕ(a)) = π(a). Then ϕ(a) = ua for some u ∈ Kerϕ. By
the assumption, we have π(ϕn−1(u)) = · · · = π(ϕ(u)) = π(u) = 1, where n = |ϕ|, so
u ∈ Coreϕ. Therefore, ϕ(a) ≡ a (mod Coreϕ), that is, ϕ is smooth.

The smallest positive integer d such that π(ϕd(a)) ≡ π(a) (mod |ϕ|), for all a ∈ A,
is called the period of ϕ. It is easily seen that d is a divisor of n uniquely determined by ϕ.
Bachratý and Jajcay proved that ifA is abelian, then µ = ϕd is a smooth skew morphism of
A; in particular, if ϕ is nontrivial and contains a generating orbit, then d is a proper divisor
of n [1]. In what follows we present a generalization.

Theorem 4.5. Let ϕ be a skew morphism of a group A, let d be the period of ϕ, and let ϕ̄
be the ϕ-induced skew morphism of Ā = A/Coreϕ. Then the following hold true:

(a) d is equal to the order of ϕ̄,

(b) σ(a, d) ≡ 0 (mod d) for all a ∈ A,

(c) µ = ϕd is a smooth skew morphism of A,

(d) µ = ϕd is an automorphism of A if and only if σ(a, d) ≡ d (mod n) for all a ∈ A.

Proof. Denote n = |ϕ| and m = |ϕ̄|.
(a): By the assumption, for any a ∈ A, we have π(ϕd(a)) = π(a), and so ϕd(a) = ua

for some u ∈ Kerϕ. Thus,

π(ϕd+1(a)) = π(ϕ(ua)) = π(ϕ(u)ϕ(a)).

Since π(ϕd+1(a)) = π(ϕ(a)), we obtain ϕ(u) ∈ Kerϕ. Repeating this process we get
ϕi−1(u) ∈ Kerϕ, i = 1, 2, . . . , n. Thus, u ∈ Coreϕ, and consequently, ϕ̄d(ā) = ā.
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Therefore, m ≤ d. On the other hand, since |ϕ̄| = m, ϕ̄m(ā) = ā for any a ∈ A, so
ϕm(a) = ua for some u ∈ Coreϕ. Thus, π(ϕm(a)) = π(ua) = π(a). The minimality of
d then implies that d ≤ m.

(b): For each a ∈ A, by (a) we have

σ(a, n) =

n∑
i=1

π(ϕi−1(a)) =
n

d

d∑
i=1

π(ϕi−1(a)) =
n

d
σ(a, d) (mod n).

By Lemma 2.6, σ(a, n) = 0 (mod n) and hence, σ(a, d) ≡ 0 (mod d).
(c): By (b) and Lemma 2.3, µ = ϕd is a skew morphism of A with its power func-

tion determined by πµ(a) ≡ σ(a, d)/d (mod n/d). Since π(µ(a)) = π(ϕd(a)) ≡ π(a)
(mod n), we obtain πµ(µ(a)) ≡ πµ(a) (mod n/d). Therefore, µ is smooth by Proposi-
tion 4.4.

(d): Since πµ(a) ≡ σ(a, d)/d (mod n/d), µ is an automorphism if and only if
σ(a, d) ≡ d (mod n).

Corollary 4.6. Let ϕ be a kernel-preserving skew morphism of a group A, and let n be the
order of ϕ. If ϕ is nontrivial, then the period d of ϕ is a proper divisor of n, and so µ = ϕd

is a nontrivial smooth skew morphism of A.

Proof. If ϕ is nontrivial, then |A : Kerϕ| < |ϕ| = n. By Lemma 2.4, d = |ϕ̄| ≤ |Ā| =
|A : Kerϕ|. Thus, d is a proper divisor of n and therefore, ϕd is a nontrivial smooth skew
morphism by Theorem 4.5.

Example 4.7 ([22]). Consider the skew morphism of the cyclic group Z18 given by

ϕ = (0) (1, 5, 13, 11, 7, 17) (2, 16, 8, 10, 14, 4) (3, 5) (6, 12) (9),

π = [ 1 ] [ 3, 5, 3, 5, 3, 5 ] [ 5, 3, 5, 3, 5, 3 ] [ 1, 1 ] [ 1, 1 ] [ 1 ].

Then Kerϕ = Coreϕ = 〈3〉 and ϕ̄ = (0̄) (1̄, 2̄). Note that ϕ has period 2, which is
precisely the order of ϕ̄. Since σ(x, 2) ≡ 0 (mod 2), for all x ∈ Z18, by Theorem 4.5(c),
µ = ϕ2 is an automorphism of A.

Let us revisit the skew morphism ϕ of the non-abelian group D3 × C2 considered in
Example 3.9. It has period 3, which is a proper divisor of the order of ϕ. As we already
mentioned, the skew morphism is not kernel-preserving. This leads us to pose the following
problem.

Problem 4.8. Let d be the period of a nontrivial skew morphism ϕ of a group A. If ϕ is
not kernel-preserving, under what condition is µ = ϕd nontrivial?

We close this section with some important properties of smooth skew morphisms, see
also [1, 7].

Theorem 4.9. Let ϕ be a skew morphism of A, let π be the power function of ϕ, and let n
be the order of ϕ. If ϕ is smooth, then

(a) π : A → Z∗n is a group homomorphism from A to the multiplicative group Z∗n with
Kerπ = Kerϕ,

(b) for any ϕ-invariant normal subgroupN ofA, the induced skew morphism ϕ̄ onA/N
is also smooth; in particular, if N = Kerϕ then ϕ̄ is the identity permutation,
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(c) for any positive integer k, µ = ϕk is a smooth skew morphism,

(d) for any automorphism γ of A, ψ = γ−1ϕγ is a smooth skew morphism of A.

Proof. (a): Since ϕ is smooth, π(a) = π(ϕ(a)) = · · · = π(ϕn−1(a)). By Lemma 2.1, we
have

π(ab) ≡
π(a)∑
i=1

π(ϕi−1(b)) ≡ π(a)π(b) (mod n).

Since 1 ≡ π(ab−1) = π(a)π(a−1) (mod n), π(a) ∈ Z∗n. Therefore, π is a group homo-
morphism from A to the multiplicative group Z∗n.

(b): Since ϕ is smooth, for any a ∈ A, we have π(ϕ(a)) = π(a), and so π̄(ϕ̄(ā)) =
π̄(ā) (mod m), where m = |ϕ̄|. By Lemma 4.4, ϕ̄ is smooth.

(c): For any positive integer k, since π(ϕi−1(a)) = π(a), i = 1, 2, . . . , k, we have

σ(a, k) =

k∑
i=1

π(ϕi−1(a)) ≡ kπ(a) (mod n).

It follows that the equations kx ≡ σ(a, k) (mod n) are solvable for all a ∈ A. Thus,
by Lemma 2.3, µ = ϕk is a skew morphism of A and the associated power function
πµ : A → Zm is determined by πµ(a) ≡ π(a) (mod m), where m = n/ gcd(n, k) is the
order of µ. Since πµ(µ(a)) ≡ π(ϕk(a)) ≡ π(a) ≡ πµ(a) (mod m), by Lemma 4.4, µ is
also smooth.

(d): By Lemma 2.2, ψ = γ−1ϕγ is a skew morphism with Coreψ = γ−1(Coreϕ).
For any a ∈ A, since ϕ is smooth, ϕ(γ(a)) ≡ γ(a) (mod Coreϕ), or equivalently,
γ−1ϕγ(a) ≡ a (mod γ−1(Coreϕ)). Thus, ψ(a) ≡ a (mod Coreψ) and hence, ψ is
smooth.

5 Smooth skew morphisms of dihedral groups
Throughout this section, Dn will denote the dihedral group of order 2n with presentation

Dn = 〈a, b | an = b2 = 1, b−1ab = a−1〉, n ≥ 3. (5.1)

Moreover, for positive integers u and k, τ(u, k) and ρ(u, k) are functions defined by

τ(u, k) =

k∑
i=1

uk−1 and ρ(u, k) =

k∑
i=1

(−u)k−1. (5.2)

If k is even, we use λ(u, k) to denote the function defined by

λ(u, k) =

k/2∑
i=1

u2(i−1). (5.3)

The following result on normal subgroups of Dn is well known.

Lemma 5.1 ([16, Section 1.6, Exercise 8]). Let K be a proper normal subgroup
of Dn, n ≥ 3.

(a) if n is odd then K = 〈au〉, where u divides n,



538 Ars Math. Contemp. 16 (2019) 527–547

(b) if n is even, then either K = 〈a2, b〉, K = 〈a2, ab〉 or K = 〈au〉, where u divides n.

Lemma 5.2 ([5]). Let ϕ be a skew morphism of Dn, n ≥ 3, then Kerϕ 6= 〈a〉.

Lemma 5.3. Let ϕ be a smooth skew morphism of Dn, n ≥ 3. If n is odd, then ϕ is
an automorphism of A, whereas if n is even and ϕ is not an automorphism of Dn, then
Kerϕ = 〈a2〉, Kerϕ = 〈a2, ab〉 or Kerϕ = 〈a2, b〉. Moreover, the involutory automor-
phism of Dn taking a 7→ a−1, b 7→ ab transposes the smooth skew morphisms of Dn with
kernels 〈a2, b〉 and 〈a2, ab〉.

Proof. Assume that ϕ is not an automorphism of Dn, then 1 < Kerϕ < Dn. Since ϕ is
smooth, by Theorem 4.9(a), the power function π : Dn → Z∗|ϕ| is a group homomorphism
with Kerπ = Kerϕ. It follows that Kerϕ is a proper normal subgroup of A. Since Z∗|ϕ| is
abelian, D′n ≤ Kerϕ, where D′n is the derived subgroup of Dn.

If n is odd then D′n = 〈a〉, which is a maximal subgroup of Dn. By Lemma 5.2
Kerϕ 6= 〈a〉, so Kerϕ = Dn, and hence ϕ is automorphism of Dn, a contradiction.

On the other hand, if n is even, then D′n = 〈a2〉, so 〈a2〉 ≤ Kerϕ. By Lemma 5.1,
one of the following three cases may happen: Kerϕ ≤ 〈a〉, Kerϕ = 〈a2, b〉, or Kerϕ =
〈a2, ab〉. For the first case, by Lemma 5.2, we have Kerϕ 6= 〈a〉, so Kerϕ = 〈a2〉.

Finally, by Theorem 4.9(d), the automorphism of Dn taking a 7→ a−1, b 7→ ab trans-
poses the smooth skew morphisms of Dn with kernels 〈a2, b〉 and 〈a2, ab〉.

The following result classifies smooth skew morphisms of the dihedral groups Dn with
Kerϕ = 〈a2〉 for even integers n ≥ 4.

Theorem 5.4. Let Dn = 〈a, b〉 be the dihedral group of order 2n, where n ≥ 4 is an even
number. Then every smooth skew morphism ϕ of Dn with Kerϕ = 〈a2〉 is defined by

ϕ(a2i) = a2iu,

ϕ(a2i+1) = a2iu+2r+1,

ϕ(a2ib) = a2iu+2sb,

ϕ(a2i+1b) = a2iu+2r+2sτ(u,e)+1b

and


π(a2i) = 1,

π(a2i+1) = e,

π(a2ib) = f,

π(a2i+1b) = ef,

(5.4)

where r, s, u, e, f are nonnegative integers satisfying the following conditions

(a) r, s ∈ Zn/2 and u ∈ Z∗n/2,

(b) the order of ϕ is the smallest positive integer k such that rτ(u, k) ≡ 0 (mod n/2)
and sτ(u, k) ≡ 0 (mod n/2),

(c) e, f ∈ Z∗k generate the Klein four group,

(d) ue−1 ≡ 1 (mod n/2) and uf−1 ≡ 1 (mod n/2),

(e) rτ(u, e− 1) ≡ u− 2r − 1 (mod n/2) and sτ(u, f − 1) ≡ 0 (mod n/2),

(f) rτ(u, f − 1) + sτ(u, e− 1) ≡ u− 2r − 1 (mod n/2).

Proof. First suppose that ϕ is a smooth skew morphism ofDn with Kerϕ = 〈a2〉. Then by
Theorem 4.9(b), the induced skew morphism ϕ̄ on Dn/Kerϕ is the identity permutation,
so there exist integers r, s ∈ Zn/2 such that

ϕ(a) = a1+2r and ϕ(b) = a2sb.
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Since ϕ is kernel-preserving, the restriction of ϕ to Kerϕ = 〈a2〉 is an automorphism, so
ϕ(a2) = a2u where u ∈ Z∗n/2. Assume that π(a) ≡ e (mod k) and π(b) ≡ f (mod k),
where k = |ϕ|.

From the above identities we derive the following formulae by induction:

ϕj(a) = a1+2rτ(u,j) and ϕj(b) = a2sτ(u,j)b,

where j is a positive integer and τ(u, j) =
∑j
i=1 u

i−1. Since Dn = 〈a, b〉, by Lemma 2.8,
the order k = |ϕ| is equal to lcm(|Oa|, |Ob|), the least common multiple of the lengths of
the orbits containing a and b. That is, k is the smallest positive integer such that ϕk(a) = a
and ϕk(b) = b. Using the above formulae we then deduce that k is the smallest positive
integer such that rτ(u, k) ≡ 0 (mod n/2) and sτ(u, k) ≡ 0 (mod n/2).

Now we determine the skew morphism and the associated power function. By the
assumption we have

ϕ(a2i) = (a2u)i = a2iu,

ϕ(a2ib) = ϕ(a2i)ϕ(b) = a2iu+2sb.

Similarly, we have

ϕ(a2i+1) = ϕ(a2ia) = ϕ(a2i)ϕ(a) = a1+2r+2iu,

ϕ(a2i+1b) = ϕ(a2i)ϕ(a)ϕe(b) = a2iu+1+2r+2sτ(u,e).

Since π : Dn → Z∗k is a group homomorphism, we have e2 ≡ π(a)2 = π(a2) ≡ 1
(mod k) and f2 ≡ π(b)2 ≡ π(b2) ≡ 1 (mod k), so e2 ≡ 1 (mod k) and f2 ≡ 1
(mod k). Hence, π(a2i) ≡ 1, π(a2i+1) ≡ e, π(a2ib) ≡ f , π(a2i+1b) ≡ ef . In particular,
since |Dn : Kerϕ| = 4, 〈e, f〉 ≤ Z∗k is the Klein four group. Therefore ϕ and π have the
claimed form (5.4).

Moreover, we have

a1+2r+2ue

= ϕ(a)ϕe(a2) = ϕ(a)ϕπ(a)(a2) = ϕ(aa2) = ϕ(a2a)

= ϕ(a2)ϕ(a) = a1+2r+2u,

and so ue−1 ≡ 1 (mod n/2). Similarly, since

ϕ(b)ϕf (a2) = ϕ(b)ϕπ(b)(a2) = ϕ(ba2) = ϕ(a−2b) = ϕ(a−2)ϕ(b),

we have

a2s−2uf

b = a2sba2uf

= ϕ(b)ϕf (a2) = ϕ(a−2)ϕ(b) = a2s−2ub.

Thus, uf−1 ≡ 1 (mod n/2).
Furthermore, since

a2u = ϕ(a2) = ϕ(a)ϕπ(a)(a) = ϕ(a)ϕe(a) = a2+2r+2rτ(u,e),

we get

r(1 + τ(u, e)) ≡ u− 1 (mod n/2). (5.5)
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Similarly,

1 = ϕ(b2) = ϕ(b)ϕπ(b)(b) = ϕ(b)ϕf (b) = a2sba2sτ(u,f)b = a2s−2sτ(u,f),

we obtain

sτ(u, f) ≡ s (mod n/2). (5.6)

Employing induction it is easy to deduce that ϕj(a−1) = a1−2uj+2rτ(u,j), where j is
an arbitrary positive integer. Then

ϕ(a)ϕe(b) = ϕ(ab) = ϕ(ba−1) = ϕ(b)ϕf (a−1).

Upon substitution we get

a1+2r+2sτ(u,e)b = ϕ(a)ϕe(b) = ϕ(b)ϕf (a−1) = a2sba1−2uf+2rτ(u,f)

= a2s−1+2uf−2rτ(u,f)b.

Hence,
rτ(u, f) + sτ(u, e) ≡ s+ uf − r − 1 (mod n/2).

Since uf ≡ u (mod n/2), the congruence is reduced to

rτ(u, f) + sτ(u, e) ≡ s+ u− r − 1 (mod n/2). (5.7)

Recall that ue−1 ≡ 1 (mod n/2) and uf−1 ≡ 1 (mod n/2), so

τ(u, e) ≡ τ(u, e− 1) + 1 (mod n/2),

τ(u, f) ≡ τ(u, f − 1) + 1 (mod n/2).

Upon substitution the congruences (5.5), (5.6) and (5.7) are reduced to the numerical con-
ditions in (e) and (f).

Conversely, for a quintuple (r, s, u, e, f) of nonnegative integers satisfying the stated
numerical conditions, we verify that ϕ given by (5.4) is a smooth skew morphism of Dn

with Kerϕ = 〈a2〉 and the function π is the associated power function. It is evident that ϕ
is a bijection on Dn and ϕ(1) = 1.

It remains to verify the identity ϕ(xy) = ϕ(x)ϕπ(x)(y) for all x, y ∈ Dn. By Lem-
ma 2.8, it suffices to verify this for x, y ∈ Oa ∪ Ob, where Oa and Ob are the generating
orbits of ϕ of the form

Oa = (a, a1+2rτ(u,1), a1+2rτ(u,2), . . . , a1+2rτ(u,i), . . .),

Ob = (b, a2sτ(u,1)b, a2sτ(u,2)b, . . . , a2sτ(u,j)b, . . .).

It follows that one of the following four cases may happen:

(i) x, y ∈ Oa;

(ii) x, y ∈ Ob;
(iii) x ∈ Oa, y ∈ Ob or

(iv) x ∈ Ob, y ∈ Oa.
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We shall demonstrate the verification for the first case, and leave other cases to the reader.
If x, y ∈ Oa, then x = a1+2rτ(u,i) and y = a1+2rτ(u,j) for some i, j. We have

ϕ(x)ϕ(y) = ϕ(a2r(τ(u,i)+τ(u,j))+2) = a2ru(τ(u,i)+τ(u,j))+2u

and

ϕ(x)ϕπ(x)(y) = ϕ(a1+2rτ(u,i))ϕe(a1+2rτ(u,j)) = a2r(τ(u,i+1)+τ(u,j+e))+2.

By the numerical conditions (d) and (e), we have

r(τ(u, i+ 1) + τ(u, j + e)) + 1− (ru(τ(u, i) + τ(u, j)) + u)

= r
(

(τ(u, i+ 1)− uτ(u, i)) + (τ(u, j + e)− uτ(u, j))
)

+ 1− u
(d)
≡ r
(

1 + (τ(u, j + e)− ueτ(u, j))
)

+ 1− u

≡ r(2 + τ(u, e− 1)) + 1− u
(e)
≡ 0 (mod n/2).

Therefore, ϕ(xy) = ϕ(x)ϕπ(x)(y).
Finally, from the choices of the parameters it is easily seen that distinct quintuples

(r, s, u, e, f) give rise to different skew morphisms of Dn, as required.

Remark 5.5. In Theorem 5.4, consider the particular case where u = 1. By Condition (b)
we have

k = lcm

(
n/2

gcd(r, n/2)
,

n/2

gcd(s, n/2)

)
.

The numerical conditions are reduced to
r(e+ 1) ≡ 0 (mod n/2),

s(f − 1) ≡ 0 (mod n/2),

r(f + 1) + s(e− 1) ≡ 0 (mod n/2),

where r, s ∈ Zn/2 and 〈e, f〉 ≤ Z∗k is the Klein four group. If n = 8m, where m ≥ 3
is an odd number, then it can be easily verified that the quintuple (r, s, u, e, f) =
(m + 4,m, 1, 4m − 1, 2m − 1) fulfills the numerical conditions. Therefore, we obtain
an infinite family of skew morphisms of D8m of order 4m with Kerϕ = 〈a2〉. This exam-
ple was first discovered by Zhang and Du in [26, Example 1.4].

Example 5.6. By computations using the MAGMA system we found that the smallest n
for which there is a smooth skew morphism ϕ of Dn with Kerϕ = 〈a2〉 is the number
24. In this case, all such skew morphisms have order 12, and the corresponding quintuples
(r, s, u, e, f) are listed below:

(r, s, u, e, f) = (1, 3, 1, 11, 5), (1, 4, 1, 11, 7), (1, 9, 1, 11, 5), (1, 10, 1, 11, 7),

(5, 2, 1, 11, 7), (5, 3, 1, 11, 5), (5, 8, 1, 11, 7), (5, 9, 1, 11, 5),

(7, 3, 1, 11, 5), (7, 4, 1, 11, 7), (7, 9, 1, 11, 5), (7, 10, 1, 11, 7),

(11, , 2, 1, 11, 7), (11, 3, 1, 11, 5), (11, 8, 1, 11, 7), (11, 9, 1, 11, 5).
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Note that in each case we have u = 1, so the restriction of ϕ to Kerϕ is the identity
automorphism of Kerϕ. However, further computations show that, for other n, there do
exist examples with u 6= 1.

For even numbers n, by Lemma 5.3, the involutory automorphism γ of Dn taking
a 7→ a−1, b 7→ ab transposes the smooth skew morphisms of Dn with kernels 〈a2, b〉 or
〈a2, ab〉. Thus, to complete the classification of smooth skew morphisms of Dn, it suffices
to determine the smooth skew morphisms of Dn with kernel Kerϕ = 〈a2, b〉.

Theorem 5.7. Let Dn be the dihedral group of order 2n, where n ≥ 8 is an even number.
If ϕ is a smooth skew morphism of Dn with Kerϕ = 〈a2, b〉, then ϕ belongs to one of the
following two families of skew morphisms:

(I) skew morphisms of order k defined by
ϕ(a2i) = a2iu,

ϕ(a2i+1) = a2iu+2r+1,

ϕ(ba2i) = ba2iu+2s,

ϕ(ba2i+1) = ba2r+2s+2iu+1

and


π(a2i) = 1,

π(a2i+1) = e,

π(ba2i) = 1,

π(ba2i+1) = e,

(5.8)

where r, s, u, k, e are nonnegative integers satisfying the following conditions

(a) r, s ∈ Zn/2 and u ∈ Z∗n/2,

(b) k is the smallest positive integer such that rτ(u, k) ≡ 0 (mod n/2) and
sτ(u, k) ≡ 0 (mod n/2),

(c) e ∈ Z∗k such that e 6≡ 1 (mod k) and e2 ≡ 1 (mod k),
(d) ue−1 ≡ 1 (mod n/2),
(e) rτ(u, e− 1) ≡ u− 2r − 1 (mod n/2) and

sτ(u, e− 1) ≡ −u+ 2r + 1 (mod n/2).

(II) skew morphisms of order 2(e− 1) defined by
ϕ(a2i) = a2iu,

ϕ(a2i+1) = ba2r−2iu+1,

ϕ(ba2i) = ba2s+2iu,

ϕ(ba2i+1) = a2r−2s−2iu+1

and


π(a2i) = 1,

π(a2i+1) = e,

π(ba2i) = 1,

π(ba2i+1) = e,

(5.9)

where r, s, u, e are nonnegative integers satisfying the following conditions

(a) r, s ∈ Zn/2, u ∈ Z∗n/2 and e > 1 is an odd number,

(b) ue−1 ≡ −1 (mod n/2),
(c) sτ(u, e− 1) ≡ u+ 2r + 1 (mod n/2),
(d) rρ(u, e− 1) ≡ sλ(u, e− 1)− 1 (mod n/2).

Proof. First suppose that ϕ is a smooth skew morphism of Dn with Kerϕ = 〈a2, b〉. By
Theorem 4.9, the induced skew morphism ϕ̄ of Dn/Kerϕ is the identity permutation and
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the restriction of ϕ to Kerϕ = 〈a2, b〉 is an automorphism of Kerϕ. It follows that there
exist integers r, s, u ∈ Zn/2 and ` ∈ Z2 such that

ϕ(a) = b`a1+2r, ϕ(b) = ba2s and ϕ(a2) = a2u.

Assume that π(a) ≡ e (mod k), where k = |ϕ| denotes the order of ϕ. Since b ∈
Kerϕ, π(b) ≡ 1 (mod k). By Theorem 4.9, the power function π : Dn → Zk is a group
homomorphism from Dn to the multiplicative group Z∗k, so

e−1 ≡ π(a−1) ≡ π(b−1ab) ≡ π(a) ≡ e (mod k),

and hence e2 ≡ 1 (mod k). It follows that π(a2i) ≡ π(a2ib) ≡ 1 and π(a2i+1) ≡
π(a2i+1b) ≡ e. Since ϕ has skew type 2, e 6≡ 1 (mod k). To proceed we distinguish two
cases:

Case (I): ` = 0.
In this case, we have

ϕ(a) = a1+2r, ϕ(b) = ba2s and ϕ(a2) = a2u.

Then

ϕ(a2i) = ϕ(a2)i = a2iu,

ϕ(ba2i) = ϕ(b)ϕ(a2)i = ba2iu+2s.

Similarly,

ϕ(a2i+1) = ϕ(a2ia) = ϕ(a2)iϕ(a) = a2iu+2r+1,

ϕ(ba2i+1) = ϕ(ba2ia) = ϕ(b)ϕ(a2i)ϕ(a) = ba2r+2s+2iu+1.

Hence, the skew morphism has the form given by (5.8).
Using induction it is easy to prove that

ϕj(a) = a1+2rτ(u,j) and ϕj(b) = ba2sτ(u,j),

where j is a positive integer and τ(u, j) =
∑j
i=1 u

i−1. Since Dn = 〈a, b〉, k = |ϕ| is the
smallest positive integer such that ϕk(a) = a and ϕk(b) = b, which implies that

rτ(u, k) ≡ 0 (mod n/2) and sτ(u, k) ≡ 0 (mod n/2).

Moreover, we have

a1+2r+2ue

= ϕ(a)ϕe(a2) = ϕ(aa2) = ϕ(a2a) = ϕ(a2)ϕ(a) = a1+2r+2u,

so ue−1 ≡ 1 (mod n/2).
Furthermore, since

a2u = ϕ(a2) = ϕ(a)ϕe(a) = a1+2ra1+2rτ(u,e) = a2+2r+2rτ(u,e),

we obtain

r
(
τ(u, e) + 1

)
≡ u− 1 (mod n/2). (5.10)
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Similarly,

ϕ(a)ϕe(b) = ϕ(ab) = ϕ(ba−1) = ϕ(b)ϕ(a−1) = ϕ(b)ϕ(a−2a) = ϕ(b)ϕ(a−2)ϕ(a).

By the above formula we have

ϕ(a)ϕe(b) = a1+2rba2sτ(u,e) = ba−1−2r+2sτ(u,e)

and
ϕ(b)ϕ(a−2)ϕ(a) = ba1+2r+2s−2u.

Consequently, upon substitution we obtain

s(τ(u, e)− 1) ≡ −u+ 2r + 1 (mod n/2). (5.11)

Recall that ue−1 ≡ 1 (mod n/2), so

τ(u, e) = τ(u, e− 1) + ue−1 ≡ τ(u, e− 1) + 1 (mod n/2).

Upon substitution the equations (5.10) and (5.11) are reduced to

rτ(u, e− 1) ≡ u− 2r − 1 (mod n/2),

sτ(u, e− 1) ≡ −u+ 2r + 1 (mod n/2).

Case (II): ` = 1.
In this case we have

ϕ(a) = ba1+2r, ϕ(b) = ba2s and ϕ(a2) = a2u.

Then

ϕ(a2i) = a2iu,

ϕ(ba2i) = ϕ(b)ϕ(a2i) = ba2s+2iu.

Similarly,

ϕ(a2i+1) = ϕ(a2ia) = a2iuba1+2r = ba2r−2iu+1,

ϕ(ba2i+1) = ϕ(b)ϕ(a2i)ϕ(a) = a2r−2s−2iu+1.

Hence ϕ has the form (5.9).
Using induction it is easy to derive the following formula

ϕj(b) = ba2sτ(u,j) and ϕj(a) =

{
a2rρ(u,j)−2sλ(u,j)+1, if j is even,
ba2rρ(u,j)+2suλ(u,j−1)+1, if j is odd,

where τ, ρ and λ are the functions defined by (5.2) and (5.3). Since ϕ(a) = ba1+2r and
Dn = 〈a, ba1+2r〉, k = |ϕ| = |Oa|. Thus, k is the smallest positive integer such that

rρ(u, k) ≡ sλ(u, k) (mod n/2).
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In particular, since elements from the cosets 〈a〉 and b〈a〉 alternate in the orbit Oa, k is
even, and hence e is odd. Thus,

a2u = ϕ(a2) = ϕ(a)ϕe(a) = ϕ(a)ϕe(a) = a2rρ(u,e)−2r+2suλ(u,e−1).

Consequently, we obtain

rρ(u, e) + suλ(u, e− 1) ≡ r + u (mod n/2). (5.12)

Furthermore, we have

ba1+2r+2ue

= ϕ(a)ϕe(a2) = ϕ(aa2) = ϕ(a2a)

= ϕ(a2)ϕ(a) = a2uba1+2r = ba2r−2u+1,

so ue−1 ≡ −1 (mod n/2). Similarly

a−1−2r+2sτ(u,e) = ϕ(a)ϕe(b) = ϕ(ab) = ϕ(ba−2a)

= ϕ(b)ϕ(a−2)ϕ(a) = a1+2r−2s+2u.

Hence

sτ(u, e) ≡ 1 + 2r + u− s (mod n/2). (5.13)

Recall that ue−1 ≡ −1 (mod n/2), so

τ(u, e) ≡ τ(u, e− 1)− 1 (mod n/2),

ρ(u, e) ≡ ρ(u, e− 1)− 1 (mod n/2).

Upon substitution the equations (5.12) and (5.13) are reduced to

rρ(u, e− 1) + suλ(u, e− 1) ≡ 2r + u (mod n/2), (5.14)
sτ(u, e− 1) ≡ 2r + u+ 1 (mod n/2). (5.15)

Subtracting we then get

rρ(u, e− 1) ≡ sλ(u, e− 1)− 1 (mod n/2).

Finally, note that

ρ(u, 2(e− 1)) =

2(e−1)∑
i=1

(−u)2(e−1)

=

e−1∑
i=1

(−u)i−1 + ue−1
e−1∑
i=1

(−u)i−1 ≡ 0 (mod n/2),

and

λ(u, 2(e− 1)) =

e−1∑
i=1

u2i

=

(e−1)/2∑
i=1

u2(i−1) + ue−1

(e−1)/2∑
i=1

u2(i−1) ≡ 0 (mod n/2),
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Hence,
rρ(u, 2(e− 1)) ≡ sλ(u, 2(e− 1)) (mod n/2).

The minimality of k yields k | 2(e− 1). But e− 1 < k, which forces k = 2(e− 1).

Conversely, in each case for any quadruple (r, s, u, e) satisfying the numerical condi-
tions, it is straightforward to verify that ϕ of the given form is a smooth skew morphism of
Dn with Kerϕ = 〈a2, b〉 and π is the associated power function. In particular, from the
choices of the parameters it is easily seen that distinct quadruples (r, s, u, e) give rise to
different skew morphisms of Dn, as required.

Remark 5.8. Let ϕ be any skew morphism from (II) of Theorem 5.7. Note that the orbit
of ϕ containing a also contains ba2r+1, so the orbit Oa generates Dn. Clearly, it is closed
under taking inverses. Therefore, such skew morphisms give rise to the e-balanced regular
Cayley maps of Dn, which were first classified by Kwak, Kwon and Feng [17].

References
[1] M. Bachratý and R. Jajcay, Powers of skew-morphisms, in: J. Širáň and R. Jajcay (eds.), Sym-
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Abstract

The number of ways to place q nonattacking queens, bishops, or similar chess pieces
on an n× n square chessboard is essentially a quasipolynomial function of n (by Part I of
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1 Introduction
The famous n-Queens Problem is to count the number of ways to place n nonattacking
queens on an n× n chessboard. That problem has been solved only for small values of n;
there is no real hope for a complete solution. In this series of papers we treat a more general
problem wherein we place q identical pieces like the queen or bishop on an n × n square
board and we seek a formula for u(q;n), the number of ways to place them so that none
attacks another. The piece may be any one of a large class of traditional and fairy chess
pieces called “riders”, which are distinguished by the fact that their moves have unlimited
distance. We proved in Part I [4] that in each such problem the number of solutions, times
a factor of q!, is a quasipolynomial function of n; that is, q!u(q;n) is given by a cyclically
repeating sequence of polynomials in n and q, the exact polynomial depending on the
residue class of nmodulo some number p called the period of the function; and furthermore
that each coefficient of the quasipolynomial is a polynomial function of q. Here we prove
that for three or more bishops the period is always exactly 2.1 This period was previously
observed by Kotěšovec for 3 ≤ q ≤ 10 as a result of his extensive computations for five
to ten bishops, added to previous work by Fabel for three and four bishops (see [10, pp.
126–129] for q ≤ 6 and [11, pp. 234–241, 254–257] for q ≤ 10).

The number of nonattacking placements of q unlabelled bishops on an n × n board is
denoted by uB(q;n). The number for labelled bishops is therefore q!uB(q;n).

Theorem 1.1. For q ≥ 3, the quasipolynomial q!uB(q;n) involved in counting the nonat-
tacking positions of q bishops on an n × n board has period equal to 2. For q < 3 the
period is 1.

To get our results we treat non-attacking configurations as integral lattice points z :=
(z1, . . . , zq), zi = (xi, yi), in a 2q-dimensional inside-out polytope (see Section 2). The
Ehrhart theory of inside-out polytopes (from [3]) implies quasipolynomiality with polyno-
mials of degree 2q and that the period divides the least common multiple of the denomina-
tors of the coordinates of vertices of the inside-out polytope. We find the structure of these
coordinates explicitly: in Lemma 4.4 we show that a vertex of the bishops’ inside-out poly-
tope has each zi ∈ {0, 1}2 or zi = ( 1

2 ,
1
2 ). From that, along with a formula from Part III [6]

for the coefficient of n2q−6 that implies the period is even if q ≥ 3, Theorem 1.1 follows
directly.

One reason to want the period is a computational method for discovering u(q;n). To
find it (for a fixed number q of pieces) one can count solutions as n ranges from 1 up
to some upper limit N and interpolate the counting quasipolynomial from the resulting
data. That can be done if one knows the degree of the quasipolynomial, which is 2q by [4,
Lemma 2.1], and the period, for which there is no known general formula; then N = 2qp
suffices (since the leading term is n2q/q! by general Ehrhart theory; see [4, Lemma 2.1]).
Evidently, knowing the period is essential to knowing the right value of N , if the formula
is to be considered proven. In general, for a particular rider piece and number q it is very
hard to find the period; its value is known only for trivial pieces or very small values of
q. In contrast, Theorem 1.1 gives the exact period for bishops, and it follows that to find
the exact number of placements of q bishops it suffices to compute only 4q values of the
counting function.

The reader may ask why we do not seek the complete formula for bishops placements
in terms of both n and q. Remarkably, there is a simple such formula, due in essence to

1This paper was originally announced as Part V, in Parts I and II.



S. Chaiken et al.: A q-queens problem. VI. The bishops’ period 551

Arshon in a nearly forgotten paper [2] and completed by Kotěšovec [11, pp. 244, 254–
257]. We restate this expression in Part V [8]. The trouble is that it is not in the form of a
quasipolynomial, so that, for instance, we could not use it to obtain the number of combi-
natorial types of nonattacking configuration, which by [4, Theorem 5.3] is its evaluation at
n = −1. We cannot even deduce the period from the Arshon formula.2 So there is reason
to seek the general quasipolynomial q!uB(q;n) for every number q. The simple reason we
do not seek to do so is that we have not found a way to do it. That remains an open problem
whose solution would reveal the full character of the dependence of uB(q;n) on its two
arguments. This has not yet been discovered for any rider—other than the mathematically
trivial rook.

After necessary mathematical background in the next two sections, we prove Theo-
rem 1.1 in Section 4, applying the geometry of the inside-out polytope for bishops and
the properties of signed graphs, which we introduce in Sections 2 and 3, respectively. We
conclude with research questions. For the benefit of the authors and readers, we append a
dictionary of the notation in this paper.

2 Essentials from Parts I and II
We build upon the counting theory of previous parts as it applies to the square board, from
Part II [5]. We summarize essential aspects here. First, we specialize our notation to q
nonattacking bishops B on a square board. We assume that q > 0.

The full expression for the number of nonattacking configurations of unlabelled bishops
is

uB(q;n) = γ0(n)n2q + γ1(n)n2q−1 + γ2(n)n2q−2 + · · ·+ γ2q(n)n0,

where each coefficient γi(n) varies periodically with n, and for labelled pieces the number
is oB(q;n), which equals q!uB(q;n). (The coefficients also depend on q but we suppress
that in the notation because only the variation with n concerns us here.)

The n × n board consists of the integral points in the interior (n + 1)(0, 1)2 of an
integral multiple (n + 1)[0, 1]2 of the unit square B = [0, 1]2 ⊂ R2, or equivalently, the
1/(n+ 1)-fractional points in (0, 1)2. Thus, the board consists of the points z = (x, y) for
integers x, y = 1, 2, . . . , n.

A move is the difference between a new position and the original position. The bishop
has moves given by all integral multiples of the vectors (1, 1) and (1,−1), which are called
the basic moves. (Note that for a move m = (c, d), the slope d/c contains all necessary
information and can be specified instead of m itself.) A bishop in position z = (x, y) may
move to any location z + µm with µ ∈ Z and a basic move m, provided that location is on
the board.

A configuration is the vector (z1, z2, . . . , zq) of positions of all q bishops. The con-
straint on a configuration is that no two pieces may attack each other, or to say it mathe-
matically, when there are pieces at positions zi and zj , then zj − zi is not a multiple of any
basic move m.

The object on which our theory relies is the inside-out polytope (P,AB), where P is the
hypercube [0, 1]2q and AB is the move arrangement for bishops. The move arrangement is
a finite set of hyperplanes whose members are the move hyperplanes or attack hyperplanes,

H±ij := {z ∈ R2q : (yj − yi) = ±(xj − xi)}.
2Stanley in [12, Solution to Exercise 4.42] says the period is easily obtained from Arshon’s formula, which

has one form for even n and another for odd n; but we think it is not that easy.
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Each attack hyperplane contains the configuration points z = (z1, z2, . . . , zq) ∈ Z2q in
which bishops i and j attack each other. (The pieces in a configuration are labelled 1
through q to enable effective description.) The intersection lattice of AB is the set of all
intersections of subsets of the move arrangement, ordered by reverse inclusion. These
intersection subspaces are the heart of our method.

3 Signed graphs
The signed graph we employ to describe an intersection subspace efficiently is a special
case of the slope graph from [4, Section 3.3]. The fact that the bishops’ two slopes are ±1
makes it possible to apply the well-developed theory of signed graphs.

A graph is Γ = (N,E), with node set N and edge set E. It may have multiple edges
but not loops. A 1-forest is a graph in which each component consists of a tree together
with one more edge; thus, each component contains exactly one circle. A spanning 1-forest
is a spanning subgraph (it contains all nodes) that is a 1-forest. The notation eij means the
edge has end nodes vi and vj .

A signed graph, Σ = (N,E, σ), is a graph in which each edge e is labelled σ(e) = +
or −. In a signed graph, a circle (cycle, circuit) is called positive or negative according
to the product of its edge signs. A signed circuit is either a positive circle or a connected
subgraph that contains exactly two circles, both negative. A node v is homogeneous if
all incident edges have the same sign. We generally write q := |N | because the nodes
correspond to the bishops in a configuration.

Let c(Σ) denote the number of components of a signed (or unsigned) graph and ξ(Σ) :=
|E| − |N |+ c(Σ), the cyclomatic number of the underlying unsigned graph.

The incidence matrix of Σ is the |N | × |E| matrix H(Σ) (H is “Eta”) such that, in
the column indexed by edge e, the elements are η(v, e) = ±1 if v is an endpoint of e
and = 0 if it is not, with the signs chosen so that, if vi and vj are the endpoints, then
η(vi, e)η(vj , e) = −σ(e) [13, Section 8A]. That is, in the column of a positive edge there
are one +1 and one −1, while in the column of a negative edge there are two +1’s or two
−1’s. The rank of Σ is the rank of its incidence matrix. From [13, Theorem 5.1(j)] we know
a formula for the rank: rk(Σ) = |N | − b(Σ), where b(Σ) is the number of components in
which there is no negative circle. This rank function applied to spanning subgraphs makes
a matroidG(Σ) on the edge set of Σ [13]. An unsigned graph Γ acts as if it is an all-positive
signed graph; therefore its incidence matrix has rank rk(Γ) = |N | − c(Γ) where c(Γ) is
the number of components and the corresponding matroid G(Γ) := G(+Γ) is the cycle
matroid of Γ.

From this and [13, Theorem 8B.1] we also know that H(Σ) has full column rank if and
only if Σ contains no signed circuit and it has full row rank if and only if every compo-
nent of Σ contains a negative circle. A signed graph that has both of these properties is
necessarily a 1-forest in which every circle is negative.

A positive clique in Σ is a maximal set of nodes that are connected by positive edges;
equivalently, it is the node set of a connected component of the spanning subgraph Σ+

formed by the positive edges. A negative clique is similar. Either kind of set is called a
signed clique. We call them “cliques” (in a slight abuse of terminology) because the signed
cliques of a graph do not change if we complete the induced positive subgraph on a positive
clique, and similarly for a negative clique. A homogeneous node v gives rise to a singleton
signed clique with the sign not represented by an edge at v; if v is isolated it gives rise to
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two singleton cliques, one of each sign.
The number of positive cliques in Σ is c(Σ+) and the number of negative cliques is

c(Σ−). Let A(Σ) := {A1, . . . , Ac(Σ+)} and B(Σ) := {B1, . . . , Bc(Σ−)} (read “Alpha”
and “Beta”) be the sets of positive and negative cliques, respectively. Since each node of Σ
is in precisely one positive and one negative clique, we can define a bipartite graph C(Σ),
called the clique graph of Σ, whose node set is A(Σ) ∪ B(Σ) and whose edge set is N , the
endpoints of the edge vi being the cliques A ∈ A(Σ) and B ∈ B(Σ) such that vi ∈ A ∩B.

Let us call an edge e redundant if Σ\e (Σ with e deleted) has the same signed cliques as
does Σ, and call Σ irredundant if it has no redundant edges, in other words, if each signed
clique has just enough edges of its sign to connect its nodes. A signed graph is irredundant
if and only if both Σ+ and Σ− are forests. For example, a signed forest is irredundant.
Any signed graph can be reduced to irredundancy with the same signed cliques by pruning
redundant edges one by one.

Lemma 3.1. If Σ is a signed graph with q nodes, then

|A(Σ)|+ |B(Σ)| = 2q − [rk(Σ+) + rk(Σ−)].

If Σ is irredundant, then

|A(Σ)|+ |B(Σ)| = 2q − |E| = q + c(Σ)− ξ(Σ).

In particular, a signed tree has q + 1 signed cliques.

Proof. The first formula follows directly from the general formula for the rank of a graph.
If Σ is irredundant, Σ+ is a forest with |A(Σ)| components and Σ− is a forest with

|B(Σ)| components. Therefore, |A(Σ)|+ |B(Σ)| = 2q − |E| = q − ξ(Σ) + c(Σ).
A more entertaining proof is by induction on the number of inhomogeneous nodes.

Define g(Σ) := |A(Σ)| + |B(Σ)| − 2q + |E| = |A(Σ)| + |B(Σ)| − q − c(Σ) + ξ(Σ). If
all nodes are homogeneous, obviously g(Σ) = 0. Otherwise, let v be an inhomogeneous
node. Split v into two nodes, v+ and v−, incident respectively to all the positive or negative
edges at v. The new graph has one less inhomogeneous node, two more signed cliques (a
positive clique {v−} and a negative clique {v+}), one more node, and the same number of
edges, hence the same value of g as does Σ. Thus, by induction, g ≡ 0.

4 Proof of the bishops’ period
We are now prepared to prove Theorem 1.1. We already proved in [6, Theorem 3.1] that
the coefficients γi(n) are constant (as functions of n) for i < 6 and that γ6(n) has period
2. Thus it will suffice to prove that the denominator of the inside-out polytope (B,AB) for
q bishops divides 2. (In fact, what we prove is the stronger result stated in Lemma 4.4.)
To do this, we find the denominators of all vertices explicitly by analyzing all sets of 2q
equations that determine a point. We use the polytope [0, 1]2q for the boundary inequalities
and the move arrangement AB for the equations of attack.

We use a fundamental fact from linear algebra.

Lemma 4.1. The coordinates zi = (xi, yi) belong to a vertex of the inside-out polytope
if and only if there are k attack equations and 2q − k boundary equations that uniquely
determine those coordinates.
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We assume the q bishops are labelled B1, . . . ,Bq . A configuration of bishops is de-
scribed by a point z = (z1, z2, . . . , zq) ∈ R2q , where zi = (xi, yi) is the normalized plane
coordinate vector of the ith bishop Bi; that is, xi, yi ∈ (0, 1) and the position of Bi is
(n + 1)zi. The bishops constraints are that z should not lie in any of the q(q − 1) bishops
hyperplanes,

H+
ij : xi − yi = xj − yj , H−ij : xi + yi = xj + yj , (4.1)

where i 6= j. The corresponding equations are the bishops equations and a subspace U

defined by a set of bishops equations is a bishops subspace. The boundary equations of
[0, 1]2q have the form xi = 0 or 1 and yi = 0 or 1. We generalize the boundary constraints;
we call any equation of the form xi = ci ∈ Z or yi = di ∈ Z a fixation. We call any point
of R2q determined by m bishops equations and 2q−m fixations a lattice vertex. (The term
“fixation” was used in Part IV [7] only for a boundary equation; here it means any equation
that fixes one coordinate at an integral value.)

The first step is to find the dimension of a bishops subspace. We do so by means of
a signed graph ΣB with node set N := {v1, v2, . . . , vq} corresponding to the bishops Bi

and their plane coordinates zi = (xi, yi) and with edges corresponding to the bishops
hyperplanes. For a hyperplane H+

ij we have a positive edge e+
ij and for a hyperplane H−ij

we have a negative edge e−ij . Thus, ΣB is a complete signed link graph: it has all possible
edges (barring loops, of which we have no need) of both signs. For each bishops subspace
U we have a spanning subgraph Σ(U) whose edges correspond to the bishops hyperplanes
that contain U. (This is nothing other than the slope graph defined in [4, Section 3.3],
except that it has extra nodes to make up a total of q.) Then U is the intersection of all the
hyperplanes whose corresponding edges are in Σ(U).

Lemma 4.2. For any S ⊆ AB, with corresponding signed graph Σ ⊆ ΣB,

codim
⋂

S = rk(Σ+) + rk(Σ−).

For a bishops subspace U,

dimU = |A(Σ(U))|+ |B(Σ(U))| and codimU = rk(Σ(U)+) + rk(Σ(U)−).

Proof. We begin with S by looking at a single sign. Adjacent edges eεij , e
ε
jk of sign ε in

Σ, corresponding to Hε
ij and Hε

jk, imply the third positive edge because the hyperplanes’
equations imply that of Hε

ik. Consequently we may replace E(Σε) by a spanning tree of
each ε-signed clique without changing the intersection subspace. Call the revised graph Σ′.
Being irredundant, it has 2q− (|A(Σ)|+ |B(Σ)|) edges by Lemma 3.1. As each hyperplane
reduces the dimension of the intersection by at most 1, we conclude that codim

⋂
S ≤

2q − (|A(Σ)|+ |B(Σ)|).
On the other hand it is clear that AB intersects in the subspace {(z, z, . . . , z) : z ∈

R2}; thus, 2q − 2 = codim
⋂

AB. The corresponding signed graph ΣB, when reduced
to irredundancy, consists of a spanning tree of each sign; in other words, it has 2q − 2
edges. One can choose the irredundant reduction of ΣB to contain Σ′; it follows that every
hyperplane of S must reduce the dimension of the intersection by exactly 1 in order for the
reduced ΣB to correspond to a 2-dimensional subspace of R2. Therefore, codim

⋂
S =

|E(Σ′)| = 2q − (|A(Σ)|+ |B(Σ)|) = rk(Σ+) + rk(Σ−).
The dimension formula for U follows by taking S := {H ∈ AB : H ⊇ U}.
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Defining the rank of an arrangement A of hyperplanes to be the codimension of its
intersection yields a matroid whose ground set is A . The matroid’s rank function encodes
the linear dependence structure of the bishops arrangement AB. The complete graph of
order q is Kq .

Proposition 4.3. The matroid of the hyperplane arrangement AB is isomorphic to

G(Kq)⊕G(Kq).

Proof. The rank of S ⊆ AB, corresponding to Σ ⊆ ΣB, is the codimension of
⋂

S ,
which by Lemma 4.2 equals rk(Σ+) + rk(Σ−). The matroid this implies on E(ΣB) is the
direct sum of G(Σ+

B ) and G(Σ−B ). Both Σ+
B and Σ−B are unsigned complete graphs. The

proposition follows.

Now we return to the analysis of a lattice vertex z. A point is strictly half integral if its
coordinates have least common denominator 2; it is weakly half integral if its coordinates
have least common denominator 1 or 2. A weak half integer is an element of 1

2Z; a strict
half integer is a fraction that, in lowest terms, has denominator 2.

Lemma 4.4. A point z = (z1, z2, . . . , zq) ∈ R2q , determined by a total of 2q bishops
equations and fixations, is weakly half integral. Furthermore, in each zi, either both coor-
dinates are integers or both are strict half integers.

Consequently, a vertex of the bishops’ inside-out polytope ([0, 1]2q,AB) has each zi ∈
{0, 1}2 or zi = ( 1

2 ,
1
2 ).

Proof. For the lattice vertex z, find a bishops subspace U such that z is determined by
membership in U together with dimU fixations.

Suppose vi, vj ∈ Ak, a positive clique in Σ(U); then xi − yi = xj − yj ; thus, the
value of xi − yi is a constant ak on Ak. Similarly, xi + yi is a constant bl on each negative
clique Bl.

Now replace Σ(U) by an irredundant subgraph Σ with the same positive and negative
cliques. The edges of Σ within each clique are a tree. The total number of edges is 2q −
(|A(Σ(U))| + |B(Σ(U))|); this is the number of bishops equations in the set determining
z. The remaining |A(Σ(U))|+ |B(Σ(U))| equations are fixations.

Write CU for the clique graph C(Σ) = C(Σ(U)). Let∓CU be the graph CU with each
edge vi replaced by two edges called vxi and vyi . If we (arbitrarily) regard x as − and y as
+, this is a signed graph.

We defined ak and bl in terms of the xi and yi. We now reverse the viewpoint, treating
the a’s and b’s as independent variables and the x’s and y’s as dependent variables. This is
possible because, ifAk, Bl are the endpoints of vi inCU, then xi−yi = ak and xi+yi = bl,
so

xi =
1

2
(ak + bl) and yi =

1

2
(−ak + bl);

in matrix form, [
x
y

]
=

1

2

[
H(−CU)T

H(+CU)T

] [
a
b

]
=

1

2
H(∓CU)T

[
a
b

]
, (4.2)

where x =
[
xi
]q
i=1

, y =
[
yj
]q
j=1

, a =
[
ak
]|A(Σ(U))|
k=1

, and b =
[
bl
]|B(Σ(U))|
l=1

are column
vectors and H(εCU) is the incidence matrix of CU with, respectively, all edges positive for
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ε = + (with− and + at the A and B ends) and all edges negative for ε = − (with + at both
ends). Thus, the first coefficient matrix is the transposed incidence matrix of ∓CU written
with a particular ordering of the edges.

Fixing a total of |A(Σ(U))|+|B(Σ(U))| variables xi1 , . . . and yj1 , . . . should determine
all the values x1, y1, . . . , xq, yq . The fixations of z correspond to edges in∓CU so we may
treat a choice of fixations as a choice of edges of∓CU, where fixing xi or yi corresponds to
choosing the edge vxi or vyi . We need to know what kind of edge set the fixations correspond
to. Let Ψz denote the spanning subgraph of ∓CU whose edges are the chosen edges. The
fixation equations can be written in matrix form as

MT
[
a
b

]
= 2


xi1

...
yj1

...

 = 2

[
c
d

]
, (4.3)

where the fixation edges are vxi1 , . . .with endpointsAk1 , Bl1 , . . . and vyj1 , . . .with endpoints

Ak′1
, Bl′1

, . . .; the fixations are xir = cr and yjs = ds; c =
[
cr
]r̄
r=1

and d =
[
ds
]s̄
s=1

are
column vectors (with r̄ + s̄ = |A(Σ(U))|+ |B(Σ(U))|, the total number of fixations); and
M is an (|A(Σ(U))| + |B(Σ(U))|) × (|A(Σ(U))| + |B(Σ(U))|) matrix representing the
relationships between the a’s and b’s and the fixed variables:

M :=

xi1 yj1

1 · · · 0 · · ·
...

. . .
...

. . .
0 · · · −1 · · ·
...

. . .
...

. . .

1 · · · 0 · · ·
...

. . .
...

. . .
0 · · · 1 · · ·
...

. . .
...

. . .



A(Σ(U))

B(Σ(U))

.

The rows of M are indexed by the signed cliques and the columns are indexed by the
fixations. The column of a fixation involving a node vi, whose endpoints in CU are Ak

and Bl, has exactly two nonzero entries, one in row Ak and one in row Bl, whose values
are, respectively, 1, 1 for an x-fixation and −1, 1 for a y-fixation. Thus, each column has
exactly two nonzero elements, each of which is ±1.

Consequently, M is the incidence matrix of a signed graph, in fact, M = H(Ψz). M
must be nonsingular since the fixed x’s and y’s uniquely determine the a’s and b’s (because
they determine z). It follows (see Section 3) that the fixation equations for z are a set
corresponding to a spanning 1-forest in ∓CU in which every circle is negative. This 1-
forest is Ψz. There is choice in the selection of Ψz but it is not completely arbitrary. Let
Jz be the set of nodes vi such that zi is integral; consider Jz as a subset of E(CU). As
fixations must be integral, E(Ψz) must be a subset of ±Jz. As fixations are arbitrary
integers, Ψz may be any spanning 1-forest of ∓CU that is contained in ±Jz and whose
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circles are negative. Thus we have found the graphical form of the equations of a lattice
vertex.

Example 4.5. For an example, suppose there are three positive and four negative cliques,
so A(Σ(U)) = {A1, A2, A3} and B(Σ(U)) = {B1, B2, B3, B4}, and eight nodes, N =
{v1, . . . , v8}, with the clique graph CU shown in Figure 1.

A1 •
v1

v2

• B1

A2 •
v3

v4

v5

• B2

A3 • v6

v7

• B3

• B4

Figure 1: The clique graph CU.

An example of a suitable 1-forest Ψz ⊆ ∓CU is shown in Figure 2. It corresponds to
fixations

x1 = c1, y2 = d1, x3 = c2, x4 = c3, y5 = d2, x7 = c4, y7 = d3.

The incidence matrix is

M := H(Ψz) =

x1 x3 x4 x7 y2 y5 y7

1 0 0 0 −1 0 0
0 1 1 0 0 −1 0
0 0 0 1 0 0 −1

1 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 1



A1

A2

A3

B1

B2

B3

B4

.

Every column has two nonzeros. The equations of the fixations in matrix form are

MT



a1

a2

a3

b1
b2
b3
b4


= 2



x1

x3

x4

x7

y2

y5

y7


= 2



c1
c2
c3
c4
d1

d2

d3


,

where the ci’s and dj’s are any integers we wish in the lemma (but in the application to
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A1 •
vx
1

vy
2

• B1

A2 •
vx
3

vx
4

vy
5

• B2

A3 •
vx
7

vy
7

• B3

• B4

Figure 2: A suitable 1-forest.

Theorem 1.1 they will be 0’s and 1’s). The solution is

a1 = x1 − x3 + x4 − y2 = c1 − c2 + c3 − d1,

a2 = −x1 + x3 + x4 − y2 = −c1 + c2 + c3 − d1,

a3 = x7 − y7 = c4 − d3,

b1 = x1 + x3 − x4 + y2 = c1 + c2 − c3 + d1,

b2 = x1 − x3 + x4 + y2 = c1 − c2 + c3 + d1,

b3 = −x1 + x3 + x4 − y2 + 2y5 = −c1 + c2 + c3 − d1 + 2d2,

b4 = x7 + y7 = c4 + d3,

and the unfixed variables are

x2 =
a1 + b2

2
= c1 − c2 + c3,

x5 =
a2 + b3

2
= −c1 + c2 + c3 − d1 + d2,

x6 =
a3 + b3

2
=
−c1 + c2 + c3 + c4 − d1 + 2d2 − d3

2
,

y1 =
−a1 + b1

2
= c2 − c3 + d1,

y3 =
−a2 + b1

2
= c1 − c3 + d1,

y4 =
−a2 + b2

2
= c1 − c2 + d1,

y6 =
−a3 + b3

2
=
−c1 + c2 + c3 − c4 − d1 + 2d2 + d3

2
.

Observe that x6 and y6 are the only possibly fractional coordinates and their difference,
x6 − y6 = a3 = c4 − d3, is integral; therefore, either z6 is integral, or both x6 and y6 are
half integers and z6 = ( 1

2 ,
1
2 ) if z ∈ [0, 1]2q .

We are now prepared to prove Lemma 4.4. We need a result from (e.g.) [9], which can
be stated:
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Lemma 4.6. The solution of a linear system with integral constant terms, whose coefficient
matrix is the transpose of a nonsingular signed-graph incidence matrix, is weakly half-
integral.

Proof. The way in which this is contained in [9] is explained in [1, p. 197].

Since M is the incidence matrix of a signed graph, and since the constant terms in
Equation (4.3), being twice the fixed values, are even integers, the a’s and b’s are integers
by Lemma 4.6. The remaining x’s and y’s are halves of sums or differences of a’s and b’s,
so they are weak half-integers. The exact formula is obtained by substituting Equation (4.3)
into Equation (4.2): [

x
y

]
= H(∓CU)T(M−1)T

[
c
d

]
. (4.4)

Theorem 1.1 is an immediate corollary of Lemma 4.4.

5 Open questions
5.1 Coefficient periods

We proved that γ6(n) is the first coefficient that depends on n, having period 2. We guess
that every coefficient after γ6(n) also has period 2.

5.2 Subspace structure

We have not been able to find a complete formula for all q. By our method, that would
need a general structural analysis of all subspaces, which is too complicated for now. We
propose the following problem: Give a complete description of all subspaces, for all q, in
terms of signed graphs. That is, we ask for the slope matroid (see [4, Section 7.3]). The
signed-graphic frame matroid G(Σ) ([13, Theorem 5.1], corrected and generalized in [15,
Theorem 2.1]), while simpler than the slope matroid, perhaps could help find a description
of the latter.

5.3 Similar two-move riders

The slope matroid for the bishop is simple compared to those for other riders. We wonder
if riders with two slopes that are related by negation (that is, the basic moves are symmet-
rical under reflection in an axis), or negation and inversion (that is, the basic moves are
perpendicular), may be amenable to an analysis that uses the bishops analysis as a guide.

5.4 Other two-move riders

We expect that finding formulas for any rider with only two basic moves is intrinsically eas-
ier than for riders with more than two and can be done for all such riders in a comprehensive
though complicated manner.
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Dictionary of notation
b(Σ) # of signed-graph components with no negative circle (p. 552)
c(Γ), c(Σ) # of components of a graph (p. 552)
c(Σ±) . . . . . . . . . . . . . . . . . . # of positive or negative cliques (p. 553)
d/c slope of a line or move (p. 551)
(c, d) coordinates of a move vector m (p. 551)
ci, di . . . . . . . . . . . . . . . . . . . fixation equation constants (p. 554)
e edge of a (signed) graph (p. 552)
eεij edge of a signed graph with sign ε and end nodes vi, vj (p. 554)
g(Σ) . . . . . . . . . . . . . . . . . . . . function on a signed graph (p. 553)
k, l indices in the clique graph (p. 555)
m = (c, d) basic move (p. 551)
n . . . . . . . . . . . . . . . . . . . . . . size of a square board
oB(q;n) # of nonattacking labelled configurations (p. 551)
p period of a quasipolynomial (p. 550)
q . . . . . . . . . . . . . . . . . . . . . . # of pieces on a board (p. 550)
q # of nodes in a (signed) graph (p. 552)
r, s indices of fixations (p. 556)
uB(q;n) . . . . . . . . . . . . . . . . # of nonattacking unlabelled configurations (p. 550)
v node in a signed graph (p. 552)
z = (x, y), zi = (xi, yi) piece positions (p. 551)
a, b . . . . . . . . . . . . . . . . . . . . clique vectors (p. 555)
c, d fixation vectors (p. 556)
x, y x, y coordinate vectors of a configuration (p. 555)
z = (z1, . . . , zq) . . . . . . . . a configuration in R2q (p. 554)
γi(n) coefficient of uB (p. 551)
ε sign of an edge (p. 554)
ξ . . . . . . . . . . . . . . . . . . . . . . cyclomatic number (p. 552)
σ sign function of the signed graph Σ (p. 552)
rk rank of the incidence matrix of a (signed) graph (p. 552)
Ak, Bl . . . . . . . . . . . . . . . . . positive, negative cliques (p. 552)
C(Σ) clique graph (p. 553)
CU = C(Σ(U)) clique graph (p. 555)
E . . . . . . . . . . . . . . . . . . . . . . edge set of a graph (p. 552)
G matroid on ground set E (p. 552)
Jz set of vertices zi in the configuration z such that zi is

integral (p. 556)
Kq . . . . . . . . . . . . . . . . . . . . . complete graph (p. 555)
M incidence matrix H(Ψz) (p. 556)
N node set of a graph (p. 552)
AB . . . . . . . . . . . . . . . . . . . . .move arrangement of bishops B (p. 551)
B board polygon [0, 1]q (p. 551)
H±ij bishops hyperplane (p. 550)
(P,A ) . . . . . . . . . . . . . . . . . inside-out polytope (p. 551)
S subarrangement (p. 554)
U subspace in the intersection lattice of an arrangement (p. 554)
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R . . . . . . . . . . . . . . . . . . . . . . real numbers
Z integers
B bishop (p. 551)
A(Σ),B(Σ) . . . . . . . . . . . . . sets of positive, negative cliques (p. 552)
Γ graph (p. 552)
H incidence matrix (read “Eta”) of a (signed) graph (p. 552)
Σ . . . . . . . . . . . . . . . . . . . . . . signed graph (p. 552)
Σ(U) signed graph of the bishops subspace U (p. 554)
Ψz subgraph for a vertex z (p. 556)
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Abstract

In this paper, we classify some reflexible edge-transitive orientable embeddings of com-
plete bipartite graphs. As a by-product, we classify groups Γ such that (i) Γ = XY for
some cyclic groups X = 〈x〉 and Y = 〈y〉 with X ∩ Y = {1Γ} and (ii) there exists an
automorphism of Γ which sends x and y to x−1 and y−1, respectively.

Keywords: Complete bipartite graphs, reflexible edge-transitive embedding.

Math. Subj. Class.: 05C10, 05C30

1 Preliminaries
A map is a 2-cell embedding of a graphG in a compact, connected surface. A map is called
orientable or nonorientable according to whether the supporting surface is orientable or
nonorientable. In this paper, we only consider orientable maps.

For a simple connected graph G, an arc of G is an ordered pair (u, v) of adjacent
vertices in G. The set of all arcs in G is denoted by D(G). An orientable mapM can be
described by a pair (G;R), where G is the underlying graph ofM and R is a permutation
of the arc set D(G) whose orbits coincide with the sets of arcs emanating from the same
vertex. The permutation R is called the rotation of the mapM.

For given two maps M1 = (G1;R1) and M2 = (G2;R2), a map isomorphism
φ : M1 →M2 is a graph isomorphism φ : G1 → G2 such that φR1(u, v) = R2φ(u, v) for
any arc (u, v) in G1. Furthermore ifM1 =M2 =M, φ is called a map automorphism of
M. The set of all map automorphisms ofM denoted by Aut(M) is a group under the com-
position operation, and it is called the automorphism group ofM. For a mapM = (G;R),

E-mail addresses: jinkwak@postech.ac.kr (Jin Ho Kwak), ysookwon@ynu.ac.kr (Young Soo Kwon)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/
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the group Aut(M) acts semi-regularly on the arc set D(G), so |Aut(M)| ≤ 2|E(G)|. If
this bound is attained, then Aut(M) acts regularly on the arc set, and the map is called a
regular map or a regular embedding. The mapM is said to be vertex-transitive or edge-
transitive if Aut(M) acts transitively on V (G) or E(G), respectively. For an orientable
embeddingM of a bipartite graphG, if the set of partite set preserving map automorphisms
acts transitively on E(G) then we callM an edge-transitive map or an edge-transitive em-
bedding satisfying the Property (P) in this paper. For a map M = (G;R), if M and
M−1 = (G;R−1) are isomorphic,M is called reflexible.

Classifying highly symmetric embeddings of graphs in a given class is an interesting
problem in topological graph theory. In recent years, there has been particular interest in the
regular embeddings of complete bipartite graphs Kn,n by several authors [1, 2, 4, 5, 6, 7,
8, 10]. The reflexible regular embeddings and self-Petrie dual regular embeddings of Kn,n

have been classified by the authors [7]. Recently, G. Jones has completed the classification
of regular embeddings of Kn,n [5] and the authors have classified nonorientable regular
embeddings of Kn,n [8]. In [3], Graver and Watkins classified edge-transitive maps on
closed surfaces into fourteen types. In this paper, we classify reflexible edge-transitive
embeddings of Km,n satisfying the Property (P) which correspond to types 1 or 2 among
14 types. The following theorem is the main result in this paper.

Theorem 1.1. For any integers

m = 2apa11 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 · · · p
b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime decompositions)

with gcd(m,n) = 2cpc11 · · · p
c`
` and a ≤ b, the number (up to isomorphism) of reflexible

edge-transitive embeddings of Km,n satisfying the Property (P) is 1 if both m and n are
odd; 2f (1 + pc11 ) · · · (1 + pc`` ) if exactly one of m and n is even, namely, only n is even;
A(a, b)2f+g+`(1 + pc11 ) · · · (1 + pc`` ) if both m and n are even, where

A(a, b) =



1 if (a, b) = (1, 1),

2 if (a, b) = (1, 2),

4 if (a, b) = (2, 2) or (1, k) with k ≥ 3,

10 if (a, b) = (2, 3),

12 if (a, b) = (2, k) with k ≥ 4,

28 if (a, b) = (3, 3),

40 if (a, b) = (3, 4),

36 if (a, b) = (3, k) with k ≥ 5,

20(1 + 2a−2) if a = b ≥ 4,

20 + 18 · 2a−2 if b− 1 = a ≥ 4,

20 + 16 · 2a−2 if b− 2 ≥ a ≥ 4.

Our paper is organized as follows. In the next section, we consider some relations be-
tween edge-transitive embeddings of Km,n satisfying the Property (P) and products of two
cyclic groups. In Section 3, we classify reflexible edge-transitive embeddings of Km,n sat-
isfying the Property (P) when at least one of m and n is odd. In Section 4, for even integers
m and n, the classification of reflexible edge-transitive embeddings of Km,n satisfying the
Property (P) is given. In the final section, we classify groups Γ satisfying the conditions:
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(i) Γ = XY for some cyclic groups X = 〈x〉 and Y = 〈y〉 with X ∩ Y = {1Γ} and

(ii) there exists an automorphism of Γ which sends x and y to x−1 and y−1.

2 (m,n)-bicyclic triples in Aut(Km,n)

Regular embeddings of the complete bipartite graphs Kn,n are related to groups Γ with
two generators satisfying some conditions [4]. Using this relation, G. Jones classify regu-
lar embeddings of Kn,n [5]. Similarly, we aim to find a relation between edge-transitive
embeddings of Km,n satisfying the Property (P) and groups with two generators satisfying
some conditions in this section.

In [4], G. Jones et al. showed that any finite group Γ is isomorphic to Aut(M) for some
regular embeddingM ofKn,n if and only if Γ has cyclic subgroupsX = 〈x〉 and Y = 〈y〉
of order n such that:

(i) Γ = XY

(ii) X ∩ Y = {1Γ} and

(iii) there is an automorphism α of Γ transposing x and y.

They call the triple (Γ, x, y) satisfying these conditions the n-isobicyclic triple. In this re-
lation, x and y correspond to rotations ofM around two fixed adjacent vertices u and v,
respectively. The automorphism α corresponds to the half-turn reversing the edge uv. For
two n-isobicyclic triples (Γ1, x1, y1) and (Γ2, x2, y2), two corresponding regular embed-
dings M1 and M2 are isomorphic if and only if there exists a group isomorphism from
Γ1 to Γ2 given by x1 7→ x2 and y1 7→ y2. Using this, one can show that the regular em-
beddingM induced by n-isobicyclic triple (Γ, x, y) is reflexible if and only if there exists
an automorphism β of Γ which sends x and y to x−1 and y−1, respectively. (For more
information, the reader is referred to [4].)

Note that one can define an embedding of Kn,n by using the first and second con-
ditions of n-isobicyclic triple, and the induced map is edge-transitive map satisfying the
Property (P) even though the third condition of n-isobicyclic triple is not satisfied. Con-
versely, any edge transitive embedding of Kn,n satisfying the Property (P) is isomorphic
to some induced map by such a triple (Γ, x, y). One can show that for different positive in-
tegers m and n, an edge-transitive embedding of Km,n satisfying the Property (P) can also
be represented by a similar triple. For a group Γ containing cyclic subgroups X = 〈x〉 of
order n and Y = 〈y〉 of order m, the triple (Γ, x, y) is called (m,n)-bicyclic if it satisfies:

(i) Γ = XY and

(ii) X ∩ Y = {1Γ}.

For any (m,n)-bicyclic triple (Γ, x, y), one can define an embedding of Km,n by a similar
way to define an embedding of Kn,n using n-isobicyclic triple. We denote this embedding
by M(Γ, x, y). One can see that M(Γ, x, y) is an edge-transitive embedding of Km,n

satisfying the Property (P). Furthermore the following result holds.

Lemma 2.1 ([9]). Let m,n be two positive integers (not necessarily distinct).

(1) Any edge-transitive embeddingM ofKm,n satisfying the Property (P) is isomorphic
toM(Γ, x, y) for some (m,n)-bicyclic triple (Γ, x, y).
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(2) For two (m,n)-bicyclic triples (Γ1, x1, y1) and (Γ2, x2, y2), two edge-transitive em-
beddingsM(Γ1, x1, y1) andM(Γ2, x2, y2) are isomorphic if and only if there exists
a group isomorphism from Γ1 to Γ2 given by x1 7→ x2 and y1 7→ y2.

For any (m,n)-bicyclic triple (Γ, x, y), there exists a subgroup H of the automorphism
group Aut(Km,n) such that:

(i) H is isomorphic to Γ and

(ii) x and y in Γ correspond to elements in H which cyclically permute vertices in the
partite sets of size n and m, respectively.

Hence it suffices to deal with such (m,n)-bicyclic triples in Aut(Km,n) to classify edge-
transitive embeddings of Km,n satisfying the Property (P).

For any positive integer m, denote the set {0, 1, . . . ,m− 1} by [m]. Let

V = {0, 1, . . . , (m− 1)} ∪ {0′, 1′, . . . , (n− 1)′} = [m] ∪ [n]′

be the vertex set of Km,n as partite sets, and let

D = {(i, j′), (j′, i) : 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1}

be the arc set, where (i, j′) is the arc emanating from i to j′ and (j′, i) denotes its inverse.
We denote the symmetric group on [m] and [n]′ by S and S′, respectively. Let S0 and S′0
be their stabilizers of 0 and 0′, respectively. Note that Aut(Km,n) is isomorphic to S × S′
when m 6= n; S o Z2 when m = n. We identify integers 0, 1, 2, . . . with their residue
classes modulo m or n according to the context.

Let (Γ, x, y) be an (m,n)-bicyclic triple such that Γ is a subgroup of Aut(Km,n). Now
there exists an automorphism φ ∈ Aut(Km,n) such that

xφ = φ−1xφ = α(0′ 1′ · · · (n− 1)′) and yφ = φ−1yφ = β(0 1 · · · m− 1),

where α ∈ S0 and β ∈ S′0. For any α ∈ S0 and β ∈ S′0, let

xα = α(0′ 1′ · · · (n− 1)′) and yβ = β(0 1 · · · m− 1).

From now on, we only consider triples (〈xα, yβ〉, xα, yβ) as candidates of (m,n)-bicyclic
triples.

Lemma 2.2 ([9]). For any α ∈ S0 and β ∈ S′0,

1. the group 〈xα, yβ〉 acts transitively on the edge set of Km,n and

2. the triple (〈xα, yβ〉 , xα, yβ) is (m,n)-bicyclic if and only if | 〈xα, yβ〉 | = mn.

By Lemma 2.2, we need to characterize α ∈ S0 and β ∈ S′0 satisfying | 〈xα, yβ〉 | =
mn to classify edge-transitive embeddings of Km,n satisfying the Property (P). To do this,
we denote

ETm,n = {(α, β) : α ∈ S0, β ∈ S′0 and | 〈xα, yβ〉 | = mn}.

Note that for any (α, β) ∈ ETm,n, (〈xα, yβ〉 , xα, yβ) is an (m,n)-bicyclic triple and
henceM(〈xα, yβ〉 , xα, yβ) is an edge-transitive embedding of Km,n satisfying the Prop-
erty (P). Conversely for any edge-transitive embedding M of Km,n satisfying the Prop-
erty (P), there exists (α, β) ∈ ETm,n such thatM is isomorphic toM(〈xα, yβ〉 , xα, yβ).
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Remark 2.3.

(1) For any (α, β) ∈ ETm,n,

〈xα, yβ〉 = {xiαy
j
β | i ∈ [n], j ∈ [m]} = {yjβx

i
α | i ∈ [n], j ∈ [m]}.

Hence in many cases, if α satisfies some properties then β also satisfies the same
properties and vice versa.

(2) Note that for different positive integers m and n and for an orientable embeddingM
ofKm,n, any automorphism ofM is partite set preserving. Letm = n be odd and let
M be an orientable edge-transitive embedding of Kn,n. If a subgroup Γ of Aut(M)
acts regularly on the edge set then |Γ| = m2 is odd and hence there exists no partite
set reversing element in Γ. Hence for odd n, every edge-transitive embedding of
Kn,n is an edge-transitive embedding of Kn,n satisfying the Property (P). On the
other hand, for even n, we do not know whether the above statement is true or not.

The next lemma shows that for different (α1, β1), (α2, β2) ∈ ETm,n, two induced
edge-transitive embeddings are non-isomorphic.

Lemma 2.4 ([9]). For any (α1, β1), (α2, β2) ∈ ETm,n, the induced edge-transitive em-
beddings M(〈xα1 , yβ1〉 , xα1 , yβ1) and M(〈xα2 , yβ2〉 , xα2 , yβ2) are isomorphic if and
only if (α1, β1) = (α2, β2).

By Lemma 2.4, distinct pairs in ETm,n give non-isomorphic edge-transitive embed-
dings of Km,n and the number of edge-transitive embeddings of Km,n satisfying the Prop-
erty (P) equals to the cardinality |ETm,n |. But for distinct pairs (α1, β1), (α2, β2) ∈
ETm,n, two groups 〈xα1 , yβ1〉 and 〈xα2 , yβ2〉 may possibly be isomorphic. We do not
know a necessary and sufficient condition for 〈xα1 , yβ1〉 ' 〈xα2 , yβ2〉. So we propose the
following problem.

Problem 2.5. For any positive integers m and n and for any (α1, β1), (α2, β2) ∈ ETm,n,
find a necessary and sufficient condition for 〈xα1

, yβ1
〉 ' 〈xα2

, yβ2
〉.

From now on, we aim to characterize the set ETm,n. Note that for any (α, β) ∈ ETm,n,
the stabilizers 〈xα, yβ〉0 and 〈xα, yβ〉0′ are cyclic groups 〈xα〉 of order n and 〈yβ〉 of order
m, respectively.

Lemma 2.6. For any (α, β) ∈ ETm,n, 〈α〉 and 〈β〉 are cyclic groups of order
|{αi(1) : i ∈ [n]}| and |{βi(1′) : i ∈ [m]}|, the lengths of the orbit containing 1 and
1′, respectively. Furthermore they are divisors of n and m, respectively.

Proof. Let d1 = |{αi(1) : i ∈ [n]}| and d2 = |{βi(1′) : i ∈ [m]}|. Now d1 and d2 are
divisors of the orders |〈xα〉| = n and |〈yβ〉| = m, respectively. Note that

αd1(1) = 1 and y−1
β xd1α yβ(0) = 0,

which implies that, as a conjugate of xd1α , y−1
β xd1α yβ belongs to the vertex stabilizer

〈xα, yβ〉0 = 〈xα〉. Since d1 is a divisor of n, y−1
β xd1α yβ = xrd1α for some r ∈ [n] such

that gcd(r, nd1 ) = 1, where gcd(r, nd1 ) is the greatest common divisor of r and n
d1

. Now,
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suppose to the contrary that |〈α〉| 6= d1. Then there exists k ∈ [m] such that αd1(k) 6= k.
Let q be the largest element in [m] such that αd1(q) 6= q. On the other hand,

αrd1(q) = xrd1α (q) = y−1
β xd1α yβ(q) = y−1

β xd1α (q + 1) = y−1
β (q + 1) = q,

contradictory to αrd1(q) 6= q. Therefore |〈α〉| = d1. Similarly, one can show that
|〈β〉| = d2.

For any (α, β) ∈ ETm,n, it follows from Lemma 2.6 that the length of each cycle in α
(β, resp.) is a divisor of the length d1 (d2, resp.) of the cycle containing 1 (1′, resp.).

From now on we denote i′, [n]′ and β(i′) simply by i, [n] and β(i) for any i′ ∈ [n]′,
respectively. The following lemma is related to a characterization of the set ETm,n.

Lemma 2.7 ([9]). Let α ∈ S0 and β ∈ S′0. Then (α, β) ∈ ETm,n if and only if for each
i ∈ [n], there exist a(i) ∈ [n] and b(i) ∈ [m] such that αi(k) = αa(i)(k + b(i))− 1 for all
k ∈ [m] and β(t + i) = βb(i)(t) + a(i) for all t ∈ [n]. In this case, we have a(i) = β(i)
and b(i) = −α−i(−1).

Note that the equations in Lemma 2.7 is equivalent to yβxiα = x
a(i)
α y

b(i)
β . The next

lemma gives a characterization of (α, β) ∈ ETm,n whose induced edge-transitive embed-
ding contains a partite set preserving reflection.

Lemma 2.8 ([9]). For any (α, β) ∈ ETm,n, M(〈xα, yβ〉 , xα, yβ) contains a partite set
preserving reflection if and only if α−1(−k) = −α(k) for any k ∈ [m] and β−1(−t) =
−β(t) for any t ∈ [n].

For our convenience, we denote

RETm,n = {(α, β) ∈ ETm,n : α−1(−k) = −α(k) for any k ∈ [m] and

β−1(−t) = −β(t) for any t ∈ [n]}.

We call an edge-transitive embedding of Km,n satisfying the Property (P) which also con-
tains a partite set preserving reflection a reflexible edge-transitive embedding of Km,n sat-
isfying the Property (P). By Lemmas 2.4 and 2.8, the number (up to isomorphism) of
reflexible edge-transitive embeddings of Km,n satisfying the Property (P) equals to the
cardinality |RETm,n |. Note that if α ∈ S and β ∈ S′ are the identity permutations,
then (α, β) belongs to RETm,n by Lemma 2.8. So for any two positive integers m and
n, there exists at least one reflexible edge-transitive embeddings of Km,n satisfying the
Property (P).

By Lemma 2.8, for any (α, β) ∈ RETm,n and for any j ∈ [m] and i ∈ [n]

α−i(−j) = α−i+1(−α(j)) = α−i+2(−α2(j)) = · · · = α−1(−αi−1(j)) = −αi(j)

and similarly β−j(−i) = −βj(i).

Lemma 2.9. For any (α, β) ∈ RETm,n and for any j ∈ [m] and i ∈ [n],

yjβx
i
α = xβ

j(i)
α y

αi(j)
β .
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Proof. Since 〈xα, yβ〉 = 〈xα〉〈yβ〉, for any j ∈ [m] and i ∈ [n], there exist a(i, j) ∈ [n]

and b(i, j) ∈ [m] such that yjβx
i
α = x

a(i,j)
α y

b(i,j)
β . By taking their values of k ∈ [m] and

t ∈ [n], we have

αi(k) + j = αa(i,j)(k + b(i, j)) and βj(t+ i) = βb(i,j)(t) + a(i, j).

Inserting k = −b(i, j) and t = 0 to the equation αi(k) + j = αa(i,j)(k + b(i, j)) and
βj(t+ i) = βb(i,j)(t) + a(i, j), respectively, we have

b(i, j) = −α−i(−j) = αi(j) and a(i, j) = βj(i).

Lemma 2.10. Let (α, β) ∈ RETm,n and let d1 = |〈α〉| and d2 = |〈β〉|. It holds that
α(k) ≡ −k (mod d2) for any k ∈ [m] and β(t) ≡ −t (mod d1) for any t ∈ [n].

Proof. By Lemma 2.7, for each i ∈ [n], there exist a(i) ∈ [n] and b(i) ∈ [m] such that
αi(k) = αa(i)(k + b(i)) − 1 for all k ∈ [m] and β(t + i) = βb(i)(t) + a(i) for all
t ∈ [n]. Furthermore a(i) = β(i) and b(i) = −α−i(−1) = αi(1). Inserting k = 0 to
the equation αi(k) = αa(i)(k + b(i))− 1, we have b(i) = α−a(i)(1) = α−β(i)(1). Hence
αi(1) = α−β(i)(1) for any i ∈ [n]. Since the order of α equals to the length of the orbit
containing 1 by Lemma 2.6, β(i) ≡ −i (mod d1). By symmetry between α and β, it also
holds that α(k) ≡ −k (mod d2) for any k ∈ [m].

By Lemmas 2.7 and 2.10, b(i) = −α−i(−1) = αi(1) ≡ (−1)i (mod d2). Hence for
any (α, β) ∈ RETm,n with d1 = |〈α〉| and d2 = |〈β〉|, we have

β(t+ i) = βb(i)(t) + a(i) = βα
i(1)(t) + β(i) = β(−1)i(t) + β(i)

for all i, t ∈ [n]. By symmetry, it also holds α(k+j) = α(−1)j (k)+α(j) for all j, k ∈ [m].

Lemma 2.11. Let (α, β) ∈ RETm,n and let d1 = |〈α〉| and d2 = |〈β〉|. Now

(1) if one of d1 and d2 is 1, say d1 = 1, then either d2 = 1 or (m is even and d2 = 2);

(2) if one of d1 and d2 is at least 3, say d1 ≥ 3, then both m and d2 are even;

(3) if m(n, resp.) is even then α (β, resp.) is parity preserving. Furthermore there exists
s, t ∈ [m] such that α(2k) = 2kt, α(2k + 1) = 2kt+ 2s+ 1 and 2t2 = 2;

(4) if both d1 and d2 are at least 3 then they are divisors of gcd(m,n).

Proof. (1): Let d1 = 1 and d2 ≥ 2. By Lemma 2.10, α(1) ≡ −1 (mod d2). Since α is
the identity, 1 ≡ −1 (mod d2). By the assumption d2 ≥ 2, d2 = 2. By Lemma 2.6, d2 is
a divisor of m, and hence m is even.

(2): Let d1 ≥ 3. By lemma 2.10, β(k) ≡ −k (mod d1), which implies that the order
d2 of β is even. Since d2 is a divisor of m, m is also even.

(3): Let m be even. If d1 = 1 then α is the identity and hence α is parity preserving. If
d1 = 2 then α−1 = α and

α(k) = α(k − 1 + 1) = α(k − 1) + α(1) = α(k − 2) + 2α(1) = · · · = kα(1)

for all k ∈ [m]. Since α2(1) = α(α(1)) = (α(1))2 = 1 and m is even, α(1) should be
odd. Hence α is parity preserving. Assume that d1 ≥ 3. Then, d2 is even by (2). Since
α(k) ≡ −k (mod d2), α is parity preserving.
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For any 2k ∈ [m],

α(2k) = α(2(k − 1)) + α(2) = α(2(k − 2)) + 2α(2) = · · · = kα(2) and
α(2k + 1) = α(2(k − 1) + 1) + α(2) = · · · = α(1) + kα(2).

Let α(1) = 2s + 1 and α(2) = 2t. Now α(2k) = kα(2) = 2kt and α(2k + 1) =
kα(2) + α(1) = 2kt + 2s + 1. Note that for any 2k ∈ [m], α(1) + α(2k) = α(2k +
1) = α−1(2k) + α(1). Hence α−1(2k) = α(2k), namely, α2(2k) = 2k. So we have
α2(2) = α(2t) = 2t2 = 2.

(4): Let d1, d2 ≥ 3. Now all of d1, d2,m and n are even by (2). Hence there exist
s, t ∈ [m] such that α(2k) = 2kt, α(2k+ 1) = 2kt+ 2s+ 1 and 2t2 = 2 by (3). Since d1

is even and

α2i(1) = α2i−1(2s+ 1) = α2i−2(2st+ 2s+ 1) = · · · = 2is(t+ 1) + 1,

d1 is the smallest positive integer such that d1s(t+1) ≡ 0 (mod m) by Lemma 2.6. Hence
d1 is a divisor of m and consequently a divisor of gcd(m,n). Similarly d2 is a divisor of
gcd(m,n).

3 At least one of m and n is odd
In this section, we classify reflexible edge-transitive embeddings of Km,n satisfying the
Property (P) when at least one of m and n is odd. Note that when at least one of m and n
is odd, any orientable edge-transitive embedding of Km,n is an edge-transitive embedding
satisfying the Property (P). In [9], the second author counted |RETm,n | when both m and
n are odd as follows.

Theorem 3.1 ([9]). If both m and n are odd then |RETm,n | = 1, namely, there exists
only one reflexible edge-transitive embedding of Km,n satisfying the Property (P) up to
isomorphism.

In the next theorem, we count |RETm,n | when exactly one of m and n is odd. By
symmetry, we assume that m is odd.

Theorem 3.2. Let

m = pa11 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f (prime factorization)

be odd and
n = 2bpb11 · · · p

b`
` q

b`+1

`+1 · · · q
b`+g

`+g (prime factorization)

be even. Let gcd(m,n) = pc11 · · · p
c`
` with ci ≥ 1 for any i = 1, . . . , `. Now

|RETm,n | = 2f (1 + pc11 ) · · · (1 + pc`` ),

namely, there exist 2f (1 + pc11 ) · · · (1 + pc`` ) reflexible edge-transitive embeddings of Km,n

satisfying the Property (P) up to isomorphism.

Proof. Let (α, β) ∈ RETm,n and let d1 = |〈α〉| and d2 = |〈β〉|. Suppose that d1 ≥ 3.
Then both d2 and m are even by Lemma 2.11(2), which is a contradiction. Hence d1 = 1
or 2. Furthermore for any k ∈ [m],

α(k) = α−1(k − 1) + α(1) = α(k − 1) + α(1) = · · · = kα(1).
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Let α(1) = r. Now α(k) = rk and α2(1) = α(r) = r2 ≡ 1 (mod m).
Since n is even, β is parity preserving and there exists s, t ∈ [n] such that β(2k) = 2kt,

β(2k + 1) = 2kt + 2s + 1 and 2t2 = 2 for any 2k ∈ [n] by Lemma 2.11(3). If 2t 6= 2
then the length of the orbit containing 2 is 2 and hence d2 is even. But it can not happen
because m is odd. Hence for any 2k ∈ [n], β(2k) = 2k, β(2k + 1) = 2k + 2s+ 1 and for
any i ∈ [m],

βi(1) = βi−1(2s+ 1) = βi−2(2s+ 2s+ 1) = · · · = 2is+ 1.

Therefore d2 is the smallest positive integer such that 2d2s ≡ 0 (mod n), which implies
that d2 is a divisor of n, and hence d2 is a divisor of gcd(m,n) = pc11 · · · p

c`
` .

If r ≡ 1 (mod paii ) for some i = 1, 2, . . . , `, then the fact α(1) = r ≡ −1 (mod d2)

implies that pi can not be a divisor of d2. Hence pbii should divide s, namely, s ≡ 0

(mod pbii ). If r ≡ −1 (mod p
aj
j ) for some j = 1, 2, . . . , `, then s ≡ x ·pbj−cjj (mod p

bj
j )

for some x with 0 ≤ x ≤ p
cj
j − 1 because d2 is a divisor of gcd(m,n). Therefore, for any

j = 1, . . . , `, the pair (r (mod p
aj
j ), s (mod p

bj
j )) is (1, 0) or (−1, x · pbj−cjj ) for some x

with 0 ≤ x ≤ pcjj − 1.
Because d2 | gcd(m,n), we have 2s ≡ 0 (mod 2b) and for any k = 1, 2, . . . , g,

s ≡ 0 (mod q
b`+k

`+k ). Since r2 ≡ 1 (mod m), r ≡ ±1 (mod p
a`+j

`+j ) for any j =
1, 2, . . . f .

Conversely for any r ∈ [m] and s ∈ [n] satisfying the conditions

(i) for any j = 1, . . . , `, the pair (r (mod p
aj
j )), s (mod p

bj
j )) is (1, 0) or

(−1, x · pbj−cjj ) for some integer x with 0 ≤ x ≤ pcjj − 1,

(ii) 2s ≡ 0 (mod 2bq
b`+1

`+1 · · · q
b`+g

`+g ) and

(iii) for any j = 1, 2, . . . f , r ≡ ±1 (mod p
a`+j

`+j ),

define α(k) = rk for any k ∈ [m] and β(2t) = 2t, β(2t + 1) = 2t + 2s + 1 for any
2t ∈ [n]. Note that α ∈ S0 and β ∈ S′0. Let d′1 = |〈α〉| and d′2 = |〈β〉|. Now d′1 = 1 or
2 depending on the value of r and d′2 is the smallest positive integer satisfying 2d′2s ≡ 0
(mod n). Note that d′2 divides gcd(m,n) and r ≡ −1 (mod d′2). For any i ∈ [n], let
a(i) = β(i) and b(i) = αi(1) = ri. For the first case, let i be even. Now a(i) = β(i) = i
and b(i) = αi(1) = 1. For any 2t ∈ [n],

β(2t+ i) = 2t+ i and

βb(i)(2t) + a(i) = β(2t) + β(i) = 2t+ i

and

β(2t+ 1 + i) = 2t+ i+ 2s+ 1 and

βb(i)(2t+ 1) + a(i) = β(2t+ 1) + β(i) = 2t+ 2s+ 1 + i.

Hence β(t+ i) = βb(i)(t) + a(i) for any t ∈ [n]. For any k ∈ [m],

αi(k) = k and

αa(i)(k + b(i))− 1 = k.
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Hence αi(k) = αa(i)(k + b(x))− 1 for any k ∈ [m].
For the remaining case, let i be odd. Now a(i) = β(i) = i + 2s and b(i) = αi(1) =

r ≡ −1 (mod d′2). For any 2t ∈ [n],

β(2t+ i) = 2t+ i+ 2s and

βb(i)(2t) + a(i) = β−1(2t) + β(i) = 2t+ i+ 2s

and

β(2t+ 1 + i) = 2t+ i+ 1 and

βb(i)(2t+ 1) + a(i) = β−1(2t+ 1) + β(i) = 2t+ 1− 2s+ i+ 2s = 2k + i+ 1.

Hence β(t+ i) = βb(i)(t) + a(i) for any t ∈ [n]. For any k ∈ [m],

αi(k) = rk and

αa(i)(k + b(i))− 1 = α(k + r)− 1 = rk + r2 − 1 = rk.

Hence αi(k) = αa(i)(k + b(i)) − 1 for any k ∈ [m]. By Lemma 2.7, (α, β) ∈ ETm,n.
Furthermore one can easily check that α−1(−k) = −α(k) for any k ∈ [m] and
β−1(−t) = −β(t) for any t ∈ [n]. Hence (α, β) ∈ RETm,n by Lemma 2.8.

Therefore
|RETm,n | = 2f (1 + pc11 ) · · · (1 + pc`` ).

4 Both m and n are even
In this section, we classify reflexible edge-transitive embeddings of Km,n satisfying the
Property (P) when both m and n are even, and consequently prove Theorem 1.1. For the
classification, we give the following lemma.

Lemma 4.1. Let m and n be even and let α ∈ S0 and β ∈ S′0 with d1 = |〈α〉| and
d2 = |〈β〉|. Now (α, β) ∈ RETm,n if and only if α and β are defined by

α(2k) = 2kt1 and

α(2k + 1) = 2kt1 + 2s1 + 1

for any 2k ∈ [m] and

β(2k) = 2kt2 and

β(2k + 1) = 2kt2 + 2s2 + 1

for any 2k ∈ [n] for some quadruple (s1, t1; s2, t2) ∈ [m2 ]× [m2 ]× [n2 ]× [n2 ] satisfying the
following conditions;

(i) d1 | gcd(m,n) and d2 | gcd(m,n);

(ii) 2t21 ≡ 2 (mod m) and 2t22 ≡ 2 (mod n);

(iii) 2(s1 + 1) ≡ 0 (mod d2), 2(t1 + 1) ≡ 0 (mod d2),
2(s2 + 1) ≡ 0 (mod d1), and 2(t2 + 1) ≡ 0 (mod d1);

(iv) 2(s1 + 1)(t1 − 1) ≡ 0 (mod m) and 2(s2 + 1)(t2 − 1) ≡ 0 (mod n).
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Proof. (⇐): Assume that 2t1 = 2, namely, t1 = 1. Then α(2k) = 2k and α(2k + 1) =
2k+2s1 +1 for any 2k ∈ [m]. Since for any i ∈ [n], αi(2k+1) = 2k+2is1 +1, d1 is the
smallest positive integer such that 2d1s1 ≡ 0 (mod m). Now assume that 2t1 6= 2. Then
d1 should be even because α2(2) = 2t21 = 2. Since for any 2i ∈ [n] and for any 2k ∈ [m],
α2i(2k + 1) = 2k + 2is1(t1 + 1) + 1, d1 is the smallest positive even integer such that
d1s1(t1 +1) ≡ 0 (mod m). Similarly one can show that d2 is the smallest positive integer
such that 2d2s2 ≡ 0 (mod n) if t2 = 1; and the smallest positive even integer such that
d2s2(t2 + 1) ≡ 0 (mod n) if t2 6= 1.

For any i ∈ [n], let a(i) = β(i) and b(i) = αi(1). For the first case, let i be even. Then
a(i) = β(i) = it2 ≡ −i (mod d1) and b(i) = αi(1) = is1(t1 + 1) + 1 ≡ 1 (mod d2).
For any 2k ∈ [n],

β(2k + i) = 2kt2 + it2 and

βb(i)(2k) + a(i) = β(2k) + β(i) = 2kt2 + it2

and

β(2k + 1 + i) = 2kt2 + it2 + 2s2 + 1 and

βb(i)(2k + 1) + a(i) = β(2k + 1) + β(i) = 2kt2 + 2s2 + 1 + it2.

Hence β(k + i) = βb(i)(k) + a(i) for any k ∈ [n]. For any 2k ∈ [m],

αi(2k) = 2k and

αa(i)(2k + b(i))− 1 = α−i(2k + is1(t1 + 1) + 1)− 1

= (2k + is1(t1 + 1)− is1(t1 + 1) + 1)− 1 = 2k

and

αi(2k + 1) = 2k + is1(t1 + 1) + 1, and

αa(i)(2k + 1 + b(i))− 1 = α−i(2k + is1(t1 + 1) + 2)− 1

= (2k + is1(t1 + 1) + 2)− 1 = 2k + is1(t1 + 1) + 1.

Hence αi(k) = αa(i)(k + b(i))− 1 for any k ∈ [m].
For the remaining case, let i be odd. Now a(i) = β(i) = (i − 1)t2 + 2s2 + 1 ≡ −i

(mod d1) and b(i) = αi(1) = (i − 1)s1(t1 + 1) + 2s1 + 1 ≡ −1 (mod d2). For any
2k ∈ [n],

β(2k + i) = 2kt2 + (i− 1)t2 + 2s2 + 1 and

βb(i)(2k) + a(i) = β−1(2k) + β(i) = 2kt2 + (i− 1)t2 + 2s2 + 1

and

β(2k + 1 + i) = (2k + i+ 1)t2 and

βb(i)(2k + 1) + a(i) = β−1(2k + 1) + β(i)

= (2kt2 − 2s2t2 + 1) + (i− 1)t2 + 2s2 + 1

= (2k + i+ 1)t2 − 2(s2 + 1)(t2 − 1) = (2k + i+ 1)t2.
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Hence β(k + i) = βb(i)(k) + a(i) for any k ∈ [n]. For any 2k ∈ [m],

αi(2k) = 2kt1 and

αa(i)(2k + b(i))− 1 = α−i(2k + (i− 1)s1(t1 + 1) + 2s1 + 1)− 1

= (2k + (i− 1)s1(t1 + 1) + 2s1)t1 − (i+ 1)s1(t1 + 1) + 2s1

= 2kt1 − 2s1(t1 + 1) + 2s1t1 + 2s1 = 2kt1

and

αi(2k + 1) = 2kt1 + (i− 1)s1(t1 + 1) + 2s1 + 1 and

αa(i)(2k + 1 + b(i))− 1 = α−i(2k + (i− 1)s1(t1 + 1) + 2s1 + 2)− 1

= (2k + (i− 1)s1(t1 + 1) + 2s1 + 2)t1 − 1

= 2kt1 + (i− 1)s1(t1 + 1) + 2s1 + 1 + 2(s1 + 1)(t1 − 1)

= 2kt1 + (i− 1)s1(t1 + 1) + 2s1 + 1.

Hence αi(k) = αa(i)(k + b(i)) − 1 for any k ∈ [m]. By Lemma 2.7, (α, β) ∈ ETm,n.
Furthermore one can easily check that α−1(−k) = −α(k) for any k ∈ [m] and β−1(−k) =
−β(k) for any k ∈ [n]. Hence (α, β) ∈ RETm,n by Lemma 2.8.

(⇒): Since m and n are even, both α and β are parity preserving. For any 2k ∈ [m],

α(2k) = α(2(k − 1)) + α(2)

= α(2(k − 2)) + 2α(2) = · · · = kα(2) and
α(2k + 1) = α(2(k − 1) + 1) + α(2)

= α(2(k − 2) + 1) + 2α(2) = · · · = α(1) + kα(2).

Let α(1) = 2s1 + 1 and α(2) = 2t1 for some s1, t1 ∈ [m2 ]. Then α(2k) = 2kt1 and
α(2k+1) = 2kt1 +2s1 +1 for any 2k ∈ [m]. Note that for any 2k ∈ [m], α(1)+α(2k) =
α(2k+ 1) = α−1(2k) +α(1). Hence α−1(2k) = α(2k), namely, α2(2k) = 2k. It implies
that α2(2) = α(2t1) = 2t21 ≡ 2 (mod m). Assume that 2t1 = 2, namely, t1 = 1. Then
by Lemma 2.6, the order |〈α〉| is the smallest positive integer d1 such that

αd1(1) = αd1−1(2s1 + 1) = αd1−2(2s1 + 2s1 + 1) = · · · = 2d1s1 + 1 ≡ 1.

Now assume that 2t1 6= 2. Then the order |〈α〉| is even and it is the smallest positive even
integer d1 such that

αd1(1) = αd1−1(2s1 + 1) = αd1−2(2s1t1 + 2s1 + 1) = αd1−3(2s1t1 + 4s1 + 1)

= αd1−4(4s1t1 + 4s1 + 1) = · · · = d1s1(t1 + 1) + 1 ≡ 1.

Hence d1 is a divisor of m and consequently a divisor of gcd(m,n).
By a similar reason, there exist s2, t2 ∈ [n2 ] such that β(2k) = 2kt2 and β(2k + 1) =

2kt2 + 2s2 + 1 for any 2k ∈ [n]. Furthermore 2t22 ≡ 2 (mod n) and d2 is a divisor of
gcd(m,n). By Lemma 2.10, α(1) = 2s1 + 1 ≡ −1 (mod d2), namely, 2(s1 + 1) ≡ 0
(mod d2) and α(2) = 2t1 ≡ −2 (mod d2), namely, 2(t1 + 1) ≡ 0 (mod d2). Similarly
it holds that 2(s2 + 1) ≡ 2(t2 + 1) ≡ 0 (mod d1). Note that

2t1 = α(2) = α−1(1) + α(1) = (−2s1t1 + 1) + 2s1 + 1.

Hence 2(s1+1)(t1−1) ≡ 0 (mod m). By a similar reason, it holds that 2(s2+1)(t2−1) ≡
0 (mod n).
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For even m and n, let Q(m,n) be the set of quadruples (s1, t1; s2, t2) ∈ [n2 ] × [n2 ] ×
[m2 ]× [m2 ] satisfying the conditions in Lemma 4.1. By Lemma 4.1, the classification of re-
flexible edge-transitive embeddings ofKm,n satisfying the Property (P) is equivalent to the
classification of Q(m,n), and the number |RETm,n | equals to the cardinality |Q(m,n)|.

In this section, let

m = 2apa11 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 · · · p
b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime decompositions)

and let gcd(m,n) = 2cpc11 · · · p
c`
` with ci ≥ 1 for any i = 1, . . . , `. Without any loss of

generality, assume that a ≤ b, namely, a = c. By Chinese Remainder Theorem, it suffices
to consider quadruples (s1, t1; s2, t2) modulo prime powers dividingm and n, respectively.
So we have the following lemma.

Lemma 4.2. For a quadruple (s1, t1; s2, t2) ∈ [n2 ] × [n2 ] × [m2 ] × [m2 ], (s1, t1; s2, t2)
belongs to Q(m,n) if and only if:

(1) for i = 1, . . . , `, (s1 (mod paii ), t1 (mod paii ); s2 (mod pbii ), t2 (mod pbii )) is one
of (−1,−1;−1,−1), (−1,−1; y · pbi−cii , 1), (x · pai−cii , 1;−1,−1) and (0, 1; 0, 1),
where x, y = 0, 1, . . . , pcii − 1;

(2) for any j = 1, 2, . . . , f , (s1 (mod p
a`+j

`+j ), t1 (mod p
a`+j

`+j )) is (0, 1) or (−1,−1);

(3) for any k = 1, 2, . . . , g, (s2 (mod q
b`+k

`+k ), t2 (mod q
b`+k

`+k )) is (0, 1) or (−1,−1);

(4) (s1 (mod 2a), t1 (mod 2a); s2 (mod 2b), t2 (mod 2b)) belongs to Q(2a, 2b).

Proof. Assume that (s1, t1; s2, t2) belongs toQ(m,n). Then t21 ≡ 1 (mod m
2 ) and t22 ≡ 1

(mod n
2 ).

(1): First let us consider the quadruple modulo paii and pbii for i = 1, . . . , `. Note that
t1 ≡ ±1 (mod paii ) and t2 ≡ ±1 (mod pbii ).

If t1 ≡ −1 (mod paii ), then s1 should be −1 modulo paii to satisfy

2(s1 + 1)(t1 − 1) ≡ 0 (mod paii ).

By similar reason, if t2 ≡ −1 (mod pbii ), then s2 ≡ −1 (mod pbii ).
Let (s1, t1) ≡ (−1,−1) (mod paii ). Since d1 is the smallest positive even integer

satisfying d1s1(t1 + 1) ≡ 0 (mod m), pi does not divide d1. If t2 ≡ −1 (mod pbii ) then
s2 should be −1 modulo pbii . If t2 ≡ 1 (mod pbii ), then s2 ≡ y · pbi−cii (mod pbii ) for
some y = 0, 1, . . . , pcii − 1 because d2 | gcd(m,n). By a similar reason, one can say that
if (s2, t2) ≡ (−1,−1) (mod pbii ), then (s1, t1) ≡ (−1,−1) or (x · pai−cii , 1) (mod paii )
for some x = 0, 1, . . . , pcii − 1.

Let (s1, t1) ≡ (0, 1) (mod paii ). By the condition (iii) in Lemma 4.1, pi does not
divide d2. Note that if t2 = 1 then d2 is the smallest positive integer satisfying 2d2s2 ≡ 0
(mod n), and if t2 6= 1 then d2 is the smallest positive even integer such that
d2s2(t2 + 1) ≡ 0 (mod n). Hence s2 = 0 or t2 = −1 modulo pbii , which implies
that (s2, t2) ≡ (0, 1) or (−1,−1) (mod pbii ).

Let t1 ≡ 1 (mod paii ) and s1 6= 0 (mod paii ). One can see that pi divides d1. By the
condition (iii) in Lemma 4.1, t2 ≡ −1 (mod pbii ) and s2 ≡ −1 (mod pbii ).
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Therefore

(s1 (mod paii ), t1 (mod paii ); s2 (mod pbii ), t2 (mod pbii )) =

(−1,−1;−1,−1), (−1,−1; y · pbi−cii , 1), (x · pai−cii , 1;−1,−1) or (0, 1; 0, 1),

where x, y = 0, 1, . . . , pcii − 1.
(2): For any j = 1, 2, . . . , f , t1 ≡ ±1 (mod p

a`+j

`+j ). If t1 ≡ 1 (mod p
a`+j

`+j ) then
s1 ≡ 0 (mod p

a`+j

`+j ) because p`+j does not divide d1. If t1 ≡ −1 (mod p
a`+j

`+j ) then
s1 ≡ −1 (mod p

a`+j

`+j ) to satisfy 2(s1 + 1)(t1 − 1) ≡ 0 (mod p
a`+j

`+j ).

(3): By the similar reason with (2), for any k = 1, 2, . . . , g, (s2 (mod q
b`+k

`+k ),

t2 (mod q
b`+k

`+k )) is (0, 1) or (−1,−1).
(4): If a quadruple (s1, t1; s2, t2) ∈ [n2 ] × [n2 ] × [m2 ] × [m2 ] satisfies all conditions in

Lemma 4.1, then it also satisfies these conditions modulo 2a and 2b. Hence

(s1 (mod 2a), t1 (mod 2a); s2 (mod 2b), t2 (mod 2b)) ∈ Q(2a, 2b).

By Chinese Remainder Theorem, one can show that if (1), (2), (3) and (4) hold, then
(s1, t1; s2, t2) ∈ Q(m,n).

Corollary 4.3. The number of reflexible edge-transitive embeddings ofKm,n satisfying the
Property (P) up to isomorphism is 2f+g+`(1 + pc11 ) · · · (1 + pc`` )|Q(2a, 2b)|.

Proof. By Lemma 4.2, the number of reflexible edge-transitive embeddings of Km,n sat-
isfying the Property (P) up to isomorphism is

(2 + 2pc11 ) · · · (2 + 2pc`` )2f2g|Q(2a, 2b)| =
2f+g+`(1 + pc11 ) · · · (1 + pc`` )|Q(2a, 2b)|.

By Lemma 4.2, it suffices to classify Q(2a, 2b) to classify reflexible edge-transitive
embeddings of Km,n satisfying the Property (P). Let P(2) = {(0, 1)} and for a 2-power
2a (a > 1), letP(2a) be the set of all pairs (s, t) ∈ [2a−1]×[2a−1] satisfying the conditions:

(i) 2t2 ≡ 2 (mod 2a) and

(ii) 2(s+ 1)(t− 1) ≡ 0 (mod 2a).

For any (s, t) ∈ P(2a)\{(0, 1)}, let d(s, t) be the smallest positive even number d such that
ds(t + 1) ≡ 0 (mod 2a) and let e(s, t) be the largest number 2j with 2j ≤ 2a satisfying
2(s + 1) ≡ 0 (mod 2j) and 2(t + 1) ≡ 0 (mod 2j). Let d(0, 1) = 1 and e(0, 1) = 2.
Now we have the following lemma.

Lemma 4.4. For 2-powers 2a (a ≥ 1) and 2b (b ≥ 1), a quadruple (s1, t1; s2, t2) belongs
to Q(2a, 2b) if and only if (s1, t1; s2, t2) satisfies the conditions

(a) (s1, t1) ∈ P(2a) and (s2, t2) ∈ P(2b),

(b) d(s1, t1) ≤ e(s2, t2) and d(s2, t2) ≤ e(s1, t1).
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Proof. The conditions (i) and (ii) in the definition of P(2a) correspond to the conditions
(ii) and (iv) in Lemma 4.1.

Suppose that d(s1, t1) ≤ e(s2, t2) and d(s2, t2) ≤ e(s1, t1). Since d(s1, t1) ≤ 2a

and e(s2, t2) ≤ 2b, d(s1, t1) divides gcd(2a, 2b), the minimum of 2a and 2b. Similarly
d(s2, t2) also divides gcd(2a, 2b). Furthermore it holds that

2(s1 + 1) ≡ 0 (mod d(s2, t2)),

2(t1 + 1) ≡ 0 (mod d(s2, t2)),

2(s2 + 1) ≡ 0 (mod d(s1, t1)) and
2(t2 + 1) ≡ 0 (mod d(s1, t1)).

Therefore the conditions (i) and (iii) in Lemma 4.1 hold, and hence (s1, t1; s2, t2) belongs
to Q(2a, 2b).

Let (s1, t1; s2, t2) belong to Q(2a, 2b). Now the condition (iii) in Lemma 4.1 is equiv-
alent to the condition d(s1, t1) ≤ e(s2, t2) and d(s2, t2) ≤ e(s1, t1).

By Lemma 4.4, the calculation of d(s, t) and e(s, t) for each (s, t) ∈ P(2a) is help-
ful to calculate |Q(2a, 2b)|. The following lemma gives full list of (s, t) ∈ P(2a) and
corresponding d(s, t) and e(s, t).

Lemma 4.5. For a 2-power 2a (a > 1), the set {(s, t, d(s, t), e(s, t)) : (s, t) ∈ P(2a)} is
the following:

{(0, 1, 1, 2), (1, 1, 2, 4)}, if a = 2

{(0, 1, 1, 2), (1, 1, 4, 4), (2, 1, 2, 2), (3, 1, 4, 4), (1, 3, 2, 4), (3, 3, 2, 8)}, if a = 3

{(0, 1, 1, 2), (2a−2 − 1, 2a−2 − 1, 4, 2a−1), (2a−1 − 1, 2a−2 − 1, 4, 2a−1),

(2a−2 − 1, 2a−1 − 1, 2, 2a−1), (2a−1 − 1, 2a−1 − 1, 2, 2a)}
∪ {(x, 1, 2a−1, 4), (x, 2a−2 + 1, 2a−1, 4) : x = 1, 3, . . . , 2a−1 − 1}
∪ {(2iy, 1, 2a−i−1, 2) : i = 1, . . . , a− 2, y = 1, 3, . . . , 2a−i−1 − 1} if a ≥ 4.

Proof. Let (s, t) ∈ P(2a).
For a = 2, t should be 1 and both s = 0 and s = 1 satisfy the conditions for (s, t) ∈

P(2a). Hence (s, t, d(s, t), e(s, t)) = (0, 1, 1, 2) or (1, 1, 2, 4). Let a = 3. Then t = 1 and
t = 3. If t = 1, then s = i for some i = 0, 1, 2, 3. If t = 3, then s = 1 or s = 3. In any
possible pair (s, t), one can easily calculate d(s, t) and e(s, t).

Now assume that a ≥ 4. Then t = 1, 2a−2 − 1, 2a−2 + 1 or 2a−1 − 1. For t = 1, any
number 0, 1, 2, . . . , 2a−1 − 1 is possible for s to satisfy the condition (ii) in the definition
of P(2a). Note that if (s, t) = (0, 1), then (d(0, 1), e(0, 1)) = (1, 2). One can easily show
that if (s, t) = (x, 1) for any x = 1, 3, . . . , 2a−1 − 1 then (d(s, t), e(s, t)) = (2a−1, 4).
If (s, t) = (2iy, 1) for any i = 1, . . . , a − 2 and for any y = 1, 3, . . . , 2a−i−1 − 1, then
(d(s, t), e(s, t)) = (2a−i−1, 2).

For t = 2a−2 − 1, both s = 2a−2 − 1 and s = 2a−1 − 1 satisfy the conditions for
(s, t) ∈ P(2a). If (s, t) = (2a−2 − 1, 2a−2 − 1) or (2a−1 − 1, 2a−2 − 1) then we have
(d(s, t), e(s, t)) = (4, 2a−1).

Let t = 2a−2 + 1. Then any number s = 1, 3, . . . , 2a−1 − 1 satisfies the condition (ii)
in the definition of P(2a). For any (s, t) = (x, 2a−2 + 1) with x = 1, 3, . . . , 2a−1 − 1, we
have (d(s, t), e(s, t)) = (2a−1, 4).
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For the final case, let t = 2a−1−1. Then s = 2a−2−1 or 2a−1−1. If (s, t) = (2a−2−1,
2a−1− 1) then we have (d(s, t), e(s, t)) = (2, 2a−1); if (s, t) = (2a−1− 1, 2a−1− 1) then
(d(s, t), e(s, t)) = (2, 2a).

Theorem 4.6. For any 2-powers 2a and 2b with a ≤ b, the number |Q(2a, 2b)| of reflexible
edge-transitive embeddings of Km,n satisfying the Property (P) up to isomorphism is the
following:

|Q(2a, 2b)| =



1 if (a, b) = (1, 1),

2 if (a, b) = (1, 2),

4 if (a, b) = (2, 2) or (1, k) with k ≥ 3,

10 if (a, b) = (2, 3),

12 if (a, b) = (2, k) with k ≥ 4,

28 if (a, b) = (3, 3),

40 if (a, b) = (3, 4),

36 if (a, b) = (3, k) with k ≥ 5,

20(1 + 2a−2) if a = b ≥ 4,

20 + 18 · 2a−2 if b− 1 = a ≥ 4,

20 + 16 · 2a−2 if b− 2 ≥ a ≥ 4.

Proof. By Lemma 4.4, it suffices to find all (s1, t1; s2, t2) satisfying the conditions

(a) (s1, t1) ∈ P(2a) and (s2, t2) ∈ P(2b),

(b) d(s1, t1) ≤ e(s2, t2) and d(s2, t2) ≤ e(s1, t1).

By Lemma 4.5, one can get all the lists of (s1, t1; s2, t2) satisfying the conditions as Table 1.

Proof of Theorem 1.1. For oddm and n, the number |RETm,n | of reflexible edge-transiti-
ve embeddings of Km,n up to isomorphism is 1 by Theorem 3.1. When exactly one of m
and n is odd, then the number |RETm,n | is counted in Theorem 3.2.

Assume that both m and n are even. Let

m = 2apa11 pa22 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 p
b2
2 · · · p

b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime decompositions)

and let gcd(m,n) = 2cpc11 p
c2
2 · · · p

c`
` with ci ≥ 1 for any i = 1, . . . , `. Without any

loss of generality, assume that a ≤ b, namely, a = c. By Corollary 4.3, the number
|RETm,n | = |Q(m,n)| is

2f+g+`(1 + pc11 ) · · · (1 + pc`` )|Q(2a, 2b)|.

Theorem 4.6 completes the proof.
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Table 1: All lists of Q(2a, 2b).
(a, b) Q(2a, 2b)

(1, 1) (0, 1; 0, 1)

(1, 2) (0, 1; 0, 1), (0, 1; 1, 1)

(1,≥ 3) (0, 1; 0, 1), (0, 1; 2b−2, 1), (0, 1; 2b−2 − 1, 2b−1 − 1),
(0, 1; 2b−1 − 1, 2b−1 − 1)

(2, 2) (0, 1; 0, 1), (0, 1; 1, 1), (1, 1; 0, 1), (1, 1; 1, 1)

(2, 3) (0, 1; 0, 1), (0, 1; 2, 1), (0, 1; 1, 3), (0, 1; 3, 3), (1, 1; 0, 1), (1, 1; 1, 1),
(1, 1; 2, 1), (1, 1; 3, 1), (1, 1; 1, 3), (1, 1; 3, 3)

(2,≥ 4) (0, 1; 0, 1), (0, 1; 2b−2, 1), (0, 1; 2b−2 − 1, 2b−1 − 1),
(0, 1; 2b−1 − 1, 2b−1 − 1), (1, 1; 0, 1), (1, 1; 2b−3, 1), (1, 1; 2b−2, 1),
(1, 1; 3 · 2b−3, 1), (1, 1; 2b−2 − 1, 2b−2 − 1), (1, 1; 2b−1 − 1, 2b−2 − 1),
(1, 1; 2b−2 − 1, 2b−1 − 1), (1, 1; 2b−1 − 1, 2b−1 − 1)

(3, 3) (0 or 2, 1; 0, 1), (0 or 2, 1; 2, 1), (0 or 2, 1; 1, 3), (0 or 2, 1; 3, 3),
(1 or 3, 1; 1, 1), (1 or 3, 1; 3, 1), (1 or 3, 1; 1, 3), (1 or 3, 1; 3, 3),
(1 or 3, 3; 0, 1), (1 or 3, 3; 1, 1), (1 or 3, 3; 2, 1), (1 or 3, 3; 3, 1),
(1 or 3, 3; 1, 3), (1 or 3, 3; 3, 3)

(3, 4) (0 or 2, 1; 0, 1), (0 or 2, 1; 4, 1), (0 or 2, 1; 3, 7), (0 or 2, 1; 7, 7),
(1 or 3, 1; 3, 3), (1 or 3, 1; 7, 3), (1 or 3, 1; 3, 7), (1 or 3, 1; 7, 7);
(1, 3;x, 1), x = 0, 2, 4, 6; (3, 3; s2, t2), (s2, t2) ∈ P(24)

(3,≥ 5) (0 or 2, 1; 0, 1), (0 or 2, 1; 2b−2, 1);
(0 or 2, 1;x, 2b−1 − 1), x = 2b−2 − 1 or 2b−1 − 1;
(1 or 3, 1;x, y), x, y = 2b−2 − 1 or 2b−1 − 1;
(1, 3; i · 2b−3, 1), i = 0, 1, 2, 3;
(1, 3;x, y), x, y = 2b−2 − 1 or 2b−1 − 1;
(3, 3; i · 2b−4, 1), i = 0, 1, . . . , 7;
(3, 3;x, y), x, y = 2b−2 − 1 or 2b−1 − 1

(≥ 4,≥ a) (0 or 2a−2, 1;x, y),
(x, y) = (0, 1), (2b−2, 1), (2b−2− 1, 2b−1− 1) or (2b−1− 1, 2b−1− 1);
(2x, 1; 2b−2 − 1, 2b−1 − 1), (2x, 1; 2b−1 − 1, 2b−1 − 1),
x = 1, 2, . . . , 2a−2 − 1 (x 6= 2a−3);
(x, 1 or 2a−2 + 1; y, z),
x = 1, 3, . . . , 2a−1 − 1, y, z = 2b−2 − 1 or 2b−1 − 1;
(2a−2 − 1 or 2a−1 − 1, 2a−2 − 1 or 2a−1 − 1;x, y),
x, y = 2b−2 − 1 or 2b−1 − 1;
(2a−2 − 1, 2a−1 − 1; i · 2b−a, 1), i = 0, 1, . . . , 2a−1 − 1;
Only when a = b:
(2a−2−1 or 2a−1−1, 2a−2−1;x, 1 or 2b−2+1), x = 1, 3, . . . , 2b−1−1;
Only when a = b:
(2a−2 − 1, 2a−1 − 1;x, 2b−2 + 1), x = 1, 3, . . . , 2b−1 − 1;
Only when a = b or b = a+ 1:
(2a−1 − 1, 2a−1 − 1;x, 1), x = 0, 1, . . . , 2b−1 − 1;
Only when a = b or b = a+ 1:
(2a−1 − 1, 2a−1 − 1;x, 2b−2 + 1), x = 1, 3, . . . , 2b−1 − 1;
Only when b ≥ a+ 2:
(2a−1 − 1, 2a−1 − 1; i · 2b−a−1, 1), i = 0, 1, . . . , 2a − 1
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5 Classification of some groups
In this section, we aim to consider a presentation of the group 〈xα, yβ〉 for any (α, β) ∈
RETm,n. And we give some sufficient conditions and necessary conditions for 〈xα1 , yβ1〉
and 〈xα2

, yβ2
〉 to be isomorphic for any (α1, β1), (α2, β2) ∈ RETm,n. For any positive

integers m and n, a group Γ such that

(i) Γ = XY for some cyclic groups X = 〈x〉 of order n and Y = 〈y〉 of order m with
X ∩ Y = {1Γ} and

(ii) there exists an automorphism of Γ which sends x and y to x−1 and y−1, respectively,

is isomorphic to 〈xα, yβ〉 for some (α, β) ∈ RETm,n. For our convenience, call a group
Γ satisfying the conditions (i) and (ii) in the above sentence a reflexible product of two
cyclic groups of order m and n. Now to classify reflexible products of two cyclic groups
of order m and n, it suffices to consider 〈xα, yβ〉, where (α, β) ∈ RETm,n. Note that for
any integers i, j and for any (α, β) ∈ RETm,n,

yiβx
j
α = xβ

i(j)
α y

αj(i)
β .

For example, yβxα = x
β(1)
α y

α(1)
β and yβx2

α = x
β(2)
α y

α2(1)
β .

For odd integers m and n, since RETm,n = {(id, id)}, there is a unique reflexible
product of two cyclic groups of order m and n up to isomorphism, namely, an abelian
group Zm × Zn.

Let
m = pa11 pa22 · · · p

a`
` p

a`+1

`+1 · · · p
a`+f

`+f (prime factorization)

be odd and
n = 2bpb11 p

b2
2 · · · p

b`
` q

b`+1

`+1 · · · q
b`+g

`+g (prime factorization)

be even. Let gcd(m,n) = pc11 p
c2
2 · · · p

c`
` with ci ≥ 1 for any i = 1, . . . , `. Now

|RETm,n | = 2f (1 + pc11 ) · · · (1 + pc`` ) by Theorem 3.2. Note that for any (α, β) ∈
RETm,n and for any integer k, α(k) = rk, β(2k) = 2k, β(2k+1) = 2k+1+2s for some
integers r ∈ [m] and s ∈ [n] satisfying r2 ≡ 1 (mod m), 2s ≡ 0 (mod 2bq

b`+1

`+1 · · · q
b`+g

`+g )

and for any j = 1, 2, . . . , `, s ≡ 0 (mod p
bj
j ) if r ≡ 1 (mod p

aj
j ); s ≡ z · pbj−cjj

(mod p
bj
j ) for some integer z with 0 ≤ z ≤ p

cj
j − 1 if r ≡ −1 (mod p

aj
j ). Let us denote

such α and β by αr and βs. Considering commuting rule

yiβx
j
α = xβ

i(j)
α y

αj(i)
β ,

one can check that the centralizer of 〈xαr
, yβs
〉 is

{x2i
αr
yjβs

: i ∈
[n

2

]
, j(r − 1) ≡ 0 (mod m)} = 〈x2

αr
, ykβs
〉,

where k is the smallest positive integer j satisfying j(r − 1) ≡ 0 (mod m). This implies
that for any (αr1 , βs1), (αr2 , βs2) ∈ RETm,n, if two groups 〈xαr1

, yβs1
〉 and 〈xαr2

, yβs2
〉

are isomorphic, then r1 = r2. Note that

yβs
xαr

= xβs(1)
αr

y
αr(1)
βs

= x2s+1
αr

yrβs
and

yβs
x2
αr

= xβs(2)
αr

y
α2

r(1)
βs

= x2
αr
yβs

.
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In fact, the above two equations determine the whole commuting rules. For any u ∈ [m]
and v ∈ [n], if v is even, then yuβs

xvαr
= xvαr

yuβs
, and if v is odd, then

yuβs
xvαr

= xv−1
αr

yuβs
xαr

= xv−1
αr

yu−1
βs

x2s+1
αr

yrβs

= xv−1+2s
αr

yu−1
βs

xαr
yrβs

= xv−1+2s
αr

yu−2
βs

x2s+1
αr

y2r
βs

= xv−1+4s
αr

yu−2
βs

xαr
y2r
βs

= · · · = xv+2us
αr

yurβs
.

For any v ∈ [n] with gcd(v, n) = 1,

yβsx
v
αr

= xβs(v)
αr

y
αv

r(1)
βs

= xv+2s
αr

yrβs
= xv(2v−1s+1)

αr
yrβs

because v is odd, where v−1 is an integer satisfying vv−1 ≡ 1 (mod n). For any s1, s2 ∈
[n2 ] with gcd(s1, n) = gcd(s2, n), one can choose v ∈ [n] satisfying that gcd(v, n) = 1
and v−1s1 ≡ s2 (mod n). Therefore for any (αr1 , βs1), (αr2 , βs2) ∈ RETm,n, if r1 = r2

and gcd(s1, n) = gcd(s2, n) then 〈xαr1
, yβs1

〉 is isomorphic to 〈xαr2
, yβs2

〉. This means
that the number of non-isomorphic reflexible product of two cyclic groups of order m and
n is at most 2f (2 + c1) · · · (2 + c`). So any reflexible product of two cyclic groups of order
m and n is isomorphic to

〈x, y | xn = ym = 1, yx = x2s+1yr, yx2 = x2y〉

for some r ∈ [m] and s ∈ [n] satisfying r2 ≡ 1 (mod m), 2s ≡ 0 (mod 2bq
b`+1

`+1 · · · q
b`+g

`+g )

and for any j = 1, 2, . . . , `, s ≡ 0 (mod p
bj
j ) if r ≡ 1 (mod p

aj
j ); s ≡ p

bj−cj+z
j

(mod p
bj
j ) for some integer z = 0, 1, . . . , cj if r ≡ −1 (mod p

aj
j ).

Conversely, assume that for some (αr1 , βs1), (αr2 , βs2) ∈ RETm,n, 〈xαr1
, yβs1

〉 is
isomorphic to 〈xαr2

, yβs2
〉. Let ψ : 〈xαr1

, yβs1
〉 → 〈xαr2

, yβs2
〉 be an isomorphism such

that ψ(xuαr1
) = xαr2

and ψ(yvβs1
) = yβs2

.
For the remaining case, let

m = 2apa11 pa22 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 p
b2
2 · · · p

b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime decompositions)

with gcd(m,n) = 2cpc11 p
c2
2 · · · p

c`
` , where 1 ≤ a ≤ b and ci ≥ 1 for any i = 1, . . . , `. For

any (α, β) ∈ RETm,n and for any integer k,

α(2k) = 2kt1,

α(2k + 1) = 2kt1 + 2s1 + 1,

β(2k) = 2kt2 and
β(2k + 1) = 2kt2 + 2s2 + 1

for some (s1, t1; s2, t2) ∈ Q(m,n). Let α and β be such permutations. Note that

yβxα = xβ(1)
α y

α(1)
β = x2s2+1

α y2s1+1
β ,

yβx
2
α = xβ(2)

α y
α2(1)
β = x2t2

α y
2s1(t1+1)+1
β ,

y2
βxα = xβ

2(1)
α y

α(2)
β = x2s2(t2+1)+1

α y2t1
β and

y2
βx

2
α = xβ

2(2)
α y

α2(2)
β = x2

αy
2
β .
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In fact, the above four equations determine the whole commuting rules as follows. For any
i ∈ [m] and j ∈ [n],

y2i
β x

2j
α = x2j

α y
2i
β

y2i
β x

2j+1
α = x2j

α y
2i
β xα = x2j

α y
2(i−1)
β x2s2(t2+1)+1

α y2t1
β

= x2j+2s2(t2+1)
α y

2(i−1)
β xαy

2t1
β = · · · = x2j+2is2(t2+1)+1

α y2it1
β

y2i+1
β x2j

α = yβx
2j
α y

2i
β = x2t2

α y
2s1(t1+1)+1
β x2(j−1)

α y2i
β

= x2t2
α yβx

2(j−1)
α y

2i+2s1(t1+1)
β = · · · = x2jt2

α y
2i+2js1(t1+1)+1
β

y2i+1
β x2j+1

α = y2i
β yβxαx

2j
α = y2i

β x
2s2+1
α y2s1+1

β x2j
α = x2s2

α y2i
β xαyβx

2j
α y

2s1
β

= x2s2
α (x2is2(t2+1)+1

α y2it1
β )(x2jt2

α y
2js1(t1+1)+1
β )y2s1

β

= x2jt2+2is2(t2+1)+2s2+1
α y

2it1+2js1(t1+1)+2s1+1
β .

So any reflexible product of two cyclic groups of order m and n is isomorphic to

〈x, y | xn = ym = 1, yx = x2s2+1y2s1+1, yx2 = x2t2y2s1(t1+1)+1,

y2x = x2s2(t2+1)+1y2t1 , y2x2 = x2y2〉

for some (s1, t1; s2, t2) ∈ Q(m,n). In summary, we have the following theorem.

Theorem 5.1. For any positive integers m and n, let Γ be a group such that Γ = XY for
some cyclic groups X = 〈x〉 of order n and Y = 〈y〉 of order m with X ∩ Y = {1Γ} and
there exists an automorphism of Γ which sends x and y to x−1 and y−1, respectively.

(1) If both m and n are odd, Γ is isomorphic to the abelian group Zm × Zn.

(2) Let
m = pa11 · · · p

a`
` p

a`+1

`+1 · · · p
a`+f

`+f (prime factorization)

be odd and let

n = 2bpb11 · · · p
b`
` q

b`+1

`+1 · · · q
b`+g

`+g (prime factorization)

be even with gcd(m,n) = pc11 · · · p
c`
` , where ci ≥ 1 for any i = 1, . . . , `. Then Γ is

isomorphic to

〈x, y | xn = ym = 1, yx = x2s+1yr, yx2 = x2y〉

for some r ∈ [m] and s ∈ [n2 ] satisfying

r2 ≡ 1 (mod m), 2s ≡ 0 (mod 2bq
b`+1

`+1 · · · q
b`+g

`+g ),

and for any j = 1, 2, . . . , `, s ≡ 0 (mod p
bj
j ) if

r ≡ 1 (mod p
aj
j ), s ≡ pbj−cj+z

j (mod p
bj
j )

for some z = 0, 1, . . . , cj if r ≡ −1 (mod p
aj
j ).
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(3) Let

m = 2apa11 · · · p
a`
` p

a`+1

`+1 · · · p
a`+f

`+f and

n = 2bpb11 · · · p
b`
` q

a`+1

`+1 · · · q
b`+g

`+g (prime factorization)

with gcd(m,n) = 2cpc11 p
c2
2 · · · p

c`
` , where 1 ≤ a ≤ b and ci ≥ 1 for any i = 1, . . . , `.

Now Γ is isomorphic to

〈x, y | xn = ym = 1, yx = x2s2+1y2s1+1, yx2 = x2t2y2s1(t1+1)+1,

y2x = x2s2(t2+1)+1y2t1 , y2x2 = x2y2〉

for some (s1, t1; s2, t2) ∈ Q(m,n).

For any positive integers m and n and for any (α, β), (α′, β′) ∈ RETm,n, we do not
know a necessary and sufficient condition for 〈xα, yβ〉 ' 〈xα′ , yβ′〉. So we propose the
following problem.

Problem 5.2. For any positive integers m and n and for any (α, β), (α′, β′) ∈ RETm,n,
find a necessary and sufficient condition for 〈xα, yβ〉 ' 〈xα′ , yβ′〉. Consequently calculate
the number of reflexible products of two cyclic groups of orderm and n up to isomorphism.
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1 Introduction
Let Fqn denote the finite field of qn elements where q = ph for some prime p. For n > 1
and s | n the trace and norm over Fqs of elements of Fqn are defined as Trqn/qs(x) =

x+xq
s

+ · · ·+xq
n−s

and Nqn/qs(x) = x1+q
s+···+qn−s , respectively. When s = 1 then we

will simply write Tr(x) and N(x). Every function f : Fqn → Fqn can be given uniquely
as a polynomial with coefficients in Fqn and of degree at most qn − 1. The function f is
Fq-linear if and only if it is represented by a q-polynomial, that is,

f(x) =

n−1∑
i=0

aix
qi (1.1)

with coefficients in Fqn . Such polynomials are also called linearized. If f is given as in
(1.1), then its adjoint (w.r.t. the symmetric non-degenerate bilinear form defined by 〈x, y〉 =
Tr(xy)) is

f̂(x) :=

n−1∑
i=0

aq
n−i

i xq
n−i

,

i.e. Tr(xf(y)) = Tr(yf̂(x)) for any x, y ∈ Fqn .
The aim of this paper is to study what can be said about two q-polynomials f and g

over Fqn if they satisfy

Im

(
f(x)

x

)
= Im

(
g(x)

x

)
, (1.2)

where by Im(f(x)/x) we mean the image of the rational function f(x)/x, i.e. {f(x)/x :
x ∈ F∗qn}.

For a given q-polynomial f , the equality (1.2) clearly holds with g(x) = f(λx)/λ

for each λ ∈ F∗qn . It is less obvious that (1.2) holds also for g(x) = f̂(λx)/λ, cf. [2,
Lemma 2.6] and the first part of [8, Section 3], see also the proof of [18, Theorem 3.3.9].

When one of the functions in (1.2) is a monomial then the answer to the question
posed above follows from McConnel’s generalization [25, Theorem 1] of a result due to
Carlitz [7] (see also Bruen and Levinger [6]).

Theorem 1.1 ([25, Theorem 1]). Let p denote a prime, q = ph, and 1 < d a divisor of
q − 1. Also, let F : Fq → Fq be a function such that F (0) = 0 and F (1) = 1. Then

(F (x)− F (y))
q−1
d = (x− y)

q−1
d

for all x, y ∈ Fq if and only if F (x) = xp
j

for some 0 ≤ j < h and d | pj − 1.

Indeed, when the function F of Theorem 1.1 is Fq-linear, we easily get the following
corollary (see Section 2 for the proof, or [16, Corollary 1.4] for the case when q is an odd
prime).

Corollary 1.2. Let g(x) and f(x) = αxq
k

, q = ph, be q-polynomials over Fqn satisfying
Condition (1.2). Denote gcd(k, n) by t. Then g(x) = βxq

s

with gcd(s, n) = t for some β
with Nqn/qt(α) = Nqn/qt(β).

Another case for which we know a complete answer to our problem is when f(x) =
Tr(x).
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Theorem 1.3 ([8, Theorem 3.7]). Let f(x) = Tr(x) and let g(x) be a q-polynomial over
Fqn such that

Im(f(x)/x) = Im(g(x)/x).

Then g(x) = Tr(λx)/λ for some λ ∈ F∗qn .

Note that in Theorem 1.3 we have f̂(x) = f(x) and the only solutions for g are g(x) =
f(λx)/λ, while in Corollary 1.2 we have (up to scalars) ϕ(n) different solutions for g,
where ϕ is the Euler’s totient function.

The problem posed in (1.2) is also related to the study of the directions determined by
an additive function. Indeed, when f is additive, then

Im(f(x)/x) =

{
f(x)− f(y)

x− y
: x 6= y, x, y ∈ Fqn

}
,

is the set of directions determined by the graph of f , i.e. by the point set Gf := {(x, f(x)) :
x ∈ Fqn} ⊂ AG(2, qn). Hence, in this setting, the problem posed in (1.2) corresponds
to finding the Fq-linear functions whose graph determines the same set of directions. The
size of Im(f(x)/x) (for any f , not necessarily additive) was studied extensively. When f
is Fq-linear the following result holds.

Theorem 1.4 ([1, 3]). Let f be a q-polynomial over Fqn , with maximum field of linearity
Fq . Then

qn−1 + 1 ≤ | Im(f(x)/x)| ≤ qn − 1

q − 1
.

The classical examples which show the sharpness of these bounds are the monomial
functions xq

s

, with gcd(s, n) = 1, and the Tr(x) function. However, these bounds are also
achieved by other polynomials which are not “equivalent” to these examples (see Section 2
for more details).

Two Fq-linear polynomials f(x) and h(x) of Fqn [x] are equivalent if the two graphs Gf
and Gh are equivalent under the action of the group ΓL(2, qn), i.e. if there exists an element
ϕ ∈ ΓL(2, qn) such that Gϕf = Gh. In such a case, we say that f and h are equivalent (via
ϕ) and we write h = fϕ. It is easy to see that in this way we defined an equivalence
relation on the set of q-polynomials over Fqn . If f and g are two q-polynomials such
that Im(f(x)/x) = Im(g(x)/x), then Im(fϕ(x)/x) = Im(gϕ(x)/x) for any admissible
ϕ ∈ ΓL(2, qn) (see Proposition 2.6). This means that the problem posed in (1.2) can be
investigated up to equivalence.

For n ≤ 4, the only solutions for g in problem (1.2) are the trivial ones, i.e. either
g(x) = f(λx)/x or g(x) = f̂(λx)/x (cf. Theorem 2.8).

For the case n = 5, in Section 4, we prove the following main result.

Theorem 1.5. Let f(x) and g(x) be two q-polynomials over Fq5 , with maximum field of
linearity Fq , such that Im(f(x)/x) = Im(g(x)/x). Then either there exists ϕ ∈ ΓL(2, q5)

such that fϕ(x) = αxq
i

and gϕ(x) = βxq
j

with N(α) = N(β) for some i, j ∈ {1, 2, 3, 4},
or there exists λ ∈ F∗q5 such that g(x) = f(λx)/λ or g(x) = f̂(λx)/λ.

Finally, the relation between Im(f(x)/x) and the linear sets of rank n of the projective
line PG(1, qn) will be pointed out in Section 5. As an application of Theorem 1.5 we get a
criterium of PΓL(2, q5)-equivalence for linear sets in PG(1, q5) and this allows us to prove
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that the family of (maximum scattered) linear sets of rank n and of size (qn − 1)/(q − 1)
in PG(1, qn) found by Sheekey in [27] contains members which are not-equivalent to the
previously known linear sets of this size.

2 Background and preliminary results
Let us start this section by the following immediate corollary of Theorem 1.4.

Proposition 2.1. If Im(f(x)/x) = Im(g(x)/x) for two q-polynomials f and g over Fqn ,
then their maximum fields of linearity coincide.

Proof. Let Fqm and Fqk be the maximum fields of linearity of f and g, respectively. Sup-
pose to the contrary m < k. Then | Im(g(x)/x)| ≤ (qn − 1)/(qk − 1) < qn−k+1 + 1 ≤
qn−m + 1 ≤ | Im(f(x)/x)|, a contradiction.

Now we are able to prove Corollary 1.2.

Proof. The maximum field of linearity of f(x) is Fqt , thus, by Proposition 2.1, g(x) has
to be a qt-polynomial as well. Then for t > 1 the result follows from the t = 1 case
(after substituting q for qt and n/t for n) and hence we can assume that f(x) and g(x)

are strictly Fq-linear. By (1.2), we note that g(1) = αzq
k−1

0 , for some z0 ∈ F∗qn . Let
F (x) := g(x)/g(1), then F is a q-polynomial over Fqn , with F (0) = 0 and F (1) = 1.
Also, from (1.2), for each x ∈ F∗qn there exists z ∈ F∗qn such that

F (x)

x
=

(
z

z0

)qk−1
.

This means that for each x ∈ F∗qn we get N
(F (x)

x

)
= 1. By Theorem 1.1 (applied to

the q-polynomial F with d = q − 1 | qn − 1 and using the fact that F is additive) it
follows that F (x) = xp

j

for some 0 ≤ j < nh. Then Proposition 2.1 yields pj = qs with
gcd(s, n) = 1. We get the first part of the statement by putting β = g(1). Then from the
assumption (1.2) it is easy to deduce N(α) = N(β).

We will use the following definition.

Definition 2.2. Let f and g be two equivalent q-polynomials over Fqn via the element
ϕ ∈ ΓL(2, qn) represented by the invertible matrix(

a b
c d

)
and with companion automorphism σ of Fqn . Then{(

x
g(x)

)
: x ∈ Fqn

}
=

{(
a b
c d

)(
xσ

f(x)σ

)
: x ∈ Fqn

}
. (2.1)

Let
Kϕ
f (x) = axσ + bf(x)σ

and
Hϕ
f (x) = cxσ + df(x)σ.
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Proposition 2.3. Let f and g be q-polynomials over Fqn such that g = fϕ for some
ϕ ∈ ΓL(2, qn). Then Kϕ

f is invertible and g(x) = Hϕ
f ((Kϕ

f )−1(x)).

Proof. It easily follows from (2.1).

From (2.1) it is also clear that

Im

(
fϕ(x)

x

)
=

{
c+ dzσ

a+ bzσ
: z ∈ Im

(
f(x)

x

)}
(2.2)

and hence
| Im(fϕ(x)/x)| = | Im(f(x)/x)|. (2.3)

From Equation (2.3) and Theorem 1.4 the next result easily follows.

Proposition 2.4. If two q-polynomials over Fqn are equivalent, then their maximum fields
of linearity coincide.

Note that | Im(g(x)/x)| = | Im(f(x)/x)| does not imply the equivalence of f and
g. In fact, in the last section we will list the known examples of q-polynomials f which
are not equivalent to monomials but the size of Im(f(x)/x) is maximal. To find such
functions was also proposed in [16] and, as it was observed by Sheekey, they determine
certain MRD-codes [27].

Let us give the following definition.

Definition 2.5. An element ϕ ∈ ΓL(2, qn) represented by the invertible matrix(
a b
c d

)
and with companion automorphism σ of Fqn is said to be admissible w.r.t. a given q-
polynomial f over Fqn if either b = 0 or −(a/b)σ

−1

/∈ Im(f(x)/x).

The following results will be useful later in the paper.

Proposition 2.6. If Im(f(x)/x) = Im(g(x)/x) for some q-polynomials over Fqn , then
Im(fϕ(x)/x) = Im(gϕ(x)/x) holds for each admissible ϕ ∈ ΓL(2, qn).

Proof. From Im(f(x)/x) = Im(g(x)/x) it follows that any ϕ ∈ ΓL(2, qn) admissible
w.r.t. f is admissible w.r.t. g as well. Hence Kϕ

f and Kϕ
g are both invertible and we may

construct fϕ and gϕ as indicated in Proposition 2.3. The statement now follows from
Equation (2.2).

Proposition 2.7. Let f and g be q-polynomials over Fqn and take some ϕ ∈ ΓL(2, qn)
with companion automorphism σ. Then gϕ(x) = fϕ(λσx)/λσ for some λ ∈ F∗qn if and
only if g(x) = f(λx)/λ.

Proof. First we prove the “if” part. Since g(x) = f(λx)/λ = (ω1/λ ◦ f ◦ ωλ)(x), where
ωα denotes the scalar map x ∈ Fqn 7→ αx ∈ Fqn , direct computations show that Hϕ

g =
ω1/λσ ◦ Hϕ

f ◦ ωλ and Kϕ
g = ω1/λσ ◦ Kϕ

f ◦ ωλ. Then gϕ = ω1/λσ ◦ fϕ ◦ ωλσ and the
first part of the statement follows. The “only if” part follows from the “if” part applied to
gϕ(x) = fϕ(λσx)/λσ and ϕ−1; and from (fϕ)ϕ−1 = f and (gϕ)ϕ−1 = g.
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Next we summarize what is known about problem (1.2) for n ≤ 4.

Theorem 2.8. Suppose Im(f(x)/x) = Im(g(x)/x) for some q-polynomials over Fqn ,
n ≤ 4, with maximum field of linearity Fq . Then there exist ϕ ∈ GL(2, qn) and λ ∈ F∗qn
such that the following holds.

• If n = 2 then fϕ(x) = xq and g(x) = f(λx)/λ.

• If n = 3 then either

fϕ(x) = Tr(x) and g(x) = f(λx)/λ

or
fϕ(x) = xq and g(x) = f(λx)/λ or g(x) = f̂(λx)/λ.

• If n = 4 then g(x) = f(λx)/λ or g(x) = f̂(λx)/λ.

Proof. In the n = 2 case f(x) = ax+ bxq , b 6= 0. Let ϕ be represented by the matrix(
1 0
−a/b 1/b

)
.

Then ϕ ∈ GL(2, q2) maps f(x) to xq . Then Proposition 2.6 and Corollary 1.2 give
gϕ(x) = fϕ(µx)/µ and hence Proposition 2.7 gives g(x) = f(λx)/λ for some λ ∈ Fqn . If
n = 3 then according to [21, Theorem 5] and [8, Theorem 1.3] there exists ϕ ∈ GL(2, q3)
such that either fϕ(x) = Tr(x) or fϕ(x) = xq . In the former case Proposition 2.6 and
Theorem 1.3 give gϕ(x) = fϕ(µx)/µ and the assertion follows from Proposition 2.7. In
the latter case Proposition 2.6 and Corollary 1.2 give gϕ(x) = αxq

i

where i ∈ {1, 2} and
N(α) = 1. If i = 1, then gϕ(x) = fϕ(µx)/µ where µq−1 = α and the assertion follows
from Proposition 2.7. Let now i = 2 and denote by(

A B
C D

)
the matrix of ϕ−1. Also, let ∆ denote the determinant of this matrix and recall that fϕ(x) =
xq , with ϕ ∈ GL(2, q3). Then by Proposition 2.3

Kϕ−1

fϕ
(x) = Ax+Bxq

is invertible and its inverse is the map

ψ(x) :=
Aq+q

2

x−Aq2Bxq +B1+qxq
2

N(A) + N(B)
.

Also, by Proposition 2.3 we have

(fϕ)ϕ−1 (x) = Cψ(x) +Dψ(x)q,

which gives f(x) = (fϕ)ϕ−1 (x).
Using similar arguments, since N(α) = 1, direct computations show

g(x) = (gϕ)ϕ−1(x) =
(Aq+q

2

C +Bq+q
2

D)x−Bq2∆αq
2+1xq +Aq∆αxq

2

N(A) + N(B)
,

and hence g(x) = f̂(λx)/λ for each λ ∈ F∗q3 with λq−1 = ∆1−q/αq .
The case n = 4 is [8, Proposition 4.2].
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Remark 2.9. Theorem 2.8 yields that there is a unique equivalence class of q-polynomials,
with maximum field of linearity Fq , when n = 2. For n = 3 there are two non-equivalent
classes and they correspond to the classical examples: Tr(x) and xq . Whereas, for n = 4,
from [8, Sec. 5.3] and [5, Table on p. 54], there exist at least eight non-equivalent classes.
The possible sizes for the sets of directions determined by these strictly Fq-linear functions
are q3+1, q3+q2−q+1, q3+q2+1 and q3+q2+q+1 and each of them is determined by at
least two non-equivalent q-polynomials. Also, by [13, Theorem 3.4], if f is a q-polynomial
over Fq4 for which the set of directions is of maximum size then f is equivalent either to
xq or to δxq + xq

3

, for some δ ∈ F∗q4 with N(δ) 6= 1 (see [23]).

3 Preliminary results about Tr(x) and the monomial q-polynomials
over Fq5

Let q be a power of a prime p. We will need the following results.

Proposition 3.1. Let f(x) =
∑4
i=0 aix

qi and g(x) = Tr(x) be q-polynomials over Fq5 .
Then there is an element ϕ ∈ ΓL(2, q5) such that Im(fϕ(x)/x) = Im(g(x)/x) if and only
if a1a2a3a4 6= 0, (a1/a2)q = a2/a3, (a2/a3)q = a3/a4 and N(a1) = N(a2).

Proof. Let ϕ ∈ ΓL(2, q5) such that Im(fϕ(x)/x) = Im(g(x)/x). By Proposition 2.4,
the maximum field of linearity of f is Fq and by Theorem 1.3 there exists λ ∈ F∗q5 such
that fϕ(x) = Tr(λx)/λ. This is equivalent to the existence of a, b, c, d, ad − bc 6= 0 and
σ : x 7→ xp

h

such that{(
y

Tr(y)

)
: y ∈ Fq5

}
=

{(
a b
c d

)(
xσ

f(x)σ

)
: x ∈ Fq5

}
.

Then cxσ + df(x)σ ∈ Fq for each x ∈ Fq5 . Let z = xσ . Then

cz + d

4∑
i=0

aσi z
qi = cqzq + dq

4∑
i=0

aσqi z
qi+1

,

for each z. As polynomials of z, the left and right-hand sides of the above equation coincide
modulo zq

5 − z and hence comparing coefficients yield

c+ daσ0 = dqaσq4 ,

daσ1 = cq + dqaσq0 ,

daσk+1 = dqaσqk ,

for k = 1, 2, 3. If d = 0, then c = 0, a contradiction. Since d 6= 0, if one of a1, a2, a3, a4
is zero, then all of them are zero and hence f is Fq5 -linear. This is not the case, so we have
a1a2a3a4 6= 0. Then the last three equations yield(

a1
a2

)q
=
a2
a3
,(

a2
a3

)q
=
a3
a4
,
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and by taking the norm of both sides in daσ2 = dqaσq1 we get N(a1) = N(a2).
Now assume that the conditions of the assertion hold. It follows that a3 = aq+1

2 /aq1
and a4 = aq+1

3 /aq2 = aq
2+q+1

2 /aq
2+q

1 . Let αi = ai/a1 for i = 0, 1, 2, 3, 4. Then α1 = 1,
N(α2) = 1, α3 = αq+1

2 and α4 = α1+q+q2

2 . We have α2 = λq−1 for some λ ∈ F∗q5 . If(
a b
c d

)
=

(
1 0

1− λ1−q4a0/a1 λ1−q
4

/a1

)
,

then(
a b
c d

)(
x

f(x)

)
=(

x

x+ λ1−q
4

xq + λq−q
4

xq
2

+ λq
2−q4xq

3

+ λq
3−q4xq

4

)
=

(
x

Tr(xλq
4

)/λq
4

)
,

i.e. fϕ(x) = Tr(λq
4

x)/λq
4

, where ϕ is defined by the matrix(
a b
c d

)
.

Proposition 3.2. Let f(x) =
∑4
i=0 aix

qi , with a1a2a3a4 6= 0. Then there is an element
ϕ ∈ ΓL(2, q5) such that Im(fϕ(x)/x) = Im(xq/x) if and only if one of the following
holds:

1. (a1/a2)q = a2/a3, (a2/a3)q = a3/a4 and N(a1) 6= N(a2), or

2. (a4/a1)q
2

= a1/a3, (a1/a2)q
2

= a3/a4 and N(a1) 6= N(a3).

In both cases, if the condition on the norms does not hold, then

Im(fϕ(x)/x) = Im(Tr(x)/x).

Proof. We first note that the monomials xq
i

and xq
5−i

are equivalent via the map

ψ :=

(
0 1
1 0

)
.

Hence, by Corollary 1.2, the statement holds if and only if there exist a, b, c, d, ad−bc 6= 0,
σ : x 7→ xp

h

and i ∈ {1, 2} such that{(
y

yq
i

)
: y ∈ Fq5

}
=

{(
a b
c d

)(
xσ

f(x)σ

)
: x ∈ Fq5

}
. (3.1)

If Condition 1 holds then let αj = aj/a1 for j = 0, 1, 2, 3, 4. So α1 = 1, N(α2) 6= 1,
α3 = αq+1

2 , α4 = α1+q+q2

2 and it turns out that(
1 αq

4

2

α1+q+q2+q3

2 1

)(
1 0
−α0 1/a1

)(
x

f(x)

)
=(

1 αq
4

2

α1+q+q2+q3

2 1

)(
x

xq + α2x
q2 + α3x

q3 + α4x
q4

)
.
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Hence (3.1) is satisfied with i = 1, σ : x 7→ x and(
a b
c d

)
=

(
1 αq

4

2

α1+q+q2+q3

2 1

)(
1 0
−α0 1/a1

)
.

If condition (1.2) holds then let αj = aj/a3 for j = 0, 1, 2, 3, 4. So α3 = 1, N(α1) 6=
1, α2 = α1+q+q3

1 , α4 = α1+q3

1 and (3.1) is satisfied with i = 2, σ : x 7→ x and(
a b
c d

)
=

(
α1+q+q3+q4

1 1

1 αq
2

1

)(
1 0
−α0 1/a3

)
.

Suppose now that (3.1) holds and put z = xσ . Then

(
za+ b

4∑
j=0

aσj z
qj
)qi

= cz + d

4∑
j=0

aσj z
qj

for each z ∈ Fq5 and hence, as polynomials in z, the left-hand side and right-hand side
of the above equation coincide modulo zq

5 − z. The coefficients of z, zq
i

and zq
k

with
i ∈ {1, 2} and k ∈ {1, 2, 3, 4} \ {i} give

bq
i

aσq
i

−i = c+ daσ0 ,

aq
i

+ bq
i

aσq
i

0 = daσi ,

bq
i

aσq
i

k−i = daσk ,

respectively, where the indices are considered modulo 5. Note that db 6= 0 since otherwise
also a = c = 0 and hence ad − bc = 0. With {r, s, t} = {1, 2, 3, 4} \ {i}, the last three
equations yield: (

ar−i
as−i

)qi
=
ar
as
,(

as−i
at−i

)qi
=
as
at
.

First assume i = 1. Then we have(
a1
a2

)q
=
a2
a3

and
(
a2
a3

)q
=
a3
a4
.

If N(a1) = N(a2), from Proposition 3.1 and Equation (2.3) it follows that | Im(xq/x)| =
| Im(Tr(x)/x)|. Since | Im(xq/x)| = (qn − 1)/(q − 1) and | Im(Tr(x)/x)| = qn−1 + 1,
we get a contradiction.

Now assume i = 2. Then we have (a4/a1)q
2

= a1/a3 and(
a1
a2

)q2
=
a3
a4
. (3.2)
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Multiplying these two equations yields aq
2+1

4 = a1a
q2

2 and hence

a2 = a1+q+q
3

1 /aq
3+q

3 . (3.3)

By (3.2) this implies

a4 = aq
3+1

1 /aq
3

3 . (3.4)

If N(a1) = N(a3), then also N(a1) = N(a2) = N(a3) = N(a4). We show that in this
case Im(fϕ(x)/x) = Im(Tr(x)/x), so we must have N(a1) 6= N(a3). According to
Proposition 3.1 it is enough to show (a1/a2)q = a2/a3 and (a2/a3)q = a3/a4. By (3.2)
we have (a1/a2)q = (a3/a4)q

4

, which equals a2/a3 if and only if (a2/a3)q = a3/a4, i.e.
a1+q3 = a4a

q
2. Taking into account (3.3) and (3.4), this equality follows from N(a1) =

N(a3).

4 Proof of the main theorem
In this section we prove Theorem 1.5. In order to do this, we use the following two results
and the technique developed in [8].

Lemma 4.1 ([8, Lemma 3.4]). Let f and g be two linearized polynomials over Fqn . If
Im(f(x)/x) = Im(g(x)/x), then for each positive integer d the following holds

∑
x∈F∗

qn

(
f(x)

x

)d
=
∑
x∈F∗

qn

(
g(x)

x

)d
.

Lemma 4.2 (See for example [8, Lemma 3.5]). For any prime power q and integer d we
have

∑
x∈F∗q

xd = −1 if q − 1 | d and
∑
x∈F∗q

xd = 0 otherwise.

Proposition 4.3. Let f(x) =
∑4
i=0 aix

qi and g(x) =
∑4
i=0 bix

qi be two q-polynomials
over Fq5 such that Im(f(x)/x) = Im(g(x)/x). Then the following relations hold between
the coefficients of f and g:

a0 = b0, (4.1)
a1a

q
4 = b1b

q
4, (4.2)

a2a
q2

3 = b2b
q2

3 , (4.3)

aq+1
1 aq

2

3 + a2a
q+q2

4 = bq+1
1 bq

2

3 + b2b
q+q2

4 , (4.4)

a1a
q+q3

2 + a1+q
3

3 aq4 = b1b
q+q3

2 + b1+q
3

3 bq4, (4.5)

a1+q+q
2

1 aq
3

2 + a1+q2 aq
2+q3

3 + aq1a
1+q2+q3

3 + aq
2

1 a2a
q3

3 a
q
4 + a1+q+q

3

2 aq
2

4 +

aq1a
q3

2 a3a
q2

4 + a1a
q
2a
q2

3 a
q3

4 + a1+q
2

1 aq+q
3

4 + a3a
q+q2+q3

4 =

b1+q+q
2

1 bq
3

2 + b1+q2 bq
2+q3

3 + bq1b
1+q2+q3

3 + bq
2

1 b2b
q3

3 b
q
4 + b1+q+q

3

2 bq
2

4 +

bq1b
q3

2 b3b
q2

4 + b1b
q
2b
q2

3 b
q3

4 + b1+q
2

1 bq+q
3

4 + b3b
q+q2+q3

4 ,

(4.6)
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N(a1) + N(a2) + N(a3) + N(a4) + Tr(aq1a
q2+q3+q4

2 a3 + aq+q
3

1 aq
4

2 a
1+q2

3 +

aq+q
2

1 aq
3+q4

2 a4 + aq+q
2+q4

1 aq
3

3 a4 + aq2a
q2+q3+q4

3 a4 + aq
2

1 a
q3+q4

3 a1+q4 +

aq+q
3

2 aq
4

3 a
1+q2

4 + aq
2

1 a
q4

2 a
1+q+q3

4 ) =

N(b1) + N(b2) + N(b3) + N(b4) + Tr(bq1b
q2+q3+q4

2 b3 + bq+q
3

1 bq
4

2 b
1+q2

3 +

bq+q
2

1 bq
3+q4

2 b4 + bq+q
2+q4

1 bq
3

3 b4 + bq2b
q2+q3+q4

3 b4 + bq
2

1 b
q3+q4

3 b1+q4 +

bq+q
3

2 bq
4

3 b
1+q2

4 + bq
2

1 b
q4

2 b
1+q+q3

4 ).

(4.7)

Proof. Equations (4.1) – (4.5) follow from [8, Lemma 3.6]. To prove (4.6) we will use
Lemma 4.1 with d = q3 + q2 + q + 1. This gives us∑

1≤i,j,m,n≤4

aia
q
ja
q2

ma
q3

n

∑
x∈F∗

q5

xq
i−1+qj+1−q+qm+2−q2+qn+3−q3 =

∑
1≤i,j,m≤4

bib
q
jb
q2

mb
q3

n

∑
x∈F∗

q5

xq
i−1+qj+1−q+qm+2−q2+qn+3−q3 .

By Lemma 4.2 we have
∑
x∈F∗

q5
xq

i−1+qj+1−q+qm+2−q2+qn+3−q3 = −1 if and only if

qi + qj+1 + qm+2 + qn+3 ≡ 1 + q + q2 + q3 (mod q5 − 1), (4.8)

and zero otherwise. Suppose that the former case holds. The right-hand side of (4.8) is
smaller than the left-hand side, thus

qi + qj+1 + qm+2 + qn+3 = 1 + q + q2 + q3 + k(q5 − 1),

for some positive integer k. We have qi + qj+1 + qm+2 + qn+3 ≤ q4 + q5 + q6 + q7 <
1 + q+ q2 + q3 + (q2 + q+ 2)(q5− 1) and hence k ≤ q2 + q+ 1. If i = 1, then q2 | 1− k
and hence k = 1, j = m = 1 and n = 2, or k = q2 + 1, n = 4 and either j = 2 and
m = 3, or j = 4 and m = 1. If i > 1, then q2 divides q + 1 − k and hence k = q + 1,
or k = q2 + q + 1. In the former case i = j = n = 2 and m = 4, or i = j = 2 and
n = m = 3, or i = 3, j = 1, m = 4 and n = 2, or i = 3, j = 1 and m = n = 3, or
m = 1, i = 2, j = 4 and n = 3. In the latter case i = 3 and n = m = j = 4. Then (4.6)
follows.

To prove (4.7) we follow the previous approach with d = q4 + q3 + q2 + q + 1. We
obtain ∑

aia
q
ja
q2

ma
q3

n a
q4

r =
∑

bib
q
jb
q2

mb
q3

n b
q4

r ,

where the summation is on the quintuples (i, j,m, n, r) with elements taken from {1, 2, 3,
4} such that Li,j,m,n,r := (qi−1)+(qj+1−q)+(qm+2−q2)+(qn+3−q3)+(qr+4−q4)
is divisible by q5 − 1. Then

Li,j,m,n,r ≡ Ki,j′,m′,n′,r′ (mod q5 − 1),

where

Ki,j′,m′,n′,r′ = (qi − 1) + (qj
′
− q) + (qm

′
− q2) + (qn

′
− q3) + (qr

′
− q4),
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such that j′ ≡ j + 1, m′ ≡ m+ 2, n′ ≡ n+ 3, r′ ≡ r + 4 (mod 5) with

j′ ∈ {0, 2, 3, 4}, m′ ∈ {0, 1, 3, 4}, n′ ∈ {0, 1, 2, 4}, r′ ∈ {0, 1, 2, 3}. (4.9)

For q = 2 and q = 3 we can determine by computer those quintuples (i, j′,m′, n′, r′)
for which Ki,j′,m′,n′,r′ is divisible by q5 − 1 and hence (4.7) follows. So we may assume
q > 3. Then

3− q2 − q3 − q4 = (q − 1) + (1− q) + (1− q2) + (1− q3) + (1− q4) ≤
Ki,j′,m′,n′,r′ ≤

(q4 − 1) + (q4 − q) + (q4 − q2) + (q4 − q3) + (q3 − q4) = 3q4 − 1− q − q2,

and hence Li,j,m,n,r is divisible by q5 − 1 if and only if Ki,j′,m′,n′,r′ = 0. It follows that

qi + qj
′
+ qm

′
+ qn

′
+ qr

′
= 1 + q + q2 + q3 + q4. (4.10)

For h ∈ {0, 1, 2, 3, 4} let ch denote the number of elements in the multiset {i, j′,m′, n′, r′}
which equals h. So

4∑
h=0

chq
h = 1 + q + q2 + q3 + q4

for some 0 ≤ ch ≤ 5 with
∑4
h=0 ch = 5. We cannot have c0 = 5 since q > 1. If

ci = 5 for some 1 ≤ i ≤ 4 then the left hand side of (4.10) is not congruent to 1 modulo
q, a contradiction. It follows that ch ≤ 4. Thus for q > 3 (4.10) holds if and only if
ch = 1 for h = 0, 1, 2, 3, 4 and we have to find those quintuples (i, j′,m′, n′, r′) for which
i ∈ {1, 2, 3, 4}, {i, j′,m′, n′, r′} = {0, 1, 2, 3, 4} and (4.9) are satisfied. This can be done
by computer and the 44 solutions yield (4.7).

4.1 Proof of Theorem 1.5

Proof. Since f has maximum field of linearity Fq , we cannot have a1 = a2 = a3 = a4 = 0.
If three of {a1, a2, a3, a4} are zeros, then f(x) = a0x + aix

qi , for some i ∈ {1, 2, 3, 4}.
Hence with ϕ represented by (

1 0
−a0/ai 1/ai

)
we have fϕ(x) = xq

i

. Then Proposition 2.6 and Corollary 1.2 give gϕ(x) = βxq
j

where
N(β) = 1 and j ∈ {1, 2, 3, 4}. Now, we distinguish three main cases according to the
number of zeros among {a1, a2, a3, a4}.

Two zeros among {a1, a2, a3, a4}

Applying Proposition 4.3 we obtain a0 = b0. The two non-zero coefficients can be chosen
in six different ways, however the cases a1a2 6= 0 and a1a3 6= 0 correspond to a3a4 6=
0 and a2a4 6= 0, respectively, since Im(f(x)/x) = Im(f̂(x)/x). Thus, after possibly
interchanging f with f̂ , we may consider only four cases.

First let
f(x) = a0x+ a1x

q + a4x
q4 , a1a4 6= 0.
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Applying Proposition 4.3 we obtain 0 = b2b
q2

3 . Since b1b4 6= 0, from (4.4) we get b2 =
b3 = 0 and hence (4.7) gives

N(a1) + N(a4) = N(b1) + N(b4).

Also, from (4.2) we have N(a1) N(a4) = N(b1) N(b4). It follows that either N(a1) =
N(b1) and N(a4) = N(b4), or N(a1) = N(b4) and N(a4) = N(b1). In the first case
b1 = a1λ

q−1 for some λ ∈ F∗q5 and by (4.2) we get g(x) = f(λx)/λ. In the latter case

b1 = aq4λ
q−1 for some λ ∈ F∗q5 and by (4.2) we get g(x) = f̂(λx)/λ.

Now consider
f(x) = a1x

q + a3x
q3 , a1a3 6= 0.

Applying Proposition 4.3 and arguing as above we have either b2 = b4 = 0 or b1 = b3 = 0.
In the first case from (4.6) we obtain

aq1a
1+q2+q3

3 = bq1b
1+q2+q3

3

and together with (4.4) this yields N(a1) = N(b1) and N(a3) = N(b3). In this case g(x) =

f(λx)/λ for some λ ∈ F∗q5 . If b1 = b3 = 0, then in ĝ(x) the coefficients of xq
2

and xq
4

are
zeros thus applying the result obtained in the former case we get λĝ(x) = f(λx) and hence
after substituting y = λx and taking the adjoints of both sides we obtain g(y) = f̂(µy)/µ,
where µ = λ−1.

The cases

f(x) = a1x
q + a2x

q2 and f(x) = a2x
q2 + a3x

q3

can be handled in a similar way, applying Equations (4.2) – (4.7) of Proposition 4.3.

One zero among {a1, a2, a3, a4}

Since Im(f(x)/x) = Im(f̂(x)/x), we may assume a1 = 0 or a2 = 0.
First suppose a1 = 0. Then by (4.2) either b1 = 0 or b4 = 0. In the former case

putting together Equations (4.3), (4.4), (4.5) we get N(ai) = N(bi) for i ∈ {2, 3, 4} and
hence there exists λ ∈ F∗q5 such that g(x) = f(λx)/λ. If a1 = b4 = 0, then in ĝ(x) the

coefficient of xq is zero thus applying the previous result we get g(x) = f̂(µx)/µ, where
µ = λ−1.

Now suppose a2 = 0. Then by (4.3) either b2 = 0 or b3 = 0. Using the same approach
but applying (4.2), (4.4) and (4.5) we obtain g(x) = f(λx)/λ or g(x) = f̂(λx)/λ.

Case a1a2a3a4 6= 0

We will apply (4.1) – (4.6) of Proposition 4.3. Note that Equations (4.2) and (4.3) yield
a1a2a3a4 6= 0⇔ b1b2b3b4 6= 0. Multiplying (4.4) by a2 and applying (4.3) yield

a22a
q+q2

4 − a2(bq+1
1 bq

2

3 + b2b
q+q2

4 ) + aq+1
1 bq

2

3 b2 = 0.

Taking (4.2) into account, this is equivalent to

(a2a
q+q2

4 − bq+1
1 bq

2

3 )(a2a
q+q2

4 − b2bq+q
2

4 ) = 0.
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Multiplying (4.5) by a1 and applying (4.2) yield

a21a
q+q3

2 − a1(b1b
q+q3

2 + b1+q
3

3 bq4) + a1+q
3

3 bq4b1 = 0.

Taking (4.3) into account, this is equivalent to

(a1a
q+q3

2 − b1bq+q
3

2 )(a1a
q+q3

2 − b1+q
3

3 bq4) = 0.

We distinguish four cases:

Case 1. a2a
q+q2

4 = bq+1
1 bq

2

3 and a1a
q+q3

2 = b1b
q+q3

2 ,

Case 2. a2a
q+q2

4 = bq+1
1 bq

2

3 and a1a
q+q3

2 = b1+q
3

3 bq4,

Case 3. a2a
q+q2

4 = b2b
q+q2

4 and a1a
q+q3

2 = b1b
q+q3

2 ,

Case 4. a2a
q+q2

4 = b2b
q+q2

4 and a1a
q+q3

2 = b1+q
3

3 bq4.

We show that these four cases produce the relations:

N

(
b1
a4

)
=
a1a

q+q3

2

aq4a
q3+1
3

=
b1b

q+q3

2

bq4b
q3+1
3

, (4.11)

N

(
b1
a4

)
= 1, (4.12)

N

(
b1
a1

)
= 1, (4.13)

N

(
b1
a1

)
=
aq

3+1
3 aq4

a1a
q+q3

2

=
b1b

q+q3

2

bq
3+1

3 bq4
, (4.14)

respectively.
To see (4.11) observe that from a2a

q+q2

4 = bq+1
1 bq

2

3 and (4.2) we get

N

(
b1
a4

)
=

(
bq+1
1

aq+q
2

4

)q2+1
bq

4

1

a4
=

(
aq

2+1
2

bq
2+q4

3

)
aq

4

1

b4
=
a1a

q+q3

2

bq4b
q3+1
3

, (4.15)

where the last equation follows from N(b1/a4)q = N(b1/a4). Hence by a1a
q+q3

2 =

b1b
q+q3

2 and (4.5) we get (4.11).
Equation (4.12) immediately follows from (4.15) taking a1a

q+q3

2 = b1+q
3

3 bq4 into ac-
count.

Now we show (4.14). By (4.2), we get

N

(
b1
a1

)
= N

(
a4
b4

)
=

(
a4
b4

)q+q2 ((
a4
b4

)q+q2)q2 (
a4
b4

)
. (4.16)

Since N(b1/a1)q = N(b1/a1), by a2a
q+q2

4 = b2b
q+q2

4 , the previous equation becomes

N

(
b1
a1

)
=
bq

3+q
2

aq
3+q

2

aq4
bq4

(4.17)
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and taking a1a
q+q3

2 = b1+q
3

3 bq4 and (4.3) into account we get (4.14).
Equation (4.13) immediately follows from (4.17) taking a1a

q+q3

2 = b1b
q+q3

2 and (4.2)
into account.

• In Case 3 by (4.13) we get b1 = a1λ
q−1 for some λ ∈ F∗q5 and by (4.2) and (4.3) we

have g(x) = f(λx)/λ.

• Analogously, in Case 2 g(x) = f̂(λx)/λ.

• Case 4 is just Case 3 after replacing g by ĝ since Im(g(x)/x) = Im(ĝ(x)/x).

This allows us to restrict ourself to Case 1.

Taking (4.2) and (4.3) into account, it will be useful to express a1, a2, a3 as follows:

a1 =
b1b

q
4

aq4
, a2 =

bq+1
1 bq

2

3

aq+q
2

4

, a3 =
bq

3

2 b
1+q4

4

aq
3+q4

1

. (4.18)

We are going to simplify (4.6). Using Equations (4.18) and (4.2) it is easy to see that

a1+q2 aq
2+q3

3 = b1+q2 bq
2+q3

3 , a1+q
2

1 aq+q
3

4 = b1+q
2

1 bq+q
3

4 ,

aq
2

1 a2a
q3

3 a
q
4 = b1b

q
2b
q2

3 b
q3

4 , aq1a
q3

2 a3a
q2

4 = bq1b
q3

2 b3b
q2

4 ,

a1a
q
2a
q2

3 a
q3

4 = bq
2

1 b2b
q3

3 b
q
4

and hence

a1+q+q
2

1 aq
3

2 + aq1a
1+q2+q3

3 + a1+q+q
3

2 aq
2

4 + a3a
q+q2+q3

4 =

b1+q+q
2

1 bq
3

2 + bq1b
1+q2+q3

3 + b1+q+q
3

2 bq
2

4 + b3b
q+q2+q3

4 .
(4.19)

The following equations can be proved applying (4.2), (4.3) and (4.18):

N

(
b1
a4

)
b3b

q+q2+q3

4 = aq
3

2 a
1+q+q2

1 , (4.20)

N

(
a4
b1

)
bq

2

4 b
1+q+q3

2 = aq1a
1+q2+q3

3 , (4.21)

N

(
b1
a4

)
bq1b

1+q2+q3

3 = a1+q+q
3

2 aq
2

4 , (4.22)

N

(
a4
b1

)
bq

3

2 b
1+q+q2

1 = a3a
q+q2+q3

4 . (4.23)

Then (4.19) can be written as

(N(b1/a4)− 1)
(
b3b

q+q2+q3

4 + bq1b
1+q2+q3

3

)
=

N(b1/a4)− 1

N(b1/a4)

(
bq

2

4 b
1+q+q3

2 + bq
3

2 b
1+q+q2

1

)
.

If N(b1/a4) = 1, then (4.15) equals 1 and hence a1a
q+q3

2 = bq4b
q3+1
3 which means that we

are in Case 2. Then again g(x) = f̂(λx)/λ.
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Otherwise dividing by N(b1/a4)−1 and substituting N(b1/a4) = b1b
q+q3

2 /bq4b
q3+1
3 we

obtain

b1b
q+q3

2 (b3b
q+q2+q3

4 + bq1b
1+q2+q3

3 ) = bq4b
q3+1
3 (bq

2

4 b
1+q+q3

2 + bq
3

2 b
1+q+q2

1 ).

Substituting N(b1/a4)bq4b
q3+1
3 /bq+q

3

2 for b1 and using the fact that N(b1/a4) ∈ Fq we
obtain (

1−N

(
b1
a4

)2

N

(
b3
b2

))(
N

(
b1
a4

)
bq+q

3

4 b3 − b1+q+q
3

2

)
= 0.

This gives us two possibilities:

N

(
b1
a4

)
bq+q

3

4 b3 = b1+q+q
3

2 , (4.24)

or

N

(
b2
b3

)
= N

(
b1
a4

)2
. (4.25)

First consider the case when (4.25) holds.
We show N(a1) = N(b1), that is, (4.13). We have a2a

q+q2

4 = bq+1
1 bq

2

3 from (4.18) and
hence N(a2) N(a4)2 = N(b1)2 N(b3). It follows that

N

(
b1
a4

)2
= N

(
a2
b3

)
.

Combining this with (4.25) we obtain N(b2) = N(a2). Then N(b1) = N(a1) follows from
a1a

q+q3

2 = b1b
q+q3

2 since we are in Case 1.
From now on we can suppose that (4.24) holds.
Then (4.11) yields (

b1
b2

)q2
=
b3
b4
. (4.26)

Multiplying both sides of (4.24) by bq
2

4 and applying (4.20) gives

aq
3

2 a
1+q+q2

1 = b1+q+q
3

2 bq
2

4 . (4.27)

Then multiplying (4.20) by (4.21) and taking (4.27) into account we obtain

aq1a
1+q2+q3

3 = b3b
q+q2+q3

4 . (4.28)

Multiplying (4.22) and (4.23) yield

(bq1b
1+q2+q3

3 )(bq
3

2 b
1+q+q2

1 ) = (a1+q+q
3

2 aq
2

4 )(a3a
q+q2+q3

4 ).

On the other hand, from (4.19), and taking (4.27) and (4.28) into account, it follows that

bq1b
1+q2+q3

3 + bq
3

2 b
1+q+q2

1 = a1+q+q
3

2 aq
2

4 + a3a
q+q2+q3

4 .

Hence
bq1b

1+q2+q3

3 = a1+q+q
3

2 aq
2

4 and bq
3

2 b
1+q+q2

1 = a3a
q+q2+q3

4 ,
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or
bq1b

1+q2+q3

3 = a3a
q+q2+q3

4 and bq
3

2 b
1+q+q2

1 = a1+q+q
3

2 aq
2

4 .

In the former case (4.22) yields N(b1/a4) = 1, which is (4.12). In the latter case (4.11)
and (4.23) gives

bq4b
q3+1
3

b1b
q+q3

2

bq
3

2 b
1+q+q2

1 = N(a4/b1)bq
3

2 b
1+q+q2

1 = bq1b
1+q2+q3

3 ,

and hence
b4
b2

=

(
b3
b1

)q
. (4.29)

Equation (4.26) is equivalent to
b4b

q2

1 = b3b
q2

2 , (4.30)

while (4.29) is equivalent to
b4b

q
1 = bq3b2.

Dividing these two equations by each other yield

bq
2−1

2 = bq−13 bq
2−q

1 .

It follows that there exists λ ∈ F∗q such that

bq+1
2 = λb3b

q
1, (4.31)

thus
b3 = bq+1

2 /(bq1λ) (4.32)

and by (4.30)
b4 = b1+q+q

2

2 /(bq+q
2

1 λ). (4.33)

Then (4.11) can be written as

N

(
b1
a4

)
=
b1b

q+q3

2

bq4b
q3+1
3

= N

(
b1
b2

)
λ3,

and hence

N

(
b2
a4

)
= λ3. (4.34)

By (4.2), (4.34) and (4.33) we get

N(a1) = N(b2)2/(N(b1)λ2). (4.35)

By (4.18), (4.32) and (4.34) we have

N(a2) = N(b1)λ. (4.36)

By (4.18), (4.35) and (4.33) we get

N(a3) = N(b2)3/(N(b1)2λ6), (4.37)
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and by (4.34) we have
N(a4) = N(b2)/λ3. (4.38)

Before we go further, we simplify (4.7) and prove

N(a1) + N(a2) + N(a3) + N(a4) = N(b1) + N(b2) + N(b3) + N(b4). (4.39)

It is enough to show

Tr(

A1︷ ︸︸ ︷
aq1a

q2+q3+q4

2 a3 +

A2︷ ︸︸ ︷
aq+q

3

1 aq
4

2 a
1+q2

3 +

A3︷ ︸︸ ︷
aq+q

2

1 aq
3+q4

2 a4 +

A4︷ ︸︸ ︷
aq+q

2+q4

1 aq
3

3 a4 +

A5︷ ︸︸ ︷
aq2a

q2+q3+q4

3 a4 +

A6︷ ︸︸ ︷
aq

2

1 a
q3+q4

3 a1+q4 +

A7︷ ︸︸ ︷
aq+q

3

2 aq
4

3 a
1+q2

4 +

A8︷ ︸︸ ︷
aq

2

1 a
q4

2 a
1+q+q3

4 ) =

Tr(

B1︷ ︸︸ ︷
bq1b

q2+q3+q4

2 b3 +

B7︷ ︸︸ ︷
bq+q

3

1 bq
4

2 b
1+q2

3 +

B3︷ ︸︸ ︷
bq+q

2

1 bq
3+q4

2 b4 +

B8︷ ︸︸ ︷
bq+q

2+q4

1 bq
3

3 b4 +

B5︷ ︸︸ ︷
bq2b

q2+q3+q4

3 b4 +

B6︷ ︸︸ ︷
bq

2

1 b
q3+q4

3 b1+q4 +

B2︷ ︸︸ ︷
bq+q

3

2 bq
4

3 b
1+q2

4 +

B4︷ ︸︸ ︷
bq

2

1 b
q4

2 b
1+q+q3

4 ),

which can be done by proving Tr(Ai) = Tr(Bi) for i = 1, 2, . . . , 8. Expressing a3 with
a4 in (4.18), and using (4.2) as well, we get a3 = bq

3

2 a
q4+1
4 /bq

3+q4

1 . Then a1, a2, a3 can be
eliminated in all of the Ai, i ∈ {1, 2 . . . , 8}. It turns out that this procedure eliminates also
a4 when i ∈ {2, 4, 7, 8} and we obtain

A2 = Bq
2

2 , A4 = Bq
2

4 , A7 = Bq
3

7 and A8 = Bq
2

8 .

In each of the other cases what remains is N(a4) times an expression in b1, b2, b3, b4. Then
by using (4.11) we can also eliminate N(a4) and hence Ai can be expressed in terms of
b1, b2, b3, b4. This gives A1 = B1 and A5 = B5. Applying also (4.26) and (4.29) we
obtain A3 = Bq

2

3 and A6 = B6.
Let x = N(b2/b1). Multiplying both sides of (4.39) by λ6/N(b1), taking into account

(4.35), (4.36), (4.37) and (4.38) for the left hand side and (4.32) and (4.33) for the right
hand side we get the following equation

x2λ4 + λ7 + x3 + xλ3 = λ6 + xλ6 + x2λ+ λx3.

After rearranging we get:

(1− λ)(x− λ)(x− λ2)(x− λ3) = 0.

First suppose λ 6= 1. Then we have three possibilities.

1. If
x = λ,

in which case N(b2) = N(a2) follows from (4.36). Since gcd(q − 1, q5 − 1) =
gcd(q2−1, q5−1), in F∗q5 the set of (q−1)-th powers is the same as the set of (q2−1)-

th powers and hence there exists and element ν ∈ F∗q5 such that b2 = νq
2−1a2.

Therefore, since we are in Case 1, from a1a
q+q3

2 = b1b
q+q3

2 we obtain b1 = νq−1a1.
Equations (4.2) and (4.3) give g(x) = f(νx)/ν.
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2. If
x = λ3,

thenN(a4) = N(b1) follows from (4.38). Then (4.15) equals 1 and hence a1a
q+q3

2 =

bq4b
q3+1
3 which means that we are in Case 2, thus g(x) = f̂(µx)/µ.

3. If
x = λ2,

then we show that there exists ϕ ∈ ΓL(2, q5) such that either

Im(gϕ(x)/x) = Im(xq/x) or Im(gϕ(x)/x) = Im(Tr(x)/x).

In the former case by Proposition 2.6 and Corollary 1.2 we get fϕ(x) = αxq
i

and
gϕ(x) = βxq

j

for some i, j ∈ {1, 2, 3, 4}, with N(α) = N(β) = 1. In the latter
case, by Theorem 1.3 and by Propositions 2.6 and 2.7, there exists µ ∈ F∗q5 such that
g(x) = f(µx)/µ.

According to part 2 of Proposition 3.2, it is enough to show

(b4/b1)q
2

= b1/b3, (b1/b2)q
2

= b3/b4.

(Note that there is no need to confirm N(b1) 6= N(b3) since otherwise the result follows
from the last part of Proposition 3.2 and from Theorem 1.3.) The second equation is just
(4.26), thus it is enough to prove the first one.

First we show
b2b

q+q3

3 = b1+q+q
3

1 . (4.40)

From (4.31) we have

N

(
b2
b1

)
= λ2 =

(
bq+1
2

b3b
q
1

)2

,

and hence after rearranging
bq

2+q3+q4

2 b3

b1+q
2+q3+q4

1

=
bq+1
2

b3b
q
1

.

On the right-hand side we have λ, which is in Fq , thus, after taking q-th powers on the left
and q3-th powers on the right, the following also holds

bq
3+q4+1

2 bq3

bq+q
3+q4+1

1

=
bq

3+q4

2

bq
3

3 b
q4

1

.

After rearranging we obtain (4.40).
Now we show that (b4/b1)q

2

= b1/b3 is equivalent to (4.40). Expressing b4 from (4.26)
we get

(b4/b1)q
2

= b1/b3 ⇐⇒ b1+q
2

3 bq
4

2 = b1+q
2+q4

1 ,

where the equation on the right-hand side is just the q4-th power of (4.40).

Finally, consider the case λ = 1. Then

b3 = bq+1
2 /bq1, b4 = b1+q+q

2

2 /bq+q
2

1



604 Ars Math. Contemp. 16 (2019) 585–608

and it follows from Proposition 3.2 that there exists ϕ ∈ ΓL(2, q5) such that either

Im(gϕ(x)/x) = Im(xq/x) or Im(gϕ(x)/x) = Im(Tr(x)/x).

As above, the assertion follows either from Proposition 2.6 and Corollary 1.2 or from The-
orem 1.3 and by Propositions 2.6 and 2.7.

This finishes the proof when
∏4
i=1 aibi 6= 0.

5 New maximum scattered linear sets of PG(1, q5)

A point set L of a line Λ = PG(W,Fqn) = PG(1, qn) is said to be an Fq-linear set of Λ
of rank n if it is defined by the non-zero vectors of an n-dimensional Fq-vector subspace
U of the two-dimensional Fqn -vector space W , i.e.

L = LU := {〈u〉Fqn : u ∈ U \ {0}}.

One of the most natural questions about linear sets is their equivalence. Two linear sets
LU and LV of PG(1, qn) are said to be PΓL-equivalent (or simply equivalent) if there
is an element in PΓL(2, qn) mapping LU to LV . In the applications it is crucial to have
methods to decide whether two linear sets are equivalent or not. This can be a difficult
problem and some results in this direction can be found in [8, 12]. If LU and LV are two
equivalent Fq-linear sets of rank n in PG(1, qn) and ϕ is an element of ΓL(2, qn) which
induces a collineation mapping LU to LV , then LUϕ = LV . Hence the first step to face
with the equivalence problem for linear sets is to determine which Fq-subspaces can define
the same linear set.

For any q-polynomial f(x) =
∑n−1
i=0 aix

qi over Fqn , the graph

Gf = {(x, f(x)) : x ∈ Fqn}

is an Fq-vector subspace of the 2-dimensional vector space V = Fqn × Fqn and the point
set

Lf := LGf = {〈(x, f(x))〉Fqn : x ∈ F∗qn}

is an Fq-linear set of rank n of PG(1, qn). In this context, the problem posed in (1.2)
corresponds to find all Fq-subspaces of V of rank n (cf. [8, Proposition 2.3]) defining
the linear set Lf . The maximum field of linearity of f is the maximum field of linearity
of Lf , and it is well-defined (cf. Proposition 2.1 and [8, Proposition 2.3]). Also, by the
Introduction (Section 1), for any q-polynomial f over Fqn , the linear sets Lf , Lfλ (with
fλ(x) := f(λx)/λ for each λ ∈ F∗qn ) and Lf̂ coincide (cf. [2, Lemma 2.6] and the first
part of [8, Section 3]). If f and g are two equivalent q-polynomials over Fqn , i.e. Gf and
Gg are equivalent w.r.t. the action of the group ΓL(2, qn), then the corresponding Fq-linear
sets Lf and Lg of PG(1, qn) are PΓL(2, qn)-equivalent. The converse does not hold (see
[12] and [8] for further details).

The relation between the problem posed in (1.2) and the equivalence problem of linear
sets of the projective line is summarized in the following result.

Proposition 5.1. Let Lf and Lg be two Fq-linear sets of rank n of PG(1, qn). Then Lf
and Lg are PΓL(2, qn)-equivalent if and only if there exists an element ϕ ∈ ΓL(2, qn)
such that Im(fϕ(x)/x) = Im(g(x)/x).
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Linear sets of rank n of PG(1, qn) have size at most (qn− 1)/(q− 1). A linear set LU
of rank n whose size achieves this bound is called maximum scattered. For applications of
these objects we refer to [26] and [19].

Definition 5.2 ([15, 22]). A maximum scattered Fq-linear set LU of rank n in PG(1, qn) is
of pseudoregulus type if it is PΓL(2, qn)-equivalent to Lf with f(x) = xq or, equivalently,
if there exists an element ϕ ∈ GL(2, qn) such that

LUϕ = {〈(x, xq)〉Fqn : x ∈ F∗qn}.

By Proposition 5.1 and Corollary 1.2, it follows

Proposition 5.3. An Fq-linear set Lf of rank n of PG(1, qn) is of pseudoregulus type if
and only if f(x) is equivalent to xq

i

for some i with gcd(i, n) = 1.

For the proof of the previous result see also [20].
The known pairwise non-equivalent families of q-polynomials over Fqn which define

maximum scattered linear sets of rank n in PG(1, qn) are

1. fs(x) = xq
s

, 1 ≤ s ≤ n− 1, gcd(s, n) = 1 ([4, 11]),

2. gs,δ(x) = δxq
s

+ xq
n−s

, n ≥ 4, Nqn/q(δ) /∈ {0, 1}1, gcd(s, n) = 1 ([23] for s = 1,
[24, 27] for s 6= 1),

3. hs,δ(x) = δxq
s

+ xq
s+n/2

, n ∈ {6, 8}, gcd(s, n/2) = 1, Nqn/qn/2(δ) /∈ {0, 1}, for
the precise conditions on δ and q see [9, Theorems 7.1 and 7.2]2,

4. kb(x) = xq + xq
3

+ bxq
5

, n = 6, with b2 + b = 1, q ≡ 0,±1 (mod 5) ([10]).

Remark 5.4. All the previous polynomials in cases 2, 3, and 4 above are examples of
functions which are not equivalent to monomials but the set of directions determined by
their graph has size (qn − 1)/(q − 1), i.e. the corresponding linear sets are maximum
scattered. The existence of such linearized polynomials is briefly discussed also in [16,
p. 132].

For n = 2 the maximum scattered Fq-linear sets coincide with the Baer sublines. For
n = 3 the maximum scattered linear sets are all of pseudoregulus type and the correspond-
ing q-polynomials are all GL(2, q3)-equivalent to xq (cf. [21]). For n = 4 there are two
families of maximum scattered linear sets. More precisely, if Lf is a maximum scattered
linear set of rank 4 of PG(1, q4), with maximum field of linearity Fq , then there exists
ϕ ∈ GL(2, q4) such that either fϕ(x) = xq or fϕ(x) = δxq + xq

3

, for some δ ∈ F∗q4 with
Nq4/q(δ) /∈ {0, 1} (cf. [13]). It is easy to see that Lf1 = Lfs for any s with gcd(s, n) = 1,
and fi is equivalent to fj if and only if j ∈ {i, n− i}. Also, the graph of gs,δ is GL(2, qn)-
equivalent to the graph of gn−s,δ−1 .

In [23, Theorem 3] Lunardon and Polverino proved that Lg1,δ and Lf1 are not
PΓL(2, qn)-equivalent when q > 3, n ≥ 4. This was extended also for q = 3 [10,
Theorem 3.4]. Also in [10], it has been proven that for n = 6, 8 the linear sets Lf1 , Lgs,δ ,
Lhs′,δ′ and Lkb are pairwise non-equivalent for any choice of s, s′, δ, δ′, b.

In this section we prove that one can find for each q > 2 a suitable δ such that Lg2,δ
of PG(1, q5) is not equivalent to the linear sets Lg1,µ of PG(1, q5) for each µ ∈ F∗q5 , with
Nq5/q(µ) /∈ {0, 1}. In order to do this, we first reformulate Theorem 1.5 as follows.

1This condition implies q 6= 2.
2Also here q > 2, otherwise the linear set defined by hs,δ is never scattered.
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Theorem 5.5 (Theorem 1.5). Let f(x) and g(x) be two q-polynomials over Fq5 such that
Lf = Lg . Then either Lf = Lg is of pseudoregulus type or there exists some λ ∈ F∗q5 such

that g(x) = f(λx)/λ or g(x) = f̂(λx)/λ holds.

From [27, Theorem 8] and [24, Theorem 4.4] it follows that the family of Fq-subspaces
Ugs,δ , s /∈ {1, n − 1}, gcd(s, n) = 1, contains members which are not ΓL-equivalent to
the previously known Fq-subspaces defining maximum scattered linear sets of PG(1, qn).
Our next result shows that the corresponding family Lgs,δ of linear sets contains (at least
for n = 5) examples which are not PΓL-equivalent to the previously known maximum
scattered linear sets.

Theorem 5.6. Let g2,δ(x) = δxq
2

+ xq
3

for some δ ∈ F∗q5 with N(δ)5 6= 1. Then Lg2,δ is
not PΓL(2, q5)-equivalent to any linear set Lg1,µ and hence it is a new maximum scattered
linear set.

Proof. Suppose, contrary to our claim, that Lg2,δ is PΓL(2, q5)-equivalent to a linear set
Lg1,µ . From Proposition 5.1 and Theorem 5.5, taking into account that Lg1,µ is not of
pseudoregulus type, it follows that there exist ϕ ∈ ΓL(2, q5) and λ ∈ F∗q5 such that either
(g2,δ)ϕ(x) = g1,µ(λx)/λ or (g2,δ)ϕ(x) = ĝ1,µ(λx)/λ. This is equivalent to say that there
exist α, β, A, B, C, D ∈ Fq5 with AD−BC 6= 0 and a field automorphism τ of Fq5 such
that {(

A B
C D

)(
xτ

g2,δ(x)τ

)
: x ∈ Fq5

}
=

{(
z

αzq + βzq
4

)
: z ∈ Fq5

}
,

where N(α) 6= N(β) and αβ 6= 0. We may substitute xτ by y, then

α(Ay +Bδτyq
2

+Byq
3

)q + β(Ay +Bδτyq
2

+Byq
3

)q
4

= Cy +Dδτyq
2

+Dyq
3

for each y ∈ Fq5 . Comparing coefficients yields C = 0 and

αAq + βBq
4

δq
4τ = 0, (5.1)

βBq
4

= Dδτ , (5.2)
αBqδqτ = D, (5.3)

αBq + βAq
4

= 0. (5.4)

Conditions (5.2) and (5.3) give

Bq
4−q = δ(q+1)τα/β. (5.5)

On the other hand from (5.4) we get Aq = −Bq3αq2/βq2 and substituting this into (5.1)
we have

Bq
3−q4 = δq

4τβq
2+1/αq

2+1. (5.6)

Equations (5.5) and (5.6) give N(β/α) = N(δ)2τ and N(α/β)2 = N(δ)τ , respectively.
It follows that N(δ)5τ = 1 and hence N(δ)5 = 1, a contradiction.
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6 Open problems
We conclude the paper by the following open problems.

1. Is it true also for n > 5 that for any pair of q-polynomials f(x) and g(x) of Fqn [x],
with maximum field of linearity Fq , if Im(f(x)/x) = Im(g(x)/x) then either there
exists ϕ ∈ ΓL(2, qn) such that fϕ(x) = αxq

i

and gϕ(x) = βxq
j

with N(α) = N(β)
and gcd(i, n) = gcd(j, n) = 1, or there exists λ ∈ F∗qn such that g(x) = f(λx)/λ

or g(x) = f̂(λx)/λ?

2. Is it possible, at least for small values of n > 4, to classify, up to equivalence, the
q-polynomials f(x) ∈ Fqn [x] such that | Im(f(x)/x)| = (qn − 1)/(q − 1)? Find
new examples!

3. Is it possible, at least for small values of n, to classify, up to equivalence, the q-
polynomials f(x) ∈ Fqn [x] such that | Im(f(x)/x)| = qn−1 + 1? Find new exam-
ples!

4. Is it possible, at least for small values of n, to classify, up to equivalence, the q-
polynomials f(x) ∈ Fqn [x] such that in the multiset {f(x)/x : x ∈ F∗qn} there is a
unique element which is represented more than q − 1 times? In this case the linear
set Lf is an i-club of rank n and when q = 2, then such linear sets correspond to
translation KM-arcs cf. [14] (a KM-arc, or (q + t, t)-arc of type (0, 2, t), is a set of
q+t points of PG(2, 2n), such that each line meets the point set in 0, 2 or in t points,
cf. [17]). Find new examples!

5. Determine the equivalence classes of the set of q-polynomials in Fq4 [x].

6. Determine, at least for small values of n, all the possible sizes of Im(f(x)/x) where
f(x) ∈ Fqn [x] is a q-polynomial.

References
[1] S. Ball, The number of directions determined by a function over a finite field, J. Comb. Theory

Ser. A 104 (2003), 341–350, doi:10.1016/j.jcta.2003.09.006.

[2] D. Bartoli, M. Giulietti, G. Marino and O. Polverino, Maximum scattered linear sets
and complete caps in Galois spaces, Combinatorica 38 (2018), 255–278, doi:10.1007/
s00493-016-3531-6.

[3] A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme and T. Szőnyi, On the number of slopes of
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[12] B. Csajbók and C. Zanella, On the equivalence of linear sets, Des. Codes Cryptogr. 81 (2016),
269–281, doi:10.1007/s10623-015-0141-z.
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Abstract

A unital, that is a 2-(q3 + 1, q + 1, 1) block-design, is embedded in a projective plane
π of order q2 if its points are points of π and its blocks are subsets of lines of π, the
point-block incidences being the same as in π. Regarding unitals U which are isomorphic,
as a block-design, to the classical unital, T. Szőnyi and the authors recently proved that
the natural embedding is the unique embedding of U into the Desarguesian plane of order
q2. In this paper we extend this uniqueness result to all unitals which are isomorphic, as
block-designs, to orthogonal Buekenhout-Metz unitals.

Keywords: Unital, embedding, finite Desarguesian plane.

Math. Subj. Class.: 51E05, 51E20

1 Introduction
A unital is a set of q3 + 1 points equipped with a family of subsets, each of size q + 1,
such that every pair of distinct points are contained in exactly one subset of the family. In
Design Theory, such subsets are usually called blocks so that unitals are 2-(q3 +1, q+1, 1)
block-designs. A unital U is embedded in a projective plane π of order q2, if its points are
points of π, its blocks are subsets of lines of π and the point-block incidences being the
same as in π.

Sufficient conditions for a unital to be embeddable in a projective plane are given in
[21]. Computer aided searches suggest that there should be plenty of unitals, especially
for small values of q, but those embeddable in a projective plane are quite rare, see [3, 6,
27]. Very recently, the GAP package UnitalSz was released [25]. This package contains
methods for the embeddings of unitals in the finite projective plane.
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In the finite Desarguesian projective plane of order q2, a unital arises from a unitary
polarity: the points of the unital are the absolute points, and the blocks are the non-absolute
lines of the polarity. This unital is called classical unital. The following result comes
from [23].

Theorem 1.1. Let U be a unital embedded in PG(2, q2) which is isomorphic, as a block-
design, to a classical unital. Then U is the classical unital of PG(2, q2).

Buekenhout [11] constructed unitals in any translation planes with dimension at most
two over their kernel by using the Andrè/Bruck-Bose representation. Buekenhout’s work
was completed by Metz [24] who was able to prove by a counting argument that when
the plane is Desarguesian then Buekenhout’s construction provides not only the classical
unital but also non-classical unitals in PG(2, q2) for all q > 2. These unitals are called
Buekenhout-Metz unitals, and they are the only known unitals in PG(2, q2). With the
terminology in [5], an orthogonal Buekenhout-Metz unital is a Buekenhout-Metz unital
arising from an elliptic quadric in Buekehout’s construction.

In this paper, we prove the following result:

Main Theorem. Let U be a unital embedded in PG(2, q2) which is isomorphic, as block-
design, to an orthogonal Buekenhout-Metz unital. Then U is an orthogonal Buekenhout-
Metz unital.

Our approach is different from that adopted in [23]. Our idea is to exploit two different
models of PG(2, q2) in PG(5, q), one of them is a variant of the so-called GF(q)-linear rep-
resentation. We start off with a representation of a non-classical Buekenhout-Metz unital
given in one of these models of PG(2, q2), then we exhibit a linear collineation of PG(5, q)
that takes this representation to a representation of a classical unital in the other model of
PG(2, q2). At this point to finish the proof we only need some arguments from the proof of
Theorem 1.1 together with the characterization of the orthogonal Buekenhout-Metz unitals
due to Casse, O’Keefe, Penttila and Quinn [12, 29].

2 Preliminary results
The study of unitals in finite projective planes has been greatly aided by the use of the
Andrè/Bruck-Bose representation of these planes [1, 9, 10]. Let PG(4, q) denote the pro-
jective 4-dimensional space over the finite field GF(q), and let Σ be some fixed hyperplane
of PG(4, q). LetN be a line spread of Σ, that is a collection of q2 + 1 mutually skew lines
of Σ. We consider the following incidence structure: the points are the points of PG(4, q)
not in Σ, the lines are the planes of PG(4, q) which meet Σ in a line of N and incidence
is defined by inclusion. This incidence structure is an affine translation plane of order q2

which is at most two-dimensional over its kernel. It can be completed to a projective plane
π(N ) by the addition of an ideal line L∞ whose points are the elements of the spread N .
Conversely, any translation plane of order q2 with GF(q) in its kernel can be modeled this
way [9]. Moreover, it is well known that the resulting plane is Desarguesian if and only if
N is a Desarguesian spread [10].

Our first step is to outline the usual representation of PG(2, q2) in PG(5, q) due to
Segre [30] and Bose [7]. While such representation is usually thought of in a projective
setting, algebraic dimensions are more amenable to an introductory discussion of it, so we
will mainly take a vector space approach along all this section.
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Look at GF(q2) as the two-dimensional vector space over GF(q) with basis {1, ε}, so
that every x ∈ GF(q2) is uniquely written as x = x0 + x1ε, for x0, x1 ∈ GF(q). Then
the vectors (x, y, z) of V (3, q2) are viewed as the vectors (x1, x2, y1, y2, z1, z2) of V (6, q)
where

x = x0 + x1ε,

y = y0 + εy1 and
z = z0 + εz1.

Therefore the points of PG(2, q2) are two-dimensional subspaces in V (6, q), and hence
lines of PG(5, q), the five-dimensional projective space arising from V (6, q). Such lines
are the members of a Desarguesian line-spread S of PG(5, q) which gives rise to a point-
line incidence structure Π(S) where points are the elements of S, and lines are the three-
dimensional subspaces of PG(5, q) spanned by two elements of S, incidence being in-
clusion. Obviously, Π(S) ' PG(2, q2), and Π(S) is the GF(q)-linear representation of
PG(2, q2) in PG(5, q). Since PG(5, q) is naturally embedded in PG(5, q2), we also have
an embedding of PG(2, q2) in PG(5, q2) via Π(S).

Actually, we will use a different embedding of PG(2, q2) in PG(5, q2) which is more
suitable for computation.

In V (6, q2), let V̂ be the set of all vectors (x, xq, y, yq, z, zq) with x, y, z ∈ GF(q2).
With the usual sum and multiplication by scalars from GF(q), V̂ is a six-dimensional
vector space over GF(q). On the other hand, V (6, q) is naturally embedded in V (6, q2).
Therefore, the question arises whether there exists an invertible endomorphism of V (6, q2)

that takes V̂ to V (6, q). The affirmative answer is given by the following proposition.

Proposition 2.1. V̂ is linearly equivalent to V (6, q) in V (6, q2).

Proof. Write V (6, q) as the direct sum W (1) ⊕W (2) ⊕W (3), with

W (1) = {(a, b, 0, 0, 0, 0) : a, b ∈ GF(q)}
W (2) = {(0, 0, a, b, 0, 0) : a, b ∈ GF(q)}
W (3) = {(0, 0, 0, 0, a, b) : a, b ∈ GF(q)}.

Clearly, each W (i) is isomorphic to V (2, q) = {(a, b) : a, b ∈ GF(q)}. Take a basis
{u1, u2} of V (2, q) together with a Singer cycle σ of V (2, q). Since σ has two distinct
eigenvalues, both in GF(q2) \GF(q), we find two linearly independent eigenvectors v1, v2
that form a basis for V (2, q2). Such a basis {v1, v2} is called a Singer basis with respect to
V (2, q) [15]. In this context, V (2, q) =

{
xv1 + xqv2 : x ∈ GF(q2)

}
[14].

Applying this argument to W (i) with i = 1, 2, 3, gives a Singer basis {v(i)1 , v
(i)
2 } of

W (i) such that W (i) = {xv(i)1 + xqv
(i)
2 : x ∈ GF(q2)}. In this basis we have

V (6, q) = {xv(1)1 + xqv
(1)
2 + yv

(2)
1 + yqv

(2)
2 + zv

(3)
1 + zqv

(3)
2 : x, y, z ∈ GF(q2)}. (2.1)

Now, the result follows from the fact that the change from any basis of V (6, q2) to the basis
{v(i)1 , v

(i)
2 : i = 1, 2, 3} is carried out by an invertible endomorphism over GF(q2).

We call the vector space V̂ the cyclic representation of V (6, q) over GF(q2).
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To state Proposition 2.1 in terms of projective geometry, let PG(5, q) denote the projec-
tive space arising from V (6, q). Also, let PG(V̂ ) = {〈v〉q : v ∈ V̂ } be the five-dimensional
projective space whose points are the one-dimensional GF(q)-subspaces spanned by vec-
tors in V̂ .

Corollary 2.2. PG(V̂ ) is projectively equivalent to PG(5, q) in PG(5, q2).

We call the the projective space PG(V̂ ) the cyclic representation of PG(5, q)
over GF(q2).

Recall that a 2× 2 q-circulant (or Dickson) matrix over GF(q2) is a matrix of the form

D =

(
d1 d2
dq2 dq1

)
with d1, d2 ∈ GF(q2).

Let B denote the basis {v(i)1 , v
(i)
2 : i = 1, 2, 3} of V̂ .

Proposition 2.3. In the basis B, the matrix associated to any endomorphism of V̂ is of the
form D11 D12 D13

D21 D22 D23

D31 D32 D33

 , (2.2)

where Dij is a 2× 2 q-circulant matrix over GF(q2).

Proof. It is easily seen that any matrix of type (2.2) is associated to an endomorphism of V̂ .
Conversely, take an endomorphism τ of V (6, q2) and let T = (tij), tij ∈ GF(q2), be

the matrix of τ in the basis B. For a generic array x = (x, xq, y, yq, z, zq) ∈ V̂ ,

Txt =


...

tk,1x+ tk,2x
q + tk,3y + tk,4y

q + tk,5z + tk,6z
q

...

 , for k = 1, . . . , 6.

If y = z = 0, a necessary condition for Txt ∈ V̂ is

(tk,1x+ tk,2x
q)q = tk+1,1x+ tk+1,2x

q ,

for k = 1, 3, 5, that is,

(tqk,2 − tk+1,1)x+ (tqk,1 − tk+1,2)xq = 0,

for k = 1, 3, 5 and for all x ∈ GF(q2). This shows that the polynomial in x of degree q on
the left hand side of the last equation has at least q2 roots. Therefore, it must be the zero
polynomial. Hence tk+1,1 = tqk,2 and tk+1,2 = tqk,1, for k = 1, 3, 5. To end the proof, it is
enough to repeat the above argument for x = z = 0 and then for x = y = 0.

Next we exhibit quadratic forms on V (6, q2) which induce quadratic forms on V̂ .
The vector space V (2n, q) has precisely two (nondegenerate) quadratic forms, and they

differ by their Witt-index, that is the dimension of their maximal totally singular subspaces;
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see [22, 32]. These dimensions are n − 1 and n, and the quadratic form is elliptic or
hyperbolic, respectively. In terms of the associated projective space PG(2n − 1, q), the
elliptic (resp. hyperbolic) quadratic form defines an elliptic (resp. hyperbolic) quadric of
PG(2n− 1, q).

Fix a basis {1, ε} for GF(q2) over GF(q), and write x = x0 + εx1, for x ∈ GF(q2)
with x0, x1 ∈ GF(q). Here, ε is taken such that ε2 = ξ with ξ a nonsquare in GF(q) for
q odd, and that ε2 + ε = s with s ∈ C1 and s 6= 1 for q even, where C1 stands for the
set of elements in GF(q) with absolute trace 1. Furthermore, Tr denotes the trace map
x ∈ GF(q2)→ x+ xq ∈ GF(q).

Proposition 2.4. Let α, β ∈ GF(q2) satisfy the following conditions:{
4αq+1 + (βq − β)2 is nonsquare in GF(q), for q odd,
αq+1/(βq + β)2 ∈ C0 with β ∈ GF(q2) \GF(q), for q even,

where C0 stands for the set of elements in GF(q), q even, with absolute trace 0. Let Qα,β
be the quadratic form on V (6, q2) given by

Qα,β(X1, X2, Y1, Y2, Z1, Z2) =

δqX1Z2 + δX2Z1 + αδY 2
1 + αqδqY 2

2 + Tr(δβ)Y1Y2,
(2.3)

with δ = ε or δ = 1 according as q is odd or even. then the restriction Q̂α,β of Qα,β on V̂
defines an elliptic quadratic form on V̂ .

Proof. Two cases are treated separately according as q is odd or even.
If q is odd, let bα,β denote the symmetric bilinear form on V (6, q2) associated to Qα,β .

The matrix of bα,β in the canonical basis is

Bα,β =

O2 O2 E
O2 Aα,β O2

E O2 O2

 ,

with

E =

(
0 εq

ε 0

)
, E =

(
0 ε
εq 0

)
and Aα,β =

(
2αε Tr(εβ)

Tr(εβ) 2αqεq

)
.

A straightforward computation shows that Bα,β induces a symmetric bilinear form on
V̂ . Let Q̂α,β denote the resulting quadratic form on V̂ .

Since det Aα,β = 4αq+1 + (βq − β)2 is nonsquare in GF(q), it follows that Qα,β
is nondegenerate. Hence Q̂α,β is nondegenerate, as well. Let H be the four-dimensional
subspace {(x, xq, 0, 0, z, zq) : x, z ∈ GF (q2)} of V̂ . Then the restriction of Q̂α,β on
H is a hyperbolic quadratic form, as L1 = {(x, xq, 0, 0, 0, 0) : x ∈ GF(q2)} and L2 =
{(0, 0, 0, 0, z, zq) : z ∈ GF (q2)} are totally isotropic subspaces with trivial intersection.
The orthogonal space of H with respect to bα,β is L = {(0, 0, y, yq, 0, 0) : y ∈ GF(q2)}.
By [22, Proposition 2.5.11], Q̂α,β is elliptic if and only if the restriction of Q̂α,β on L is
elliptic, that is,

Tr(αεy2 + εβyq+1) = 0 (2.4)
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has no solution y ∈ GF(q2) other than 0.
Write y = y0 +εy1, α = a0 +εa1 and β = b0 +εb1 with y0, y1, a0, a1, b0, b1 ∈ GF(q).

As εq = −ε and ε2 = ξ, we have

yq = y0 − εy1
yq+1 = y20 − ξy21
y2 = y20 + ξy21 + 2εy0y1

y2q = y20 + ξy21 − 2εy0y1

αεy2 = ξ(2a0y0y1 + a1(y20 + ξy21)) + ε(a0(y20 + ξy21) + 2ξa1y0y1)

αqεqy2q = ξ(2a0y0y1 + a1(y20 + ξy21))− ε(a0(y20 + ξy21) + 2ξa1y0y1),

whence
Tr(αεy2) = 2ξ(2a0y0y1 + a1(y20 + ξy21)).

Moreover,
Tr(εβyq+1) = 2ξb1(y20 − ξy21).

Then Equation (2.4) has a nontrivial solution y ∈ GF(q2) if and only if (y0, y1) 6= (0, 0)
with y0, y1 ∈ GF(q) is a solution of

(a1 + b1)y20 + 2a0y0y1 + ξ(a1 − b1)y21 = 0. (2.5)

By a straightforward computation, (2.5) occurs if and only if 4αq+1 + (βq − β)2 = u2

for some u ∈ GF(q). But the latter equation contradicts our hypothesis. Therefore, Equa-
tion (2.4) has no nontrivial solution in GF(q2) and hence Q̂α,β is elliptic.

For q even, the above approach still works up to some differences due to the fact that
the well known formula solving equations of degree 2 fails in even characteristic. For
completeness, we give all details.

If q is even, the restriction of Qα,β on V̂ is a quadratic form Q̂α,β on V̂ , and the matrix
of the associated bilinear form bβ is

Bβ =

O2 O2 E
O2 Aβ O2

E O2 O2

 ,

where

E =

(
0 1
1 0

)
and Aβ =

(
0 Tr(β)

Tr(β) 0

)
.

Since β 6∈ GF(q), a straightforward computation shows that the radical of bβ is trivial,
which gives Q̂α,β is nonsingular. As for the odd q case, the orthogonal space of H with
respect to bβ is L. Therefore, Q̂α,β is elliptic if and only if

Tr(αy2 + βyq+1) = 0 (2.6)

has no nontrivial solution y ∈ GF(q2).
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As before, let y = y0 + εy1, α = a0 + εa1 and β = b0 + εb1 with y0, y1, a0, a1, b0, b1 ∈
GF(q). As εq = ε+ 1 and ε2 = ε+ s, with s ∈ C1, we have

yq = y0 + y1 + εy1

yq+1 = y20 + y0y1 + sy21

y2 = y20 + sy21 + εy21

y2q = y20 + (s+ 1)y21 + εy21

αy2 = a0y
2
0 + s(a0 + a1)y21 + ε(a0y

2
1 + a1y

2
0 + (s+ 1)a1y

2
1)

αqy2q = a0y
2
0 + s(a0 + a1)y21 + (a0y

2
1 + a1y

2
0 + (s+ 1)a1y

2
1)

+ ε(a0y
2
1 + a1y

2
0 + (s+ 1)a1y

2
1),

whence
Tr(αy2) = a0y

2
1 + a1y

2
0 + (s+ 1)a1y

2
1 ,

and
Tr(βyq+1) = b1(y20 + y0y1 + sy21).

Therefore, Equation (2.6) has a nontrivial solution in GF(q2) if and only if

(a1 + b1)y20 + b1y0y1 + (a0 + a1 + sa1 + sb1)y21 = 0.

Assume y = y0 ∈ GF(q) is a nontrivial solution of (2.6). Then a1 = b1. This gives

αq+1

(βq + β)2
=
a20
a21

+
a0
a1

+ s ∈ C1,

a contradiction since
a20
a21

+
a0
a1
∈ C0.

Assume that y = y0 + εy1 ∈ GF(q2), with y1 6= 0, is a solution of (2.6). Then y0y−11 is a
solution of

(a1 + b1)X2 + b1X + a0 + a1 + s(a1 + b1) = 0, (2.7)

where b1 6= 0.
Let Y = (a1 + b1)b−11 X . Replacing X by Y in (2.7) gives Y 2 + Y + d = 0 where

d =
a20 + a1a0 + sa21

b20
+
a20 + a21
b20

+
a0 + a1
b0

+ s.

Here, d ∈ C1 by
a20 + a1a0 + sa21

b20
=

αq+1

(βq + β)2
∈ C0.

This shows that Equation (2.7) has no nontrivial solution in GF(q). Hence Equation (2.6)
has no nontrivial solution in GF(q2), as well. Therefore Q̂α,β is elliptic.

Let Q̂α,β stand for the elliptic quadric in PG(V̂ ) defined by the quadratic form Q̂α,β
on V̂ . Then the coordinates of the points of PG(V̂ ) that lie on Q̂α,β satisfy the equation

δqXZq + δXqZ + αδY 2 + αqδqY 2q + Tr(δβ)Y q+1 = 0, (2.8)

with δ = ε or δ = 1 according as q is odd or even.
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3 The GF(q)-linear representation of Buekenhout-Metz unitals

In the light of Proposition 2.1, we introduce another incidence structure Π(Ŝ).
Let φ̂ be the bijective map defined by

φ̂ :
V (3, q2) −→ V̂
(x, y, z) 7−→ (x, xq, y, yq, z, zq)

.

By Proposition 2.1, φ̂ is the field reduction of V (3, q2) over GF(q) in the basis
{v(i)1 , v

(i)
2 , i = 1, 2, 3} of V (6, q2).

The points of PG(2, q2) are mapped by φ̂ to the two-dimensional GF(q)-subspaces of
V̂ of the form

{(λx, λqxq, λy, λqyq, λz, λqzq) : λ ∈ GF(q2)}, for x, y, z ∈ GF(q2),

and hence lines of PG(V̂ ). Such lines form a line-spread Ŝ of PG(V̂ ). By Proposition 2.1
and Corollary 2.2, Ŝ is projectively equivalent to S in PG(5, q2). Hence, Ŝ is also a De-
sarguesian line-spread of PG(V̂ ). Therefore, in PG(5, q2) Π(Ŝ) is projectively equivalent
to the GF(q)-linear representation Π(S) of PG(2, q2).

The following lemma goes back to Singer, see [31].

Lemma 3.1. Let ω be a primitive element of GF(q2) over GF(q) with minimal polynomial
f(T ) = T 2 − p1T − p0. then the multiplication by ω in GF(q2) defines a Singer cycle of
V (2, q) = {(a, b) : a, b ∈ GF(q)} whose matrix is the companion matrix of f(T ).

Proposition 3.2. Any endomorphism of V (3, q2) with matrix A = (aij) defines the endo-
morphism of V̂ with matrix D11 D12 D13

D21 D22 D23

D31 D32 D33

 ,

where Dij = diag(aij , a
q
ij).

The Frobenius transformation ψ : (x, y, z) 7→ (xq, yq, zq) of V (3, q2) defines the endo-
morphism of V̂ with matrix F̂ 0 0

0 F̂ 0

0 0 F̂

 ,

where

F̂ =

(
0 1
1 0

)
.

Proof. The Singer cycle defined by a primitive element ω of GF(q2) over GF(q) acts on
the GF(q)-vector space {(x, xq) : x ∈ GF(q2)} by the matrixD = diag(ω, ωq). For every
entry aij of A, write aij = ωe(i,j), 0 ≤ e(i, j) ≤ q2 − 2. From Lemma 3.1, the multipli-
cation by aij in GF(q2) defines the endomorphism with matrix De(i,j) = diag(aij , a

q
ij).

From this the first part of the proposition follows. The second part comes from Cooper-
stein’s paper [14].
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Remark 3.3. From a result due to Dye [16], the stabilizer of the Desarguesian partition
K in GL(6, q) is the semidirect product of the field extension subgroup GL(3, q2) by
the cyclic subgroup 〈ψ〉 generated by the Frobenius transformation. In terms of projec-
tive geometry, the stabilizer of the Desarguesian spread S in PGL(6, q) is (GL(3, q2) o
〈ψ〉)/GF(q)∗ [16]. It should be noted that the center of GL(V̂ ) is the subgroup
{cI : c ∈ GF(q)∗}. Proposition 3.2 provides the representation in GL(V̂ ) and PGL(V̂ ) of
these stabilizers.

In [2] and [17] the orthogonal Buekenhout-Metz unitals are coordinatized in PG(2, q2).
Let L∞ be the line of PG(2, q2) with equation Z = 0 and P∞ = 〈(1, 0, 0)〉q2 .

Theorem 3.4. Let α, β ∈ GF(q2) such that{
4αq+1 + (βq − β)2 is nonsquare in GF(q), for q odd,
αq+1/(βq + β)2 ∈ C0 with β ∈ GF(q2) \GF(q), for q even.

Then

Uα,β = {〈(αy2 + βyq+1 + r, y, 1)〉q2 : y ∈ GF(q2), r ∈ GF(q)} ∪ {P∞}

is an orthogonal Buekenhout-Metz unital. Uα,β is classical if and only if α = 0.
Conversely, every orthogonal Buekenhout-Metz unital can be expressed as Uα,β for

some α, β ∈ GF(q2) which satisfy the above conditions.

We go back to the projective equivalence of Π(S) and Π(Ŝ) arising from the bijective
map φ̂. The line set φ̂(Uα,β) = {φ̂(P ) : P ∈ Uα,β} can be regarded as the restriction on
Uα,β of the GF(q)-linear representation of PG(2, q2) in PG(V̂ ).

Remark 3.5. Thas [33] showed that the GF(q)-linear representation of the classical unital
is a partition of an elliptic quadric in PG(5, q). Thas’s result is obtained here when the
representation φ̂(U0,β) is used. Let δ = ε for odd q, and δ = 1 for even q. For any
β ∈ GF(q2) satisfying the conditions of Theorem 3.4, U0,β is the set of absolute points of
the unitary polarity associated to the Hermitian form hβ of V (3, q2) with matrix

Hβ =

0 0 δq

0 Tr(δβ) 0
δ 0 0

 .

Hence U0,β has equation

δXqZ + δqXZq + Tr(δβ)Y q+1 = 0.

Let Tr denote the trace map of GF(q2) over GF(q). For any v, v′ ∈ V (3, q2),

Tr(hβ(v, v′)) =

{
b0,β(φ̂(v), φ̂(v′)), for q odd
bβ(φ̂(v), φ̂(v′)), for q even.

This shows that the points in φ̂(U0,β) belong to Q̂0,β . In particular, the line set φ̂(Uα,β) is
a partition of Q̂0,β .
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We now put in evidence the relation between the elliptic quadric Q̂α,β and the Bueken-
hout representation of Uα,β in the Andrè/Bruck-Bose model of PG(2, q2).

The subspace Λ = {〈(x, xq, y, yq, c, c)〉q : c ∈ GF(q), x, y ∈ GF(q2)} is an hy-
perplane of PG(V̂ ) containing the 3-dimensional subspace Σ = {〈(x, xq, y, yq, 0, 0)〉q :

x, y ∈ GF(q2)}. The line set N = {φ̂(P ) : P ∈ L∞} is a Desarguesian line spread of Σ.
Hence, N defines the Andrè/Bruck-Bose model of PG(2, q2) in Λ: the points are the lines
of N and the points of Λ not in Σ, the lines are the planes of Λ not in Σ which meet Σ in a
line of N and N itself, incidence is defined by inclusion. We denote by π(N ) this model
of PG(2, q2). The set Uα,β =

⋃
P∈Uα,β (φ̂(P ) ∩ Λ) is the Buekenhout representation of

Uα,β in π(N ).
The hyperplane Λ is the orthogonal space of the point R = 〈(1, 1, 0, 0, 0, 0)〉q with

respect the polarity associated with the quadric Q̂α,β . Since R ∈ Q̂α,β , the intersection
between Λ and Q̂α,β is a cone Γα,β projecting an elliptic quadric from R and containing
the spread element φ̂(P∞) = {〈(x, xq, 0, 0, 0, 0)〉q : x ∈ GF(q2)} as a generator.

Proposition 3.6. The cone Γα,β coincides with the Buekenhout representation Uα,β of
Uα,β in π(N ), that is, ⋃

P∈Uα,β

(φ̂(P ) ∩ Λ) = Γα,β .

Proof. We have φ̂(P∞) = Q̂α,β ∩ Σ. For any P = 〈(ay2 + βyq+1, y, 1)〉q2 ∈ Uα,β ,

φ̂(P ) = {〈(λ(ay2 + βyq+1), λq(aqy2
q

+ βqyq+1), λy, λqyq, λ, λq)〉q : λ ∈ GF(q2)}.

Then φ̂(P )∩Λ = 〈(αy2 +βyq+1 + r, αqy2q +βqyq+1 + r, y, yq, 1, 1)〉q . From a straight-
forward calculation involving Equation (2.8) of Q̂α,β it follows that φ̂(P ) ∩ Λ ∈ Γα,β .
Since the size of

⋃
P∈Uα,β\{P∞} (φ̂(P ) ∩ Λ) equals the size of Γα,β \ φ̂(P∞) the result

follows.

Remark 3.7. The affine points of Γα,β satisfy the equation

δqX + δXq + αδY 2 + αqδqY 2q + Tr(δβ)Y q+1 = 0, (3.1)

with δ = ε or δ = 1 according as q is odd or even. It may be observed that Equation (3.1)
is the equation of the affine points of Uα,β [13, 20]. Equation (3.1) in homogeneous form
is

δqXZ2q−1 + δXqZq + αδY 2Z2q−2 + αqδqY 2q + Tr(δβ)Y q+1Zq−1 = 0,

which is satisfied by the points of the GF(q)-linear representation φ̂(Uα,β) of Uα,β .
In [28], Polverino proved that the GF(q)-linear representation of an orthogonal

Buekenhout-Metz unital cover the GF(q)-points of an algebraic hypersurface of degree
four minus the complements of a line in a three-dimensional subspace. She also showed
that the hypersurface is reducible if and only if the unital is classical. Polverino’s result
is obtained here when the representation φ̂(U0,β) is used. Let F be the hypersurface of
PG(5, q2) with equation

F : δqX1Z1Z
2
2 + δX2Z

2
1Z2 + αδY 2

1 Z
2
2 + αqδqY 2

2 Z
2
1 + Tr(δβq)Y1Y2Z1Z2 = 0.
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The intersection F̂ of F with PG(V̂ ) consists of all points of PG(V̂ ) satisfying the
equation

δqXZ2q+1 + δXqZq+2 + αδY 2Z2q + αqδqY 2qZ2 + Tr(δβq)Y q+1Zq+1 = 0. (3.2)

Clearly, F̂ contains the three-dimensional subspace Σ. By the above arguments, the GF(q)-
linear representation φ̂(Uα,β) covers the points in F̂ minus the complements of φ̂(L∞)
in Σ. Furthermore, Equation (3.2) defines an algebraic hypersurface of degree four of
PG(5, q). A straightforward, though tedious, calculation shows that Equation (3.2) is pre-
cisely the algebraic hypersurface provided by Polverino in [28].

As elliptic quadrics in PG(V̂ ) are projectively equivalent, some linear collineation τα
of PG(V̂ ) takes Q̂0,β to Q̂α,β . Actually we need such a linear collineation τα with some
extra-property.

Proposition 3.8. In PG(V̂ ) there exists a linear collineation τα which takes Q̂0,β to Q̂α,β ,
preserves the subspaces Λ, Σ, and fixes φ̂(P∞) pointwise. Therefore it maps the cone Γ0,β

into Γα,β .

Proof. The restriction Q̂α,β |L on the subspace L = {(0, 0, y, yq, 0, 0) : y ∈ GF(q2)} of
Q̂α,β given by (2.3) is the quadratic form defined by

Q̂α,β |L(y, yq) = αδy2 + αqδqy2q + Tr(δβ)yq+1 ∈ GF(q)

which is of elliptic type by the proof of Proposition 2.4. As two such forms are equivalent,
some endomorphism of L maps Q̂0,β |L to Q̂α,β |L. In a natural way, as in the proof of
Proposition 2.3, we may identify any endomorphism of L with a 2× 2 q-circulant matrix.
Doing so, the endomorphism with matrix

D =

(
d1 d2
dq2 dq1

)
,

where

dq+1
1 + dq+1

2 = 1

d1d
q
2 = αδTr(δβ)−1,

maps Q̂0,β |L to Q̂α,β |L. Let τα be the linear collineation of PG(V̂ ) defined by the matrix

Dα =

 I2 O2 O2

O2 D O2

O2 O2 I2

 .

It is easily seen that τα preserves the subspaces Λ, Σ, and fixes φ̂(P∞) pointwise, and that
it maps the cone Γ0,β into Γα,β .

Remark 3.9. Bearing in mind Remark 3.3, one can ask whether τα is an incidence preserv-
ing map of Π(Ŝ). The answer is negative by d1d2 6= 0 and Proposition 3.2. This implies
that Γ0,β and Γα,β are Buekenhout representations of unitals of PG(2, q2) and that they
are not projectively equivalent. In particular, this provides a new proof for the existence of
non-classical unitals embedded in PG(2, q2).
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It is clear that the image Ŝτα of the Desarguesian line-spread Ŝ under the linear
collineation τα is a Desarguesian line-spread and it defines the GF(q)-linear representa-
tion Π(Ŝτα) of PG(2, q2).

4 The proof of the Main Theorem
In our proof the models of PG(2, q2) treated in Section 3 play a role. Two of them arose
from Desarguesian line-spreads of PG(V̂ ) denoted by Ŝ and Ŝτα respectively, the third
was the Andrè/Bruck-Bose model π(N ) in the 4-dimensional subspace Λ.

In PG(2, q2) consider a unital U isomorphic, as a block-design, to an orthogonal
Buekenhout-Metz unital Uα,β with α 6= 0. It is known [2, 17] that Uα,β has a special
point which is the unique fixed point of the automorphism group of Uα,β . Hence the au-
tomorphism group of U fixes a unique point of U . Up to a change of the homogeneous
coordinate system in PG(2, q2), the special point of Uα,β is P∞ = 〈(1, 0, 0)〉q2 and the
tangent line of Uα,β at P∞ is L∞ : Z = 0. Up to a linear collineation, P∞ ∈ U is the fixed
point of the automorphism group of U and L∞ is the tangent to U at P∞. Therefore, U and
Uα,β share P∞ and L∞.

We interpret the isomorphism between U and Uα,β in each of the above three mod-
els of PG(2, q2). The representation Û = {φ̂(P ) : P ∈ U} of U in Π(Ŝ) is iso-
morphic, as a block-design, to Ûα,β = {φ̂(P ) : P ∈ Uα,β}. The Buekenhout rep-
resentation U =

⋃
P∈U (φ̂(P ) ∩ Λ) of U in π(N ) is isomorphic, as a block-design, to

Uα,β =
⋃
P∈Uα,β (φ̂(P ) ∩ Λ). Here, by Proposition 3.6, Uα,β is the cone Γα,β . This gives

that the representation Ũ = {L ∈ Ŝτα : L ∩ Λ ⊂ U} of U in Π(Ŝτα) is isomorphic, as a
block-design, to Ũα,β = {L ∈ Ŝτα : L ∩ Λ ⊂ Γα,β}.

From Proposition 3.8, the lines which are the points of Ũα,β partition the elliptic quadric
Q̂α,β = Q̂τα0,β . On the other hand, from Remark 3.5, Q̂0,β is partitioned by lines which are

the points of the classical unital Û0,β in Π(Ŝ). This yields that Ũα,β coincides with Ûτα0,β .

It turns out that Ũα,β is a classical unital in Π(Ŝτα), and hence Ũ is isomorphic, as a
block-design, to the classical unital.

Now we quote the following result from [23] which was the keystone in the proof of
Theorem 1.1.

Lemma 4.1. Let U be a unital embedded in a Desarguesian finite projective plane π and
isomorphic, as a block-design, to the classical unital. For any block B of U , let ` be the
line of π containing B. Then B is an orbit of a cyclic subgroup of order q+ 1 contained in
the projectivity group of `. This implies that B is a Baer subline of `.

We emphasize that the proof of Lemma 4.1 only uses arguments involving point-block
incidences of U viewed as a block-design embedded in π.

Therefore, Lemma 4.1 applies to Ũ . Thus, every block of Ũ is a Baer subline of Π(Ŝτα),
that is, a regulus of PG(V̂ ). From this, each block of U is the intersection of these reg-
uli with Λ. In particular, each block of U through φ̂(P∞) is the union of φ̂(P∞) with q
collinear affine points, and this implies that each block of Û through φ̂(P∞) is a regulus
of PG(V̂ ) whose lines are in Ŝ. Under φ̂, these reguli correspond to Baer sublines of
PG(2, q2) through P∞. This yields that the points of U on each of the q2 secant lines to
U form a Baer subline through P∞. By the characterization of such unitals of PG(2, q2)



G. Korchmáros and A. Siciliano: Embedding of orthogonal Buekenhout-Metz unitals . . . 621

given in [12, 29], we may conclude that U is a Buekenhout-Metz unital. By definition, the
Buekenhout representation U of U is a cone that project an ovoidO from a point of φ̂(P∞)
not in O. Here an ovoid is a set of q2 + 1 points in a 3-dimensional subspace of Λ no three
of which are collinear.

To conclude the proof we only need to prove that O is an elliptic quadric. Since the
ovoids in PG(3, q) with odd q are elliptic quadrics, see [4, 26], we assume q = 2h. In
PG(3, 2h), there are known two ovoids, up to projectivities, namely the elliptic quadric
which exist for h ≥ 1, and the Tits ovoid which exists for odd h ≥ 3; see [18, Chapter 10].
Let Ω be the 3-dimensional subspace of Λ containing O. Note that O = Ω ∩ U . Set α∞ to
be the plane Ω ∩ Σ. Then α∞ meets O exactly in the point O ∩ φ̂(P∞), and it is a simple
matter to show that α∞ contains only one line φ̂(P ) of N . Also, φ̂(P ) is distinct from
φ̂(P∞). Let α1, . . . , αq denote the further planes of Ω through φ̂(P ). As these planes are
lines of π(N ) through the point φ̂(P ), each of them meets U in 1 or q + 1 points. This
holds true for O.

It is well known [19, Section 12.3] that in a finite Desarguesian projective plane through
any point off a unital there are exactly q + 1 tangent lines, that is, lines of the plane that
intersects the unital in exactly one point. In terms of the unital U this property states that
there is only one plane among α1, . . . , αq that meetsO in exactly one point. Let α1 denote
this plane. Then the block αi ∩ O of U , for i = 2, . . . , q, is the intersection of αi with a
regulus in PG(V̂ ). Since that regulus does not contain φ̂(P ), the block αi ∩ O is a conic
Ci of αi, for i = 2, . . . , q. Thus the blocks αi ∩ O, for i = 2, . . . , q, are q − 1 conics that
partition all but two points of O. By [8, Theorem 5] O is an elliptic quadric.
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Abstract

A signed graph is a graph Γ with edges labeled “+” and “−”. The sign of a cycle is the
product of its edge signs. Let SpecC(Γ) denote the list of lengths of cycles in Γ. We equip
each signed graph with a vector whose entries are the numbers of negative k-cycles for
k ∈ SpecC(Γ). These vectors generate a subspace of R| SpecC(Γ)|. Using matchings with a
strong permutability property, we provide lower bounds on the dimension of this space; in
particular, we show for complete graphs, complete bipartite graphs, and a few other graphs
that this space is all of R| SpecC(Γ)|.

Keywords: Signed graph, negative cycle vector, permutable matching.

Math. Subj. Class.: 05C22, 05C38

1 Introduction
A signed graph Σ is a graph Γ whose edges have sign labels, either “+” or “−”. The
sign of a cycle in the graph is the product of the signs of its edges. Write c−l (Σ) for the
number of negative cycles of length l in Σ and collect these numbers in the negative cycle
vector c−(Σ) = (c−3 , c

−
4 , . . . , c

−
n ) ∈ Rn−2, where n is the order of Σ. We are interested in

the structure of the collection NCV(Γ) of all negative cycle vectors of signings of a fixed
underlying simple graph Γ.

The negative cycle numbers are of interest for several reasons. Ours is that, while the
structure of a signed graph is more complex than that of an unsigned graph, much of that
complexity is traceable to the distribution of negative cycles. We think negative cycle vec-
tors are a step towards better understanding of those cycles. Beyond this, negative cycle
numbers have been an object of interest since the first days of signed graph theory. When
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signed graphs were introduced by Harary [2] to be applied to a problem in social psychol-
ogy by Cartwright and Harary [1], one of their concerns was to measure how unbalanced
a signed graph is. One measure they proposed was the proportion of negative cycles, i.e.,[∑

l c
−
l (Σ)

]
/
[∑

l cl(Γ)
]
, where cl denotes the total number of l-cycles in the graph. This

proportion is hard to calculate even for signed complete graphs, since the number of cycles
can be exponential in the order n and the negative cycle numbers are also complicated.

There are at least three natural questions raised by the existence of the collections
NCV(Γ). Most simply, since any set of points in Rn−2 lies in a smallest subspace, what
subspace do they span? That is the question we address here. The cycle spectrum SpecC(Γ)
is the list of lengths of cycles in Γ. The finite set NCV(Γ) generates a subspace of Rn−2

that is contained in the subspace RNCV(Γ) consisting of all vectors that are 0 in the coordi-
nates that correspond to cycle lengths not in the cycle spectrum of Γ. We develop a general
approach to the dimension question in terms of “permutable matchings” (see Section 2.3)
that allows us to prove that, for Γ = Kn, Km,n, and the Petersen graph, NCV(Γ) spans
RSpecC(Γ); it also gives us a lower bound on dimension for the Heawood graph and one
other graph family. We also solve a few examples with an ad hoc method.

Knowing the span of the negative cycle vectors, what is their convex hull? In [5] and
[8] Popescu and Tomescu gave inequalities bounding the numbers of negative cycles in a
signed complete graph, which may be a step towards the answer for Kn (see Section 5). A
related question: Do the facets of the convex cone generated by NCV(Γ) have combinato-
rial meaning?

The ultimate question: Which vectors in the convex hull are actually the vectors of
signed graphs? Kittipassorn and Mészáros [3], inspired by the theory of two-graphs from
finite group theory and geometry (see [7]) gave strong restrictions on the number of nega-
tive triangles in a signed Kn. This is a step towards the answer for Kn.

We discuss these questions further in Section 5.

Our work was originally focused on complete graphs and complete bipartite graphs.
Those cases and others led the first author to the following conjecture, to which we do not
know any counterexample.

Conjecture 1.1 (Schaefer, 2015). For any graph Γ, dim NCV(Γ) = |SpecC(Γ)|, the
number of different lengths of cycles in Γ.

2 Background

2.1 Graphs

A graph is a pair Γ = (V,E), where V = {v1, . . . , vn} is a finite set of vertices and E is a
finite set of unordered pairs of vertices, called edges. Our graphs are all unlabeled, simple,
and undirected. Thus, all cycle lengths are between 3 and n.

The cycle spectrum SpecC(Γ) is the set of cycle lengths that appear in Γ. The number
of cycles of length l in Γ is cl = cl(Γ). The cycle vector of Γ is c(Γ) = (c3, c4, . . . , cn);
sometimes we omit the components that correspond to lengths l not in the cycle spectrum.
The number of cycle lengths in Γ, |SpecC(Γ)|, is clearly fundamental since
dim NCV(Γ) ≤ |SpecC(Γ)|.
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2.2 Signed graphs

A signed graph is a triple Σ = (V,E, σ) where Γ = (V,E) is a graph, called the underlying
graph of Σ, and σ : E → {+,−} is the sign function. Two signed graphs are isomorphic if
there is an isomorphism of underlying graphs that preserves edge signs. The sign of a cycle
is the product of the signs of its edges; a signed graph in which every cycle is positive is
called balanced. The negative edge setE− is the set of negative edges of Σ and the negative
subgraph is Σ− = (V,E−), the spanning subgraph of negative edges. We sometimes write
ΓN for Γ signed so that N is its set of negative edges.

Switching Σ means choosing a vertex subsetX ⊆ V and negating all the edges between
X and its complement. Switching yields an equivalence relation on the set of all signings
of a fixed underlying graph. If Σ2 is isomorphic to a switching of Σ1, we say that Σ1 and
Σ2 are switching isomorphic. This relation is an equivalence relation on signed graphs;
we denote the equivalence class of Σ by [Σ]. A signed graph is balanced if and only
if it is switching isomorphic to the all-positive graph. Signed graphs that are switching
isomorphic, like those in Figure 1, have the same negative cycle vector.

The negative cycle vector of Σ is c−(Σ) = (c−3 (Σ), c−4 (Σ), . . . , c−n (Σ)), where c−l =
c−l (Σ) is the number of negative cycles of length l. As with c(Γ), we may omit the compo-
nents of c−(Σ) that correspond to lengths l not in the cycle spectrum. Also, we may write
either c−(Σ) or c−(σ), the latter when only the signature σ is varying.

Figure 1: Two switching equivalent signings of K6, with the same negative cycle vector
(10, 18, 36, 36). Solid lines are positive, dashed lines are negative.

The negation of Σ is −Σ = (V,E,−σ), in which the sign of every edge is negated.
Sometimes Σ and −Σ are switching isomorphic, e.g., when Σ is bipartite or when it is a
signed complete graph whose negative subgraph is self-complementary.

2.3 Permutable matchings

A matching in Γ is a set M of pairwise nonadjacent edges; it is perfect if V (M) = V. A
matchingM—or any other edge set—is permutable if some subgroup of the automorphism
group of Γ acts on the edges of M as the symmetric group S|M |. We base our results
largely on permutable matchings, having noticed their utility for complete and complete
bipartite graphs. The advantage of permutability is that, in counting negative cycles using a
permutable matching, any two equicardinal subsets belong to the same number of negative
cycles of each length. That makes it feasible to calculate the numbers in the vectors we use
to estimate the dimension of NCV(Γ).

Our introduction of permutable matchings led to the question: Which graphs have per-
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mutable matchings? That has been investigated by Schaefer and Swartz in [6]; they find
large families of examples. On the other hand, there are only a few kinds of graph with
permutable perfect matchings; Schaefer and Swartz determine them all.

3 Rank and dimension
The dimension of NCV(Γ) is the rank of the matrix whose rows are the negative cycle
vectors of all signatures of Γ. The columns of this matrix that correspond to lengths k ∈
{3, 4, . . . , n} \ SpecC(Γ) are all zero; thus, we may ignore them. Since the rank cannot
be greater than |SpecC(Γ)|, if we produce a submatrix of that rank we have proved that
dim NCV(Γ) = |SpecC(Γ)|. That is what we now endeavor to do with the aid of a
permutable matching.

Even if permutable matchings fail to reach the spectral upper bound, they imply a lower
bound. However, we are happy to say that in our three main examples, permutable match-
ings solve the dimension problem.

The rank of a matrix A is written rk(A).

3.1 Any negative edge set

We begin with the most general calculation. Given a signed graph ΓN with an arbitrary
negative edge set N ⊆ E, how many negative cycles are there of each length? For X ⊆ N
let fl(X) = the number of l-cycles that intersect N precisely in X . We get a formula for
fl by Möbius inversion from gl(X) = the number of l-cycles that contain X , since

gl(X) =
∑

X⊆Y⊆N

fl(Y ),

which implies that
fl(X) =

∑
X⊆Y⊆N

(−1)|Y |−|X|gl(Y ).

The number of negative l-cycles is the number of l-cycles that intersectN in an odd number
of edges; therefore,

c−l (ΓN ) =
∑

X⊆N, |X| odd

fl(X) =
∑∑

X⊆Y⊆N, |X| odd

(−1)|Y |−|X|gl(Y )

=
∑
Y⊆N

gl(Y )
∑

X⊆Y, |X| odd

(−1)|Y |−|X|

=
∑
∅6=Y⊆N

(−2)|Y |−1gl(Y ). (3.1)

This applies to every underlying graph Γ.

3.2 A matrix calculation

Now assume we have a graph Γ of order n together with m unbalanced sign functions
σ1, . . . , σm in addition to the all-positive function σ0 ≡ +. To avoid redundancy we want
the associated signed graphs to be switching nonisomorphic. For instance, choosing more
than half the edges at a vertex to be negative is switching equivalent to choosing fewer than
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half, so we would not want the negative edge set to contain more than 1
2 deg(v) of the edges

incident with any vertex v.
We construct the matrix of the negative cycle vectors of all signings σs and their neg-

atives, with columns segregated by parity. The rows are one for +Γ (i.e., σ0 ≡ +), then
m rows for the unbalanced signatures σs, 0 < s ≤ m, then −Γ (the signature −σ0 ≡ −),
then the m negations −σs. The relationship between the upper and lower halves is that

c−l (−σs) =

{
cl − c−l (σs) if l is odd,
c−l (σs) if l is even.

The resulting matrix is

0 0 · · · 0 0 · · ·
c−3 (σ1) c−5 (σ1) · · · c−4 (σ1) c−6 (σ1) · · ·

...
...

. . .
...

...
. . .

c−3 (σm) c−5 (σm) · · · c−4 (σm) c−6 (σm) · · ·
c3 c5 · · · 0 0 · · ·

c3 − c−3 (σ1) c5 − c−5 (σ1) · · · c−4 (σ1) c−6 (σ1) · · ·
...

...
. . .

...
...

. . .
c3 − c−3 (σm) c5 − c−5 (σm) · · · c−4 (σm) c−6 (σm) · · ·


. (3.2)

The last column in the left half is that of n−1 or n depending on whether n is even or odd;
in the right half it is that of n or n− 1, respectively. Row operations reduce this matrix to

0 0 · · · 0 0 · · ·
c−3 (σ1) c−5 (σ1) · · · 0 0 · · ·

...
...

. . .
...

...
. . .

c−3 (σm) c−5 (σm) · · · 0 0 · · ·
c3 c5 · · · 0 0 · · ·
0 0 · · · c−4 (σ1) c−6 (σ1) · · ·
...

...
. . .

...
...

. . .
0 0 · · · c−4 (σm) c−6 (σm) · · ·


. (3.3)

Ignoring the first row of zeros, this is a block matrix

A =

 U O
codd(Γ) 0

O R

 .

The middle row codd(Γ), consisting of the odd-cycle numbers of Γ, corresponds to−Γ. The
upper left block U is the matrix of negative odd-cycle vectors of the unbalanced signatures
σs, and the lower right block R is the matrix of negative even-cycle vectors of the same
signatures. We infer the fundamental fact that:

Lemma 3.1. The rank of the negative cycle matrix (3.2) equals the sum of the ranks of(
U

codd(Γ)

)
and R.

For a bipartite graph U = O and codd = 0, so only R needs to be considered.
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3.3 Permutable negative matchings

Henceforth we assume we have chosen a fixed permutable matching Mm of m edges in Γ.
For each s = 1, 2, . . . ,m we choose a submatching Ms ⊆ Mm of s edges and we define
the signature σs as that of the signed graph ΓMs . (It does not matter which Ms we use,
because Mm is permutable.) This generates a matrix of negative cycle vectors as in (3.2).

Permutability implies that gl(Y ) depends only on |Y | so we may defineGl(k) = gl(Y )
for any one k-edge subset Y ⊆Mm. Then (3.1) becomes

c−l (ΓMs
) =

s∑
k=1

(−2)k−1

(
s

k

)
Gl(k) =

n∑
k=1

(−2)k−1Gl(k)

k!
(s)k, (3.4)

where (x)k denotes the falling factorial, (x)k = x(x−1) · · · (x−[k−1]). We may let k run
up to n in the second summation because if k > s, the falling factorial equals 0. Formula
(3.4) gives c−l (ΓMs

) as a polynomial function pl(s) without constant term, of degree dl
where dl is the largest integer k for which Gl(k) > 0; that is, dl is the largest size of a
submatching of Mm that is contained in some cycle of length l. We leave dl undefined if
no l-cycle intersects Mm. Clearly, dl ≤ m.

(This method works equally well for subsets of any permutable edge setN in any graph.
It is easy to see that there are only three possible kinds of permutable set: a matching,
a subset of the edges incident to a vertex, and the three edges of a triangle. In Kn a
permutable set of edges at a vertex is useless since then the entire matrix (3.2) has rank 1.
We have not seen a graph where a triangle’s edges might help find the dimension.)

A column of U or R is not all zero if and only if it corresponds to a cycle length l for
which there exists an l-cycle in Γ that intersects Mm. Such a column contains m values
of the polynomial pl(s). Since pl has degree at most m and no constant term, these values
determine pl completely.

Now a nonzero column in U or R for cycle length l looks like this:
pl(1)
pl(2)

...
pl(m)

 =


αl1

dl + · · ·
αl2

dl + · · ·
...

αlm
dl + · · ·

 , (3.5)

since pl is a polynomial of degree dl; here αl = (−2)dl−1Gl(dl)/dl!. Moreover, dl =
µ(l) > 0 for a nonzero column, where we define

µ(l) = max
Cl

|Cl ∩Mm|, (3.6)

maximized over all l-cycles Cl.
Define δodd to be the number of distinct degrees dl for odd lengths l whose column in

U is not zero, and let δeven be the number of distinct degrees dl for even lengths whose
column in R is not zero. If some values of dl for, e.g., odd lengths l happen to be equal,
they are counted only once. Thus, δodd may be less than the number of nonzero columns.
The number of distinct polynomial degrees represented in the columns of U is δodd, and
similarly for R the number is δeven. Let ∆odd be the set of distinct degrees dl counted by
δodd, and similarly for ∆even.
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Lemma 3.2. The rank of U is at least δodd and that of R is at least δeven.

The rank of
(
U
codd

)
is rk(U) + 1 if there is an odd length l such that an l-cycle exists

in Γ but no l-cycle intersects Mm.

Proof. In U choose one column of each different degree dl. Divide by the leading coeffi-
cient αl, which is necessarily nonzero; this does not affect the rank. Now add columns of
the form

(
sd
)m
s=1

for every d = 1, 2, . . . ,m that is not in ∆odd. Column operations allow
us to eliminate the lower-degree terms of the column (3.5), leaving a Vandermonde matrix
with 1d in the top row and md in the bottom row of column d for each d = 1, 2, . . . ,m, the
rank of which is m. Now reverse the column operations; the rank remains the same, so the
columns of U must have full column rank.

The same reasoning applies to R.

The extra 1 in the rank of
(
U
codd

)
arises from the fact that, under the assumption, it has

a column that is zero in U but is nonzero in codd.

3.4 Theorems

Lemma 3.2 yields our principal general theorem. Given a matching Mm and a cycle length
l ∈ SpecC(Γ), define µ(l) by Equation (3.6).

Theorem 3.3. Let Mm be a permutable m-matching in Γ. Then

|{µ(l) : odd l ∈ SpecC(Γ)}|+ |{µ(l) > 0 : even l ∈ SpecC(Γ)}|
≤ dim NCV(Γ) ≤ |SpecC(Γ)|.

(3.7)

Suppose that all values µ(l) for even lengths l ∈ SpecC(Γ) are distinct and positive,
and all values µ(l) for odd lengths l ∈ SpecC(Γ) are distinct. Then NCV(Γ) spans
RSpecC(Γ).

Proof. The first part follows directly from Lemma 3.2 since

dim NCV(Γ) ≥ rk(A) = rk

(
U
codd

)
+ rk(R) ≥ δodd + δeven.

Moreover, if there is an odd length l such that µ(l) = 0, then rk

(
U
codd

)
= rk(U) + 1 ≥

δeven + 1; that explains why we do not exclude µ(l) = 0 from being counted in the odd-
length part of (3.7).

In the second part, δeven = the number of even cycle lengths in Γ and δodd or (if some
odd l ∈ SpecC(Γ) has µ(l) = 0) δodd + 1 = the number of odd cycle lengths in Γ. Then
the left-hand side of Formula (3.7) equals |SpecC(Γ)|.

There is a simpler statement that applies to graphs with a permutable matching that
is sufficiently omnipresent, i.e., meeting the condition of Theorem 3.4. Given m, define
νodd(m) = the number of odd lengths l < 2m in SpecC(Γ), +1 if there is an odd cycle
length l ≥ 2m, and define νeven(m) = the number of even lengths l < 2m in SpecC(Γ),
+1 if there is an even cycle length l ≥ 2m.
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Theorem 3.4. Suppose Mm is a permutable m-matching in Γ and for every length l ∈
SpecC(Γ) there exists a cycle Cl such that |Cl ∩Mm| = min(m, bl/2c). Then

dim NCV(Γ) ≥ νodd(m) + νeven(m).

The hypothesis can be lessened since, if there is any cycle length l ≥ 2m, it suffices to
have one length l ≥ 2m for which there is a Cl with |Cl ∩Mm| = m.

Proof. The hypotheses imply that

dl =

{
bl/2c if l ≤ 2m,

m if l ≥ 2m.

We count the number of distinct values dl for odd and even cycle lengths. For odd l we get
(l − 1)/2 if l ∈ SpecC(Γ) and l < 2m, and we get m if and only if there exists a cycle
length l ≥ 2m. The total is νodd(m). The computation of νeven(m) is similar.

The values of µ(l) in Theorem 3.3 are the same as those of dl unless there is a cy-
cle length for which no l-cycle intersects Mm; but that is ruled out by our hypotheses.
Theorem 3.4 follows.

A connected graph is bipancyclic if it is bipartite with vertex classes of size p and q and
has a cycle of every even length from 4 to 2 min(p, q). (This extends the usual definition,
which assumes p = q.) This is the bipartite analog of pancyclicity, in which the graph has
a cycle of every length from 3 to n, the order of the graph.

Corollary 3.5. Assume Γ is pancyclic and has a permutable m-matching Mm, and for
every l with 3 ≤ l ≤ n there is an l-cycle Cl with |Cl ∩Mm| = min(m, bl/2c). Then

dim NCV(Γ) = n− 2 if 2m ≥ n− 1,

n− 2 ≥ dim NCV(Γ) ≥ 2m− 1 if 2m ≤ n− 2.

Assume Γ is bipancyclic and has vertex class sizes p, q with p ≤ q, and it has a per-
mutable m-matching Mm such that for every k with 2 ≤ k ≤ p there is a 2k-cycle C2k

with |C2k ∩Mm| = min(m, k). Then

dim NCV(Γ) = p− 1 if m = p,

p− 1 ≥ dim NCV(Γ) ≥ m− 1 if m ≤ p− 1.

The hypotheses can be lessened in the same way as those of Theorem 3.4.

Proof. If Γ is pancyclic, νodd counts all the numbers 3, 5, . . . , 2m− 1 plus 1 for 2m+ 1 if
n > 2m, and νeven counts the numbers 4, 6, . . . , 2m−2 plus 1 for 2m since n ≥ 2m. Thus

νodd + νeven =

{
(m) + (m− 1) = 2m− 1 if n > 2m,

(m− 1) + (m− 1) = 2m− 2 if n = 2m.

The conclusion follows easily.
If Γ is bipancyclic, then νeven = m− 1 and the conclusion follows easily.
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The two most complete graphs are easy consequences of any of the preceding results,
but especially of Corollary 3.5.

Corollary 3.6. For a complete graph Kn with n ≥ 3,

dim NCV(Kn) = n− 2.

For a complete bipartite graph Kp,q with p, q ≥ 2,

dim NCV(Kp,q) = min(p, q)− 1.

4 Examples
4.1 The complete graph

Our original example was Kn. The biggest permutable edge set is a perfect or near-perfect
matching. This turns out to be “perfect” for our purposes. But first, let us see the negative
cycle vectors of all signings of small complete graphs.

The vectors for K3 are
(0), (1)

(from the balanced and unbalanced triangle). The vectors for K4 are

(0, 0), (2, 2), (4, 0)

(the all-positive graph, one negative edge, and two nonadjacent negative edges). Here are
the vectors for K5:

(0, 0, 0), (3, 6, 6), (4, 8, 8), (5, 10, 6), (6, 8, 4), (7, 6, 6), (10, 0, 12);

and for K6:

(0, 0, 0, 0), (4, 12, 24, 24), (6, 18, 36, 36), (8, 20, 32, 24),
(10, 18, 36, 36), (8, 24, 40, 32), (10, 22, 36, 28), (12, 24, 24, 32),
(10, 26, 36, 28), (8, 24, 48, 32), (14, 18, 36, 36), (12, 24, 32, 32),
(12, 20, 40, 24), (10, 30, 36, 20), (16, 12, 48, 24), (20, 0, 72, 0).

The number of switching isomorphism classes of complete graphs grows super-expo-
nentially [4]. Since two signed graphs which yield different vectors must belong to different
classes, one naturally wonders about the converse property, that the vector uniquely iden-
tifies a switching class. This is true up through K7 but false for K8: see Figure ?? below
(found by Gary Greaves, whose assistance we greatly appreciate). Thus when n = 8 there
are fewer vectors than classes; for n > 8 see Question 5.5.

Now we compute the function Gl of Section 3.3. Consider the signed Kn’s whose
negative edges are s nonadjacent edges, for 0 ≤ s ≤ bn/2c. It is straightforward to
compute gl. For a fixed k ≥ 1 and set Y with |Y | = k, we need to form an l-cycle using Y
and l− k other edges. (Since Y is a matching, we know that l ≥ 2k.) So we choose l− 2k
of the remaining n− 2k vertices, and then create our cycle as follows: imagine contracting
the edges in Y ; the resultant vertices, together with the other l − 2k vertices, will form an
l−k-cycle in the contracted graph (which will eventually give an l-cycle inKn). Cyclically
order these l − k “vertices”; this orders the vertices in our actual cycle while ensuring the
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Figure 2: Two switching inequivalent signings of K8 with the same negative cycle vector
(28, 108, 336, 848, 1440, 1248).

edges from Y remain. There are (l−k−1)!
2 ways to do this. Then, we expand the contracted

edges to regain them; there are 2 ways to do this for each edge. So we have

gl(Y ) =

(
n− 2k

l − 2k

)
(l − k − 1)! · 2k−1,

whence

Gl(k) =

(
n− 2k

l − 2k

)
(l − k − 1)! · 2k−1.

By Equation (3.4), c−l (s) is a polynomial in s of degree dl = bl/2c and the general
formula is

c−l (s) =

n∑
k=1

(
s

k

)
(−4)k−1

(
n− 2k

l − 2k

)
(l − k − 1)!,

For example, c−3 (s) = s(n−2) and c−4 (s) = s(n2 +5n+8)−2s2. This formula for c−l (s)
demonstrates that the degrees dl of the odd polynomials are all distinct, and the same for
the even polynomials; consequently our main Theorem 3.3 itself implies that the matrix of
negative cycle vectors c−(s) has full rank n− 2.

Alternatively, in Kn with a maximum matching, ∆odd = {3, 5, . . .} (odd numbers up
to n) and ∆even = {4, 6, . . .} (even numbers up to n). So, by Lemma 3.2, for Kn the ranks
of U and R are dn/2e − 1 and bn/2c − 1, respectively, which sum to n− 2.

4.2 Complete bipartite graphs

We now examine Kp,q , which always has p ≤ q. We use a maximum matching Mp, i.e.,
we set m = p.

To get c−2l(Kp,q) we compute g2l, where the subscript is now 2l because all cycles have
even length. Call the two independent vertex setsA = {a1, . . . , ap} andB = {b1, . . . , bq}.
For a fixed k-edge set Y = {ai1bj1 , . . . , aikbjk} ⊆ Mp, where k ≤ l, we need to form a
2l-cycle using Y and 2l−2k other vertices. Fix one edge y1 ∈ Y , say y1 = ai1bj1 . Choose
l− k of the remaining p− k vertices from A, in order, in one of (p− k)l−k ways; l− k of
the remaining q − k vertices from B, also in order, in one of (q − k)l−k ways; and shuffle
the sequences together as (aik+1

, bjk+1
, . . . , ail , bjl). Insert Y into this 2(l − k)-sequence
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by inserting y1 before aik+1
, which we may do because each Y edge must be between anA

vertex and a B vertex; treating the resulting sequence as cyclically ordered, which can be
done in only one way since the A neighbor of y1 appears after y1; then ordering Y \ {y1}
in one of (k − 1)! ways as (y2, . . . , yk); and finally inserting y2, . . . , yk anywhere into the
cycle in one of (

[2(l − k) + 1] + [k − 1]− 1

[2(l − k) + 1]− 1

)
=

(
2l − k − 1

k − 1

)
ways. Note that when those edges are inserted into the cycle, there is only one way to orient
each edge. The net result is that

G2l(k) = g2l(Y ) = (p− k)l−k(q − k)l−k · (k − 1)!

(
2l − k − 1

k − 1

)
.

Then by Equation (3.4), for 2 ≤ l ≤ p,

c−2l(s) =

p∑
k=1

(s)k
(−2)k−1

k
(p− k)l−k(q − k)l−k

(
2l − k − 1

k − 1

)
.

This explicit formula for the negative cycle vectors c−(s), with Theorem 3.3, implies that
dim NCV(Kp,q) = p = min(p, q).

4.3 The Petersen graph

Next we consider the Petersen graph P , which has four cycle lengths, 5, 6, 8, and 9, so
dim NCV(P ) ≤ 4. It lacks a permutable 4-matching. In fact:

Theorem 4.1. A 3-regular graph that is arc transitive cannot have a permutable
4-matching.

Proof. By [6, Theorem 1.1] an arc-transitive graph with a permutable m-matching, where
m ≥ 4, must have degree at least m.

The Petersen graph does have a permutable 3-matching, in fact, two kinds.
The first kind consists of alternate edges of a C6. In the language of Theorem 3.3, we

must compute µ(l) = |max{Cl ∩M3}| for each cycle length. We find with little difficulty
that µ(5) = 2, µ(6) = 3, µ(8) = 2, and µ(9) = 3. Therefore |∆odd| = 2 and |∆even| = 2,
whence, despite only having a 3-matching, we can deduce that dim NCV(P ) = 4. We even
know the negative cycle vectors corresponding to negative 0-, 1-, 2-, and 3-submatchings
and the negated signatures; they are (in order of matching size)

(0, 0, 0, 0), (4, 4, 8, 12), (6, 6, 8, 10), (6, 10, 0, 10)
(12, 0, 0, 20), (8, 4, 8, 8), (6, 8, 8, 10), (6, 10, 0, 10).

The bottom vector in each column corresponds to the negated signing.
The second kind of permutable 3-matching consists of three edges at distance 3. The

first matching type also is three equally spaced edges in a C9, but not every such subset of
a C9 is also a set of alternating edges of a C6; the other such subsets are 3-matchings of the
second kind. This second kind generates negative cycle vectors from negated submatchings
and the corresponding negated sign functions whose dimension is only 3, not 4, since with
this matching the negated signatures are switching isomorphic to unnegated signatures.
This shows that not all permutable m-matchings in a graph are equally useful.
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4.4 The Heawood graph

The Heawood graph H is bipartite and has five cycle lengths, 6, 8, 10, 12, and 14, so
dim NCV(H) ≤ 5. It has a permutable 3-matching, indeed three different kinds, for
instance alternate edges of a 6-cycle. Using that 3-matching we find that µ(6) = 3,
µ(8) = 2, µ(10) = 3, µ(12) = 3, and µ(14) = 3. These are two different values,
thus dim NCV(H) ≥ 2. The results for the other two kinds of permutable 3-matching are
the same except that µ(6) = 2. In every case µ has two values.

Our matching method, in principle, cannot prove more because H has no permutable
4-matching (see Theorem 4.1). Nonetheless we suspect the dimension equals |SpecC(H)|.

4.5 Other graphs with permutable perfect matchings, and the cube

Schaefer and Swartz found all graphs that have a permutable perfect matching. BesidesKn

and Kp,p they are the hexagon C6, the octahedron graph O3, and three general examples:
the join Kp ∨ Kp of a complete graph with its complement, the matching join Kp Y Kp

obtained from two copies of Kp by inserting a perfect matching between the two copies,
and the matching join Kp Y Kp, obtained by hanging a pendant edge from each vertex
of Kp.

Our treatment of them leads us to one other family, the cyclic prisms Cp�K2.

4.5.1 The simple four

Trivially,
dim NCV(C6) = 1 = |SpecC(C6)|.

It is easy to verify by hand that O3 satisfies the conditions of Corollary 3.5, so

dim NCV(O3) = |SpecC(O3)| = 4.

As for Kp YKp, since the pendant edges contribute nothing to cycles, SpecC(Kp YKp) =
SpecC(Kp) and NCV(Kp YKp) = NCV(Kp); thence

dim NCV(Kp YKp) = |SpecC(Kp YKp)| = p.

It is also easy to show that Kp ∨Kp satisfies the conditions of Corollary 3.5. Thus,

dim NCV(Kp ∨Kp) = |SpecC(Kp ∨Kp)| = 2p.

4.5.2 The matching join of two complete graphs

This graph, Kp Y Kp, is pancyclic, but its permutable matchings are peculiar. One kind
is any matching in a Kp. A maximum matching Mbp/2c in Kp has µ(l) = min(p, bl/2c),
hence dim NCV(Kp Y Kp) ≥ p by reasoning similar to that for Kp. The matching M∨p
that joins the copies of Kp prevents a permutable matching from having edges in both
copies. The only other permutable matchings are subsets of M∨p . This matching only gen-
erates bp/2c switching nonisomorphic signatures since negating a subset of M∨p switches
to negating the complementary subset. By itself, therefore, choosing our grand matching
Mm to be M∨p does not give a better lower bound than p. Nonetheless we feel the dimen-
sion is likely to be n− 2 = 2p− 2.
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The smallest case, K3 Y K3, is the triangular prism. There are four cycle lengths;
the cycle count vector is (c3, c4, c5, c6) = (2, 3, 6, 3). The required dimension can be
found directly. There are four unbalanced signatures; see Figure 3. The negative cycle
vectors are linearly independent so dim NCV(K3 YK3) = |SpecC(v)|, in agreement with
Conjecture 1.1.

(a) (0, 2, 4, 2) (b) (1, 1, 3, 2) (c) (2, 0, 6, 0) (d) (2, 2, 2, 2)

Figure 3: The four unbalanced switching classes of the prism K3 YK3 and their negative
cycle vectors.

As for permutable matchings in the triangular prism, M∨3 gives µ(3) = 0, µ(4) =
µ(5) = µ(6) = 2, thus dim NCV(K3 Y K3) ≥ 3, less than the true value. A strange
permutable matching gives the right dimension. Choose M2 to consist of one edge from
each triangle, not both in a C4. Then µ(3) = µ(4) = 1 and µ(5) = µ(6) = 2, so by
Theorem 3.3, dim NCV(K3 Y K3) = 4, the exact value. This example and the Petersen
graph demonstrate that useful permutable matchings need not be perfect matchings.

4.5.3 Prisms, with cube

The triangular prism lends support to our belief that dim NCV(Kp Y Kp) = 2p − 2.
However, it is atypical since it is also a prism, the Cartesian product Cp�K2 with p = 3.

Prisms with p > 3 do not have permutable perfect matchings but they make good
examples, especially the next case, the cube Q3 = C4�K2. It is bipartite and has only
three cycle lengths: 4, 6, and 8. Three unbalanced signatures whose negative cycle vectors
are linearly independent are

σ1, with one negative edge, e. It has c−(σ1) = (2, 8, 4);

σ2, with a second negative edge, parallel to e and sharing a quadrilateral with it. It has
c−(σ2) = (2, 12, 4);

σ3, with a second negative edge, also parallel to e but not in a common quadrilateral. It
has c−(σ3) = (2, 4, 2).

Thus, dim NCV(Q3) = |SpecC(Q3)|, again agreeing with Conjecture 1.1.

5 Questions
Here are what we consider the principal open questions concerning negative cycle numbers
and vectors. The purpose is to find connections between the structure of Γ and the signed
cycle structure of signatures of Γ. We list them in order of increasing refinement. Complete
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graphs seems to be the simplest example with interesting properties so we recommend them
as the first object of study, except of course in Question 5.1.

5.1 Dimension

Resolve Conjecture 1.1. If it is false, can dim NCV(Γ) be determined in terms of structural
properties of Γ?

5.2 Cone

The zero vector is the most obvious negative cycle vector of every graph. That suggests
looking at the convex cone generated by NCV(Γ). In particular, we wonder whether the
facets or edges of that cone have combinatorial meaning.

5.3 Polytope

The convex hull conv NCV(Γ) is a natural object of interest, and in particular its facets,
which represent the complete set of inequalities satisfied by all negative cycle vectors.
Almost nothing is known about these inequalities even for Kn. We looked at complete
graphs of orders up to 6 but they were too small to suggest a conjecture.

If Σ is a signedKn with frustration indexm = l(Σ) ≤ n/2, the negative cycle numbers
for lengths l < n/2 (approximately) must satisfy bounds found by Popescu and Tomescu
[5, Corollary 1]; the lower bounds occur when E− is an m-edge star and the upper bounds
when E− is an m-edge matching. Since the bounds depend on the frustration index, they
do not appear to constrain conv NCV(Γ), but perhaps something relevant can be made of
them.

5.4 Characterization

The negative cycle numbers of a signed Kn, Σ, must satisfy divisibility conditions found
by Popescu and Tomescu [5, Section 4]. Aside from that and the work of Kittpassorn
and Mészáros [3] on c−3 (Σ)—that is, sizes of n-vertex two-graphs—it is not known which
integral vectors in conv NCV(Kn) can be negative cycle vectors. Surely, a characterization
will be difficult if not impossible.

We know of no partial results for other graphs.

5.5 Collapsing pairs

Concerning Gary Greaves’ counterexample mentioned in Section 4.1, we propose:

Conjecture 5.1. For every n ≥ 8 there are pairs of switching nonisomorphic signed Kn’s
that have the same negative cycle vector.

In a related question, we ask whether the number In of switching isomorphism types
of signed complete graphs [4] is asymptotic to the number |NCV (Kn)| of negative cycle
vectors of those graphs; that is, whether |NCV (Kn)|/In → 1. If not, does it approach 0?

5.6 Conclusion

Evidently, there is much to discover before we can say the negative cycles in signed graphs
are well understood.
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In the paper [1] by me, Theorem 4.4 is stated incorrectly and contradicts Theorem 4.5.
Therefore, Theorem 4.4 should have been stated as follows:

Theorem 4.4. LetG = Kn1,n2,n3
be a complete tripartite graph such that 1 ≤ n1 ≤ n2 ≤

n3 and n = n1 + n2 + n3. The graph G is a group distance magic graph if and only if
(n2 > 1 and n1 + n2 + n3 6= 2p for some positive integer p) or (n1 6= 2 and n2 > 2).

In the previous version in the proof for n1 +n2 +n3 = 2p the case n1 6= 2 and n2 > 2
is not considered. The statement follows directly from Theorem 4.5.

Let n1 + n2 + · · · + nt = n and G = Kn1,n2,...,nt
. In the introduction is stated that

G is Γ-distance magic if and only if Γ has the CSP(t)-property. It is not true. It should be
stated thatG is Γ-distance magic if and only if for the partition n = n1 +n2 + · · ·+nt of n
there is a partition of Γ into pairwise disjoint subsets A1, A2, . . . , At, such that |Ai| = ni
and for some ν ∈ Γ,

∑
a∈Ai

a = ν for 1 ≤ i ≤ t.
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